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Abstract
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1 Introduction

Naive Bayes classifiers have proven to be useful in many prediction prob-

lems with complete training data. Here we consider the situation where a naive

Bayes classifier is trained with data where the response is right censored. Such

prediction problems are for instance encountered in profiling systems used at

National Employment Agencies. A profiling system provides predictions of

unemployment duration based on individual characteristics. To train such a

system register data on individuals is used where unemployment durations as

well as demographic and socio-economics information is recorded. Unemploy-

ment duration is then typically censored by the end of the observation period

as well as exit from unemployment due to other reasons than employment,

typically entrance into educational programs [1]. Naive Bayes classifiers have

proven useful in many prediction problems with complete data [5], [3] and

references therein. In this paper for this censored response case we propose

the maximum collective conditional likelihood estimator and show that it is

strongly consistent under the usual identifiability condition [4] whose notation

is used in our proof.

Formally, consider a class variable X0 −say unemployment duration− and a

n−attribute random variable vector X[n] = (X1, . . . , Xn) −individual features,

where all the variables are discrete and finite. Note that continuous variables

may be discretized making this framework more general. We assume thus that

the state space of Xi is Xi = {1, . . . , ri}. We further assume that (X0, X[n])

forms a naive Bayesian network so that their joint density and conditional

density of X0 given X[n] = x[n] are as follows:

p(x0, x1, . . . , xn) = p(x0)
n∏

i=1

p(xi | x0),

p(x0 | x[n]) =
p(x0)

∏n
i=1 p(xi | x0)∑

x′0
p(x′0)

∏n
i=1 p(xi | x′0)

.

Let the parameter space be Θ = ∆r0 × ∆r0
r1
× · · · × ∆r0

rn
where ∆t =

{(p1, . . . , pt−1) : 0 ≤ pi,
∑t−1

i=1 pi ≤ 1} and for ∆b
a, where b is the usual power.

The interior of Θ is denoted by Θo. In the following, we always assume that

the true parameter is an element of Θo. Note that, if this is not the case then

the naive Bayesian network is degenerated in the sense that some variables

(if binary) may vanishes as their state space will be reduced to singletons or
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some may appear with reduced state spaces. Then, the parameter of the naive

Bayesian model is θ = (θ0, θ1, . . . , θn) ∈ Θ , where θ0 = (θx0=1, . . . , θx0=r0−1)

and θi = (θi|x0=1, . . . , θi|x0=r0) such that θi|x0 = (θxi=1|x0 , . . . , θxi=ri−1|x0) for

i = 1, . . . , n. Since we are working on the non-Bayesian case we have

pθ(x0) = θx0 if x0 = 1, . . . , r0 − 1,

pθ(r0) = 1−
r0−1∑
x0=1

θx0 ,

pθ(xi | x0) = θxi|x0 if xi = 1, . . . , ri − 1,

pθ(ri | x0) = 1−
ri−1∑
xi=1

θxi|x0 .

Note that the above marginal and conditional densities are over-parameterized,

i.e., when we write, for example, the density of X0, pθ(x0) the parameter θ also

contains irrelevant components in addition to relevant ones to determine the

probabilities of X0.

Suppose we have a random sample with N = N1 +N2 number of data cases

on the random variable vector (X0, X1, . . . , Xn), and denote

D =
{
(x

(1)
0 , x

(1)
1 , . . . , x(1)

n ), . . . , (x
(N)
0 , x

(N)
1 , . . . , x(N)

n )
}
.

Let the first N1 cases to be fully, and for the remaining N2 cases to be right

censored in X0. In the example of unemployment duration, where X0 denotes

the duration of an unemployment spell for an individual and (X1, . . . , Xn) a

suitable vector of features/covariates, (right) censoring of X0 may be due to

the end of study or entrance in educational programs for unemployed. In the

sequel, by “censored” it is meant right censored response.

The compound collective conditional likelihood (CCCL) of θ given the data

D is defined as

CCCLN(θ) =

N1∏
j=1

pθ(x
(j)
0 | x(j)

[n])
N∏

k=N1+1

Pθ(X0 > x
(k)
0 | x(k)

[n] )

=

N1∏
j=1

pθ(x
(j)
0 | x(j)

[n])
N∏

k=N1+1

r0∑

x0=x
(k)
0 +1

pθ(x0 | x(k)
[n] )
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=

N1∏
j=1

pθ(x
(j)
0 )

∏n
i=1 pθ(x

(j)
i | x(j)

0 )∑
x′0

pθ(x′0)
∏n

i=1 pθ(x
(j)
i | x′0)

×
N∏

k=N1+1

r0∑

x0=x
(k)
0 +1

pθ(x0)
∏n

i=1 pθ(x
(k)
i | x0)∑

x′0
pθ(x′0)

∏n
i=1 pθ(x

(k)
i | x′0)

=

N1∏
j=1

pθ(x
(j)
0 )

∏n
i=1 pθ(x

(j)
i | x(j)

0 )∑
x′0

pθ(x′0)
∏n

i=1 pθ(x
(j)
i | x′0)

×
N∏

k=N1+1

{
Pθ(X0 = x

(k)
0 + 1)

∏n
i=1 pθ(x

(k)
i | X0 = x

(k)
0 + 1)∑

x′0
pθ(x′0)

∏n
i=1 pθ(x

(k)
i | x′0)

+... +
Pθ(X0 = r0)

∏n
i=1 pθ(x

(k)
i | X0 = r0)∑

x′0
pθ(x′0)

∏n
i=1 pθ(x

(k)
i | x′0)

}

= CCL1
N(θ) + ... + CCLM

N (θ),

where M =
∏N

j=N1+1(r0 − x
(j)
0 ). Thus, the CCCL is a sum of M collective

conditional likelihoods.

The maximum compound collective conditional likelihood estimator (MC-

CCLE) is then

θ̂N = argmax
θ∈Θ

{
CCL1

N(θ) + ... + CCLM
N (θ)

}
.

MCCCLE has no closed form expression in general and need to be solved

numerically. We will need below the following MCCLEs

θ̂i
N = argmax

θ∈Θ
CCLi

N(θ) for i = 1, ..., M.

2 Strong consistency of MCCCLE

In this section, we give a proof for the strong consistency of MCCCLE.

First, we need the following identifiability assumption as usual in maximum

likelihood theory.

Assumption 2.1. (Identifiability Condition) If pθ(x0 | x[n]) = pθ′(x0 | x[n])

for all x0 and x[n] then θ = θ′.
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This condition requires that θ should be uniquely determined by the cor-

responding density pθ(. | .). As shown earlier [4] for MCCLE, this does not

always hold.

The collective conditional likelihood function for the naive Bayes network

model with complete data is a concave down function in the parameters [2].

As noticed above, the compound collective conditional likelihood function with

censored response is a sum of collective likelihood function.

Lemma 2.2. The compound collective conditional likelihood function

CCCLN(θ) defined above is concave down in θ.

Proof: First note that for any θ ∈ Θ , pθ(x0 | x[n]) > 0, and, therefore,

so do the collective conditional likelihood functions composing CCCLN . Fur-

thermore, the sum of two convex functions with same support is convex and

so do the sum of any number of convex functions with same domain, thereby

yielding the result.

Lemma 2.3. If f and g are two convex functions on the same domain with

their global minima at x1 and x2 respectively, then f + g has its global minima

at tx1 + (1− t)x2 for some t ∈ [0, 1].

Proof : If x1 = x2 then the result holds for t = 0 or t = 1. Consider the

case where x1 6= x2. Then ḟ(x1) + ġ(x1) < 0 and ḟ(x2) + ġ(x2) > 0 or vice

versa. Since f + g is a convex function (sum of two convex functions with

same domain), there must be a point x3 such that ḟ(x3) + ġ(x3) = 0, where

x3 = tx1 + (1− t)x2 for some t ∈ [0, 1].

If M = 2 then, since CCL1
N(θ) and CCL2

N(θ) are concave down functions

having their maxima at θ̂1
N and θ̂2

N respectively, CCL1
N(θ) + CCL2

N(θ) which

is also concave down has its maximum at θ̂N := tDθ̂1
N +(1− tD)θ̂2

N where tD is

a vector of the same length as θ∗, whose components are in [0, 1], and which is

dependent on the data D. Note that both θ̂1
N and θ̂2

N are consistent estimates

for θ∗ under Assumption 2.1 (since they are MCCLEs, see [4]).

Pθ∗

{
lim

N1→∞
θ̂1

N = θ∗
}

= 1 (1)

Pθ∗

{
lim

N1→∞
θ̂2

N = θ∗
}

= 1 (2)
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In the sequel, we write θ = 0 for θ ∈ Θ0 to mean that all the components

of θ are zeros and similarly for any inequality on θ. Now we can prove the

strong consistency of MCCCLE.

Theorem 2.4. Under Assumption 2.1, MCCCLE θ̂N is strongly consistent

as follows,

Pθ∗

{
lim

N1→∞
θ̂M+N1 = θ∗

}
= 1,∀M. (3)

Proof: We prove the result by induction. Let M = 2, then θ̂N = tDθ̂1
N +

(1− tD)θ̂2
N = θ̂2

N + tD(θ̂1
N − θ̂2

N). By (1) and (2) we have

Pθ∗

{
lim

N1→∞
θ̂1

N = θ∗ ∩ lim
N1→∞

θ̂2
N = θ∗

}
= 1. (4)

(5)

Since θ̂1
N , θ̂2

N and θ∗ are finite and 0 ≤ tD ≤ 1 (therefore 0 ≤ lim supN→∞ tD ≤
1) we can write

Pθ∗

{
lim sup
N1→∞

tD(θ̂1
N − θ̂2

N) = 0
}

= 1 (6)

Pθ∗

{
lim sup
N1→∞

θ̂2
N + tD(θ̂1

N − θ̂2
N) = θ∗

}
= 1 (7)

Pθ∗

{
lim sup
N1→∞

θ̂N = θ∗
}

= 1 (8)

Similarly we can write

Pθ∗

{
lim inf
N1→∞

θ̂N = θ∗
}

= 1. (9)

Hence

Pθ∗

{
lim

N1→∞
θ̂N = θ∗

}
= 1 (10)

Now assume that for M > 2, θ̂N := w1
Dθ̂1

N+...+wM
D θ̂M

N where w1
D+...+wM

D =

1, the maximizer of CCCLN(θ), is a consistent estimator of θ∗. Then, for

the case of M + 1, assume for simplicity that the additional new censored

observation is x
(N+1)
0 = r0 − 2. Then,

CCCLN+1(θ) =
{

CCL1
N(θ) + ... + CCLM

N (θ)
}

×
{

Pθ(X0 = r0 − 1)
∏n

i=1 pθ(x
(N+1)
i | X0 = r0 − 1)∑

x′0
pθ(x′0)

∏n
i=1 pθ(x

(N+1)
i | x′0)

+
Pθ(X0 = r0)

∏n
i=1 pθ(x

(N+1)
i | X0 = r0)∑

x′0
pθ(x′0)

∏n
i=1 pθ(x

(N+1)
i | x′0)

}
.
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Let us rewrite this (with obvious new notation)

CCCLN+1(θ) =
{

CCLa,1
N+1(θ) + ... + CCLa,M

N+1(θ)
}

+
{

CCLb,1
N+1(θ) + ... + CCLb,M

N+1(θ)
}

Now denote

θ̂a
N+1 := wa,1

D θ̂a,1
N+1 + ... + wa,M

D θ̂a,M
N+1

and

θ̂b
N+1 := wb,1

D θ̂b,1
N+1 + ... + wb,M

D θ̂b,M
N+1,

where
∑M

j wi,j
D = 1 for i = a, b, the maximizers of the first and second sums

of CCLs respectively. By assumption they are consistent estmators of θ∗.

Now similarly to the case M = 2, we can write

θ̂N+1 := uDθ̂a
N+1 + (1− uD)θ̂b

N+1,

where 0 ≤ uD ≤ 1, the maximizer of CCCLN+1(θ), and show that it is strongly

consistent for θ∗.

Corollary 2.5. pθ̂N
(x0 | x[n]) is strongly consistent estimator of pθ∗(x0 |

x[n]) for each x[n].

Proof: Immediate from the theorem since the densities pθ(x0 | x[n]) for all

x[n] are rational functions of the parameter which have no poles in Θo.
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