

GPU Monte Carlo scatter calculations

for Cone Beam Computed
Tomography

 J O N A S A D L E R

 Master of Science Thesis
 Stockholm, Sweden 2014

GPU Monte Carlo scatter calculations for
Cone Beam Computed Tomography

 J O N A S A D L E R

 Master’s Thesis in Scientific Computing (30 ECTS credits)
 Master Programme in Mathematics (120 credits)
 Royal Institute of Technology year 2014
 Supervisor at Elekta was Markus Eriksson

Supervisor at KTH was Michael Hanke
 Examiner was Michael Hanke

 TRITA-MAT-E 2014:05
 ISRN-KTH/MAT/E--14/05--SE

 Royal Institute of Technology
 School of Engineering Sciences

 KTH SCI
 SE-100 44 Stockholm, Sweden

 URL: www.kth.se/sci

Abstract
A GPU Monte Carlo code for x-ray photon transport has
been implemented and extensively tested. The code is in-
tended for scatter compensation of cone beam computed
tomography images.

The code was tested to agree with other well known codes
within 5% for a set of simple scenarios. The scatter com-
pensation was also tested using an artificial head phantom.
The errors in the reconstructed Hounsfield values were re-
duced by approximately 70%.

Several variance reduction methods have been tested, al-
though most were found infeasible on GPUs. The code is
nonetheless fast, and can simulate approximately 3 · 109

photons per minute on a NVIDIA Quadro 4000 graphics
card. With the use of appropriate filtering methods, the
code can be used to calculate patient specific scatter distri-
butions for a full CBCT scan in approximately one minute,
allowing scatter reduction in clinical applications.

Referat

GPU Monte Carlo spridningsberäkningar för
volymtomografi

En GPU Monte Carlo kod för transport av röntgenfotoner
har implementerats och utförligt testats. Koden är avsed
för spridningskorrektion av CBCT-bilder.

Koden har testats mot PENELOPE och resultaten överen-
stämmer inom 5% för ett antal enklare geometrier. Koden
testades också i en verklig uppställning med ett artificiellt
huvud. De resulterande felen i de beräknade Hounsfield-
värdena minbskade med ca 70%.

Ett antal variansreduktionstekniker har också testats, men
de flesta gav ingen förbättring på GPU. Koden är trots
detta avsevÃ¤rt snabb och kan simulera ca 3 · 109 photo-
ner per minut med ett Quadro 4000 grafik-kort. Med hjälp
av väl valda filtreringsmetoder kan koden användas för att
beräkna patientspecifika spridningsfördelningar för ett full-
ständigt CBCT-scan på under en minut. Detta är tillräkligt
för spridningskorrektion i kliniska tillämpningar.

Contents

Contents

List of Figures

List of Tables

List of Abbreviations and Nomenclature

1 Introduction 1
1.1 Leksell Gamma Knife . 1
1.2 Cone Beam Computed Tomography 2

1.2.1 Scatter Artefacts in CBCT Images 3
1.3 Scientific Computation on GPUs . 5
1.4 Layout of thesis . 6

2 Background 7
2.1 CUDA . 7
2.2 Monte Carlo Method . 9
2.3 Photon Transport in Matter . 10
2.4 The Monte Carlo Method for Photon Transport 18

2.4.1 Related Work . 19
2.4.2 Variance Reduction Techniques 19
2.4.3 Pre- and Post-Processsing . 22
2.4.4 Random Number Generation 24

3 Method 25
3.1 CBCT Volume Reconstruction with Scatter Reduction 25
3.2 Geometry . 26

3.2.1 Material Model . 27
3.3 Simulating Photons . 28

3.3.1 Generating Photons . 28
3.3.2 Advance Photon . 31
3.3.3 Score Photon . 32
3.3.4 Simulating Interactions . 33

3.3.5 Energy Cut-off . 36
3.4 Variance Reduction . 38

3.4.1 Splitting . 38
3.4.2 Russian Roulette . 41
3.4.3 Forced Detection . 43

3.5 Filtering Methods . 46
3.6 Scatter Removal . 46
3.7 Code Optimizations and Details . 47

3.7.1 Random Number Generation 48
3.7.2 Memory Use and Accesses . 48
3.7.3 Built-in Function Calls . 49
3.7.4 Thread Coherence . 49
3.7.5 Numerical Precision . 50

4 Results 51
4.1 Performance . 51

4.1.1 Variance Reduction Methods 51
4.2 Physical Accuracy . 52

4.2.1 PENELOPE comparison . 53
4.2.2 Head phantom . 56

4.3 Effect on reconstruction . 59

5 Discussion 63
5.1 Performance . 63

5.1.1 Variance Reduction . 63
5.2 Accuracy . 64
5.3 Reconstruction . 64

6 Conclusions 65
6.1 Further work . 65

6.1.1 Sources of error . 65
6.1.2 Possible Speed-ups . 66

Bibliography 67

A Rejection Sampling 71

B Estimation of Memory Limitations 73

List of Figures

1.1 Leksell Gamma Knife . 2
1.2 CBCT setup . 3
1.3 Schematic CBCT setup . 4
1.4 Scatter artefacts . 4

2.1 CUDA memory model . 9
2.2 Mass Attenuation Coefficient Water . 11
2.3 Mass Attenuation Coefficient Bone . 12
2.4 Electron Stopping Power . 13
2.5 Klein Nishina distribution . 15
2.6 Compton scatter . 16
2.7 Rayleigh scattering distribution . 18
2.8 Scatter filtering comparison . 23

3.1 CBCT reconstruction flow . 25
3.2 Coordinate System . 27
3.3 Photon simulation flow chart . 29
3.4 Phase Space . 30
3.5 Ray tracing . 31
3.6 Woodcock step length . 32
3.7 Scoring angular dependence . 33
3.8 Rotation . 35
3.9 Compton Table . 36
3.10 Mean distance until absorption . 37
3.11 Cutoff investigation . 38
3.12 Splitting . 39
3.13 Splitting parameter . 41
3.14 Static splitting parameter . 42
3.15 Russian Roulette . 42
3.16 Russian Roulette PHit,E . 44
3.17 Russian Roulette nE . 45
3.18 Forced Detection . 45
3.19 Scatter removal scaling . 47

4.1 Test geometries . 53
4.2 Bone shell cylinder comparison . 54
4.3 Error histograms for simple geometries 55
4.4 Head phantom . 57
4.5 Head phantom test . 58
4.6 Head phantom scatter compensation . 58
4.7 Head phantom error . 59
4.8 Reconstructed Cross-section . 60
4.9 Reconstruction Line . 61

A.1 Rejection Sampling . 72

List of Tables

3.1 Phase space approximation functions . 31
3.2 Comparasion of RNG algorithms . 48

List of Abbreviations and Nomen-
clature

CPU Central Processing Unit

GPU Graphics Processing Unit

CBCT Cone Beam Computed Tomography

MC Monte Carlo

MFP Mean Free Path

PS Phase Space

RNG Random Number Generator

CUDA Compute Unified Device Architecture

CURAND CU(DA) Random Numbers

XORWOW XOR-shift with Weyl sequence

MT Mersienne Twister

NIST National Institute of Standards and Technology

PDF Probability Density Function

CDF Cumulative Distribution Function

DCS Differential Cross Section

SIMD Single Instruction, Multiple Data

GPGPU General-Purpose computing on Graphics Processing
Units

RR Russian Roulette

PENELOPE Penetration and ENErgy LOss of Positrons and
Electrons

1 | Introduction

Elekta Instrument AB is a medical technology company whose primary product is
the Leksell Gamma Knife, shown in Figure 1.1. The Gamma Knife is a radio surgery
device primarily used for treatment of brain tumours, intra cranial disorders and
vascular diseases. To, among other things, improve the flexibility of the Gamma
Knife, Elekta intends to add a Cone Beam Computed Tomography (CBCT) system
to the Gamma Knife.

The goal of the work in this thesis has been to improve the image quality of the
CBCT.

1.1 Leksell Gamma Knife

The Leksell gamma knife was invented at the Karolinska Institute in Stockholm,
Sweden, 1967 and is named after one of its creators, Lars Leksell. The latest instal-
ment of the Gamma Knife is called the Leksell Gamma Knife, Perfexion.

The Gamma Knife is a gamma-radiation based radio-surgery method, where 192
beams of radiation from cobalt-60 sources are focused on the target. The surround-
ing tissue thus suffers only minor damage in comparison to the area of interest.

In order to deliver an optimal dose to the correct position, the Gamma Knife needs
accurate positioning. The current method is to physically attach a special frame
to the patient’s head and image the patient in a 3D MRI-scan. This 3D-scan gives
a precise coordinate system of the patients head. However, this procedure is time
consuming and to be able to perform several treatments it would have to be redone
every time. Many patients also dislike the prospect of having a frame screwed to
their heads.

To make this procedure simpler, the new Gamma Knife model will be delivered
with a built in CBCT scanner. This scanner can be used to create a 3D image of
the patients head. This can then be mapped to the geometry used in treatment
planning where the doctor has decided which areas to treat.

1

CHAPTER 1. INTRODUCTION

Figure 1.1: The Leksell Gamma Knife, Perfexion. Published with permission from
Elekta AB.

1.2 Cone Beam Computed Tomography

CBCT is a modern medical imaging method. During a CBCT scan, the scanner
revolves around the patient’s head taking a large set of X-ray images. Using these
images and computational methods, a 3D volume of the x-ray attenuation coeffi-
cients are obtained. CBCT is most popular in implant dentistry and radiotherapy,
but has proved useful for other applications. Two of the appealing characteristics
are the fast scan time and relatively small scanner size. The design of the CBCT
used is shown in figure 1.2, while a schematic view showing the relevant parts is
shown in Figure 1.3.

X-rays are used because they have an attenuation length of 2-6 cm in biological
matter, which is suitable for clinical applications. The X-ray photons are generated
in an X-ray tube (source), and are sent along a path towards the detector. On their
way, they may interact with matter by being scattered or absorbed. Some materials,
such as bone, have a higher chance of interacting with the photons, and thus fewer
photons will be transmitted through them. The detector detects the transmitted
(primary) and scattered photon and produces an image.

The most common algorithm used to reconstruct the 3D volume is the Filtered
Back-Projection algorithm, developed by Feldkamp in 1984. The algorithm works
by projecting the filtered signal backwards from the detector through the volume

2

1.2. CONE BEAM COMPUTED TOMOGRAPHY

Figure 1.2: Illustration of the CBCT system with a patient. Published with per-
mission from Elekta AB.

to estimate the attenuation at each point in the volume. A full description of the
algorithm is available in [1].

1.2.1 Scatter Artefacts in CBCT Images

If the detector only detected the primary photons, the image would be an accurate
representation of how much radiation is attenuated along different lines through the
phantom. However, due to the scattered photons, this image loses contrast. The
problems caused by this are illustrated in Figure 1.4.

The main goal of the work in this thesis was to write a code and related methods that
can be used to remove the scattered photons from the X-ray images. The chosen

3

CHAPTER 1. INTRODUCTION

X-ray source

Phantom

Detector

Phase Space

Figure 1.3: Schematic drawing of the CBCT setup showing the main components.
The phantom is the volume being imaged. The phase space is the set of possible
photon paths from the X-ray source. Most of these paths are aimed towards the
detector. This is illustrated by the dotted lines.

−1000

−500

0

500

1000

x

A
tte

nu
at

io
n

(H
U

)

Figure 1.4: Illustration of the artefacts created by scattered photons in the CBCT
reconstruction of an artificial (plastic) head. Shown in a traverse cross section in
(a). In figure (b), the values along the blue line in (a) are shown. Also shown is
the exact values in black. The values shown are in Hounsfield (HU) units, which is
an linear scaling of the X-ray attenuation coefficient. We see that the contrast is
greatly reduced and that the calculated HU values are far from the correct values.
The noise present in the image is not due to scatter but is so called quantum noise
caused by the relatively small number of X-ray photons that hit each pixel in the
detector.

4

1.3. SCIENTIFIC COMPUTATION ON GPUS

method is the method developed by Wiegert [2] around 2006. In this method, a
first reconstruction of the volume is performed. Using this volume, a large number
of photons are simulated using the Monte Carlo (MC) method, and the resulting
scatter contribution is calculated. This calculated scatter is then subtracted from
the measured images.

The MC method is a method were many samples, in this case individual photons,
are taken from a distribution. The sought after quantities, such as the distribution
of the scattered photons on the detector, can then be calculated by averaging. This
method is regarded as accurate, but it converges relatively slowly.

In Wiegerts work, the simulation of the scatter took 20 days for one scan. Since
then, significant technological improvements have been made, and the goal of this
thesis is to find a method to perform this simulation in less than five minutes, thus
allowing scatter correction for clinical applications.

1.3 Scientific Computation on GPUs

General-Purpose computing on Graphics Processing Units (GPGPU) is a relatively
new phenomenon offering developers very high computational power at moderate
costs. The idea is to use the hardware developed for commercial graphics applica-
tions, such as games, and use it for scientific computations.

Computer graphics has a parallel structure with each pixel calculated being largely
independent from the other pixels. This allows a very large number of processing
cores to work in parallel. To facilitate more processors on the chip, Graphics Pro-
cessing Unit (GPU)s sacrifice the ability for each thread to work independently.
Instead GPUs use a Single Instruction, Multiple Data (SIMD) architecture. In
this architecture, multiple processor performs the same set of instructions, but on
different data.

This very parallel processing structure has applications in scientific computing, since
many problems are highly parallel. The computational problem in this thesis, MC
photon transport, is an example of such a problem.

There are two main frameworks used for GPU computing today, Open Computing
Language (OpenCL) and Compute Unified Device Architecture (CUDA). OpenCL
is an open source framework, while CUDA is proprietary and owned by Nvidia,
the largest supplier of GPUs today. In this work, we have used CUDA, primarily
because it is already used in other company products.

5

CHAPTER 1. INTRODUCTION

1.4 Layout of thesis

In the following chapter, we will delve deeper into the problems related to scatter
artifacts in CBCT and present a solution.

In chapter 2, we will discuss the tools used, starting with introducing the CUDA
GPU framework. The physics of interest to the problem will also be introduced,
and we will discuss what parts are the most relevant to account for. Finally, we will
investigate the methods used by other authors to solve these problems and methods
they have used to make the program faster without losing accuracy.

In chapter 3 we will look at the implementation in detail. We will begin with
discussing how to generate and store the geometry and how to assign properties to
the various materials present. Then, we will investigate the implementation of the
physical model, with emphasis on the modelling of photon interactions. At the end,
some coding details and tricks will be discussed.

In chapter 4 the results of the work will be presented. We first compare the code with
another well known code called PENELOPE, then we test the code by simulating a
real experiment. Finally, we test the effect of removing the calculated scatter from
real images and see how the reconstruction is improved.

In chapter 5 we discuss the results by and problemize what may have gone worse
than expected.

In the final chapter, we conclude the findings of the thesis with a summary, and
discuss interesting directions of further research in this area.

6

2 | Background

In this chapter the background of the thesis will be presented. First, a brief in-
troduction to the methods used will be given, with a brief overview of scientific
computing on GPUs using Nvidia’s CUDA tools. Some of the specific issues related
to this approach will also be discussed. The MC method will also be presented and
its rate of convergence discussed. The problem of photon transport in matter will
also be presented.

Finally, the MC method for photon transport in matter will be presented in depth,
with discussions on other relevant work in the area. Many of the more complex
sub-problems will also be discussed. Various methods to speed up the method
such as variance reduction methods, pre-calculations and filtering methods will be
introduced.

2.1 CUDA

The CUDA computational model is a multi-level model. Each processing thread
belongs to a warp, which is a set of threads sharing an instruction queue. A set
of warps forms a block, and the blocks are laid out in a grid. To enumerate the
threads, each thread has a three dimensional blockId, and a three dimensional
threadId within the block.

The main difference between CUDA programming and Central Processing Unit
(CPU) programming is that outer loops are replaced by calls to device (GPU) side
functions. For example, if we want to perform some work on a 2D array of data on
a CPU, the code would look like Algorithm 1.

Algorithm 1: CPU array-function
1 for i = 1 : n do
2 for j = 1 : m do
3 out(i,j)=complicated_function(in(i,j))

In CUDA, we first write a device side function, such as Algorithm 2. This function
specifies the work each thread will perform. This method is then called from the
host (CPU) side, as in Algorithm 3. The CUDA specific <<<1,blockDim>>> code

7

CHAPTER 2. BACKGROUND

ensures that n ×m threads are created with the correct indices. If the number of
threads are larger than the maximum number that the hardware can handle, work
is queued and the threads perform their work in a successive manner.

Algorithm 2: CUDA device side
1 out(i,j)=complicated_function(in(threadId.x,threadId.y))

Algorithm 3: CUDA host side
1 dim3 blockDim(n, m)
2 deviceSide<<<1,blockDim>>>(in,ref out);

Since the CUDA framework uses a SIMD architecture, the code is very sensitive to
branching. Branching is any occasion of if or switch or other statements where the
code may take different paths. If a single thread in a warp needs to take a different
path from the other threads, all threads have to wait for that one thread to finish
before they can continue.

The memory structure on an CUDA GPU is also optimized for parallel execution.
This is in contrast to CPU memory which is optimized for serial code. Like a CPU,
the GPU has a large global memory. This memory is often in the order of one to
several GB. The global memory has three main subdivisions: the general memory
(usually denoted global memory), where any kind of data is stored; the texture
memory, which is optimized for typical texture access patterns; and the constant
memory, which is constant in time and can therefore be heavily cache optimized.
Access to the global memory is optimized for parallel access, and to achieve optimal
performance, continuous blocks of 64 bytes should be read.

Each block of threads also shares an on chip memory. This memory is usually
64 kB and has two subdivisions, L1 cache which is used to cache global memory
accesses, and a general shared memory for general storage. The shared memory is
significantly faster to access than global memory. Finally, each thread has its own
registers, access to the registers is extremely fast.

This memory structure is illustrated in Figure 2.1, which shows the main compo-
nents of the CUDA architecture. Utilizing these different memory levels optimally
is key to a successful GPU algorithm.

8

2.2. MONTE CARLO METHOD

Figure 2.1: Schematic view of the CUDA thread and memory model, showing a
simplified model with two blocks with two threads each.

2.2 Monte Carlo Method

The MC method dates back to the second world war and the Manhattan Project,
where it was conceived by Stanislaw Ulam as a way to calculate neutron diffusion
in radiation shielding. Ulam observed that while the equations governing neutron
diffusion were well known, analytic solution methods proved fruitless. The method
he instead decided to use was to stochastically simulate multiple neutron paths
through the material and average the results to get an estimate of the shielding
effect.

In the MC method, a large number of samples are taken from a random distribution
governing the problem investigated. For example, if we want to calculate π, we could
sample N points in the square [−1, 1]× [−1, 1] and calculate the fraction of points
with norm ≤ 1. This fraction is then an estimate of π/4.

The MC method converges slowly. For the example above, the distribution of the
result for one point will be Bernoulli distributed with p = π/4. The average of N
estimates will thus be Binomially distributed1. This gives us the standard error σ

1More exactly, B(N,π/4)/N distributed

9

CHAPTER 2. BACKGROUND

σ =

√
π(4− π)

16N ∝ 1√
N

This result is very general and applies for any case where the point wise distribution
is of finite variance, due to the central limit theorem. This convergence is relatively
slow, and the method may therefore require a very large number of data points to
converge.

For example, the detector used in the CBCT has 720 × 780 pixels, the probability
p for a photon to hit a specific pixel is thus (ignoring interactions and assuming all
photons hit the detector) ≈ 1/(720× 780). The relative standard error of the result
is then obtained by division with the mean (µ)

σ/µ ≈
√
p(1− p)
Np2 ≈

√
720× 780

N

To achieve a relative standard error of approximately 1%, we can make a rough
approximation assuming uniform distribution and independence of all pixels. Then,
the number of photons needed (N) is:

N ≈ 720× 780
0.012 ≈ 1010 (2.1)

This is prohibitively large if we require the simulation to take less than a few min-
utes, and steps needs to be taken to reduce this number for a real time application.

2.3 Photon Transport in Matter

Photon transportation in matter is an old problem, which has been studied in
many shapes and forms. A general mathematical model for photon transport is the
radiative transfer equation. This equation is highly complicated to solve analytically
for even slightly complicated geometries.

When photons travel through media it may interact with the material in ways such
as bouncing of molecules or electrons, or by interacting in more complex ways. The
4 major types of photon-matter interactions are listed below.

• Photoelectric absorption

• Compton (inelastic) scattering

• Rayleigh (elastic) scattering

• Pair/triplet production

10

2.3. PHOTON TRANSPORT IN MATTER

The probabilities for these different interactions can be calculated using the atten-
uation coefficient µ. µ is defined as the differential interaction probability

µ = dPInteraction
dx

Where dx is a infinitesimal movement of the photon and dPInteraction is the chance
that an interaction occurs. In the literature however, it is more common to use
µ divided by the density ρ. This is called the mass attenuation coefficient, and is
usuallu denoted µ/ρ. The mass attenuation coefficient is popular because it allows
easier calculations for compound materials, and allows simple rescaling by density.
Values of µ/ρ for various materials have been extensively tabulated by Hubbell et
al.[3] and are available through the NIST XCOM webpage[4]. Typical values of µ/ρ
for water and bone are shown in Figures 2.2 and 2.3. For typical x-ray energies,
E ≤ 0.1 MeV, Pair/Triplet production is irrelevant. At lower energies, E ≤ 0.01
MeV the photoelectric effect is dominant.

0.01 0.02 0.04 0.06 0.08
0.001

0.01

0.1

1

10

Energy [MeV]

M
as

s
A

tte
nu

at
io

n
C

oe
ffi

ci
en

t [
cm

2 /g
]

Photoelectric
Compton
Rayleigh
Total

Figure 2.2: Mass Attenuation Coefficient of water at various energies.

After an interaction the direction and energy of the photon will change. The proba-
bility of each combination of direction and energy is proportional to the Differential
Cross Section (DCS)

d2σ

dΩdE′ = Nout,E′

Nin,E

11

CHAPTER 2. BACKGROUND

0.01 0.02 0.04 0.06 0.08
0.001

0.01

0.1

1

10

Energy [MeV]

M
as

s
A

tte
nu

at
io

n
C

oe
ffi

ci
en

t [
cm

2 /g
]

Photoelectric
Compton
Rayleigh
Total

Figure 2.3: Mass Attenuation Coefficient of bone at various energies.

where Nin,E is the number of photons travelling in the initial (θ = 0) direction with
energy E and Nout,E′ is the number of photons leaving in the direction of the solid
angle dΩ with energy in the interval [E′, E′ +dE]. The dE′ term thus accounts for
the possible change in energy.

In this thesis we will be working with non-polarized X-rays, and thus all distributions
will be rotationally symmetric around the θ = 0 axis, and the expression can be
simplified to

d2σ

dθdE′ = 4π sin θNout,E′

Nin,E

where
dθ = dΩ

4π sin θ
We will also find that for the Rayleigh interaction, E′ = E, and for the Compton
interaction, neglecting Doppler broadening, E′ = f(E) for some function f . In
these cases, the DCS can be written in its energy-independent form as

dσ
dθ =

∫ ∞
0

d2σ

dθdE′dE
′ = 4π sin θNout

Nin

This is the form that will be used in the rest of this thesis. We will now discuss the
different types of interactions in more depth.

12

2.3. PHOTON TRANSPORT IN MATTER

Photoelectric absorption is an interaction where a photon interacts with an
atom and its energy deposited in an electron. This electron will then continue its way
through the material and interact with the matter, gradually losing energy. There
are two ways for the electron to lose energy, inelastic collision with nuclei, resulting
in an energy loss by heating the material, and photon emission by Bremsstrahlung.
The energy loss due to these interactions is usually measured as the electron stopping
power of the material. The stopping power is a measure of how much energy an
electron loses per unit length travelled in the material.

The electron stopping power of water is shown in Figure 2.4. We see that the electron
loses approximately 10MeV/cm in total, and that almost all of the energy is lost by
inelastic collisions, with only a negligible amount re-emitted as photons. The mean
path that the electrons will travel before stopping is thus very short, approximately
10−3cm. Because of this, we can with high accuracy assume that the energy of the
electron is deposited locally as thermal energy in case of a photoelectric absorption.

0.02 0.04 0.06 0.08
0.001

0.01

0.1

1

10

100

Energy [MeV]

S
to

pp
in

g
P

ow
er

 [M
eV

 /
cm

]

Collision
Radiative

Figure 2.4: Electron Stopping Power of water at various energies. Data obtained
from NIST ESTAR [5].

Compton scattering is an interaction where a photon collides with an electron in
the material. The photon loses some energy, depositing it to the electron, and both
the electron and photon is then scattered in new directions. As with photoelectric
absorption, the electron is swiftly absorbed.

13

CHAPTER 2. BACKGROUND

To calculate the angular and energy distribution of the scattered photons, we start
by assuming that they are scattered by stationary free electrons. Using quantum
physics2 one gets the Thompson DCS

dσT

dΩ ∝ 1 + cos2 θ

Because of the energy lost to the electron, the energy of the photon will change. The
energy of the scattered photon can be calculated from the conservation of energy
and momentum, yielding

E′

E
= 1

1 + E
E0

(1− cos θ)

This theory does however not account for relativistic effects. If we account for these,
we get the Klein-Nishina DCS

dσKN

dΩ ∝ P 2(P + P−1 + sin2 θ)

where
P = (1 + E/E0 · (1− cos θ))−1

and E0 is the electron rest energy mec
2. This distribution is displayed for relevant

energies in Figure 2.5.

The Klein Nishina DCS is popular in many applications that aim for speed or ease
of implementation, and it is quite accurate at higher energies. There are however
two notable errors with this approximation. First, we ignore the binding energy
of the electron. This binding energy is in the order of 100eV for water and bone
[5]. Further, we ignore the momentum of the electron travelling around the nucleus
which causes Doppler broadening.

The authors of PENELOPE[6] argues that accounting for binding effects gives a
significantly better approximation at energies in the order of tens of keV. If we
ignore binding effects, we get a significant overestimation of the number of photons
scattered in the initial direction.

Accounting for Doppler broadening is less important in lighter nuclei since the
electrons carry less momentum. Doppler broadening is also significantly harder to
account for since the full electron structure is needed. Because of this, we ignore
Doppler broadening in this thesis.

2This result is derived in i.e.
ocw.mit.edu/courses/physics/8-07-electromagnetism-ii-fall-2005/readings/radiation.
pdf

14

ocw.mit.edu/courses/physics/8-07-electromagnetism-ii-fall-2005/readings/radiation.pdf
ocw.mit.edu/courses/physics/8-07-electromagnetism-ii-fall-2005/readings/radiation.pdf

2.3. PHOTON TRANSPORT IN MATTER

30

210

60

240

90

270

120

300

150

330

180 0

Tompson
10 keV
80 keV

Figure 2.5: Klein Nishina distribution at relevant energies shown as a polar plot
in normalized units. The Thompson distribution is also shown for comparison. At
higher energies the relativistic effects are important.

If we account for the electron binding energy by means of the theory presented by
Waller et al.[7], we get the Waller-Hartree DCS

dσ

dΩ ∝
dσKN

dΩ SM (x)

where SM is the molecular incoherent scattering function, and x is the dimensionless
momentum transfer, defined as

x = 20.6074 E
E0

√
2− 2 cos θ

The molecular incoherent scattering function SM can be approximated using the
independent atom approximation:

SM (x) =
∑

atom∈molecule
SA(x, Z)

15

CHAPTER 2. BACKGROUND

30

210

60

240

90

270

120

300

150

330

180 0

10 keV
80 keV

Figure 2.6: Compton scatter in bone at relevant energies. The Waller-Hartree result
is given in solid lines while the dotted lines represent the Klein-Nishina approxima-
tion. Due to the binging effects, the distributions become more backwards oriented.
This is especially true at lower energies.

where Z is the atomic number. Values of SA(x, Z) for various atomic numbers were
obtained from xraylib[8], an open source project with extensive and easily accessible
tables of X-ray related data. The source of the data is Cullen et al.[9].

In Figure 2.6 the angular distributions with and without accounting for binding
effects is shown, we see that the binding effects are significant, especially at lower
energies.

Rayleigh scattering is when the photon elastically bounces off an atom. As with
Compton scatter, we can obtain the distribution of the scatter using only quantum
mechanics assuming stationary and free point atoms. We get the Thompson DCS

dσT

dΩ ∝ 1 + cos2 θ

16

2.3. PHOTON TRANSPORT IN MATTER

As in Compton scattering, the energy of the scattered photon can be calculated
using energy and momentum conservation as

E′

E
= 1

1 + E
mAc2 (1− cos θ)

In this case however, we use the mass of the atom mA instead of the electron mass
me in the denominator. Since the mass of an atom is so large this expression is very
closely equal to unity. Because of this, we can assume that E′ = E.

The point-sized atom approximation does however fail at X-ray energies. For exam-
ple, at energies above ≈ 25keV the wavelength of the X-ray becomes smaller than
the Bohr radius. Accounting for the full electron structure according to the method
of Born[10] gives the DCS

dσR

dΩ ∝ (1 + cos2 θ)|FM (x)|2

where FM (x) is the molecular form factor and x is the dimensionless momentum
transfer. The molecular form factor can be calculated using the independent atoms
assumption

|FM (q)|2 =
∑

atoms∈molecule
|FA(x, Z)|2

where FA(x, Z) is the atomic form factor and Z is the atomic number. Values of
these form factors are available in the literature, and Hubbell et al.[3] has made
an accurate and comprehensive tabulation. This data was accessed from xraylib[8].
The angular distribution of the scattered photon is displayed in Figure 2.7. We
see that the angular distribution is very strongly forward oriented, especially in the
higher energy range.

17

CHAPTER 2. BACKGROUND

30

210

60

240

90

270

120

300

150

330

180 0

10 keV
80 keV

Figure 2.7: Rayleigh scattering distribution in bone for representative energies.

2.4 The Monte Carlo Method for Photon Transport

In the Monte Carlo method for photon transport, individual photons are transported
stochastically through the material and the sought after quantities such as deposited
energy or detector response is calculated as the average over a very large set of
photons.

The photons are first generated at some point, for example in the X-ray tube. From
this position, they are moved forwards a small distance. Using the material param-
eters of this position, we test (randomly) if the photon experiences an interaction.
If it does, we sample which type of interaction happens, and simulate that interac-
tion. After the interaction, the energy and direction of the photon is changed. This
process is repeated until the photon is absorbed or leaves the geometry.

The Monte Carlo method is the most widely used method for photon transport.
This is primarily because Monte Carlo methods are widely accepted as the most

18

2.4. THE MONTE CARLO METHOD FOR PHOTON TRANSPORT

accurate method for photon transport in complicated media, since no assumptions
has to be made to simplify an analytic solution. Monte Carlo methods are also
useful for their relative ease of implementation since only the raw physical model of
transportation of a single photon is needed, with no extra continuum assumptions,
dependencies or boundary conditions.

Lately the method has also grown in popularity due to its parallel structure, allowing
easy implementation in parallel architectures such as supercomputers or GPU’s.

2.4.1 Related Work

Several well known codes exists for MC photon transport, among these are the
well maintained PENELOPE[6] code, this code has been verified to high accuracy
for a wide range of photon energies. It is however slow, simulating in the order
of 105 photons/minute, it would thus take approximately two months to reach 1%
accuracy according to Equation 2.1. Another highly used code is the EGSnrc code,
this code is likewise known to be highly accurate, but as with PENELOPE code it
is too slow for this application.

There has recently been significant research into GPU-MCmethods, such as CUDAMCML[11]
developed at Lund University. This code is however also comparatively slow, and
only works on layered geometries. Other GPU-MC codes include mcgpu[12] devel-
oped at the U.S. Food and Drug Administration. This code is GPU based simplifi-
cation of PENELOPE and is relatively fast, at approximately 108 photons/minute.
The code is not optimally fast since it is not correctly optimized for GPU compu-
tation. For example, it uses rejection sampling, non-coaleced memory accesses, and
limited use of pre-computation.

Hissoiny has developed an GPU-MC code called GPUMCD[13] for dose calculations
which has been acquired by Elekta. Dose calculations are made in the order of
several MeV, where pair production is important, and electron transport needs to be
considered. Further, the Rayleigh and photoelectric interactions are less important
than at lower energies. Nonetheless, this code is relatively fast, and with slight
modifications it runs at almost 109 photons per minute. The code also has other
positive parts for this project, it is well documented, and integrated into other
company code. This code was thus selected as a base for further investigation.

2.4.2 Variance Reduction Techniques

Variance reduction techniques are techniques that can be used to reduce the sta-
tistical error of the result without introducing any bias to the solution. Variance
reduction techniques thus differ from approximation based speed-up techniques in
that the result will converge exactly.

19

CHAPTER 2. BACKGROUND

A simple way to estimate the potential for variance reduction techniques is estimat-
ing the amount of "wasted" work. Measurements show that approximately 5% of all
simulated photons will hit the detector as scatter. The other 95% provide very little
information about the scatter distribution. In an optimal scenario all work done
would contribute with information. We can thus estimate that variance reduction
could give us an ≈ ×20 speed-up. In other geometries than the one studied, such as
dose calculations where the volume of interest is smaller, variance reduction could
possibly provide even higher speed-ups.

Another form of wasted work is taking a step forward without simulating any inter-
action. If the step size is short, or the interaction probability low, we may need to
take several steps before simulating an interaction. Some variance reduction tech-
niques such as the Woodcock Tracing technique may seek to increase the step size
or interaction probability without changing the overall result.

Several authors, such as Kawrakov et al.[14] and Mainegra-Hing et al.[15] have inves-
tigated variance reduction techniques for CPU’s with promising results. Sometimes
achieving an speed-up of up to ×60.

A common method in variance reduction methods is to assign a numerical weight
to all photons. This weight can then be manipulated as the photon is transported.
When the photon is scored at the detector, the result is then scaled by the weight
of the photon.

We will now discuss the variance reduction methods that are most common in the
literature.

Woodcock Tracing

Woodcock tracing[16] is a probabilistic method for ray tracing, where one calculates
the minimumMean Free Path (MFP) in the entire volume, and samples a step length
from the exponential distribution using this MFP. The photon is then transported
by this distance in its current direction. If the photon lands in a material where
the MFP (scur) is larger than the minimum MFP (smin), then, with probability
P = 1 − smin

scur
, no interaction is simulated. Otherwise an interaction is sampled

according to the current medium. This can provide a noticeable speedup.

Kawrakov et al.[14], reports a 20% efficiency gain for coarse geometries, and better
results for fine geometries. Kawrakow’s tests were however performed on a CPU.

Mean Free Path Transformation

In an MC simulation lots of work is performed on the near side of the volume,
where most particles interact, and little work is performed on the far side. Ideally
work would be spread more evenly over the volume. Rogers et al.[17] has a way to

20

2.4. THE MONTE CARLO METHOD FOR PHOTON TRANSPORT

mitigate this problem. The method involves scaling the path length of the particle
by a factor dependent on the direction of the particle. To ensure convergence one
also has to scale the particle weight to compensate for this.

The method is further explored by Mainegra-Hing et al.[15], where a direction in-
dependent scaling is explored.

Kawrakow et al.[14] does however note that the MFP transformation method is
only efficient at certain energies larger than 6 MeV, and notes that even then the
gains are marginal. Because of this MFP transformation methods were not further
investigated for this problem.

Forced Detection

A method outlined in Mainegra-Hing et al.[15]. Whenever a photon points towards
the detector after an interaction, it is attenuated through the geometry using exact
ray-tracing, and finally scored.

Russian Roulette

For many photons in the simulation, it often becomes obvious when it is leaving the
geometry, such as when it is on the edge of the head and travelling away from the
detector. For convergence reasons, we cannot ignore these photons, but we can save
work by Russian Roulette. The method, outlined in Mainegra-Hing et al.[15], is a
method where if a particle will miss the detector with a high probability, determined
by some estimate, the particle is "killed", removed from the simulation with some
probability P . If the particle survives, its weight is scaled by 1/(1−P), this ensures
correct convergence of the algorithm.

Russian Roulette can be seen as a form of importance sampling, where we sample
according to the chance that the particle will hit the detector and thus influence
the final result.

Russian Roulette is expected to cause significant warp splitting, and may need
special care for GPU implementation.

Splitting

Splitting is a method discussed in Mainegra-Hing et al.[15]. Splitting can be seen as
the inverse of Russian Roulette. For some photons, the probability that the photon
will hit the detector is significantly higher than average, and it will give a large
contribution to the result.

For example, in a normal human CBCT scan, only ≈ 3% of the photons will pass
through the head without interacting at all. If a particle interacts at the far side

21

CHAPTER 2. BACKGROUND

of the head, close to the detector, it will thus provide valuable insight into the
scattered radiation from this specific area. To get the most out of this, we can
"split" the particle, simulate the interaction N times, and continue the ray-tracing
for each alternative. We have to scale the weight of the photons by 1/N to ensure
convergence.

Mainegra-Hing et al.[15] have shown that this method can provide speedups with
a factor over 100 on a CPU. There has however been limited research into this
method on GPUs

2.4.3 Pre- and Post-Processsing

The spatial frequency of the scatter is low, and investigations also show that the
scatter distribution varies relatively smoothly when the detector is rotated, and that
the differences between patients is moderately small. These properties can be used
to significantly reduce the number of photons needed. Some of these will now be
discussed.

Post Processing Methods

An efficient filtering method will most likely be an important part of an efficient
solver. There are two primary ways to perform this filtering, spatial and angular, a
combination of these will most likely provide the best results.

Since the spacial frequency is so low, a simple low-pass filter gives good results. An
example of this is shown in figure 2.8.

To use the low variance of the scatter with respect to rotation, the most simple
method would be to calculate the scatter for a relatively low number of angles, and
then interpolate the result in between. This method was chosen in this thesis for
its simplicity.

For better results, we could implement the method of Bootsma [18]. His method is
to calculate the scatter for a low number of angles. Using this data, he calculates
the three dimensional Fourier transform, and applies a filter.

Pre-Computation

Since the scatter is similar between patients, we could perform many high accuracy
simulations of photon scatter and create a set of basis functions for the scatter. This
can then be used to filter data in on-line simulations. A simple method would be
to construct a singular vector basis that the new simulation can then be projected
on.

22

2.4. THE MONTE CARLO METHOD FOR PHOTON TRANSPORT

(a) Data for 106 photons. Slightly filtered
for visibility.

(b) Lowpass filtered result with 106 photons.

(c) Raw data with 1011 photons. (d) Lowpass filtered result with 1011 pho-
tons.

Figure 2.8: Comparison of the calculated scatter distributions at the detector as
calculated with 106 and 1011 photons, before and after Gaussian low-pass filtration.
Given in mean-normalized units. While the difference is very significant in the
unfiltered images, we see that the result from 106 photons is close to the 1011

photon result after the filtering.

23

CHAPTER 2. BACKGROUND

This method has the advantage that higher frequency components can be retained
to higher precision than regular filtering.

This method is however not widely discussed in the literature. This may be because
of the prohibitively long run times of building such a database, the need for large
sets of accurate phantoms, or some other reason. Because of this, the method was
not further investigated.

2.4.4 Random Number Generation

The accuracy and speed of the simulation is highly dependent on the random num-
ber generator used. A good Random Number Generator (RNG) should have a long
period, a low memory use, and be fast. There are several well known RNGs. The
Mersienne Twister (MT) algorithm[19] is perhaps the most well known highly accu-
rate RNG, used in many popular programs, including matlab. MT is known to be
well distributed, and is relatively fast on CPUs. However, it uses a 2492 byte state
vector. This is prohibitively large for GPU implementations since it would have to
be stored in global memory.

There is a modification of the MT algorithm suitable for GPUs developed by Saito
et al.[20]. It is implemented in the CU(DA) Random Numbers (CURAND) library.
This implementation has a limitation at 51200 threads.

Marsaglia introduced the Xorshift[21] algorithm in 2003. It has a shorter period
than the MT algorithm, but has a smaller state vector and a faster execution. It
is implemented with a slight modification as the XOR-shift with Weyl sequence
(XORWOW) algorithm in CURAND.

Multiply with Carry is another algorithm introduced by Marsaglia, G.[22]. It
has somewhat statistically worse performance than the Xorshift algorithm, but is
slightly easier to implement. This method was preferred by Hissoiny et. al. in their
work GPUMCD [13].

24

3 | Method

In this chapter the methods used will be described, and motivated. First, a brief
outline of where the algorithm will be used will be presented, then the method for
simulating photons. After that the variance reduction techniques and filtering meth-
ods will be presented. Finally the GPU specific code optimizations implemented
will be described.

3.1 CBCT Volume Reconstruction with Scatter Reduction

To place this thesis work in context, we will briefly outline the overall algorithm the
work will be used in. The big picture algorithm is visualized in Figure 3.1.

In a clinical setting, we first take a sequence of x-ray images at different rotation an-

Take
X-Ray
Images

Pre-
Processing

Reconstruct
Volume

Scatter
Calculation

Scatter
Post-

Processing

Scatter
Sub-

traction

Post
processing

Display
Result

Figure 3.1: Flow chart of the CBCT reconstruction. The extent of this thesis work
is marked in red.

25

CHAPTER 3. METHOD

gles around the patients head. These images are then pre-processed in a sequence of
steps. These steps include stages such as removing pixel variance and compensating
for the different angle of attack for the different pixels.

Using the pre-processed data, an initial reconstruction of the CBCT volume is
performed. This reconstruction will be relatively good, but has artefacts due to
scattered photons.

Using this reconstructed volume, a MC scatter simulation is performed. The scatter
is then post processed, applying filters and other compensating methods, before
finally being subtracted from the images.

Using the compensated images, a new reconstruction is performed, now with higher
accuracy. The volume is post-processed, and finally returned to the caller.

Since we use the reconstructed volume to correct itself, there is a chance of intro-
ducing or enhancing artefacts. However, since the scatter is very smooth, small
errors in the volume should not give large errors in the result.

3.2 Geometry

The geometry used in the thesis is the actual geometry of the CBCT scanner. Two
coordinate systems are used in the simulation, as shown in Figure 3.2. In the pre-
and post-processing code, a coordinate system fixed on the x-ray source is used. All
physics is assumed to happen inside the cubical simulation volume.

The actual physical simulation of the photons take place in the simulation volume,
in this volume, a secondary coordinate system is used. This coordinate system is
rotated according to the gantry angle θ, dependent on how the source is aligned
with respect to the patients head. The coordinate system is also centred on the
volume.

The method selected to represent the simulation volume was a voxel representation.
Voxels are the three-dimensional equivalents of pixels, with each voxel representing
a block in space.

The geometry was stored in a voxel format due to its simplicity in access, requiring
only one global memory access to find the material in a position, as compared to
more complex constructive quadratic geometries1 that are used in programs such
as PENELOPE[6]. One downside of voxelized geometries is that many common
shapes such as spheres require high resolution to model accurately. However, thanks
to the woodcock method, simulating in a high resolution geometry does not give a
significant slowdown.

1In quadratic geometries the volume is subdivided into sub-volumes enclosed by quadratic
polynomials. These include planes, parabolas and sphereoids. Using the intersections and unions
of these sub-volumes, the material parameters of any point in space is defined.

26

3.2. GEOMETRY

xy

z

x′

y′

z′

θ

Figure 3.2: Illustration of the two coordinate systems used, shown to scale. The
global coordinate system is centred on the photon source, with the x coordinate
pointing towards the base of the volume and detector. The actual simulation takes
place in the secondary coordinate system x′,y′,z′.

3.2.1 Material Model

The material model used is a crude model where the volume is approximated with
three different materials, air, water and bone. These are seen as a good approxima-
tion of the materials present in the human head, further adding more materials, such
as soft tissue and trabecular (spongy) bone, did not give significant improvements.
This is because the errors in the CBCT raw data makes segmentation hard.

The material parameters such as density, material composition and mass attenua-
tion coefficients were obtained from the NIST Xcom web page[4].

Material classification was performed by a threshold method. From the recon-
struction we find the approximate attenuation coefficient in all voxels. All voxels
with attenuation coefficient below µwater threshold was classified as air, voxels between
µwater threshold and µbone threshold were classified as water, and all above µbone threshold
as bone.

The density was calculated using two methods. The first was to approximate the
density with a material specific value. This value was obtained from the NIST
STAR [5] database. A second method were the density was scaled according to the

27

CHAPTER 3. METHOD

attenuation coefficient in the voxel was also tested. However, due to lack of data
it was hard to find accurate numbers and this method was not used in the final
implementation.

3.3 Simulating Photons

Accurate simulation of photons is crucial to an accurate estimation of the distribu-
tion of scattered photons, and significant work was spent making sure the physics
of the model were accurate. The algorithm for photon simulation of one photon is
outlined in Figure 3.3.

The photon is first generated at some point in the voxel geometry or at its boundary.
When generated, the photon has a set of characteristics, namely position, direction,
(numerical) weight and energy. We then take one step forward, and test if we have
left the geometry. If that is the case, the photon is scored at the detector and the
simulation is done. Otherwise an interaction is simulated. If the photon is absorbed,
the simulation of the photon is done, otherwise, we start again by taking another
step forward.

3.3.1 Generating Photons

The photons used in the simulation belong to a space Ω of possible photons. The
space is given by

Ω = R3︸︷︷︸
Position

× R+︸︷︷︸
Energy

× [0, 2π)× [0, π]︸ ︷︷ ︸
Direction

×{Primary, Scattered}︸ ︷︷ ︸
Type

To simulate the setup we need to have an accurate probability distribution function
over Ω, often called the phase space in the literature. For efficiency reasons, we also
need to pick new photons from the phase space quickly. Two methods were used to
generate photons.

First, the phase space was simulated to very high accuracy using PENELOPE using
an model of the actual x-ray source. These photons were then stored to memory
and reused in the simulation. This method has the advantage that the photons
used very closely follow the actual physical probability distribution. A total of
≈ 108 particles were generated in this way. Of these, approximately 106 photons
were used in the simulation. The number was chosen to balance noise and time
spent loading the phase space into memory. The detector has approximately 5 · 105

pixels, so the comparatively small phase space will give rise to bumps in the result
as seen in Figure 3.4. These bumps will be very noticeable in the primary result,
but convergence tests show that these are insignificant in the scatter since the
distribution is smoothed.

28

3.3. SIMULATING PHOTONS

Generate
photon

Advance
photon

Has
photon left
geometry?

Score
photon

Simulate
interaction

Photon
absorbed? Done

yes

no

no yes

Figure 3.3: Flow chart of the photon simulation algorithm for one photon.

To speed up the loading of these photons into memory, the photons were loaded in a
coalesced manner into shared memory at the start of execution. When each thread
has finished its simulation, it then fetches a new photon from shared memory.

The second method used was to approximate the phase space analytically and gen-
erate photons from the approximate phase space on the fly. In the analytic approx-
imation, Ω was significantly simplified by assuming that the photons are generated
by a point source, and that none are scattered before they enter the volume, the
approximate space Ωa is thus given by

Ωa = R+︸︷︷︸
Energy

× [0, 2π)× [0, π]︸ ︷︷ ︸
Direction

⊂ Ω

Both the direction and the Energy were then fit to the measured phase space using a
weighted least squares approximation, assuming independence of all the dimensions.
An visualization of the measured phase space and the functions fit to approximate
it is shown in Figure 3.4. The fits are very good except for the energy, where the

29

CHAPTER 3. METHOD

detector result

100

200

300

400

500

600

700

z projection

z
(p

ix
el

s)

probability density

200 400 600

y projection

y (pixels)

pr
ob

ab
ili

ty
 d

en
si

ty

0.02 0.04 0.06 0.08

energy distribution

energy (MeV)

pr
ob

ab
ili

ty
 d

en
si

ty

Figure 3.4: Phase space projected on detector and projections onto y and z axises,
as well as the energy distribution. The measured data is coloured blue, while the
fit is red.

characteristic K lines of the x-ray spectrum are not properly modelled.

To sample from these complex distributions efficiently, they were modelled as the
sum of uniformly distributed numbers. This approximation proved both fast and
accurate.

After the initial photon position was generated, the photon was projected onto the
simulation region along its current path, assuming no energy loss or scatter in the
air. When using the sampled phase space, the photons were projected exactly onto
the head to minimize time spent stepping the photon through air. This optimization
gave a 70% speedup.

Testing showed that using the sampled phase space gave a slightly more accurate
result, and was approximately 10% faster. The simulated phase space was thus only
used in calculations where the bumps in the primary signal caused by reusing the
photons were problematic.

30

3.3. SIMULATING PHOTONS

variable PDF ∝ Range
y exp

[
−(y − 390)2/2682] y ∈ [0, 780]

z −3.5 · 10−7z2 + 3.5 · 10−4z + 0.90 z ∈ [0, 720]
E exp

[
−10.38E3 + 5.15E2 + 5.25E

]
E ∈ [0.01, 0.09]

Table 3.1: Approximations of the PDFs obtained from curve fitting the phase space.
The direction of the photons were defined by the detector pixel the ray was headed
towards.

(a) Coarse geometry (b) Fine geometry

Figure 3.5: Comparasion of voxel (blue) and Woodcock (red) ray tracing in an 2d
geometry. The circles indicate possible interaction points.

3.3.2 Advance Photon

Two methods were evaluated for photon transportation, voxel tracing and theWood-
cock scheme. In voxel tracing, the photon is transported to the next voxel wall, and
a random number is sampled to determine if the photon underwent an interaction.
In woodcock ray tracing, an exponentially distributed random number with mean
value equal to the mean free path of the most dense material in the geometry is
sampled and the photon transported. If the photon lands in a less dense material,
the probability of an interaction is scaled down appropriately.

Woodcock ray tracing converges to the same result as voxel tracing, but may require
more photons to reach convergence. Voxel tracing on the other hand may spend
extra time attaining unneeded resolution, this can be seen in Figure 3.5. Here the
work is approximately equal in a coarse geometry, but significant extra work is
performed in the fine geometry.

31

CHAPTER 3. METHOD

0.01 0.02 0.04 0.06 0.08
0.01

0.1

1

10

Energy [MeV]

S
te

p
Le

ng
th

 [c
m

]

Figure 3.6: Woodcock step length assuming bone with density 2.0[g/cm3] is the
densest material.

In the woodcock step length is dependent only on the energy and the geometry, and
can thus be efficiently pre-calculated before the simulation kernel is executed. The
step length is then stored in texture memory and accessed using the built in linear
interpolation. An example of the step length is given in Figure 3.6. For energies
in the most common range, 0.4− 0.8MeV, the step length is of order 1-2 cm. This
is significantly larger than the voxel size used, which is about 0.1 cm to be able to
resolve the geometry well.

3.3.3 Score Photon

When a photon leaves the geometry a test is performed to see if the photon path
intercepts the detector and if so, and what pixel it intercepts. If the photon will
hit a pixel, the photon is scored at that pixel. The detector works by converting
the photon energy into a current that is registered. We assume that the detector
is thin and only a small amount of the energy from the photon is deposited in the
detector instantly, we also assume that the deposited energy is proportional to the
energy of the photon.

Since we assume that only a small amount of energy is deposited, it is reasonable
to assume that the deposited energy is proportional to the path length through
the detector. In Figure 3.7, a photon travelling through the detector at angle θ is
depicted. We see that the distance travelled in the detector is t′ = t/ cos θ, and we

32

3.3. SIMULATING PHOTONS

θ t

t’

Figure 3.7: Illustration of the angular dependence of the scoring.

thus have to scale the detector response by 1/ cos θ.

We thus use the approximate detector response function

R(E, θ) = E

cos θ

There are a few things we neglect in this approximation. The response of the
detector also has an exponential time behaviour, and the process is thus not a true
Markov process. The documentation of the detector is however not very good, and
no further information was available, making the assumptions the best possible.
The possibility of performing experiments with the detector were discussed, but
ruled out since it was not considered part of this thesis.

The detector also has a variance on a pixel level, with some pixels being more sen-
sitive than others. This error is calibrated by using an in-house developed method.

3.3.4 Simulating Interactions

If the photon is determined to undergo an interaction, the photon will change di-
rection and change its energy. Since there are two directions the photons direction
vector can be rotated, we need to determine the two Euler angles corresponding to
this rotation. The angles are shown in Figure 3.8. Once these angles have been
determined, the particle could be rotated by applying Rodriguez’s rotation formula
(3.1) for the rotation of a vector v around an arbitrary vector k by ψ radians, twice.

vrot = v cosψ + (k× v) sinψ + k(k · v)(1− cosψ) (3.1)

For fast computation, we want to only perform one rotation on the vector. To
achieve this, we can pick the k vector appropriately and do some pre-calculation.
From Figure 3.8 we see that we can decompose the rotation as first rotating the

33

CHAPTER 3. METHOD

vector θ radians around an arbitrary vector in the x′y′ plane, and then an rotation
of ϕ radians around the ẑ′ axis. The reason we can pick an arbitrary vector in the
x′y′ plane is that the angular distributions studied are homogeneous in ϕ. We chose
the vector in the x′y′ plane as

kxy = ẑ′ × v
||ẑ′ × v||

To reduce the number of calculations needed in runtime, we can also include the ϕ
rotation into our choice of k. We do this by rotating the kxy vector around the ẑ′
axis by ϕ radians. We obtain

k = kxy cosϕ+ (ẑ′ × kxy) sinϕ+ ẑ′(ẑ′ · kxy)(1− cosϕ)

Inserting this into the Rodriguez’s rotation formula we arrive at

µ′x = µx cos θ + sin θ(µxµz cosϕ− µy sinϕ)(1− µ2
z)−1/2

µ′y = µy cos θ + sin θ(µyµz cosϕ+ µx sinϕ)(1− µ2
z)−1/2

µ′z = µz cos θ − sin θ cosϕ(1− µ2
z)1/2

where (µx, µy, µz) is the direction (unit) vector, parallel to ẑ′. We see now why
the choice of kxy was good. It reduces the number of calculations noticeably by
eliminating the last part of Rodriguez rotation formula.

One issue with this formula may be numerical instability due to division with (1−µ2
z)

which may be very close to zero. It is however only performed relatively rarely since
few particles will be travelling in the ẑ direction. We also performed some tests
with a more complicated method that avoids dividing by numbers close to zero, we
found that the results were indistinguishable from this more simple formula, but
the method was slightly slower.

Compton Scattering

When a photon undergoes a Compton interaction, a part of the photons energy
is deposited locally and the photon is given a new energy and a new direction.
Three methods to simulate this were tested for computational efficiency and physical
correctness.

The first way was to sample the Klein-Nishina distribution using rejection sam-
pling. Rejection sampling is favoured in many of the well known codes, such as
PENELOPE[6]. However, as shown in Appendix A, rejection sampling scales badly
in GPU’s.

34

3.3. SIMULATING PHOTONS

x

y

z

x′

y′

z′

φ

θ

Figure 3.8: Illustration of euler angles θ and φ for a particle initially traveling in
the z′ (red) direction. The new direction is given in blue.

A deterministic method was thus also tested. Everett et al.[23] gives a method for
sampling the Klein-Nishina distribution at all energies above 1keV with a relative
error ≤ 2%. This method was implemented and tested.

Finally, a more physically advanced model taking binding energy into account was
tested. Since using the binding energy will require a global memory access to find
the value of the incoherent scattering function. We selected a third way of sampling
the distribution, by using a pre-calculation intensive method to speed up the actual
computation.

The inverse-Cumulative Distribution Function (CDF) of the distribution of cos θ for
each material and for a range of energies was pre-calculated in matlab and stored
in a table. An example of such a table is given in Figure 3.9. This distribution was
then stored in texture memory and sampled using the built-in linear interpolation.

Testing showed that the tabulated inverse-CDF method was both more physically
accurate, and gave a modest ≈ 10% speed-up over the other methods. It was thus
selected as the best method.

Rayleigh Scattering

In Rayleigh scattering the photons energy is conserved, but it is given a slightly
different direction, dependent on the energy and material. For Rayleigh scattering,
no simple approximation that is physically valid is available, and we need to use

35

CHAPTER 3. METHOD

energy [MeV]

ξ

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 3.9: Compton inverse CDF table for water. The table is colored by cos θ. It
is sampled by selecting a random number ξ ∈ [0, 1] and sampling the table for the
appropriate energy.

the full model.

As with Compton scattering, we need global memory access to find the atomic form
factor, because of this we opted to use the tabulated inverse CDF method described
in 3.3.4.

Photoelectric Effect

When the photon experiences a photoelectric effect the energy is transferred to an
electron. As discussed in 2.3, the photons energy is quickly absorbed with high
probability. We approximate this by terminating the photon on the spot.

3.3.5 Energy Cut-off

From Figure 3.6, we see that for low energies, the step length becomes very small,
and the photoelectric effect starts to dominate. To speed the code up and avoid
simulating photons that will very likely be absorbed anyway, we set a cut-off energy.
All photons with energies below the cut-off are absorbed instantly.

To select the cut-off, we observed how far the photons will travel on average before
they have been absorbed. This is shown in Figure 3.10. We see that if we set the
cut-off energy to 0.01 MeV, we will not change the result significantly since almost

36

3.3. SIMULATING PHOTONS

all cut-off photons would be absorbed within 1 cm in water, and 1 mm in bone.
We also note that we will not significantly change the type of interactions that will
occur, since the photoelectric effect dominates at these energies.

0.01 0.02 0.04 0.06 0.08
0.01

0.1

1

10

100

1000

Energy [MeV]

M
ea

n
di

st
ia

nc
e

un
til

l a
bs

or
bt

io
n

[c
m

]

Bone (all)
Bone (photoelectric)
Water (all)
Water (photoelectric)

Figure 3.10: Mean travel distance until absorption in water and bone assuming all
effects and only photoelectric effects. The photoelectric effect dominates at lower
energies.

This effect was also investigated in practice in a head geometry. Several calculations
were performed with different cut-offs set, and the relative error and runtime were
investigated. The results are shown in Figure 3.11. As can be seen, setting the
cut-off at 0.01 MeV gives a good margin, while having no significant effect on the
result.

37

CHAPTER 3. METHOD

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0

0.2

0.4

0.6

0.8

1

R
un

tim
e

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
E

rr
or

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0

0.2

0.4

0.6

0.8

1

Figure 3.11: Investigation of the impact of the cut-off energy on runtime and error
in a head geometry.

3.4 Variance Reduction

Several variance reduction methods were tested, with focus on the methods that had
given the best results in other research. The most popular methods are Splitting
and Russian Roulette, with notable results also reported for the forced detection
technique.

3.4.1 Splitting

Splitting was implemented using a two-stage procedure. In the first step, photons
were transported through the volume until they experienced an interaction. The
photon data, as well as all information needed to simulate the interaction was then
stored in shared memory. When a sufficient amount of photons were accumulated in
shared memory, they were moved in a batch to global memory. If a photon did not
experience any interaction and hit the detector it was scored as a primary photon.

In the second step, the split photons were simulated. Each photon was split into
Ns photons, each with weight 1/Ns. To improve thread coherency, Ns was chosen
to be a multiple of the warp size, so each warp starts at the same position. This
also helps memory access since multiple threads accessing the same memory is a
so called Broadcast, which is faster. These photons were then traced through the
volume in the usual way.

38

3.4. VARIANCE REDUCTION

Figure 3.12: The splitting procedure. The red path represents the photon as it
travels from the source. It then undergoes an interaction at the center of the volume.
At the interaction point, we create several copies of the photon and simulate the
interaction for each of them. The weight of the split photons is then scaled such
that the total weight is conserved.

Position Dependent Splitting

If we want to minimize the variance of the result we could improve the splitting
technique by changing the splitting parameters depending on where in the phantom
the interaction occurs. If we approximate the spectrum to be mono energetic, a
relatively strong assumption, we can calculate the variance of the result in one
pixel.

If the chance that a photon in voxel i will hit pixel j is pij , then the standard error
in pixel j from ni photons passing through voxel i will be given by a normalized
binomial distribution with variance:

σ2
ij = pij(1− pij)

ni

Assuming independence, we can thus estimate the total variance of pixel j by sum-
ming over all the Nv voxels scaled by the expected contribution, which can be
assumed to be proportional to the number of photons expected to interact in the
voxel P Interact

i .

σ2
j =

Nv∑
i=1

P Interact
i

pij(1− pij)
ni

By summing over all Np pixels we thus get the total variance of the detector result.

σ2 =
Np∑
j=1

Nv∑
i=1

P Interact
i

pij(1− pij)
ni

39

CHAPTER 3. METHOD

To minimize the variance, we have to solve the optimization problem

minimize
n1,n2,...,nNv

Np∑
j=1

Nv∑
i=1

P Interact
i

pij(1− pij)
ni

subject to
Nv∑
i=1

ni = N

This problem can be solved using the method of Lagrange multipliers and we find
that

ni ∝

√√√√√P Interact
i

Np−1∑
j=0

pij(1− pij)

Since the probability of a photon hitting any single pixel is small, we can assume
pij � 1, the expression thus simplifies to

ni ∝

√√√√√P Interact
i

Np−1∑
j=0

pij

This result can be given a simple interpretation by observing that

Np∑
j=1

pij = PHit
i = Probability that particle from voxel i will hit the detector

The number of simulated interactions in each voxel should thus be proportional to
the square root of this probability that the photons will hit the detector. However,
since we can only adjust the splitting parameter, Ns, we have to scale Ns by the
probability P Interact

i that an interaction will occur in voxel i. We thus find that an
estimate of the optimal splitting parameter

Ns ∝
√

PHit
i

P Interact
i

(3.2)

To approximate this probability, the splitting parameter was varied by assuming
that the volume studied was a water wall of thickness 20 cm, approximating a
human head.

The method was implemented by first performing a calculation in a pure water cube.
A simulation was performed and the two values PHit

i and P Interact
i were calculated

40

3.4. VARIANCE REDUCTION

20
40

60
80

100

20
40

60
80

100

30

40

50

60

70

80

90

100

z
(v

ox
el

s)

x (voxels) y (voxels)

1

2

5

10

20

40

Figure 3.13: Logarithmic plot of the optimal splitting parameters in a pure water
geometry.

for each voxel. From this, the positional dependence of the splitting parameter Ns

was calculated according to 3.2. The volumetric data is presented in Figure 3.13.

We see that the parameter is largely z independent, and approximately y indepen-
dent. Because of this, we approximated Ns with

Napprox
s = N0e

x/(5.4[cm])

where N0 is a tuning parameter. This approximation is shown in Figure 3.14. We
see that the approximation agrees well with the calculated values except for small
deviations close to the edges.

3.4.2 Russian Roulette

Two Russian Roulette (RR) methods were tested, one positional/directional method
where the photons were killed if they were leaving the volume, and one spectral,
where the phase space was pre-processed and photons with a low chance to con-
tribute were killed.

41

CHAPTER 3. METHOD

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

y (voxels)

x
(v

ox
el

s)

1

2

5

10

20

40

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

y (voxels)

x
(v

ox
el

s)

1

2

5

10

20

40

Figure 3.14: Comparasion of the calculated optimal splitting parameter (left) and
the exponential approximation (right) for a traverse slice in the middle of the vol-
ume.

×

×

×

Figure 3.15: Russian Roulette method. The red line is the path of the photon before
any interaction. An interaction then occurs in the center of the volume. The blue
lines represent possible photon paths after the interaction that do not point towards
the detector. The crossed over paths are killed photons. In this example, one blue
photon interacts again and then hits the detector and one misses the detector, while
three of the photons that would have probably missed the detector were killed. The
green path is aimed at the detector and will not experience the roulette.

Positional and Directional

In the positional/directional RR method, the photons were killed if they were likely
to leave the volume and miss the detector. This was determined by checking after
each interaction if the current path intercepts the detector, as done by Mainegra-
Hinget al.[15]. If the photon path does not intercept the detector, it was removed
with probability P . If the photon was not killed, its weight was rescaled by 1/(1−P).

42

3.4. VARIANCE REDUCTION

Spectral

Another method tested was to pre-emptively perform Russian Roulette based on
the energy of the photons, before they were even added to the phase space. Using
calculations analogous to the ones done for the splitting parameter, but taking the
energy of the photon into account, we find that the number of simulated photons
with energy E should be proportional to

nE ∝
√
PHit,E ·R(E)

where PHit,E is the chance that the particle will hit the detector (as scatter) and
R(E) is the detector response function (ignoring angular dependence). In this thesis
we have taken R(E) = E as discussed in section 3.3.3.

Calculating the quantity PHit,E is non-trivial, and a simulation method was selected.
The simulation was performed in a true head geometry reconstructed from a MR
scan. The probability of hitting the detector as a function of the photon energy
was recorded. The running time was also recorded. The results are shown in Figure
3.16. We see that it takes significant time to simulate the low energy photons, but
they have a very small chance to hit the detector.

In Figure 3.17 the calculated values of ne are shown together win a linear fit, nE =
c ·E. We see that the linear fit agrees quite well with the calculated values at higher
energies, and is an acceptable approximation at lower. We chose to use this linear
fit since using the exactly calculated curve would give numerical overhead, without
any guarantee that the result holds to this precision for other geometries.

Using this result we then performed Russian roulette on the phase space by killing
the photon with probability 1 − nE . If we keep the photon, we scale its weight by
1/nE to ensure that the calculated result is correct.

3.4.3 Forced Detection

The forced detection technique was implemented in a two step procedure. In the
first step, photons are transported through the material in the usual manner until
they experience an interaction.

After the interaction, the second step of the code is engaged. One photon is created
for each pixel in the detector. The weight of the photons are scaled according to
the probability that the path of the photon would point towards the pixel after
the interaction. Each such photon is then attenuated exactly as it travels through
the medium, in each step reducing its weight according to the probability of an
interaction. When the attenuated photon hits the detector, it is scored in the
target pixel.

43

CHAPTER 3. METHOD

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0

0.2

0.4

0.6

0.8

1
R

un
tim

e

Energy (MeV)
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0

0.2

0.4

0.6

0.8

1

P
hi

t,E

Figure 3.16: Calculated PHit,E and runtime in a head geometry for a range of
energies. Values are given in a normalized scale.

After second step is done, the code continues with step one and transports the
photon further. If it experiences an interaction it once again enters the second step.
If it has not experienced any interactions and hits the detector, it is scored as a
primary photon. If it has interacted, it is not scored when it hits the detector. This
is because it has already been scored in the second step of the code.

44

3.4. VARIANCE REDUCTION

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Energy (MeV)

n E

calculated n

E

E/(0.09 [MeV])

Figure 3.17: Calculated nE with a linear approximation.

Figure 3.18: Forced detection method illustrated for a 4 pixel detector. A particle
(red) is generated at the source and travels through the volume, where it interacts
in two positions and then misses the detector. From the interaction positions the
photons are attenuated exactly (blue) to the detector.

45

CHAPTER 3. METHOD

3.5 Filtering Methods

Since the scatter has very low spacial frequency it can be filtered aggressively. For
simplicity, we decided to use a linear filter.

To decide what filter to use, several scatter distributions for a range of human heads
were calculated to high accuracy. These were then Fourier transformed, and the
frequency spectra was inspected.

We found that 95% of the energy in the scatter was contained at frequencies below
0.16 [cm−1]. A Gaussian low-pass filter with a cutoff frequency of 0.45 [cm−1] was
then selected. This cut-off should ensure that no significant data is lost.

Since the scatter varies smoothly with the gantry angle, the scatter was only calcu-
lated for every 10 images2, and then linearly interpolated for the images in between.

3.6 Scatter Removal

The final step is to remove the calculated scatter from the images. The removal of
scatter from the images require some care. This is because the fraction of scatter in
the measured image may be up to 70%. If all of the calculated scatter is removed
from the image, a miscalculation in the scatter may give non-physical negative
values in the image. This in turn makes the reconstruction bad.

To remedy this, we do not remove all of the calculated scatter. Instead, we only
remove a fraction of the scatter, dependent on how much signal was measured at the
detector. The fraction we remove should be proportional to the calculated scatter
if the calculated scatter is significantly smaller than the value on the detector, and
approach the detector value when the calculated scatter is large. Finally, we can
never remove more than the measured detector value.

Specifically, we need a function f(x, y) where x is the calculated scatter and y the
measured image value that has the following properties

f(x, y) ≈ x x/y � 1
f(x, y) ≈ y x/y � 1
f(x, y) ≤ y

A useful family of such functions is

f̂c(x, y) = y(1− e−(x/y)c)1/c

2This corresponds to a ≈ 5o rotation.

46

3.7. CODE OPTIMIZATIONS AND DETAILS

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

calculated scatter (x) / measured value (y)

fr
ac

tio
n

re
m

ov
ed

c=1
c=1.5
c=2.5
c=5
All Scatter

Figure 3.19: Example of the scaling function f̂c(x, y)/y for some values of c and the
non-scaled (black) value for comparison.

where c > 0 is a parameter. This family is illustrated in Figure 3.19. We see
that as c increases the removed scatter gets closer and closer in agreement with the
calculated value. If we are confident in our calculation, we can thus set a high c
value, and if we are not, we can set a lower value. For the analysis in this thesis c
was set by trial and error to 2.

Using this function, the scatter corrected images are calculated as:

Imagecorrected = Imagemeasured − f̂c(Scatter, Imagemeasured)

3.7 Code Optimizations and Details

Several optimizations were implemented in the code to make it as fast as possible,
these will be outlined in this section. Many of the optimizations are specific to the
GPU environment, which require some extra care to achieve optimal performance.

47

CHAPTER 3. METHOD

3.7.1 Random Number Generation

We tested the CURAND implementation of the MT and Xorshift algorithm as well
as the implementation of the Multiply with Carry algorithm used by Hissony et
al.[13] and the Linear Congruential method. We compared the algorithms using a
simple test program and the Nvidia Visual Profiler to extract average run times
and register use. A comparison of the algorithms is shown in Table 3.2. Note that
the period is not the only or even best measure of statistical properties, but it
was deemed the most relevant in this case. We found that the MT algorithm was
prohibitively slow due to a large number of global memory accesses. The Xorshift
algorithm however provides comparable performance to the Multiply with Carry
algorithm, it does however require significantly more registers.

We decided to use the multiply with carry algorithm since it was faster, used less
registers, and the statistical loss was negligible in our case. We also noted that in
real runtime applications multiply with carry performed better than indicated in
this table. This was possibly because of the more efficient register use which was
not as noticeable in the isolated test.

The period of the multiply with carry method is also large enough for even the
longest simulations.

Algorithm numbers/s Registers Period
CURAND MT 0.032 3 219937

CURAND Xorshift 0.352 5 2192

Multiply with Carry 0.478 1 2128

Linear Congruental 1.000 0 232

Table 3.2: Comparasion of RNG algorithms. The values are normalized according
to the Linear Congruential generator.

3.7.2 Memory Use and Accesses

In the CUDA programming model, global memory accesses are in general very
expensive. A single global memory access takes approximately 700 clock cycles. As
a comparison, a single precision multiply add takes 1 cycle, and most transcendental
functions can be calculated in around 20 cycles. If the kernel is also bandwidth
limited, the warp may need to wait for its global memory access to be processed,
further slowing the operation down.

To compensate for the slow global memory, CUDA can allow other warps to perform
work while one warp waits for its memory access to finish. For CUDA to be able to
do this, the extra warps need to be able to fit into memory. There are two limiting
factors to this, register use, and shared memory use. According to our calculations

48

3.7. CODE OPTIMIZATIONS AND DETAILS

in appendix B we find that to never have the warps waiting for data we need to
keep

200 ≥ registers used / thread
3000 ≥ shared memory used / warp

We see that we are not severely limited by register use, but that the amount of
shared memory is relatively small. The amount of shared memory does for example
allow us to store approximately 3 photons per thread in shared memory. This is
a noticeable limitation if we want to implement variance reduction methods that
utilize the shared memory. For example, it makes methods such as work stealing
queues hard to implement using shared memory.

3.7.3 Built-in Function Calls

The only function calls in the code to built-ins are mathematical functions and
memory access functions, including atomic functions3. The code is compiled with
the -use_fast_math option to speed up mathematical calculations, this comes at
a small theoretical accuracy loss, but no effects of this were seen in tests. All of
the code was written using single precision, which gives a significant speed-up as
compared to double precision.

Care was also taken to select the appropriate built in function in each step. For ex-
ample, the scattering angle ϕ is sampled in every step, and its cosine and sine are cal-
culated. To reduce time calculating these, the function sincospif(2.0f*rand(),&sinphi,&cosphi)
was used instead of separate calls to sin and cos. The use of the "pi" function also
gives a slight speedup and somewhat higher accuracy.

The only write to global memory done is the scoring of the photon when it hits
the detector. Here the atomicAdd(&arr,value) function was used. Since there are
approximately 500000 pixels in the detector and at most about a thousand threads
running at once there is only a small chance of collisions in this call.

3.7.4 Thread Coherence

Thread divergence is a major issue on GPUs and avoiding it gives notable speed-
ups. Several measures were implemented to achieve optimal runtime efficiency. A
simple measure was to ensure that all code that was equal between branches were
moved to be executed in the same place. For example, the interaction functions
(Compton, Rayleigh, etc.) only output the cosine and energy of the photon after
the interaction, and the rotation is performed simultaneously for all threads.

3An atomic function is a hardware function that is used to perform operations on shared or
global memory without collisions

49

CHAPTER 3. METHOD

Another optimization was to ensure that all threads in a warp finish execution
simultaneously, so that no threads have to wait for others to finish. This was
implemented by loading a small set of photons into shared memory and having the
threads simulate the photons multiple times until the total number of simulation
has reached the required number. To ensure that photons that take longer to
simulate do not get under-represented in the result, the threads access the photons
in an uniform manner. This optimization gave a ≈ 50% speedup over each thread
simulating one photon.

3.7.5 Numerical Precision

In long runs we may expect to experience problems with numerical precision due to
adding many small numbers. Machine epsilon for IEEE-754 floats is ≈ 10−7, with
500000 pixels on the detector we thus need ≈ 1012 photons before numerical errors
become large, this is at least two orders of magnitude higher than typical run sizes.

To avoid this problem for larger runs, such as overnight runs, the program was
made to run in batches. In each batch, a detector image is calculated with ≈ 109

particles, the sub-sums are then added together into a final result. This proved
no noticeable performance loss, and allows the program to run approximately 1020

photons before numerical precision becomes an issue.

50

4 | Results

Here, the results of the study will be presented. First the performance of the code
will be evaluated, and then we discuss the various variance reduction techniques
tested to increase performance.

After that, we verify the physical accuracy of the model against PENELOPE. Fi-
nally the algorithm is tested in a bigger context by performing a volume-reconstruction
using the scatter-corrected images.

4.1 Performance

The raw code without variance reduction is fast, simulating approximately 3 · 109

photons per minute in a real world geometry. Of this, approximately 20% is spent
on photon creation and scoring. About 80% of the time is thus on moving the
photon forwards and simulating interactions.

To evaluate the performance, the code was profiled using the Nvidia Visual Profiler.
The visual profiler reports few problems with the code, except for a 25% branch
divergence overhead and a 30 % global memory instruction replay overhead. These
errors are probably hard to reduce significantly further. A nonzero branch overhead
is unavoidable since there are several paths that the code may take in each step,
such as different interactions, the memory access patterns are also inherently non-
coalesced since the photons move independently.

4.1.1 Variance Reduction Methods

Several variance reduction methods were evaluated. Their performance was mea-
sured using the efficiency ε, defined as:

ε = 1
σ2T

Where σ is the standard error of the result, and T the runtime. Since we know that
MC methods converge with speed σ ∝ T−1/2. ε will actually be T -independent, and
only depend on the methods used.

51

CHAPTER 4. RESULTS

The standard error was calculated as the root mean square of the standard errors
of each pixel. The standard error of one pixel was defined as:

σpixel = Pi − P̂i

where Pi is the measured pixel value, and P̂i is a gold standard, calculated with
1012 particles.

The tests were performed using the head phantom geometry on a Nvidia Quadro
4000 graphics card.

Woodcock ray tracing

The woodcock ray tracing method gave a significant efficiency gain of ≈ 180% when
compared to the regular ray tracing method. This was due to significantly reduced
warp splitting and a better arithmetic-memory quotient.

Splitting

Two methods were tested for splitting, static and position dependent. They both
gave small efficiency gains before filtering, but after filtering the data, the efficiency
was lost. This was likely because the smaller number of primary photons simulated
per unit time introduced bias in the filtered result.

Russian Roulette

The spectral roulette method gave a small efficiency gain of ≈ 15%.

No other implementation of Russian Roulette was found to give any efficiency gain,
instead yielding noticeable efficiency losses. This is believed to be due to extensive
warp splitting and memory overhead caused by the method.

Forced Detection

The forced detection method tested gave a negative effect on the efficiency, approx-
imately halving it.

4.2 Physical Accuracy

The total error of the algorithm is the sum of the physical and numerical errors. To
achieve a low total error we thus need a low physical error.

52

4.2. PHYSICAL ACCURACY

Figure 4.1: Illustration of the three test geometries used.

The physical error was measured by testing the code against the well known PENE-
LOPE code for some simple geometries. It was also tested in a real world setting
by simulating the result of an actual CBCT run.

4.2.1 PENELOPE comparison

The code was compared to PENELOPE results for 3 different geometries. These
geometries were:

1. Thin plane of water

2. Solid water cylinder

3. Water cylinder with bone shell and core

These were intended to be a set of representative yet simple scenarios that were
easily represented analytically. The geometries are illustrated in Figure 4.1. They
were scaled so that they did not fill the whole simulation volume, only covering
about half. This was to get good results from the edge effects of the simulation.

The PENELOPE test was performed used an in-house variant of the code run on
a 128-core CPU cluster. Both simulations were done using the same geometry
and using photons from the same phase space. To facilitate accurate comparison
between the results, they were normalized according to the vacuum (gain) result.

The results are shown in Figure 4.2, and histograms of the errors are shown in
Figure 4.3. The results agree with each other with high accuracy, with relative
errors of approximately 2%.

The results for the water cylinder with bone shell and core geometry is the geometry
with the most noticeable error. The secondary peak at the top is approximately 5%
higher in the PENELOPE calculation than in this calculation.

53

CHAPTER 4. RESULTS

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

(a) Penelope, sheet

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

(b) This, sheet

0

0.02

0.04

0.06

0.08

0.1

0.12

(c) Penelope, cylinder

0

0.02

0.04

0.06

0.08

0.1

0.12

(d) This, cylinder

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

(e) Penelope, Cylinder with bone

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

(f) This, Cylinder with bone

Figure 4.2: Comparison of the calculated scatter distributions using PENELOPE
and this thesis code.

54

4.2. PHYSICAL ACCURACY

−0.05 0 0.05
0

500

1000

1500

2000

2500

3000

3500

4000

Relative error

S
am

pl
es

(a) Sheet

−0.05 0 0.05
0

500

1000

1500

2000

2500

3000

3500

4000

Relative error

S
am

pl
es

(b) Water cylinder

−0.05 0 0.05
0

500

1000

1500

2000

2500

3000

Relative error

S
am

pl
es

(c) Cylinder with bone

Figure 4.3: Histograms of the relative errors in the simple geometries.

55

CHAPTER 4. RESULTS

4.2.2 Head phantom

Tests were also performed on an artificial head phantom against real world data. In
this test, there was no way to extract only the scattered photons, and we have to
compare the full detector signal against the measured result. This tests did however
allow us to test the full work flow against the real world result. The head phantom
used is shown in figure 4.4.

The result of an simulation of the detector response with the head phantom is shown
in Figure 4.5. We see that the total results are very similar, but with some noticeable
discrepancies. Specifically, the attenuation in the forehead is grossly exaggerated in
this example. This is due to the segmentation method used, which overestimates
the amount of cortical (dense) bone in the forehead. There is also a noticeable
underestimation of the attenuation of the pillow to the right in the figure.

These errors are more easily seen if we study the relative error of the result, as in
Figure 4.7. We note that the attenuation of the facial region seems to be overesti-
mated while the attenuation of the teeth are underestimated.

The result of subtracting the calculated scatter from a measured X-ray image is
shown in Figure 4.6. Here we see a noticeable increase in sharpness and contrast
due to the scatter compensation.

56

4.2. PHYSICAL ACCURACY

Figure 4.4: An image of the head phantom used in the study.

57

CHAPTER 4. RESULTS

(a) Measured (b) Simulated

Figure 4.5: Comparison of the detector result with gantry angle θ = 0 measured
using the CBCT and simulated using this thesis’ code. The values were normalized
according to the gain (vacuum) result.

(a) Measured result (b) With scatter compensation

Figure 4.6: Comparison of the measured result without and with scatter compen-
sation shown in equal color-scales.

58

4.3. EFFECT ON RECONSTRUCTION

Figure 4.7: Relative error of the calculated result as compared to the detector
response (calculated−measured)/measured.

4.3 Effect on reconstruction

We finally tested the scatter compensation in a real world setting by inserting the
scatter compensation code into the full reconstruction algorithm. A cross-section of
the reconstructed volume is shown in Figure 4.8. The scatter compensation gives a
noticeably higher contrast in the reconstructed volume, and the trabecular bone in
the cheekbones is notably different from the soft tissue.

The effect is especially evident if we look at the values along a line, as in Figure 4.9.
Here the significantly increased contrast is clearly evident. The values are also much
closer in agreement with the correct Hounsfield values, especially for the trabecular
(spongy) and cortical (dense) bone.

One effect that can be seen is the slight upwards bulge of the result. The HU
values are underestimated at the edges, and overestimated in the middle. This is

59

CHAPTER 4. RESULTS

(a) Without scatter compensation (b) With scatter compensation

Figure 4.8: A slice of the reconstructed volume in the nasal region with the head
facing to the left in the images. The results are shown with and without scatter
compensation. The values along the colored lines is shown in Figure 4.9

likely due to an effect called beam hardening. Beam hardening is caused by the
poly-energetic energy spectrum generated by the x-ray tube. As the x-rays travel
through matter, the low-energy photons are attenuated very quickly, while the high
energy photons travel further. Because of this, the assumption that the x-rays are
attenuated exponentially in the material is slightly wrong.

60

4.3. EFFECT ON RECONSTRUCTION

−1000

−500

0

500

1000

x

A
tte

nu
at

io
n

(H
U

)

Figure 4.9: Comparison of the result along the lines in Figure 4.8, with the scatter
compensated result in red and raw result in blue. Correct values given from the
manufacturer are given in black. With the scatter compensation we can see that
the phantom has three materials, loosely corresponding to water, trabecular (450
HU) bone and Cortical (1050 HU) bone. On average, the errors in the HU values
are reduced by approximately 70%.

61

5 | Discussion

We will now discuss the results in depth. We will look at what went well, and try
to problemize the things that did not go as expected.

5.1 Performance

Significant work was put into making the code as fast as possible, and many different
methods were investigated. Overall, the resulting code is fast, but this was largely
from the efficient GPU code written and not from the variance reduction techniques.

Several small things gave large performance improvements. These included reusing
threads, loading the phase space batch-wise into shared memory and projecting the
photons onto the head. These improvements gave an approximately 200% perfor-
mance gain over the trivial implementations.

Other things such as the lookup table based interaction simulation also gave small
but notable speed-ups. Other small things that improved the speed of the program
was correct use of built in functions and pre-calculations.

5.1.1 Variance Reduction

The speed-ups obtained from implementation of variance reduction methods were
significantly smaller than those obtained by other authors. Where many other
authors report speed-ups of up to ×60 or more, the largest speed-up obtained was
approximately ×3 from the woodcock stepping method.

This lack of speed-ups can probably be explained by the GPU’s difficulties with
branching code. Most variance reduction methods involve significant branching,
for example, in the Russian Roulette method, one photon, and hence thread, may
be killed of. There is then two options, either the thread is discontinued, but this
simply means that it is performing no work. The other option is that some new
work is generated for the thread, such as simulating a new photon. The generation
of this new work is however a form of branching, since the other threads has to wait
for the thread.

For the forced detection technique, some of the efficiency loss may be explained by
the filtering methods used. Since the effect of the technique can be likened with a

63

CHAPTER 5. DISCUSSION

filter, it does not synergize well with a post-processing filter.

5.2 Accuracy

The accuracy of the results obtained are overall promising. The comparison with
PENELOPE shows that the physical modelling closely agrees with other well es-
teemed codes, but the errors sometimes exceed 5%. These larger errors are big
enough to cause noticeable errors in the reconstructed volume. These errors could
be due to PENELOPE using quadratic geometries, which is better suited for the
simple test cases we investigated. There may also be small errors in the physical
modelling.

When testing the code against the actual measured result, the errors were larger,
in the range of 20% for most of the head, with more significant errors due to the
pillow. The size of the errors show that we are close in our modelling of the physical
processes, but that there are some way left to go. The most significant improvement
could probably be obtained by improving the quality of the segmentation, but a
better model of the detector could also be worthwhile.

5.3 Reconstruction

Using the scatter reduction in the reconstruction gave a significantly more accurate
result, with all values being closer to the correct values, and with significantly higher
contrast. The new signal was however somewhat more noisy, an effect that may need
to be accounted for should this method be used in a commercial product. This noise
is largely from the quantum noise in the input images.

The errors caused by the beam hardening effect are probably the next problem that
has to be addressed after scatter compensation. One way to do this would be to
calculate a conversion factor from the measured values to the expected values if the
spectrum was mono-energetic.

64

6 | Conclusions

Overall the work was a success. The developed code and methods are able to
calculate the scatter distribution at all measured angles in a real world geometry in
approximately one minute of computational time. This was mostly due to the very
parallel nature of the problem, and the computational power of the GPU.

We noted that variance reduction methods are not as good when implemented on
GPU’s as on CPU’s, but that some methods, such as the woodcock stepping method,
still give noticeable efficiency gains.

The results for the scatter computations were promising, but there were still notice-
able errors in the calculated detector result when compared to the measured result.
This suggests that we are missing some important parts.

Finally, the resulting reconstructed volume has significantly higher contrast and
more accurate HU values than without scatter compensation, indicating that the
calculated scatter was correct.

6.1 Further work

While a wide range of methods have been studied in the course of this work, much
more could be done to make the code more efficient and accurate. We will now
discuss some ideas that have come up during the work.

6.1.1 Sources of error

There seems to be a significant error associated with the segmentation of the re-
constructed volume. This is probably in part because the data is bad, but also due
to the very simple threshold method used. A improved method would give higher
accuracy in the classification of individual voxels, but also possibly allow for more
materials to be added, such as brain matter, bone marrow and fat. The modelling
of the pillow could also use some extra work.

A related issue is that we disregard what happens outside of the volume. In reality,
small amounts of scatter may leave the volume and be reflected back by the patients
body or by some other objects. Accounting for these effects accurately may prove
very challenging, but there may be approximate methods.

65

CHAPTER 6. CONCLUSIONS

Another significant source of error may be the approximations made in the interac-
tion modelling. One is the independent atom assumption, used in both the Rayleigh
and Compton scatter calculations. Poludniowski et al.[24] reports that using the
independent atom approximation for Rayleigh scattering introduces an ≈ 5% error
in the scatter. Accounting for this discrepancy would probably improve accuracy.

In the Compton interaction we also disregard the Doppler effect. This could give a
noticeable error, from the data given in PENELOPE[6], we see that this leads to us
overestimating the energy of the scattered photons, thus overestimating the detec-
tor response. Accounting for these effects would most likely come at a noticeable
performance price, but may be worth doing.

The model of the detector is also relatively primitive and it has not been properly
tested. A way to improve this would be to measure or calculate the detector response
function in more detail than what was done in this thesis.

6.1.2 Possible Speed-ups

A simple way to reduce the amount of work performed is to not spend any work
on tracing photons that will not interact. A way to do this is to first pre-calculate
the convex hull of the head, possibly in an approximate manner. This can then be
used for two things. If a photon is determined to miss the convex hull, which can
be calculated quickly, no simulation is needed, and the photon can be transported
to the detector. If it hits the hull, it can be transported to the inside. When the
photon leaves the hull, we know that it will never return, and the photon can be
scored at the detector.

Several variance reduction methods exist that may give speed-ups. One such method
is dynamic splitting as discussed in Mainegra-Hing et al.[15]. Another option may be
that better implementations of the variance reduction methods may give a speed-up
that is higher than the ones found.

A final and significant way to increase the speed of the calculation is to use good
filtering methods. Bootsma [18] discusses such a method in his doctoral thesis. His
method is to exploit the fact that the scatter distribution varies smoothly with the
gantry angle. He then applies a three dimensional filter to the set of all images. Im-
plementing these filtering methods have been discussed with Bootsma, but the final
implementation is outside of this thesis scope. This could probably be combined
with the pre-calculation approach discussed in the background of this work.

66

Bibliography

[1] L. Feldkamp, L. Davis, and J. Kress, “Practical cone-beam algorithm,” J. Opt.
Soc. Am. A, vol. 1, pp. 612–619, June 1984.

[2] J. Wiegert, Scattered radiation in cone-beam computed tomography: analysis,
quantification and compensation. PhD thesis, Philips Research Laboratories,
Aachen, Germany, 2006.

[3] J. H. H. et al., “Atomic form factors, incoherent scattering functions, and
photon scattering cross sections,” Journal of Physical and Chemical Reference
Data, vol. 4, no. 3, 1975.

[4] B. M.J., H. J.H., S. S.M., C. J., C. J.S., S. R., Z. D.S., and Olsen, “XCOM:
Photon cross section database,” 2010. available: http://physics.nist.gov/
xcom.

[5] B. M.J., C. J.S., Z. M.A., and C. J., “ESTAR, PSTAR, and ASTAR: Computer
programs for calculating stopping-power and range tables for electrons, pro-
tons, and helium ions,” 2005. available: http://physics.nist.gov/cgi-bin/
Star/compos.pl.

[6] F. Salvat, J. M. Fernandez-Varea, and J. Sempau, PENELOPE, a code system
for Monte Carlo simulation of electron and photon transport. Facultat de Fisica
(ECM and ICC), Universitat de Barcelona., 2011.

[7] I. Waller and D. Hartree, “On the intensity of total scattering of x-rays,” Pro-
ceedings of the Royal Society of London. Series A, Containing Papers of a
Mathematical and Physical Character, vol. 124, pp. 119–142, 1929.

[8] A. Brunetti, M. S. del Rio, B. Golosio, A. Simionovici, and A. Somogyi, “A
library for x-ray-matter interaction cross sections for x-ray fluorescence appli-
cations,” Spectrochimica Acta Part B: Atomic Spectroscopy, vol. 59, no. 10-11,
pp. 1725 – 1731, 2004.

[9] D. Cullen, J. Hubbell, and L. Kissel, “Epdl97: the evaluated photon library,”
tech. rep., Lawrence Livermore National Laboratory, 1997. Technical Report
UCRL-50400 Vol. 6 Rev. 5.

[10] M. Born, Atomic Physics. Courier Dover Publications, 8 ed., 1969.

67

http://physics.nist.gov/xcom
http://physics.nist.gov/xcom
http://physics.nist.gov/cgi-bin/Star/compos.pl
http://physics.nist.gov/cgi-bin/Star/compos.pl

BIBLIOGRAPHY

[11] E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing with
graphics processing units for high-speed monte carlo simulation of photon mi-
gration,” Journal of Biomedical Optics, vol. 13, no. 6, pp. 060504–060504–3,
2008.

[12] A. Badal and A. Badano, “Accelerating monte carlo simulations of photon
transport in a voxelized geometry using a massively parallel graphics processing
unit,” Medical Physics, vol. 36, no. 11, pp. 4878–4880, 2009.

[13] S. Hissoiny, H. Bouchard, B. Ozell, and P. Despres, “Gpumcd: a new gpu-
oriented monte carlo dose calculation platform,” ArXiv e-prints, jan 2011.

[14] I. Kawrakow and M. Fippel, “Investigation of variance reduction techniques for
monte carlo photon dose calculation using xvmc,” Phys. Med. Biol., vol. 45,
2000.

[15] E. Mainegra-Hing and I. Kawrakow, “Variance reduction techniques for fast
monte carlo cbct scatter correction calculations,” Phys. Med. Biol., vol. 55,
2010.

[16] I. Lux and L. Koblinger, Monte Carlo Particle Transport Methods: Neutron
and Photon Calculations. CRC Press, 1991.

[17] D. Rogers and A. Bielajew, The Dosimetry of Ionizing Radiation. Academic
Press, 1990.

[18] G. Bootsma, Physics and Computational Methods for X-ray Scatter Estimation
and Correction in Cone-Beam Computed Tomography. PhD thesis, University
of Toronto, 2013.

[19] M. Matsumoto and T. Nishimura, “Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator,” ACM Trans.
Model. Comput. Simul., vol. 8, pp. 3–30, Jan. 1998.

[20] M. Saito and M. Matsumoto, “Variants of mersenne twister suitable for graphic
processors,” ACM Trans. Math. Softw., vol. 39, pp. 12:1–12:20, Feb. 2013.

[21] G. Marsaglia, “Xorshift rngs,” Journal of Statistical Software, 2003. Available
at http://www.jstatsoft.org/v08/i14/paper.

[22] G. Marsaglia and A. Zaman, “A new class of random number generators,”
Annals of Applied Probability, vol. 3, no. 1, pp. 462–480, 1991.

[23] C. Everett and E. Cashwell, “New method of sampling the klein-nishina prob-
ability distribution for all incident photon energies above 1 kev (a revised com-
plete account),” Mar 1978.

68

http://www.jstatsoft.org/v08/i14/paper

BIBLIOGRAPHY

[24] G. Poludniowski, P. M. Evans, and S. Webb, “Rayleigh scatter in kilovoltage
x-ray imaging: is the independent atom approximation good enough?,” Physics
in Medicine and Biology, vol. 54, no. 22, p. 6931, 2009.

69

A | Rejection Sampling

In the code, several random distributions are sampled, such as the Klein-Nishina
distribution and the Rayleigh scatter distribution. In addition to that, distributions
are sampled if the photons are generated artificially. Efficient sampling of these
distribution is important for performance.

There exists three general methods for sampling a stochastic variable X. The first is
to sample F−1(U(0, 1)) where F−1 is the inverse CDF of the variable. This method
has an obvious aesthetic appeal, however, in many cases the inverse CDF is not
available and it needs to be approximated.

The second is finding some function g(x) such that g([U(0, 1), . . . , U(0, 1)]) is dis-
tributed equally to X. An example of this method is the box-muller transform for
calculation of Gaussian distributed random numbers.

The last method is to generate random numbers by rejection sampling. This method
is presented in algorithm 4.

Algorithm 4: Rejection method for sampling arbitrary PDF.
Output: Random number distributed according to the n dimensional PDF

fX(x) in the hypercube [a,b]
1 repeat
2 for i = 1 : n do
3 xi ← rand() · (bi − ai) + ai

4 r ← rand() ·max[a,b](fX)
5 until r < fX(x)
6 return x

Due to the architecture of GPU’s, rejection sampling is inherently slow if performed
on a warp or block level. This is because all threads has to wait for the last thread
to finish rejection sampling. In a CPU, the number of iterations needed to find a
value using rejection sampling is geometrically distributed. In a GPU the number
is distributed as the maximum of n geometrically distributed variables, where n is
the number of threads executing the code. The slowdown factor is illustrated in
figure A.1. We see that rejection sampling should not be used unless the number of
threads executing the code is small, or if the rejection probability is very small.

71

APPENDIX A. REJECTION SAMPLING

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

M
ea

n
sl

ow
do

w
n

Rejection Probability

Full block (256 threads)
Full warp (32 threads)
4 threads

Figure A.1: Illustration of how much longer rejection sampling takes when per-
formed by several threads as compared to a single thread.

72

B | Estimation of Memory Lim-
itations

From the CUDA specifications we find that

work cycles
work cycles + 700 ·Nmemmory access

≤

≤ min
(threads / SM× registers used / thread

registers / SM ,

warps / SM× shared memory used / warp
shared memory / SM

)

for a CUDA device of compute capability 3.0 or 3.5, this reduces to

work cycles
work cycles + 700 ·Nmemmory access

≤

≤ min
(registers used / thread

1333 ,

shared memory used / warp
21845

)

Initial tests showed that we need approximately 7000 processor cycles to simulate
one photon. We also required approximately 50 global memory accesses, for things
such as calculating the step size, finding the current material and getting the mass
attenuation coefficients. Inserting these values gives us an order of magnitude esti-
mate of how we need to limit the register and shared memory use

222 ≥ registers used / thread
3500 ≥ shared memory used / warp

73

TRITA-MAT-E 2014:05
ISRN-KTH/MAT/E—14/05-SE

www.kth.se

	Framsida Adler, Jonas
	Inlägg Adler, Jonas
	School of Engineering Sciences

	rapport Adler, Jonas
	Contents
	List of Figures
	List of Tables
	List of Abbreviations and Nomenclature
	Introduction
	Leksell Gamma Knife
	Cone Beam Computed Tomography
	Scatter Artefacts in CBCT Images

	Scientific Computation on GPUs
	Layout of thesis

	Background
	CUDA
	Monte Carlo Method
	Photon Transport in Matter
	The Monte Carlo Method for Photon Transport
	Related Work
	Variance Reduction Techniques
	Pre- and Post-Processsing
	Random Number Generation

	Method
	CBCT Volume Reconstruction with Scatter Reduction
	Geometry
	Material Model

	Simulating Photons
	Generating Photons
	Advance Photon
	Score Photon
	Simulating Interactions
	Energy Cut-off

	Variance Reduction
	Splitting
	Russian Roulette
	Forced Detection

	Filtering Methods
	Scatter Removal
	Code Optimizations and Details
	Random Number Generation
	Memory Use and Accesses
	Built-in Function Calls
	Thread Coherence
	Numerical Precision

	Results
	Performance
	Variance Reduction Methods

	Physical Accuracy
	PENELOPE comparison
	Head phantom

	Effect on reconstruction

	Discussion
	Performance
	Variance Reduction

	Accuracy
	Reconstruction

	Conclusions
	Further work
	Sources of error
	Possible Speed-ups

	Bibliography
	Rejection Sampling
	Estimation of Memory Limitations

	Backsida Adler, Jonas
	Blank Page
	Blank Page
	Blank Page

