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ABSTRACT

Arbitrary periodic signals can be estimated recursively by exploiting the fact that a sine
wave passing through a static nonlinear function generates a spectrum of overtones. The
estimated signal model is hence parameterized as a real wave with unknown period in cascade
with a piecewise linear function. The driving periodic wave can be chosen depending on any
prior knowledge. The performance of a recursive Gauss-Newton prediction error identification
algorithm for joint estimation of the driving frequency and the parameters of the nonlinear
output function is therefore studied. A theoretical analysis of local convergence to the true
parameter vector as well as numerical examples are given. Furthermore, the Cramér-Rao
bound (CRB) is calculated in this report.

1 INTRODUCTION

The problem of retrieving noisy sinusoidal signals has received a great deal of attention in
the literature, see for example [1], [2], and [3]. The algorithm of [4], which is based on the
same idea as the algorithm of this report, has the additional property to give information
on the underlying nonlinearity, in cases where the overtones are generated by nonlinear
imperfections in the system. In some cases it may also be known that the modeled signal is
closer to other signals than to sine waves. The existing schemes may then be less efficient
than methods utilizing priors like the method of [4] and in this report. The reason is of course
the freedom that exists when selecting the driving wave. The method studied here utilizes
the fact that a sine wave passing through a static nonlinear function produces a harmonic
spectrum of overtones. Hence, a periodic function with unknown fundamental frequency in
cascade with a parameterized and unknown nonlinear function can be used as a signal model
for an arbitrary periodic signal as shown in Fig. 1. In this report, the nonlinearity is chosen to
be piecewise linear exactly as in [4], with the estimated parameters being the function values
in a set of user chosen grid points. The difference is that in [4] the differential static gain was
fixed in the linear block. Here, however, the differential static gain is fixed in the nonlinear
block. This requires a slight modification of the parameterization of the nonlinearity. The
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Figure 1: Harmonic signal modeling. The modeled signal need not be generated by a cascade
structure as shown here, it is sufficient that the signal is periodic.

performance of the proposed RPEM of [4], for joint estimation of the driving frequency and
the parameters of the nonlinear output function was studied by numerical examples in [5] and
convergence to the true parameter vector was experimentally observed. Furthermore, slight
modifications in the propsed algorithm was done to improve the ability to track fundamental
frequency variations, see the numerical examples of [5].

The modifications in the proposed RPEM are obtained by introducing an interval in the
nonlinear block with fixed gain. The modification in the convergence analysis is, however,
substantial and allows a complete treatment of the local convergence properties of the algo-
rithm. This is the main reason for the modification. The convergence analysis is based on
Ljung’s method with an associated differential equations [6]. The analysis follows the papers
[7] and [8] closely.

The contributions of this report can hence be summarized as follows: Conditions for local
convergence to the true parameter vector are derived with averaging theory. Furthermore,
the CRB is calculated for the modified algorithm. Finally, the performance of the modified
RPEM for joint estimation of the driving frequency and the parameters of the nonlinear
output function is studied by numerical examples to investigate convergence to the true
parameter vector and the ability of the algorithm to track fundamental frequency variations.

The report is organized as follows. In section 2, a review of the algorithm introduced
in [4] is given. Modifications in the algorithm of [4] are discussed in section 3. A local
convergence analysis is presented in section 4. Section 5 presents the derivation of the CRB
for the modified algorithm. In section 6, numerical examples are given. Conclusions are given
in section 7.



2 REVIEW OF THE ALGORITHM OF [4]

In order to define the parametric signal model, a periodic function being the input to the
estimated static nonlinearity is needed. This function reflects any prior knowledge that is
available. The driving input signal @(¢,w) is hence modeled as

u(t,w) = Alwt) (1)

where ¢ denotes discrete time, w € [0, 7] denotes the unknown normalized angular frequency:
w =2 f/fs where f is the frequency, and fs is the sampling frequency. The fact that A(.) is
periodic now means

Al) A(w(t+ 22)) = A(wt), ke Z.

Then let one complete period of A(wt) be divided into L disjoint intervals I;,j = 1,---, L,
and assume

A2) A(wt) is a monotone function of wt on each I, j=1,---,L.

A2) is introduced to avoid restrictions that would reduce the generality of the approach. This
can be explained as follows. Assume that one static nonlinearity is used and A(wt) = sin(wt)
then the model output f;(61,sin(wt)) is obtained. If the unknown parameter vector 6, of the
nonlinear block is fixed, fi(61,sin(w(w/w —t))) = f1(0;,sin(wt)) holds for all ¢. This means
that the model signal in half of the time intervals of length 7 /w is given by the signal in the
remaining time intervals.

In what follows, a note on notation is necessary. Hence by u(t,w) € I; we mean that the
phase wt is such that I; is in effect. The reason for this notation is to highlight the switching
between nonlinearities in different intervals. However, it is always the underlying phase of
the driving wave that controls this switching.

Then with f;(8;, A(wt)) denoting the nonlinearity to be used in I, the model output
becomes

:I/\(t)wya) = f](a]aA(Wt))7 A(Wt) € Ij7 ] = ]-> 7L

o= (6T 67T, )

A piecewise linear model is used for the parameterization of f;(6;, A(wt)) , cf. [4], [7] and
[9]. Define a set of grid points

grid; :(u{ u%---uij), j=1,---,L

J_ =1 ...
U—ngj%y—l, , L (3)

/u"]]c]- = sup 7, .]ZlaaL

vEl;
The parameters 6; are then chosen as the values of f;(;,u(t,w)) in the grid points
0= £ f) i=1,L "

fi@,u)y=fi=1,--- Kk, j=1,---,L.

A piecewise linear function of @(¢,w) can now be constructed from the linear segments
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Figure 2: Grids points, parameters and resulting piecewise linear model.

with end points in (ug_l, fij_l) and (ug, ff) as shown in Fig. 2. A recursive Gauss-Newton
prediction error method (RPEM) then follows by a minimization of

V(w,0) = lim —ZE (t,w,0)] (5)

N—oco N

where E[.] denotes expectation. Here, e(t,w, ) = y(t) —y(t,w, ) denotes the prediction error
and y(t) is the measured signal to be modeled. The negative gradient of y(¢,w, ) is needed

in the formulation of the recursive algorithm. It is given by (for u(t,w) € I;,j =1,---,L)
j 4 T
bt 0) = (( Fu 00 2 0-0) ©
where
0fi() _ 9i(8;,at,w)) _
ou ou ) ( ,CU) € isJ ) )
89]' 80]
dA (¢
h(t) = t% |p=wt -

The gradient components of Ai0) for g piecewise linear model are shown in Fig. 3. The
RPEM that appear in [4] was derived as in [6] and [8]. It is given by

e(t) = y(t) —y(t)
A(t) =AMt —1) + 1=\,
S(t) = T (P(t = 1)(t) + A(t)
P(t) = (P(t—1) = P(t — p(t)S ™ ()y" (1) P(t — 1)/A(1)
o) ot -1)
b(t) fi(t 1)
. = : + P(t)p(t)e(t) (8)
%0 fL(t—1) .
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Figure 3: The gradient components for (8)

at+1) =A@ (E+1))
Yi(t+1) = (t+1) dl)j(f) |¢>=a(t)(t+1)
whenﬁ(t-kl)EIj,j:l , L
when u(t + 1) € [ Z_H],z—l k-1
f (t)“z+1 ff+1( Jui H iJ+1( )— f (t)/\

yt+1) = it + g u(t+1)
0f() _ l+1(t) THO)
ou . l+1 “Z
af;() _ u§+1fﬁ(t+1)
Bfi] z+1 —uj
8&() _ u(t+1) uf
8fi]-2-1) z+1 “f
o7 0, l#£i4,i+1
end
8f;() _ (84:0) 9450
00; of 0fi;
_ T
s+ 1) = (( Bue+1) 00 2L 0.0)
end.

where D)y indicates that the algorithms described in [6] are used to keep the predictor in
the model set.

It was shown in [4] that the minimum of V' (w,#) is unaffected by colored measurement
disturbances. Also, the CRB for (w #7)7 was given in that paper. As shown also in [5],
the algorithm works well and can be easily modified for tracking. However, it seems to be
difficult to analyse. This, and a desire to investigate and compare with alternatives, is the
main motivation for the development in the subsequent section.

3 MODIFIED ALGORITHM

In order to fix the static gain in an amplitude subinterval I, contained in ezactly one of the
nonlinear blocks, the driving input signal in this case is modeled as

u(t, X, w) = XA(wt) 9)

where X is a (possibly time varying) parameter recursively estimated to allow the linear block
of the model to adapt its static gain so that the data in I, can be explained. Choosing I, to
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Figure 4: The gradient components for I; (Assuming k" = k; = k).
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be contained in the first interval I, f1(01,4(t, X,w)) is defined as is done in [7] to become

fl(fo;elya(t;wa)) = Koa(t;wa) +f07

SO

6f1(f0,01,ﬂ(t,X,w))

ou

= Ka)

a(t, X,w) € L.

Here K, is a user chosen constant. Also, the grid points become

1 1

u U, .

il — ( —ky —ky +1
grid; = j

j
(W !
—k; =k +1

Thus equation (4) is transformed into

0j = (fik:._ filflj ].Z-}—)T>

ﬂ@mbz{Kﬁ@§@+ﬁ,

i

In this case there are no parameters corresponding to u,- and u,+, since

fl(foyahuo*) = Kouo* +f0
fl(foaelauzfr) = Koo+ + fo.

The parameters vector takes the form

0= 6,)"
6 = (X w)?
6 = (fo 07)"
On = (6] ---07)"
0; = (1’

i=—k

J

1
U —U e
o~ Lot k-1 ki

..uilul...u

J J
k%—luki'»)’ J =
J J

j=1,--

T

);

»y 0

ut,X,w)yel, C I

yoe

at, X,w)el,, j=1

-, =1,1,---kf, j=1,---,L.

j=1,--- L.

(10)

(11)

In this case, the gradient components in the interval I3 are shown in Fig. 4 and the gradient
components for the other intervals are similar to Fig. 3. Taking into account that v;(¢) in

this case is defined as

T
hi(t) = ( AD) lomur XETGE |omat )

the RPEM algorithm becomes after comparing with [4] and [7]

(16)



£(t) = y(t) — (1)

M) = MMt — 1)+ 1=\,

S(t) = T (Pt — 1)p(t) + A(®)

P(t) = (P(t — 1) = P(t — (DS~ (08T ()P (t — 1))/A(®)

it +1) = XOA@#) (¢ +1))

Yt +1) = ( A@@)(t+ 1)) )A((t)(t+ 1)%;}) lg=2 () (t41) )T
when u(t+1) € I

when a(t + 1) € [ul,, —l+1]’ i=ky 0,2
g/](t-i— 1) —z(t)u;lz+i1 f;z+1(t)“_z + f_;;_lfl) Z—z(t) A(t+ 1)

() _ o =71

ou u1_i+17u1_i
ofi() _ u£i+1fﬁ(t+1)
Bfli Touly,—ul
8f1() _ l+h)—ul
Oflii1 o u£i+1_“1ﬂ'
—8;}(1-) =0, l#—i,—i+1
i

end
when u(t+ 1) € [u 15 Uo—]
Kou,—+fo(t) 1, (t)

Nl 1
/y\(t-i—l) — 71(t)uo, (K “olfJFfO(t))“—l +

uy— —ul u__ —ul
o - o

-1

() _ Koug +fo(t)—F11 ()

ou u, 7u1_1
Af1() _ u,— —u(t+1)

BfAll T ou,—uly
8fi() _ B+ —ul,

3ﬁ> T ou,——uly
Ofi1(-) _
751) =0, [#-1,0

R )
end
when @(t + 1) € [uy+, ul]

at+ 1)

1_71 71 I
Gt 4 1) = Eetarfo@u=F Ous | BOKour=Foll gy 4 q)

1

up—u, 4 ui—u, 4

0h() _ IO =Kougs =Fo(®)

ou ul—u_t
8f1() _ ul—u(t+1)

ofe ul—u_y
O () _ at+) ugy

3}? - u%,qur
8f1/\(.) =0, I ;é 0,1

art
end



when G(t+1) € [ul_,ul], i=2--- kf
_ fil—l(t)“zl*ﬁ(t)“}—l

~ R —Fli () ~
p+1) === e, At )
ofi(.) _ E(t)*f:‘l_ﬂt)
ou ul—ul_;
8f1() _ up—u(t+1)
afl, — ui-ui_,
8fi() _ B+ —ui_,
ofi  ul-ul,
of1() _ R
o 0, l#i—1,i
end
when u(t + 1) € I, j=2,--+,L
when u(t + 1) EA[ug, ?‘f+1];, i = —Jc{, o kM -1
/y\(t-i— 1) — I3 (t)“i.}q*fiqj._l(t)“i + i+1]_(t)* ij(t) a(t_‘_ 1)
. Az_'+1_“i Wiq1—YU;
afj/g.) — fl'J+1‘(t)_fiJ‘(t)
ou .“£+1*“£
0fi(1) _ Wi, —u(t+l)
Bfi] u£+17uf-.
8fi() _ (t+1)—ud
8fi]+1 “§+1*“g
ofi() _
of. =0
or;() _ i1
o7 0, l#4,i+
end
o£;,() 3[;‘(-) 8fi-]_(-) 8fjA(J_-) 8fi'j(')
8§j - 8f_kf o’y ofi 8ka_r
. ) ) T
ple+1) = (Bl e+ P 0-0 2L 00 ) Gel, j=1, 0
end.

4 LOCAL CONVERGENCE

Local convergence of the RPEM to the true parameter vector is here analysed with the
linearized, associated differential equation, see e.g. [6] and [7]. In fact, because of the
structural similarities, much of the analysis is exactly similar to [7]. However, here there are
L intervals to handle and another linear block. The analysis follows the following general
lines. First, it is investigated when the true parameter vector is a stationary point to the
differential equations. The local stability of this point is then studied.

The analysis relies on the fact that the Ljung’s original method of analysis is also applica-
ble to a Wiener model structure. This was shown formally in [8]. However, here the driving
linear block is slightly different from [8]. This fact is not discussed further here, but will be
treated by future work.

The average updating directions that define the associated ODE are calculated from the
model and gradient relations, using a fixed parameter vector € Dy and a fixed R (where
P(t) = (tR(t)~'). When (17) is compared to the algorithm of [7], it is found that the aver-
aging updating directions are



afi(.)

i) o (t,0)e(t, 0

= lim E ou WT’ Je(t,6) ,u€l;, j=1,--- L. (18)
t—00 agg() E(t,e)

F(R,0) =G() - R (19)

GO) = lim Ey(t,0)y7(t,0)

0£;() 0F;() | 0F5() 8550, BF;()
A R 57 Vi 57, =" aJ§n
s 0F;() 05;() p  05;() 05, 0F5() 8550 ~_
= tlggoE 975 —om Vi 970 Bfs 950 o6, , u€ I (20)
05;()T 05;() 7 05 ()T 0f5() 05()T 055()
25, 05 VI “as, 9fe  06n 06n

Proceeding with the analysis, the following assumption is introduced,

A3) The linear block and the static nonlinearity of the system are contained in the model
set.

Then there are vectors #° such that the output of the static nonlinearity of the system is
described by

y(t) = f;(00,u(t,X°,w’) +w(t), uel;, j=1,...,L. (21)
where w(%) is the disturbance which satisfies the following assumption; cf. [6] and [7],

A4) w(t) is a bounded, strictly stationary, zero mean stochastic process that fulfills
E|w(t) —wi(t) *< eXl=%,c < oo,| A< 1.

Since there is no use of w(t) in the input signal generation, the following assumption is
satisfied

A5) ¢(t,0°) and w(t) are independent.

By choosing § = 6°, it is concluded from (17) that e(¢,0°) = w(t). When this is inserted
into (18) the result f(#°) = 0 is obtained. A4), together with (19) implies that the ODE
associated with (17) has a stationary point described by

< COHZR ) - < colgo(m) ) (22)

Following [6] and [7], we need to prove that G_1(0")dfd—((f) l|g=go has all eigenvalues in the
left half plane to prove local convergence. The derivative can be calculated from (18) by
straight forward differentiation. When the true parameter vector is inserted in the resulting
expression, the equation (20), together with A4), gives

df (9)

G*l(ﬁﬂ)w |9:,90: _I (23)



provided that the inverse exists. Since G(#°) is positive semidefinite by construction, con-
ditions that imply the positive definiteness of G(0°) are now needed in order to prove that
G~1(0°) exists.

In order to prove positive definiteness of G(6°) it is convenient to extract the contribution
to G(6°) from the subinterval I, and to study this contribution separately. Introducing the
gate function for this purpose, where

gate(u(t, X°,w’)) =

{ 1 a(t,X°w)el,Chh (24)

0 otherwise.

Again, by u(t, X°,w°) € I, we mean that the phase wt is such that Iy is in effect. Thus G(6°)
can then be expressed as

A B A0
oy __
¢o)=( g0 ¢)+(5 o) (25)
where
i o KXl Ko
A= tlg]go Egate(u) ( Kl 1 (26)
of;() T 0fi()
C = lim E(1 — gate(u))—> L%
t—o0 09, 09,
21T af () 11T ()
01 96y 06 567,
= tlim E(1 — gate(u)) : : . (27)
e 25T 051 05T 0f2.()
D61, e, 0 ~aer 567, lo—go

Now use lemma 2 in [7], which can be formulated as follows.

Lemma. Consider the block-matrix decomposition

(A B A0
¢=(sr 2)+(v 1)
where both terms on the right-hand side are symmetric. Assume that the first term of G is

positive semidefinite and that A and C are positive definite. Then G is also positive definite.
Proof. See [7].

G(6°) is positive definite provided that A > 0 and C' > 0. Thus the analysis will be di-
vided as follows:

4.1 Positive definiteness of A

The first step of the analysis is to find conditions that guarantee that A > 0. Note that it
can not be assumed that

lim E ¢ =0
t—o0

because of possible bias in the driving signal. The idea now is to compose A into two parts,
where the first part is determined by the bias in the input signal, and where the second

10



part comes from the variation. The same technique is used in [7]. In order to overcome the
technical problem with the gate-function that appears in A, ¢} is introduced according to

lim E gate(w) ¢ =y (28)
t—o0

where 1} is a constant vector. Furthermore, assume

A6) a, =lim;_,o E gate(u) > 0.

which means that there must be signal energy in the mid-subinterval I,. Then ; can be
written as

Y= 0P+ B (29)
where Ay is the variation of ¢; around a%@/}l" . This implies the following equalities, cf. [7]
o = [lim E gate(w) ¢
— Jlim E gate() (-7 + A)
— (lim B gate(@)) -7 + lim E gate(@) vy
oy + tlggoE gate(U) Ay

which implies that

lim E gate(u)Ay; =0 (30)
t—o0
The blocks of A can now be calculated using A6), (29) and (30). The (1,1)-block becomes
1 1
. A2 T N T T
Jlim Egate(u)K;y = lim Egat@(U)KO{a—gW [t a—az/}zoA%/Jz
1
+ O PT A+ A DYy
o
1
= K2 9?7 + K2 lim Egate(d) Ay Ay . (31)
Qo t—o00
Thus A can be written as

K 0o . o~ 2 T
- 2V K, , limy ;o0 Egate(@)K; Ay Ay 0
A = a ( 1 ” v 1)+ 0 0

_ (AfT]‘If)Jr(lgg) (32)

Applying lemma 2 in [7] again and taking into account that H = a, > 0 by assumption,
positive definiteness of A follows, if conditions implying that

F= Jim Egate(@) K2 Ay ApE >0
—00
can be found. In order to proceed, assume that

AT) lim, o Egate(W) Ay AL > §limy_yoo EAYAYE, S > 0.

11



This assumption means that the contribution to the expectation from I,, should not be
negligible as compared to the whole contribution to the expectation. It is a condition on
the amplitude distribution of the driving signal, i.e, the driving signal should be such that a
sufficient amount of signal energy is located in the subinterval I, (interpreted via the phase
condition). Also, assume that

AB) |K,|>0.
It remains to investigate when
Jlim ENAY AL >0
holds. Since (30) does not imply that Ay has zero mean, it is necessary to write
Dy = Dgp + Dy
where
Ayp = lim EAY,
Then A@/le has zero mean, and
Jim BAp Ay = AgpAYPT + lim EAQAD] > lim EAQAG]
Since Ay has zero mean, and
Vi = 0p + B+ Oy

the effect of the transformation is to remove possible bias in ;. Therefore, the following
condition is introduced.

A9) lim; o0 EAPADT >0

It is motivated by an example below. Formal and general conditions implying A9) are
presently under investigation.

Ezxzample 1: To investigate the conditions needed to secure A9), consider the following

u(t, X% w?) = X°A(w°t)
A(w°t) = sin(w’t) (33)

and assume that the phase w°t is uniformly distributed in the interval [0,27x]. In this case

Ay =y
this is because there is no bias in the driving signal. Thus
" A(9) X6 A9) g
ENOAGF =B . “ de (34)
! LOMDTE P ¢ G )



Straightforward caculations gives

E[A*(¢)] = 1/2
dA(¢)

Elg A(¢)d—¢] =-1/4
dA 2
El¢? [—dE:))]Q] = 27 + i (35)
thus (34) becomes
o AGT 3 oo
EAYp Ny = 0 0 Wy 36
wedt = ( & gy ) .

which is a positive definite matrix. Thus A9) is a valid assumption.

4.2 Positive definiteness of C

It remains to analyse equation (27) to prove the positive definiteness of G(6°). Since only

‘ T
two of the components of aggg.) are nonzero in each of the subintervals and %HL"E')M =

00,
0, n # m, C can be written as follows
011 0
C= ( Do ) (37)
0 .. CLL

. ofi0Taf . af:() T afi(.
Cy = i B0 @ 2T ) 2O

where

Equation (38) results from the fact that (cf. the phase condition)

L0 _o G xe,w0) e, (39)
09,

Also, Cj; can be written as
C. 0
Cii = ( 0 cm) (40)

where C;- and Cj;+ are band-matrices give by

a7 af; of; af;

. . h 0 0
af? _af? _ af? _afl _
kS —k; —k; —k; 41
J J J J
afj afj
afl _ afl _
—kT 41—k
C..- =1lim FE 41
3 t—o0 0 ( )
af_j af_j
ofly 0f
0 ofj of; 01 0f;

J 2 J J
afl ofl, ol ofl

13



of; 8f; 0f; 9F;

2 2 2 - 0 . 0
ar] af] of] af3
ard of]
0
Cij+ = hm E (42)
t—o0 0
af; 04
afl a
fk;r_l f;r
0 o i %% 975 9
afl  af’ afl  af’
fed O 0 USRI

i i
If Cj;- and Cj;+ are positive definite then also Cj; is positive definite and positive defi-

niteness of C' is consequently proved. C;- and C};+ have exactly the same structure which
means that it is sufficient to investigate one of them [7]. In order to analyse, for example,

Cjj+ consider

T
D ijJr D

where D is an arbitrary vector. Since C;;+ is positive semidefinite by construction, positive
definiteness of C;;+ can be proved by showing that

D" Cjj+ D=0 = D=0.

Equation (42) gives

2

kT
d of;
T .. f— 1 ]
D" Cj+ D= thm E mE ldm 8fj (43)

m

where d,, are the components of the vector D. The expression

f0“+ (D, u) mX:Id 8]%

can be interpreted as a piecewise linear curve (see [7]), that can be nonzero only when

(44)

~

u € [u{,uiJr]
J

The function values of fc. | (D, ) in the grid points u ,i=1,... ,kj+ are the corresponding
components of the vector D, i.e.
fo, (Dyui) = d; i=1,... k. (45)

This is becuase when u € [u U _H], ..., k:;' —1 the function fcj].+ (D, u) can be written
as

j a N j
u—u;

fo, (D) = d; L.Hzm B

—u’ wl,, —u’l

z+1 7 +1 7

[

which is a linear function of @ that satisfies

fC]-]-+ (D,’U,Z) = dz
fo, .\ (Dyul,,) = dia.

14



Let Iij,i =—k;,... ,k;', j=1,...,L denote the (open) subintervals of the piecewise linear
model of the static nonlinearity including I,. To proceed with the analysis, the following
assumption is needed

A10) The probability density function hg(@) of u(t, X,w) fulfills
ha(uw) > 61 > 0.

- kf,j=1,... L.

in at least one nonzero interval [a!,b’] € Ig foralli=—k;,... k],

7Y%

This assumption means that there must be signal somewhere in every subinterval of the
model. Thus equation(43) can be written as

DT Cjj+ D = tlggoEfcjﬁ(D’a)z

Uit 23 s g
[ e, (0,07 ha(@ (46)
u3
The condition
T
D ij+ D == 0

can now be investigated using assumption A10) and equation (46). Since fc (D,u)? is

nonnegative and continuous on [u?, uifr]’ it follows from equation (46) and A10) that
J

fo, (D, @) =0, @ € [a;,bi] Cr,i=1,... .,k j=1,...,L

Thus fo, . (D,u) is

e analytic in Iij, 1=1,... ,k:;-', j=1,...,L

e zero in nonzero intervals [a;, b;] C I/, i=1,... kS i=1,... L
It then follows from a well known theorem for analytic functions (see, for example, [10]) that

fo (D@)=0,a€ll,i=1,...,kf, j=1,...,L.
The continuity of fo. (D, u) together with equation(45) finally gives
fo (Dyul)=d;=0,i=1,... k.
Thus it has been shown that
DT Cj;+ D=0 = D=0

This proves the positive definiteness of C;+. Since C};- has the same structure as C};+, it
follows that C}; is positive definite. This leads to the positive definiteness of C'. The fact that
A and C are positive definite now implies the positive definiteness of G (6°). This completes
the proof of the following theorem:

Theorem 1. Assume that the assumptions A1)-A10) holds. Then the RPEM algorithm
given in (17) converges locally to
00
( 9% > € Dyy.
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5 THE CRAMER-RAO BOUND

Assume that A1)-A10) holds. Further assume that
A11) Elw(t)w(s)] = 020, and w(t) is Gaussian.

A12) N > N, such that there exist a time instant ¢ < N, wherew € I; and 4 € [ul,ulﬂ] Vi, j €
{i=—k;,...,kf—1,j=1,...,L}.

A12) means that there has been signal energy in each subinterval of the model, cf. [7] and
A10). Then the following theorem holds for the signal model of A3):

Theorem 2. Under the assumptions A1)-A12), the CRB for (6 61)7 is given by

N
CRB(§) = o (Z I(t)> (47)

t=1
where
Ix, x Ix w Ix s, O Ix,f? Ix ;i » 0--0
Iv,x Ly Ly, O Iw,fj Iw f’+1 0--0
Iy, Itgw  Igo,55 O Ifo‘fij I 4 i, 0--0
0 0 0 0
I(t) = 0 0 0 0 0 (48)
Ifij’ Ifzj w Ifg.fo 0--0 Iff,ff' Iflj’ngrl 0---0
Ifg+1‘x Ifij+1’“’ Ifij+1’f° 00 Ifzj+1'fij fg+1’fg+1 0
0 0 0 0 0
0 0 0 0 0
u € [uj,ul | €1;, i=~k;,... ,k;f—l, j=1,...,L.
(01077
[X7X = ({)J’u, A2(¢) |¢:wt
- PN 9
I — afj(-) X242 dA( ) | ,
w,w I 8u ] d¢ ¢ w
r -2
Iy = af; ()
oL Of |
0£,0]° dA(9)
IX,w = aju Xt A(¢) dqﬁ |¢ wt

8 0
Ix, = Jgé) gjf() (9) lp=wt
050 05() -, dA@)
w,fo = 8]’11, 8]fo Xt d¢ |¢=wt
ofi(.) ofi(.
g = LA N0 Lo

16



Ix,ff

Ly gi

w,fii

I

[fo,fz'ﬂ

If{ ST

I .

J J
fi+1 ’fi+1

I

_ 950 050)

ou afl

(QS) |¢=wt

_9£;0) 3fj(-)Xt

dA(¢)

ou off

_0f;() 0f;()

Xt

d¢
dA(¢)

Ou 5fij+1

_9f;() 91 ()

forfi —

ofo of!

0fi()0f;()
ofo of!

i+1
_0fi()afi()
off of!
_ 9£i() 9£;()
6fz+1 of

_ 9fi() 0f;()

B, =

af! of il

Proof: The log-likelihood function is given by

1 N
10) =k -5 S () -7

d¢

| p=cwt

| p=cwt

where k is a constant does not effect the further calculation. Let,

oU6) _ (az(e) az(e)>

Bl 96, 06,
where
ale)  (010) alLb)
a0, — ( X  Ow )
al(e) _ (di(e) ale) O
0, ( af, 06, 69L>
ole) _ [ oue)  ale) dle)  dIB)
00; —\of _  of, offi  of.,

Then, the Fisher informatiom matrix can be written as

(49)

(51)

_p 20" 2U6)

00 00
o) T aue)  o1(0) T au(0)
- _E 20, 06, 50, 09,
o) T oue)  o1(0) T au(0)
26, 06, 08, 00,
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In order to calculate J, note that

=7 > (t) - i, o) 280
a0 _ 1 i(y(t) ~iir, o L)
= i(y(t) - gte.6) 22
8(;2) _ % tﬁ;(y(t) — g(t,o))%‘c;:)
o= ;N;@(t) Ok -
For @ € [ul,ul,\] € I, i = —k; ... ,kF —1, j=1,..., L it holds that
WD - 280 3(9) Jomas
ag(;i,}a) - a](;jzi') X tdlzlff) o=t (55)
Thus using the signal model A3) and A11)
b 633?) - i:: 62—5) A2(9) |gm
B[P0 - (2] e [0 ]
e[ ] -5 2]
£ o] =% ﬁ 2LOT a0,
P |5xar) = ia’;ﬁ')%ﬁm o=t
B[] -L S UO%O MG,
L;axlg? - i%"%ﬁ’mw oot
laié(fai - ‘% gag;f')%xw) | o=t




U | 1 R0k 80 o, dA(9)

E lawaff_ 02 tz:; 6U aflj Xt dQS |¢:wt
21(9) | _L - 6f]()8fy() dA(9)
2ue | 1 8f]( ) 8f; ()

Elafoé‘ff_ RE Z 0fo of]

60) | _ 1 = 0£0) 050)
E[afoafz;l_ s Z ofo ofl,
10 | 1 Ra50)080)
Elaffafi_ G ; off of
7 N
E[ 621() __L2 Zaf]()afj()

8fz—i—l z+1_ 4 8 z]+1 8 z]+1
U6 | _ 1 =050 050)

" L)f]a i1 ] o ; ofl ofl., 0
8%1(0)

Introduce the notation in (49) and use the facts that
1/02 YN I(t). Then (47) directly follows from A12).

3509 — 0 form #n and J =

Remark. 2300 950) 950) 4ng 950)

can be calculated for different subintervals using

»70f. 0 o) ofi,
(17). Thus the matrix I(t) takes the following forms:
I T T A N = |
(i) When @ € [u, uj,,] Vi = { —kj . kP -1, =2, L.
Ix x Ix.w 00 IX.fl-j IX,fg+1 -0
Iy, x Iy,w 00 Iw,ff - fij+1 -0
0 0 0
— 0 0 0 0
I(t) = T T 0000 Ty Ty 0 (57)
X i 00 Ifzj+1'fij Ifzj+1'fij+1 0
0 0 0 0
0 0 0 0
where
f]
Ixx = l Zj—H l] A%(9) =t
z+1 -
J 2
dA (¢
Tyw = [ e f’j] X2t2{ d( ) |o= wt:|
z+1 u; ¢

19



IXw

X fz+1

w7fi

w,fi

I .=

VEH

flenfin

I, =

J
iJiga

X =

— [ i+1 z"| Xt A(¢)dA(¢) |¢:wt

Z+1 uj dg
_ fa— f! “ (tXW) A) |

’LL] — uj u]. — uj. $=wt
+1 +1 7
J J
i~ fioult, Xow) —

p — - u, AB) lomat
+1 i z+1

flon = 1w —u(t, X,w) - dA(g) |
Y Y dp o=t

ul+1 u; U’Z+1 u;

wl o —ul ol —ul dp 0=
i+1 7 i+1 I3

, 2
i
[uiﬂ —u(t,X,w)]
J J
Uipr — U

[u(t,X,w) - uzr
Uiy — U
“Z+1 —u(t,X,w) ult, X ,w) — uj
“Z+1 - “Z Uit “Z

(ii) When @ € [u',u,-] C L.

where

Ix x =

)

Iy, .1, =

Ixx  Ixw Ixg, 00 Ig 1 00
-1

Lyx Tww Twg 00 T, sr, 00
T I w T 0--0 1T 0--0
fo,x  If,, forfo forfly
0 0 0 0
0 0 0 0
T x Tt Tt g 00 0 0pn 1 00 0
0 0 0 0
0 0 0 0
_ 1 12
Kouo- + fo— f24 A2
1 ((ZS) |¢:UJt
Uo— —U_4

Up- —uly

[ N |

de
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Kouo*_‘_fo_fil U’(thaw)_ul—l
I = A _
X, fo Uy — u£1 Uy — u£1 (@) lp=wt
Koto- + fo — f1y u(t,X,w) —u';  dA(¢)
Iwnfo = 1 Xt |¢:L‘)t
Up— — ULy Up— — UL, do
Koto- + fo— fL up- —u(t, X,w)
I — o s LAy A Y
X,f Uy — ul—l Uy — ul—l (QS) |d>— t
Kouo* + fo B fil Uo— — U(t,X, w) dA(¢)
Iw,fll = 1 i Xt |p=wt
Up— — U4 Up— — U, do
u(t, X,w) —uly u,- —u(t, X,w)
Ig, o, = ;i
o=t Up— — U_y Up— — U4
Up— — u(t, X,w) 2
I 1 1 = i T—
fiofly Uy — ul_l

(iii) When @ € [uo-,uo+] C I4.

Ix x Ixw Ix s, 00
Lo.x Twaw Tw.g, 0 0
I, x Ipow Ifo,75 0 -+ 0

0

I(t) = 0 0 0 0

where

Ivx = K2 A*() |p=wt

dA(¢) ?
Iy, 1, =1
dA
IX,u; = Kg Xt A(¢) df;b) |d>:wt
Ix, = Ko A(®) lp=wt
dA(¢)
I, =K, Xt i | o=t

(iv) When @ € [u,+,ul] C I1.

Ixx Ixw Txg, 0000 I

Iy, x Tw,w IW.fo 00 Iw fll
I If o I 0---01 0
fo.X Iiow Iso.50 Fouf}
0 0 0 0
N
Tetx Typw Typg 0 O 0p1 g1 0
0 0 0 0
0 0 0 0
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where

_fll_Ko'Ufo"'_fo 2 2
I = A —w
XX i ul — ugs (@) lp=wt
f11 — Kouo+ — fo ? Y242 dA(¢) 2
Iww = 7. =w
5 U% —uyt t d(ﬁ |¢ t

_ _’U& —U(t,X,w):|2

I =
fosfo i u% gt
- 2
fi = Kougr — fo dA(¢)
1 = Xt A _
Xw = | T, (@)= 5 |p=wt
fi = Kougr — fo ub —u(t, X,w)
I = A _
X, fo u% gt u% gt () |¢th
I — fll_KOqur_fo U%_U(t,X,W)XtdA((b) | B
wifo ul — gt ul — gt do p=wt
fll_KOqur_fO ’U’(taX:w)_qur
I = A _
X, fi ul —ugs ul — U (9) |p=wt
I . = fll_KoUo+_fo U(t:X:W)_uo+XtdA(¢) loe
w, fi u% — U+ u% — Uyt dé p=wt
oy —u(t, X, w) u(t, X, w) — ugr
Todd = 7l Zuy ul — g+
u(t, X,w) —up+]”
Dt = | oy

6 NUMERICAL EXAMPLES

In order to study the performance of the modified RPEM algorithm suggested for joint es-
timation of the driving frequency and the parameters of the nonlinear output function, the
following simulations were performed.

Example 2: Convergence to the true parameter vector.

The data were generated according to the following description: the driving wave was
given by u(t,X,w) = X sinwt where w = 270.05. Two static nonlinearities (L = 2) were
used as shown in Fig. 5,
grid; = (—1,-0.3,-0.15,0.15,0.3,1)
gride = (—1,-0.3,0.3,1)

61 = (—0.8,-0.3,0.3,0.8), u(t, X,w) € I

0> = (—0.8,-0.5,0.5,0.8), u(t, X,w) € I

(65)

where u(t, X,w) € I, for positive slopes and u(t, X, w) € I, for negative slopes, respectively.
The additive noise was white zero mean Gaussian with variance o = 0.01.

The algorithm was initialized with A(0) = 0.95, A, = 0.99, P(0) =0.01], X =1, Ky =
1, fo = 0 and w(0) = 270.02. Further, the grid points in (65) were used, and the initial
values for the nonlinearities were given by straight lines with unity slope.
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Figure 5: Static nonlinearities of Example 2.

The modeled signal and the estimated signal are given in Fig. 6. Also, the estimate of
the driving frequency, the parameter estimates, and the prediction error are given in Figures
7-10. After 1000 samples the following estimates were obtained:

» = (—0.8214, —0.4910,0.5087,0.8280)

and it can be concluded that the convergence to the true parameter vector is taking place.

Ezxzample 3: Tracking fundamental frequency variations.

As in [5], to improve the ability of the modified algorithm to track fundamental frequency
variations, the algorithm given in (17) is modified to

e(t) =y(t) —y(t)
S(t) =T ()Pt — 1)(t) + Ra(t)
P(t)=P(t—1)— Pt — )y(t)S™ ()T () P(t — 1) + Ru(t)

ot \ _ | ae-1
( @i(t) > = [( @i(t— D ) +P(t)z/z(t)s(t)L (66)

where R;(t) and Ra(t) are the gain design variables (see [6] page 273). This modification
transform the problem into an extended Kalman filter formulation.
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Figure 6: The modeled signal (dashed) and
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Figure 7: Convergence of the fundamental
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Figure 9: Parameter convergence.

The data were generated as in the last example and the algorithm was initialized with
P(0) =0.001I, X =1, Ko =1, fo =0 and w(0) = 270.02 and the design variables were
Ry (t) = 0.00011 and Ry(t) = 0.25. Also, the grid points in (65) were used, and the initial
values for the nonlinearities were given by straight lines with unity slope.

The modeled signal and the estimated signal are given in Fig. 11. Also, the true and
estimated fundamental frequency are shown in Fig. 12. The parameter estimates, and the
prediction error are given in Figures 13-15. After 2400 samples the following estimates were

obtained:

=0.3474

"
£, = —0.0499
6,
6.

= (—0.9169, —0.2709, 0.3477,0.9313)
= (—0.8897, —0.5422, 0.4102, 0.9036)

and it can be concluded that the algorithm of (66) has the ability to track the fundamental

frequency variations.
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Figure 10: Prediction error.

Ezxzample 4: Performance of the RPE algorithm as compared to the CRB.

In order to compare the performance of the algorithm with the derived CRB for the fun-
damental frequency estimation, 100 Monte Carlo simulations were performed with different
noise realizations. The data were generated and the algorithm was initialized as in example
2. The statistics is based on excluding simulations that did not satisfy a margin of 5 stan-
dard deviations (as predicted by the CRB) from the true fundamental frequency. Both the
CRB for the fundamental frequency estimate and the mean square error (MSE) value were
evaluated for N=2000 and for different signal to noise ratios (SNR). The statistical results

are plotted in Fig. 16.
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Figure 11: The modeled signal (dashed)
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Figure 12: Tracking of the fundamental
frequency.
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7 CONCLUSIONS

A recursive harmonic signal estimation scheme has been modified by introducing an interval
in the nonlinear block with fixed static gain. Then the modified algorithm was studied by
numerical examples and it was proven that the algorithm is locally convergent to the true
parameter vector and can easily modified to track fundamental frequency variations. Also,
the CRB was calculated for the modified scheme. Monte Carlo experiments shows that the
modified algorithm gives good results, in particular for moderate values of the SNR.
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