
http://www.diva-portal.org

Postprint

This is the accepted version of a paper presented at 2013 18th International Conference on Digital
Signal Processing, DSP 2013; Santorini, Greece, 1-3 July 2013.

Citation for the original published paper:

Björnson, E., Hoydis, J., Kountouris, M., Debbah, M. (2013)

Hardware impairments in large-scale MISO systems: Energy efficiency, estimation, and capacity

limits.

In: 2013 18th International Conference on Digital Signal Processing, DSP 2013

2013 18th International Conference on Digital Signal Processing, DSP 2013

http://dx.doi.org/10.1109/ICDSP.2013.6622755

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-139844



Hardware Impairments in Large-scale MISO Systems:
Energy Efficiency, Estimation, and Capacity Limits

Emil Björnson∗†, Jakob Hoydis§, Marios Kountouris‡, and Mérouane Debbah∗
∗Alcatel-Lucent Chair on Flexible Radio, SUPELEC, Gif-sur-Yvette, France ({emil.bjornson, merouane.debbah}@supelec.fr)

†ACCESS Linnaeus Centre, Signal Processing Lab, KTH Royal Institute of Technology, Stockholm, Sweden
‡Department of Telecommunications, SUPELEC, Gif-sur-Yvette, France (marios.kountouris@supelec.fr)

§Bell Laboratories, Alcatel-Lucent, Stuttgart, Germany (jakob.hoydis@alcatel-lucent.com)

Abstract—The use of large-scale antenna arrays has the
potential to bring substantial improvements in energy efficiency
and/or spectral efficiency to future wireless systems, due to
the greatly improved spatial beamforming resolution. Recent
asymptotic results show that by increasing the number of an-
tennas one can achieve a large array gain and at the same
time naturally decorrelate the user channels; thus, the available
energy can be focused very accurately at the intended destinations
without causing much inter-user interference. Since these results
rely on asymptotics, it is important to investigate whether the
conventional system models are still reasonable in the asymptotic
regimes. This paper analyzes the fundamental limits of large-scale
multiple-input single-output (MISO) communication systems us-
ing a generalized system model that accounts for transceiver
hardware impairments. As opposed to the case of ideal hardware,
we show that these practical impairments create finite ceilings
on the estimation accuracy and capacity of large-scale MISO
systems. Surprisingly, the performance is only limited by the
hardware at the single-antenna user terminal, while the impact
of impairments at the large-scale array vanishes asymptotically.
Furthermore, we show that an arbitrarily high energy efficiency
can be achieved by reducing the power while increasing the
number of antennas.

I. INTRODUCTION

The spectral efficiency in wireless communications is not
only limited by the information-theoretic capacity [1], but also
by practical issues such as propagation environment, channel
estimation accuracy [2], transceiver hardware impairments [3],
and signal processing complexity [4]. It is of profound impor-
tance to increase the spectral efficiency in future networks,
to keep up with the increasing demand for wireless services.
However, this is a challenging task and usually comes at the
price of having stricter hardware and overhead requirements.

A new network architecture has recently been proposed
with the remarkable potential of both increasing the spectral
efficiency and taking care of the aforementioned practical
issues. It is known as large-scale multiple-input multiple-
output (MIMO), or “massive MIMO”, and is based on having
a large number of antennas at the base stations and exploiting
channel reciprocity in time-division duplex (TDD) mode [4]–
[7]. Some key features are: 1) propagation losses are mitigated
by a large array gain due to coherent beamforming; 2) impact
of channel estimation errors vanishes asymptotically in the
large-dimensional space; 3) low-complexity signal processing
algorithms are asymptotically optimal; and 4) inter-user inter-
ference is easily mitigated by the high beamforming resolution.

E. Björnson is funded by the International Postdoc Grant 2012-228 from
The Swedish Research Council. This research has been supported by the ERC
Starting Grant 305123 MORE (Advanced Mathematical Tools for Complex
Network Engineering). Parts of this work have been performed in the frame-
work of the FP7 project ICT-317669 METIS.

Downlink: Data signals

Uplink: Pilot signals

Base station User terminal

Fig. 1. Example of a large-scale MISO system where the base station has
81 antenna units and can feature N = 162 antennas using dual polarization.

The impact of transceiver hardware impairments on large-
scale MIMO has received little attention, although large arrays
might only be economically feasible if inexpensive hardware
can be used at each antenna unit. Cheap hardware components
are particularly prone to the impairments (e.g., amplifier non-
linearities, I/Q-imbalance, and phase noise) that exist in any
physical transceiver implementation [8]–[11]. Transceiver im-
pairments fundamentally limit the capacity in the high-power
regime [3], while their impact in the large-antenna regime is
less known. To the best of our knowledge, the only previous
work in this area is [12] which derives lower bounds on the
achievable uplink sum rate for systems with phase noise.

This paper analyzes the aggregate impact of hardware im-
pairments on systems with large antenna arrays, in contrast to
the ideal hardware considered in [5]–[7] and the single type of
impairments in [12]. Section II reviews the generalized system
model with hardware impairments from [8]–[11]. Section III
derives a new pilot-based channel estimator and shows that
the estimation accuracy is limited by the level of impairments.
Section IV derives lower and upper bounds on the downlink
capacity and shows that there exists a finite capacity ceiling
in large-scale MISO systems with impairments. Despite these
discouraging results, Section V shows that a very high energy
efficiency and resilience towards hardware impairments at the
base station can be achieved. For brevity, we consider a single-
user system, but extensions to multi-cell scenarios (e.g., with
pilot contamination) are outlined throughout the manuscript.

II. SYSTEM MODEL

This paper analyzes the fundamental spectral and energy
efficiency limits of a communication system with an N -
antenna base station (BS) and a single-antenna user terminal
(UT). A main characteristic in the analysis will be that the
number of antennas N can be very large. To avoid infeasible
overhead signaling, we consider a TDD system where channel
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state information (CSI) is obtained by pilot signaling in the
uplink. The acquired CSI will be utilized for downlink data
transmission, by exploiting channel reciprocity; see Fig. 1.

The flat-fading channel between the base station and the
user terminal is denoted h ∈ CN×1. This stochastic channel
has a static realization for the duration of a data block and
independent realizations between blocks. Each realization is
circularly-symmetric complex Gaussian: h ∼ CN (0,R). This
is known as Rayleigh fading and the positive semi-definite
covariance matrix is E{hhH} = R ∈ CN×N , where E{·}
denotes expectation. We assume that the spectral norm of R is
uniformly bounded, irrespective of the number of antennas N .
This is a common technical assumption that enables asymptotic
analysis (cf. [6]), but which is also a necessary physical
property that originates from the law of energy conservation.

Physical transceivers suffer from hardware impairments
that 1) create a mismatch between the intended data signal
and what is actually generated and emitted; and 2) distort the
received signal in the reception processing. This is modeled
herein by a generalized channel model from [8]–[11] with
additive distortion noises at the transmitter and the receiver.

A. Generalized Downlink Channel Model
The downlink channel is used for data transmission; see

Fig. 1. The received downlink signal y ∈ C in flat-fading
MISO systems is conventionally modeled as

y = hTws+ n (1)

where s is the random zero-mean data signal with power
E{|s|2} = pBS and w ∈ CN×1 is the unit-norm beamforming
vector. The receiver noise is modeled as n ∼ CN (0, σ2

UT) and
might include interference from neighboring systems.

To model physical channels more accurately, this paper
considers a generalized model [8]–[11] where the received
signal is

y = hT (ws+ ηBS
t ) + n+ ηUT

r . (2)

The difference from the conventional model (1) is the ad-
ditional distortion noise terms ηBS

t ∼ CN (0,ΥBS
t ) and

ηUT
r ∼ CN (0, υUT

r ). These are independent and describe the
impact of impairments in the transmitter and receiver hard-
ware, respectively [8]. Theoretical investigations and several
measurements have suggested that

ΥBS
t = κBS

t pBS diag(|w1|2, . . . , |wN |2)
υUT
r = κUT

r pBS |hTw|2
(3)

where wi is the ith element of w and diag(·, . . . , ·) denotes a
diagonal matrix. The Gaussianity is explained by the aggregate
effect of many impairments and the use of compensation
algorithms that remove other types of distortions [9], [10].

Remark 1. Distortion noise is an alteration of the data signal,
while the classical receiver noise models random fluctuations
in the electronic circuits at the receiver. A main difference is
thus that the average distortion noise power is proportional to
the signal power pBS and the current channel gain ‖h‖2.1 The
proportionality constants κBS

t , κUT
r ≥ 0 characterize the level

1The total transmit power is pBS(1+κBS
t ) under hardware impairments and

not the usual pBS, since distortions also contribute a small amount of power.
For simplicity, we will still refer to the signal power pBS as the transmit power
since the total power is fully characterized by and is very close to pBS.

of impairments and are typically in the range [0, 0.03].2 Small
values represent accurate and expensive transceiver hardware.

B. Generalized Uplink Channel Model
The reciprocal uplink channel will be used for pilot-based

channel estimation; see Fig. 1. Similar to (2), we consider a
generalized model with the received signal z ∈ CN being

z = h(d+ ηUT
t ) + ν + ηBS

r (4)

where d ∈ C is a scalar deterministic pilot signal with power
pUT = |d|2. The independent additive noise ν ∼ CN (0,S)
has a positive definite covariance matrix S ∈ CN×N . This
term contains both receiver noise and potential interference
from neighboring systems (e.g., pilot contamination [4]–[7]).
We assume that S has a uniformly bounded spectral norm as
N →∞, for the same physical reasons as for R.

The transceiver impairments in the hardware used for
uplink transmission are modeled by the independent distortion
noises ηUT

t ∼ CN (0, υUT
t ) and ηBS

r ∼ CN (0,ΥBS
r ) at

the transmitter and receiver, respectively. Similar to (3), their
covariance matrices are model as

ΥBS
r = κBS

r pUT diag(|h1|2, . . . , |hN |2)
υUT
t = κUT

t pUT.
(5)

Note that we might have κBS
t 6= κBS

r at the base station and
κUT
r 6= κUT

t at the user terminal since different pieces of
hardware are generally used for transmission and reception.

III. UPLINK CHANNEL ESTIMATION

This section considers estimation of the current channel
realization h by comparing the received uplink signal z in (4)
with the predefined pilot signal d. The classic results on pilot-
based channel estimation consider Rayleigh fading channels
that are observed in independent complex Gaussian noise with
known statistics [13], [14]. However, this is not the case herein
because the distortion noises ηUT

t and ηBS
r depend on the

unknown random channel h. The dependence is either through
the multiplication hηUT

t or the conditional variance of ηBS
r

in (5), which is essentially the same relation. Although the
distortion noises are Gaussian when conditioning on a channel
realization, the effective distortion is the product of Gaussian
variables and, thus, has a complex double Gaussian distribution
[15]. Consequently, an optimal channel estimator cannot be
deduced from the standard results provided in [13], [14].

We will now derive the linear minimum mean square error
(LMMSE) estimator. Note that ()∗ denotes conjugation.

Theorem 1. The LMMSE estimator of h from the observation
of z in (4) is

ĥ = d∗R
(
pUT(1 + κUT

t )R + pUTκBS
r Rdiag + S

)−1
z (6)

where Rdiag = diag(r11, . . . , rNN ) consists of the diagonal
elements of R. The total MSE = E{‖ĥ−h‖2} is tr(C), where
C = E{(ĥ− h)(ĥ− h)H} is the error covariance matrix:

C = R−pUTR
(
pUT(1 + κUT

t )R + pUTκBS
r Rdiag + S

)−1
R.
(7)

2The square root of each κ-parameter equals the error vector magnitude
(EVM), which is a common quality measure of transceivers.



Proof: The LMMSE estimator has the form ĥ = Az
where A minimizes MSE = E{‖ĥ − h‖2}. An expression is
obtained by taking expectations over ηUT

t ,ηBS
r for an arbitrary

fixed h and then taking the expectation over h. The LMMSE
estimator in (6) follows from straightforward differentiation
and C and the MSE then follow from the definitions.

We remark that there might exist non-linear estimators
that outperform the LMMSE estimator in Theorem 1. This
stands in contrast to conventional channel estimation with
independent Gaussian noise, where the LMMSE estimator
is also the MMSE estimator [14, Remark 1]. However, the
difference in MSE performance should be small, since the
dependent distortion noises are relatively weak.

Corollary 1. Consider the special case of R = λI and S =
σ2
BSI. The error covariance matrix in (7) becomes

C = λ

(
1− pUTλ

pUTλ(1 + κUT
t + κBS

r ) + σ2
BS

)
I. (8)

In the high uplink power3 regime, we have

lim
pUT→∞

C = λ

(
1− 1

1 + κUT
t + κBS

r

)
I. (9)

This corollary brings important insights on the average
estimation error per element in h. The error variance is given
by the factor in front of the identity matrix in (8). It is
independent of the number of antennas N , thus letting N grow
large will neither increase nor decrease the estimation error per
element.4 The estimation error is clearly a decreasing function
of the pilot power pUT, however the error variance will not
converge to zero as the pilot power is increased. As seen in
(9), there is a strictly positive error floor of λ(1− 1

1+κUT
t +κBS

r
)

due to the transceiver hardware impairments. Thus, perfect
estimation accuracy cannot be achieved in practice, not even
asymptotically. The error floor is characterized by the sum
of the levels of impairments κUT

t , κBS
r in the transmitter

and receiver hardware, respectively. In terms of estimation
accuracy, it is therefore equally important to have high-quality
hardware at both the base station and the user terminal.

There will be an error floor also for non-diagonal R and
S; the general high-power limit is easily computed from (7).

The channel can be decomposed as h = ĥ+ ε, where ĥ is
the LMMSE estimate in Theorem 1 and ε ∈ CN×1 denotes the
unknown estimation error. Contrary to conventional estimation
with independent noise (cf. [13, Chapter 15.8]), ĥ and ε
are neither independent nor jointly complex Gaussian, but
only uncorrelated and zero-mean. The covariance matrices are
E{ĥĥH} = R−C and E{εεH} = C with C given in (7).

A. Numerical Illustration
The estimation accuracy of the LMMSE estimator under

hardware impairments is illustrated in Fig. 2 with N = 10

3The level of impairments in the transmitter hardware increases with the
transmit power [11]. This means that κBS

t , κUT
t are almost constant within

the dynamic range of the power amplifier, but increase rapidly when moving
outside this range. This is not taken into account, since the high-power regime
is not our main focus. Consequently, the high-power limits derived herein are
optimistic and might not be achievable in practice. The results when N →∞
are however accurate since this means that less power is allocated per antenna.

4The MSE per element is finite, 1
N
tr(C) <∞, but the sum MSE behaves

as tr(C)→∞ when N →∞ since the number of elements increases.
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Fig. 2. Estimation error per antenna element for the LMMSE estimator in
Theorem 1. Transceiver hardware impairments create a non-zero error floor.

and N = 100 antennas. The channel covariance matrices R
are generated using the exponential model with correlation
coefficient 0.7 [16], while the noise covariance is S = I. Fig. 2
shows the (normalized) estimation error per channel element
as a function of the average SNR, defined as pUT tr(R)

tr(S) .
Four hardware setups with different levels of impairments

are considered: κUT
t = κBS

r ∈ {0, 0.052, 0.102, 0.152}. Fig. 2
confirms that there are non-zero error floors at high SNRs,
as proved by Corollary 1. The error floor increases when
increasing the level of impairments. The estimation error is
very close to the floor when the uplink SNR reaches 20-30 dB,
thus further increase in SNR only brings minor improvement.
Moreover, the curves for N = 10 and N = 100 are
virtually the same, showing that the error per antenna is almost
independent of N even under high spatial channel correlation.

IV. DOWNLINK DATA TRANSMISSION

This section analyzes the capacity of the downlink channel
in (2), where a linear beamforming vector w is applied to
transform the MISO channel h into an effective single-input
single-output (SISO) channel hTw ∈ C. The beamforming
vector is a function of the estimate ĥ obtained at the base sta-
tion and the statistical properties of other channel parameters.

The receiver has a statistical characterization of the effec-
tive channel hTw, obtained from the long-term statistics and
possibly some additional downlink pilot signaling. We leave
the extent of CSI at the user terminal undefined since the
bounds derived in this section hold for anything between no
downlink pilot signaling and perfect CSI estimation.

Under these conditions, the capacity of the generalized
memoryless fading downlink channel in (2) is

C = E

{
max

w(ĥ) : ‖w‖=1
max

f(s) :E{|s|2}≤pBS
I(s; y)

}
(10)

where I(s; y) denotes the mutual information between the
received signal y and data signal s. The beamforming vector
w(ĥ) can be any deterministic function of ĥ, while f(s)
denotes the probability distribution of the data signal. The
expression in (10) combines the well-known capacity formulas
from [17] with a maximization over w(ĥ). The expectation is
taken over different data blocks with static values on h, ĥ.

We will characterize the capacity by deriving lower and
upper bounds on (10) and study their behavior in the limit of



infinitely many transmit antennas N . This brings insights on
how hardware impairments affect large-scale MISO systems.

A. Upper Bound on Channel Capacity
An upper bound on (10) can be achieved by adding side

information at the transmitter and receiver. We assume that
the channel realization h is known perfectly at the transmitter
and receiver in each fading block. Since the receiver and
distortion noise in (2) are complex Gaussian and independent
of the useful signal under perfect CSI, we deduce that Gaussian
signaling, s ∼ CN (0, pBS), is optimal [1], [3] and obtain

C ≤ E
{

max
w(h) : ‖w‖=1

log2(1 + SINR(w))

}
where (11)

SINR(w) =
|hTw|2

κBS
t

N∑
i=1

|hiwi|2 + κUT
r |hTw|2 + σ2

UT

pBS

. (12)

To find an upper bound in closed form, we first need to find
the optimal beamforming vector in the current upper bound.

Lemma 1. The SINR in (12) is maximized as

max
w : ‖w‖=1

SINR(w) = hT
(
κBS
t Dh+κ

UT
r h∗hT +

σ2
UT

pBS
I
)−1

h∗

(13)
for Dh = diag(|h1|2, . . . , |hN |2). The optimum is attained by

w =
(κBS
t Dh +

σ2
UT

pBS I)−1h∗∥∥(κBS
t Dh +

σ2
UT

pBS I
)−1

h∗
∥∥ . (14)

Proof: The SINR can be rewritten as a generalized
Rayleigh quotient and is therefore maximized by (14).

Note that the beamforming vector w in (14) only depends
on impairments at the base station. Lemma 1 enables us to
derive a closed-form upper bound on the channel capacity.

Theorem 2. The capacity in (10) is upper bounded as

C ≤ Cupper = log2

(
1 +

G

1 + κUT
r G

)
(15)

where r11, . . . , rNN are the diagonal elements of R,

G =

N∑
i=1

1

κBS
t

(
1− σ2

UT

pBSκBS
t rii

E1

(
σ2
UT

pBSκBS
t rii

)
e

σ2UT
pBSκBS

t rii

)
,

(16)
and E1(x) =

∫∞
1

e−tx

t dt denotes the exponential integral.

Proof: Using Lemma 1 and the Woodbury identity, the
upper bound in (11) can be expressed as E{m(ψ)} =

E{log2(1+ ψ
1+κUT

r ψ )}, where ψ = hT (κBS
t Dh +

σ2
UT

pBS I)−1h∗.
Since m(·) is a concave function, we apply Jensen’s inequality
to obtain a new upper bound E {m(ψ)} ≤ m(E {ψ}). Finally,
(15) and (16) are obtained by evaluating E {ψ}.

This closed-form upper bound provides important insights
on the achievable performance under hardware impairments.

Corollary 2. The upper capacity bound in (15) has the
following asymptotic properties:

lim
pBS→∞

Cupper = log2

(
1 +

N

κBS
t + κUT

r N

)
(17)

lim
N→∞

Cupper = log2

(
1 +

1

κUT
r

)
. (18)

Proof: Note that r1 > 0, . . . , rN > 0 since R is positive
definite. This implies G → ∑N

i=1
1
κBS
t

= N
κBS
t

as pBS → ∞
for fixed N , giving (17). It also implies 1

NG > 0 as N →∞,
thus G

1+κUT
r G − G

κUT
r G → 0 as N →∞ giving (18).

This corollary shows that the capacity has finite ceilings
both when the downlink transmit power pBS grows large and
when the number of antennas N grows large. The ceilings
depend on the impairment parameters κBS

t , κUT
r and the UT

impairments are clearly N times more influential. Note that
even very small hardware impairments will ultimately limit the
capacity. In other words, the ever-increasing capacity observed
in the high-SNR and large-N regimes with perfect transceiver
hardware (cf. [4]–[7]) is not easily achieved in practice.

Interestingly, (18) indicates that only the quality of the
terminal’s receiver hardware limits the capacity as N → ∞.
This means that the detrimental effect of hardware impairments
in the base station disappears when the number of base
station antennas grow large. This is, simply speaking, since
the distortion noise is spread isotropically in space while the
increased spatial resolution of the array enables very exact
transmit beamforming. This is a very promising result since
large arrays are more prone to impairments, due to economic
and implementation limitations. To verify this observation, we
also need a lower bound on the channel capacity.

B. Lower Bound on Channel Capacity
We obtain a lower capacity bound by making the poten-

tially limiting assumptions of Gaussian codebook, no downlink
pilot signaling, and Gaussian CSI uncertainty at the terminal.
The next theorem is obtained by an approach from [2], which
has been applied to massive MIMO in [5]–[7] (among others).

Theorem 3. The capacity in (10) is lower bounded as

C ≥ Clower = log2

(
1 + S̃INR

)
(19)

where v = [v1 . . . vKr ]
T with ‖v‖ = 1 is a function of ĥ and

S̃INR = ∣∣E{hTv}
∣∣2

(1+κUT
r )E {|hTv|2}−|E{hTv}|2+κBS

t

N∑
i=1

E{|hi|2|vi|2}+ σ2
UT

pBS

.

(20)
Proof: Any heuristic beamforming w(ĥ) = v gives a

lower bound. This transforms (10) into a SISO channel and
we use the approach in [2, Section III] to find a lower bound
on capacity with only statistics of hTv at the receiver.

The lower bound in (19) can be computed numerically
for any channel distribution and any way of selecting the
beamforming vector based on the channel estimate. To bring
some insight on the behavior when the number of antennas,
N , grows large, we have the following result for the case of
(approximate) maximum ratio transmission (MRT).

Corollary 3. Suppose v = ĥ∗

‖ĥ‖
, then the lower bound in (19)

can be expressed as in (21) at the top of the next page. The
big-O terms O

(
1√
N

)
vanish as 1√

N
when N →∞, while the

other terms (except the noise term) remain strictly positive.

Proof: The equivalence between (19) and (21) is proved
by straightforward but lengthy use of Hölder’s inequality and
the trace lemma in [18, Lemma B.26].



C≥Clower=log2

1+
∣∣∣∣E{ (1+d−1ηUT

t )
√

tr(R−C)√
tr
(
A(|d+ηUT

t |2R+Ψ)AH
)}∣∣∣∣2 +O ( 1√

N

)
(1+κUT

r )E
{
|1+d−1ηUT

t |2tr(R−C)

tr
(
A(|d+ηUT

t |2R+Ψ)AH
)}−∣∣∣∣E{ (1+d−1ηUT

t )
√

tr(R−C)√
tr
(
A(|d+ηUT

t |2R+Ψ)AH
)}∣∣∣∣2+ 1

N

σ2
UT

pUTpBS +O
(

1√
N

)
 (21)

Combining the upper bound in Corollary 2 with the lower
bound in Corollary 3, we have a clear characterization of the
capacity behavior when N →∞. Contrary to the upper bound,
the hardware impairments at the base station are present in
(21) through A and Ψ. However, these variables vanish if
we set ηUT

t = 0, in which case the lower bound actually
equals the upper bound. Consequently, the capacity limit is
mainly determined by the level of impairments at the user
terminal, both in the uplink estimation (κUT

t ) and the downlink
transmission (κUT

r )—although the former connection was not
visible in the upper bound since it assumed perfect CSI.

Remark 2. It is implicitly assumed in Corollaries 2 and 3 that
1
N

σ2
UT

pUTpBS → 0 as N → ∞, meaning that the noise variance
σ2
UT cannot scale as fast as O(N). This assumption generally

holds, but not under pilot contamination of the type considered
in [4]–[7]. In those cases there will be additional terms in the
denominator of the SINRs that further limits the capacity.

C. Numerical Illustration
This section illustrates our lower and upper bounds on

the capacity. The average SNR is defined as pUT tr(R)
tr(S) and

pBS tr(R)
tr(S) for pilot and data transmission, respectively, and is

fixed at 20 dB, while we vary the number of antennas N and
the levels of impairments. For simplicity, κBS , κBS

t = κBS
r at

the base station and κUT , κUT
t = κUT

r at the user terminal.
Fig. 3 considers a spatially uncorrelated scenario where

R = S = I. While the capacity with ideal hardware grows
without bound as N → ∞, the lower and upper bounds
converge to finite limits under hardware impairments. Recall
that these bounds hold under any CSI conditions at the user
terminal; for example, the dashed lines in Fig. 3 show a lower
bound for the practical case when a downlink pilot signal is
transmitted for estimation of the effective channel hT ĥ

‖ĥ‖
.

Observe that the asymptotic capacity limits in Fig. 3 are
characterized by the level of impairments, thus the hardware
quality has a fundamental impact on the practical spectral
efficiency. The majority of the multi-antenna gain is achieved
at relatively low N ; in particular, only minor improvements
can be achieved by having more than N = 100 antennas.

Next, Fig. 4 considers the same scenario but with a fixed
level of impairments κUT = 0.052 at the user terminal and
different values at the base station. As expected from the
analysis, the lower and upper bounds at small N decrease as
κBS is increased, but the curves converge to the same value—
thus showing that the impact of impairments at the base station
vanishes as N grows large.

V. ENERGY EFFICIENCY

This section analyzes the energy efficiency (in bits/Joule),
which is defined as the ratio of capacity (in bits/channel use)
to radiated power (in Joules/channel use) [7].
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Fig. 3. Lower and upper bounds on the capacity. Hardware impairments have
a fundamental impact on the asymptotic behavior as N grows large.

Definition 1. The downlink energy efficiency is

EE =
C

pBS + α1pBS + α2pUT
(22)

where α1, α2 ≥ 0 are some constants related to the overhead
signaling in the downlink and uplink, respectively.

Recall from Corollary 2 that the capacity has a finite ceiling
as N → ∞ or pBS → ∞, thus high energy efficiency cannot
be achieved by only increasing N or pBS. However, we have
the following important result, which has counterparts for ideal
hardware [6], [7] and the phase noise-impaired uplink [12].

Corollary 4. Suppose the downlink transmit power pBS and
uplink pilot power pUT are scaled proportional to 1/N tBS

and 1/N tUT , respectively. If tBS ≥ 0, 0 < tUT <
1
2 and tBS+

tUT < 1, the lower bound in Corollary 3 gives asymptotically

lim
N→∞

C ≥ log2

(
1 +

1

κUT
r + κUT

t + κUT
r κUT

t

)
. (23)

Proof: The dominated convergence theorem and tUT > 0
gives |E{·}|2 → 1 in the numerator and E{·} → 1 + κUT

t in
the denominator of (23). If tBS + tUT < 1: 1

N
σ2
UT

pUTpBS → 0.
Corollary 4 shows that one can reduce the transmit and pi-

lot powers (e.g., roughly as 1/
√
N ) and still obtain a non-zero

capacity. The asymptotic capacity is lower bounded by (23). As
expected from previous results, the lower bound in (23) only
depends on the level of impairments at the user terminal. This
implies a great robustness to base station impairments. The
power scaling in Corollary 4 has the extraordinary consequence

lim
N→∞

EE = lim
N→∞

C

(1 + α1)
pBS

NtBS
+ α2

pUT

NtUT

=∞. (24)

Observe that this unbounded asymptotic energy efficiency is
achieved by using the LMMSE estimator in Theorem 1 for
uplink channel estimation and approximate MRT for downlink
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Fig. 4. Lower and upper bounds on the capacity for κUT = 0.052. The
impact of hardware impairments at the base station vanishes asymptotically.
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Fig. 5. Energy efficiency of ideal and impaired hardware when the transmit
power and pilot powers are reduced with N as 1/Nt for t ∈ {0, 1

4
, 1
2
}.

transmission. Large-scale MISO systems can thus obtain an
immense energy efficiency even under hardware impairments.

Remark 3. Although the ratio of capacity to radiated power
in (22) can grow unboundedly as shown in (24), the overall en-
ergy efficiency (capacity divided by total power consumption)
will not. Specifically, each antenna requires dedicated circuits
with a non-zero power consumption % > 0. This contributes
an additional term N% in the denominator of (22) and implies
that the overall energy efficiency is maximized at some finite
N . This refined efficiency notion was analyzed in [19] and
it was observed that large-scale MIMO offers great energy
savings also when the circuit power is taken into account.

A. Numerical Illustration
The energy efficiency (using the lower bound in Corollary

3) is illustrated in Fig. 5 when the transmit and pilot powers
are pBS = pUT = 30 dBm at N = 1 and then reduced
by a factor 1/N t for t ∈ {0, 14 , 12}. The channel covariance
matrices R are generated using the exponential model with
correlation coefficient 0.7 [16], while the noise covariance S
is a scaled identity matrix such that tr(R)/tr(S) = −10 dBm
at a bandwidth of 15 kHz. The impairment parameters are set
to κBS

t = κBS
r = κUT

t = κUT
r = 0.052.

Fig. 5 verifies that the energy efficiency grows unboundedly
with N for t = 1

4 and t = 1
2 , while it converges to a finite

value for t = 0 (i.e., when the transmit/pilot powers are fixed).
Note that α1 = α2 = 0 in the figure, but changing these
parameters only result in a common vertical shift of all the
curves. Fig. 5 also shows the case of ideal hardware. Despite
the fundamental differences when N →∞ or pBS, pUT →∞
(i.e., there is no capacity ceiling or estimation error floor under
ideal hardware), the difference in terms of energy efficiency is
remarkably small between ideal and practical hardware.

VI. CONCLUSION

This paper analyzed how transceiver hardware impairments
impact the capacity and estimation accuracy of large-scale
MISO systems. We proved analytically that the impairments of
physical hardware create a finite capacity ceiling and non-zero
estimation error floor—irrespective of the SNR and number
of base station antennas N . This stands in contrast to the
very optimistic asymptotic results previously reported for ideal
hardware. Interestingly, only the hardware impairments at the
user terminal limits the performance as N grows large. Despite
these discouraging results, we showed that large-scale MISO
systems can achieve an arbitrarily high energy efficiency.
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