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2 A. COLESANTI, K. NYSTRÖM, P. SALANI, J. XIAO, D. YANG, G. ZHANG

The Minkowski problem, which characterizes the surface area measure, is a fundamental
problem in convex geometric analysis. Since for smooth convex bodies the reciprocal of the
Gauss curvature (viewed as a function of the outer unit normals) is the density of the surface
area measure with respect to the spherical Lebesgue measure, the Minkowski problem is
the problem in differential geometry of characterizing the Gauss curvature of closed convex
hypersurfaces. More precisely the Minkowski problem reads: given a finite Borel measure
µ on the unit sphere Sn−1, under what necessary and sufficient conditions does there exist
a unique (up to translations) convex body K such that SK = µ? This problem was first
studied by Minkowski [81, 82], who demonstrated both existence and uniqueness of solutions
when the given measure is either discrete or has a continuous density. Aleksandrov [2, 3]
and Fenchel-Jessen [31] solved the problem in 1938 for arbitrary measures. Their methods are
variational and use formulas (1.1) and (1.2). The solution of the Minkowski problem identified
the conditions

(i) the measure µ is not concentrated on any great subsphere; that is,∫
Sn−1

|θ · ξ| dµ(ξ) > 0, for each θ ∈ Sn−1,

(ii) the centroid of the measure µ is at the origin; that is,∫
Sn−1

ξ dµ(ξ) = 0,(1.3)

on the measure as necessary and sufficient conditions for existence and uniqueness. In the
smooth case, the Minkowski problem can be formulated via a second order partial differential
equation of Monge-Ampère type on the unit sphere and, for this reason, establishing the
regularity of the solutions to the Minkowski problem is difficult and has led to a long series of
influential works, see for example Lewy [67,68], Nirenberg [83], Cheng and Yau [21], Pogorelov
[87], Caffarelli [15, 16], etc.

The Minkowski problem has inspired many other problems of a similar nature. Exam-
ples include the Lp-Minkowski problem which prescribes the p-surface area measure, see
e.g., [5,6,22,48,74,76], the logarithmic Minkowski problem which prescribes the cone-volume
measure, see [5,12,96], the Christoffel-Minkowski problem which prescribes intermediate sur-
face area measures, see [41], and Minkowski type problems which prescribe curvature measures,
see [38,40,42]. The measures prescribed in these works are the variational functionals of vol-
ume and other quermassintegrals with respect to various operations on compact convex sets.
These problems present central questions in geometric analysis. As a specific example, the
Minkowski problem and its Lp generalization have been used to establish sharp affine Sobolev
inequalities, see [23, 45, 46, 78, 79, 105]. Operators that arise as a consequence of the solution
of the Minkowski problem (and its Lp generalization) have appeared in, e.g., [71–73,101].

In his celebrated paper [52], Jerison solved the Minkowski problem that prescribes the capac-
itary measure, i.e. the measure that is the variational functional arising from the electrostatic
(or Newtonian) capacity. The work of Jerison demonstrates a striking similarity between the
Minkowski problem for the electrostatic capacitary measure and the Minkowski problem for
the surface area measure. Recall that given E ⊂ Rn, the classical electrostatic capacity C2(E)
of E is defined by

(1.4) C2(E) = inf
{∫

Rn
|∇u|2dx : u ∈ C∞c (Rn), u ≥ 1 on E

}
,
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where C∞c (Rn) is the set of C∞ functions in Rn with compact support. Let Ω be a bounded
convex domain, i.e. a bounded open convex set, in Rn, and let Ω̄ be its closure. The equilibrium
potential U = UΩ of Ω, is the unique solution to the boundary value problem

(1.5)

 ∆U = 0 in Rn \ Ω̄,

U = 1 on ∂Ω and lim|x|→∞ U(x) = 0,

where ∆ is the Laplace operator. Using the, by now, classical results on harmonic functions in
Lipschitz domains due to Dahlberg [29], it follows that ∇U has non-tangential limits, almost
everywhere on ∂Ω, with respect to (n − 1)-dimensional Hausdorff measure Hn−1, and that
|∇U | ∈ L2(∂Ω,Hn−1). The electrostatic capacitary measure µ2(Ω, ·) of Ω is then the finite and
well-defined Borel measure on the unit sphere Sn−1 given, for Borel E ⊂ Sn−1, by

(1.6) µ2(Ω, E) =

∫
g−1(E)

|∇U |2 dHn−1,

where g : ∂Ω→ Sn−1 is the Gauss map. The Minkowski problem for the electrostatic capaci-
tary measure is: given a finite Borel measure µ on the unit sphere Sn−1, under what necessary
and sufficient conditions does there exist a unique (up to translations) bounded convex domain
Ω for which µ2(Ω, ·) = µ? In [52] Jerison solved the problem by giving the necessary and
sufficient conditions for the existence of a solution and these conditions are identical to corre-
sponding conditions in classical Minkowski problem for the surface area measure and stated
as (1.3) (i) and (ii) above. Regularity was also obtained in [52]. Uniqueness was settled by
Caffarelli, Jerison and Lieb in [18]. The general outline of Jerison’s approach is quite similar
to that for the Minkowski problem of surface area measure, but details are different and sub-
stantially more complicated compared to the classical Minkowski problem. The Hadamard
variational formula,

(1.7)
d

dt
C2(Ω + tΩ1)

∣∣∣
t=0+

=

∫
Sn−1

hΩ1(ξ) dµ2(Ω, ξ),

where Ω1 is an arbitrary convex domain, and its special case, the Poincaré capacity formula,

(1.8) C2(Ω) =
1

n− 2

∫
Sn−1

hΩ(ξ) dµ2(Ω, ξ),

play crucial roles in Jerison’s proof and bear an amazing resemblance to the volume-formulas
(1.1) and (1.2). The work of Jerison demonstrated a striking and unexpected similarity
between the Minkowski problem for electrostatic capacity and the Minkowski problem for
the surface area measure and the work of Jerison inspired subsequent research in this area.
For example, similar problems, still involving a linear operator as the Laplace operator ∆,
were studied in [53] and more recently in [25] where capacity is replaced by the first eigenvalue
of −∆ and by the torsional rigidity, respectively.

In this paper we extend Jerison’s work on electrostatic capacity to p-capacity, hence contin-
uing Jerison’s work in a non-linear setting. For p such that 1 < p < n, recall that for E ⊂ Rn,
the p-capacity Cp(E) of E is defined by

(1.9) Cp(E) = inf
{∫

Rn
|∇u|pdx : u ∈ C∞c (Rn) and u ≥ 1 on E

}
.

In this context Jerison’s work on the electrostatic capacity corresponds to the case p = 2.
To extend Jerison’s pioneering p = 2 results is demanding and highly nontrivial because the
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linear Laplace operator needs to be replaced with the nonlinear and degenerate p-Laplace
operator. Many well-known facts for harmonic functions have not yet been established for
p-harmonic functions. Neither of the formulas analogous to (1.7) and (1.8) for p-capacity is
known. Fortunately, recent work of Lewis and Nyström on p-harmonic functions, see [59] – [66],
makes it possible to define p-capacitary measures which generalize the notion of electrostatic
capacitary measure. This opens the door to study the p-capacitary Minkowski problem. In
this paper we establish extensions of Jerison’s work to p-capacity and study the p-capacitary
Minkowski problem. To do this we follow a similar but more direct approach than in the
linear case p = 2 of Jerison [52]. We emphasize that, due to the non-linearity and degeneracy
of the underlying partial differential equation, the cases where p 6= 2 are considerably more
complicated, requiring both new ideas and techniques.

If Ω is a bounded convex domain in Rn and 1 < p < n, then U , the p-equilibrium potential
of Ω, is the unique solution to the boundary value problem

(1.10)

 ∆pU = 0 in Rn \ Ω̄,

U = 1 on ∂Ω and lim|x|→∞ U(x) = 0 ,

where ∆p is the p-Laplace operator defined in (2.1) and (2.2) below. A proof of the existence
and uniqueness of U can be found in [57]. In [59] (see also [60]) Lewis and Nyström extended
Dahlberg’s [29] results for p = 2 to the general case 1 < p < ∞ and, as a consequence, we
can conclude that ∇U has non-tangential limits Hn−1-almost everywhere on ∂Ω and that
|∇U | ∈ Lp(∂Ω,Hn−1). Hence the p-capacitary measure µp(Ω, ·) of Ω can be defined, for Borel
E ⊂ Sn−1, by

µp(Ω, E) =

∫
g−1(E)

|∇U |p dHn−1.(1.11)

In this paper we consider the following Minkowski problem for p-capacity.

Minkowski problem for p-capacity. Suppose 1 < p < n. Let µ be a finite Borel measure
on Sn−1. Under what necessary and sufficient conditions does there exist a (unique) bounded
convex domain Ω such that µp(Ω, ·) = µ?

Our approach to the Minkowski problem for p-capacity is more direct than the approach
used by Jerison [52] for the case of p = 2. However, it requires a more general variational
formula for p-capacity – more general than (1.7). Note that the variation in (1.7) involves
only support functions and a limit from above, however we need a variational formula with
respect to a generic continuous function on Sn−1 and also a two-sided limit. Our approach
uses the notion of Alexandrov domain, or Wulff shape, associated with a function: if h is a
positive continuous function on Sn−1, then the Alexandrov domain associated with h is the
convex domain given by ⋂

ξ∈Sn−1

{x ∈ Rn : x · ξ < h(ξ)} .(1.12)

Our first result is the following Hadamard variational formula for p-capacity.

Theorem 1.1. Suppose 1 < p < n. Let Ω be a bounded convex domain in Rn whose support
function is hΩ and f ∈ C(Sn−1). Denote by Ωt the Alexandrov domain associated with the
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function hΩ + tf . Then

(1.13)
d

dt
Cp(Ωt)

∣∣∣∣
t=0

= (p− 1)

∫
Sn−1

f(ξ) dµp(Ω, ξ) .

If f is also a support function then we recover variational formulas as (1.1) and (1.7) for
p-capacity. Moreover, when f = hΩ, (1.13) gives the Poincaré p-capacity formula,

Cp(Ω) =
p− 1

n− p

∫
Sn−1

hΩ(ξ) dµp(Ω, ξ) .

The case p = 2 of Theorem 1.1 was treated by Jerison in [53]. Our proof is quite different
compared to the proof of Jerison, although it follows the same general scheme, and it relies on
the Brunn-Minkowski inequality for p-capacity established by Colesanti and Salani, see [28].

We use the Hadamard variational formula (1.13) and the Colesanti-Salani Brunn-Minkowski
inequality to establish the following uniqueness result for the Minkowski problem for p-
capacity. Note that the case p = 2 was proved by Caffarelli, Jerison and Lieb in [18].

Theorem 1.2. Suppose 1 < p < n. If Ω0,Ω1 are bounded convex domains in Rn which have
the same p-capacitary measures, then Ω0 is a translate of Ω1 when p 6= n− 1, and Ω0,Ω1 are
homothetic when p = n− 1.

Concerning the existence for the Minkowski problem for p-capacity, we have the following
result.

Theorem 1.3. Suppose 1 < p < 2. Let µ be a finite Borel measure on Sn−1 which is not
concentrated on any great subsphere and whose centroid is at the origin, i.e., (1.3) (i) and (ii)
hold. If, in addition, µ does not have a pair of antipodal point masses, then there exists a
bounded convex domain Ω in Rn such that µp(Ω, ·) = µ.

The conditions that µ is not concentrated on any great subsphere and that the centroid of µ
is at the origin are, as discussed above, necessary and we emphasize that these conditions are
exactly the same necessary and sufficient conditions as in Jerison’s solution to the Minkowski
problem for electrostatic capacity, as well as in the Alexandrov, Fenchel and Jessen’s solution
to the classical Minkowski problem for the surface area measure. The assumption that µ does
not have a pair of antipodal point masses is instead not a necessary condition. It would be
interesting if this assumption could be removed. Naturally the extension of Theorem 1.3 to
the range 2 < p < n is a very interesting open problem.

Concerning the regularity of the solution of the Minkowski problem for p-capacity, we are
able to establish the following.

Theorem 1.4. Suppose 1 < p < 2, k ∈ N and α ∈ (0, 1). Let Ω be a bounded convex
domain in Rn. If the p-capacitary measure µp(Ω, ·) of Ω is absolutely continuous with respect
to spherical Lebesgue measure, with a strictly positive density of class Ck,α(Sn−1), then the
boundary of Ω is Ck+2,α smooth.

The proof of Theorem 1.4 combines results and techniques contained in [59, 60, 62], with
the generalization of the regularity theory for the Monge-Ampère equation, due to Caffarelli,
see [14–17], and developed by Jerison [52].

The paper is organized as follows. In Section 2, which is partly of preliminary nature, we
introduce notation, recall some basic results concerning the boundary behaviour of p-harmonic
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functions in Lipschitz domains, and state some facts we will need regarding bounded convex
domains. We then derive integral formulas for p-capacity and some estimates for p-harmonic
functions. In Section 3, we prove Theorems 1.1 and 1.2 for bodies with C2,α-smooth bound-
aries of positive Gauss curvature. In Section 4, we establish the weak convergence of the
p-capacitary measure by using estimates for p-harmonic functions. Section 5 is devoted to
the proof of Theorems 1.1 and 1.2 in the general case. The existence result stated in The-
orem 1.3 is proved in Section 6. The regularity result, Theorem 1.4, is established in Section 7.

Acknowledgement. The authors thank Erwin Lutwak for valuable input and contributions.
The second author thanks David Jerison for clarifying communications concerning strict con-
vexity and regularity theory of Monge-Ampère equations.

2. Preliminaries and integral formulas for p-capacity

Throughout the paper we will work in Euclidean n-dimensional space Rn, n ≥ 2, endowed
with the usual norm | · |. Points in Rn are denoted by x = (x1, . . . , xn) or sometimes by
(x′, xn), where x′ = (x1, . . . , xn−1) ∈ Rn−1. The scalar product of x, y ∈ Rn is denoted by x ·y.
The unit sphere of Rn is denoted by Sn−1. For x ∈ Rn and r > 0, B(x, r) denotes the open
ball centered at x with radius r. For a subset E of Rn, we denote by Ē, ∂E and diam(E)
the closure, boundary and diameter of the set E, respectively. For a positive integer k ≤ n,
Hk denotes the k-dimensional Hausdorff measure in Rn. Integration with respect to Lebesgue
measure on Sn−1 will often be abbreviated by simply writing dξ. For E,F ⊂ Rn, let d(E,F )
denote the Euclidean distance between E and F . In case E = {y}, we write d(y, F ) and let

h(E,F ) = max{sup
y∈E

d(y, F ), sup
y∈F

d(y, E)}

denote the Hausdorff distance between E and F.
If O ⊂ Rn is open and 1 ≤ q ≤ ∞, then by W 1,q(O) we denote the space of equivalence

classes of functions f ∈ Lq(O) with distributional gradient ∇f = (fx1 , . . . , fxn) which is in
Lq(O) as well. Let ‖f‖1,q = ‖f‖q + ‖∇f‖q be the norm in W 1,q(O) where ‖ · ‖q denotes the
usual norm in Lq(O). Next, let C∞0 (O) be the set of infinitely differentiable functions with
compact support in O, and let W 1,q

0 (O) be the closure of C∞0 (O) in the norm of W 1,q(O).
Given a bounded domain G, i.e. a bounded, connected open set, and 1 < p < ∞, we say

that u is p-harmonic in G provided u ∈ W 1,p(G) and∫
G

|∇u|p−2 〈∇u,∇θ〉 dx = 0(2.1)

whenever θ ∈ W 1,p
0 (G). Observe that if u is smooth and satisfies (2.1), and if ∇u 6= 0 in G,

then

(2.2) ∆pu := ∇ · (|∇u|p−2∇u) ≡ 0 in G,

and u is a classical solution in G to the p-Laplace partial differential equation. As usual, ∇·
denotes the divergence operator. We will often write ∆pu = 0 as abbreviated notation for
condition (2.1), with a slight abuse of notation.
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2.1. p-harmonic functions in Lipschitz domains. We say that Ω ⊂ Rn is a bounded
Lipschitz domain if there exists a finite set of balls {B(xi, ri)}, with xi ∈ ∂Ω, ri > 0, such
that {B(xi, ri)} constitutes a covering of an open neighborhood of ∂Ω and, for each i,

Ω ∩B(xi, 4ri) = {y = (y′, yn) ∈ Rn : yn > φi(y
′)} ∩B(xi, 4ri),

∂Ω ∩B(xi, 4ri) = {y = (y′, yn) ∈ Rn : yn = φi(y
′)} ∩B(xi, 4ri),(2.3)

in an appropriate coordinate system and for a Lipschitz function φi. The Lipschitz constant
of Ω is defined to be M = maxi

∥∥∇φi∥∥∞, and we let r0 = mini ri. A bounded domain Ω̃ ⊂ Rn

is said to be starlike Lipschitz, with respect to x̂ ∈ Ω̃, provided

∂Ω̃ = {x̂+R(ω)ω : ω ∈ ∂B(0, 1)},

where the radial function R, defined on Sn−1, is such that logR is Lipschitz on Sn−1. We will

refer to ‖ logR‖̂Sn−1 as the Lipschitz constant for Ω̃. Observe that this constant is invariant
under scaling about x̂. By elementary geometric considerations it follows that if Ω is a
Lipschitz domain with constants M , r0, then there exist, for any w ∈ ∂Ω and 0 < r < r0,
points ar(w) ∈ Ω, a′r(w) ∈ Rn \ Ω̄, such that

(2.4)

{
(i) M−1r < |ar(w)− w| < r, d(ar(w), ∂Ω) > M−1r,

(ii) M−1r < |a′r(w)− w| < r, d(a′r(w), ∂Ω) > M−1r.

In the following we state a number of estimates for non-negative p-harmonic functions defined
in a Lipschitz domain Ω with constants M , r0. Throughout this section and this paper,
unless otherwise stated, and when we work in the context of Lipschitz domains with Lipschitz
constants M and r0, c will denote a positive constant ≥ 1, which is not necessarily the same at
each occurrence, depending only on p, n and M . In general, c(a1, . . . , am) denotes a positive
constant ≥ 1, which may depend only on p, n, M and a1, . . . , am, and which is not necessarily
the same at each occurrence. The notation A ≈ B means that A/B is bounded from above
and below by strictly positive constants which, unless otherwise stated, only depend on p, n
and M . Finally, given w ∈ ∂Ω and r > 0, we let

∆(w, r) = ∂Ω ∩B(w, r) .

For the proofs of the following Lemmas 2.1-2.5, we refer the reader to [59] and [60]. Lemma
2.1 was proved by Serrin [94].

Lemma 2.1. Suppose 1 < p < ∞, and let u be a positive p-harmonic function in B(w, 2r).
Then,

(i) max
B(w,r)

u ≤ c min
B(w,r)

u.

Furthermore, there exists α = α(p, n) ∈ (0, 1) such that if x, y ∈ B(w, r), then

(ii) |u(x)− u(y)| ≤ c

(
|x− y|
r

)α
max
B(w,2r)

u.

Lemma 2.2. Suppose 1 < p < ∞, and let Ω ⊂ Rn be a bounded Lipschitz domain. Let
w ∈ ∂Ω, 0 < r < r0, and suppose that u > 0 is p-harmonic in Ω ∩ B(w, 2r), continuous in
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Ω̄ ∩B(w, 2r), and u = 0 on ∆(w, 2r). Then,

(i) rp−n
∫

Ω∩B(w,r/2)

|∇u|p dx ≤ c

(
max

Ω∩B(w,r)
u

)p
.

Furthermore, there exists α = α(p, n,M) ∈ (0, 1) such that if x, y ∈ Ω ∩B(w, r), then

(ii) |u(x)− u(y)| ≤ c

(
|x− y|
r

)α
max

Ω∩B(w,2r)
u.

Lemma 2.3. Suppose that 1 < p < ∞, and let Ω ⊂ Rn be a bounded Lipschitz domain. Let
w ∈ ∂Ω, 0 < r < r0, and suppose that u > 0 is p-harmonic in Ω ∩ B(w, 2r), continuous in
Ω̄∩B(w, 2r), and u = 0 on ∆(w, 2r). Then there exists c = c(p, n,M), 1 ≤ c <∞, such that
if r̃ = r/c, then

max
Ω∩B(w,r̃)

u ≤ c u(ar̃(w)) .

Lemma 2.4. Suppose that 1 < p < ∞, and let Ω ⊂ Rn be a bounded Lipschitz domain. Let
w ∈ ∂Ω, 0 < r < r0, and suppose that u > 0 is p-harmonic in Ω ∩ B(w, 2r), continuous in
Ω̄∩B(w, 2r), and u = 0 on ∆(w, 2r). Extend u to B(w, 2r) by defining u ≡ 0 on B(w, 2r)\Ω.
Then u has a representative in W 1,p(B(w, 2r)) with Hölder continuous partial derivatives in
Ω ∩ B(w, 2r). In particular, there exists σ ∈ (0, 1], depending only on p and n, such that if
x, y ∈ B(ŵ, r̂/2), B(ŵ, 4r̂) ⊂ Ω ∩B(w, 2r), then

c−1 |∇u(x)−∇u(y)| ≤ (|x− y|/r̂)σ max
B(ŵ,r̂)

|∇u| ≤ c r̂−1 (|x− y|/r̂)σ max
B(ŵ,2r̂)

u .

Moreover, if for some β ∈ (1,∞),

u(y)

d(y, ∂Ω)
≤ β |∇u(y)| for all y ∈ B(ŵ, r̂/2),

then û ∈ C∞(B(ŵ, r̂/2)) and given a positive integer k there exists c̄ ≥ 1, depending only on
p, n, β, k, such that

max
B(ŵ, r̂

4
)
|Dku| ≤ c̄

u(ŵ)

d(ŵ, ∂Ω)k

where Dku denotes an arbitrary k-th order derivative of u. In particular, u is infinitely dif-
ferentiable in Ω ∩B(w, 2r) ∩ {x : |∇u(x)| > 0}.

Lemma 2.5. Suppose that 1 < p < ∞, and let Ω ⊂ Rn be a bounded Lipschitz domain.
Given w ∈ ∂Ω, 0 < r < r0, suppose that u > 0 is p-harmonic in Ω ∩ B(w, 2r), continuous in
Ω̄ ∩ B(w, 2r) and u = 0 on ∆(w, 2r). Extend u to B(w, 2r) by defining u ≡ 0 on B(w, 2r) \
Ω. Then there exists a unique locally finite positive Borel measure ν on Rn with support in
∆(w, 2r) such that whenever θ ∈ C∞0 (B(w, 2r)),

(i)

∫
Rn
|∇u|p−2 〈∇u, ∇θ〉 dx = −

∫
Rn

θ dν.

Moreover, there exists c = c(p, n,M), 1 ≤ c <∞, such that if r̃ = r/c, then

(ii) c−1rp−nν(∆(w, r̃)) ≤ (u(ar̃(w)))p−1 ≤ c rp−n ν(∆(w, r̃/2)).

We next quote a number of results proved in [59], [62], and [60]. In particular, the following
two results are Lemma 4.28 and Theorem 2 in [62], respectively.
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Theorem 2.6. Suppose that 1 < p < ∞. Let Ω ⊂ Rn be a bounded Lipschitz domain with
constants M, r0. Given w ∈ ∂Ω and 0 < r < r0, suppose that u is a positive p-harmonic
function in Ω ∩ B(w, 4r), continuous in Ω̄ ∩ B(w, 4r) and u = 0 on ∆(w, 4r). Suppose that
(2.3) holds for some i and that B(w, 4r) ⊂ B(xi, 4ri). There exists c2 = c2(p, n,M) ≥ 1 and
λ̄ = λ̄(p, n,M) ≥ 1 such that

λ̄−1 u(y)

d(y, ∂Ω)
≤ 〈∇u(y), en〉 ≤ |∇u(y)| ≤ λ̄

u(y)

d(y, ∂Ω)

whenever y ∈ Ω ∩B(w, r/c2).

Theorem 2.7. Suppose 1 < p < ∞. Let Ω ⊂ Rn be a bounded Lipschitz domain with
constants M, r0. Given w ∈ ∂Ω and 0 < r < r0, suppose that u and v are positive p-harmonic
functions in Ω ∩ B(w, 4r), continuous in Ω̄ ∩ B(w, 4r), and u = 0 = v on ∆(w, 4r). There
exists c1 = c1(p, n,M) ≥ 1 and α = α(p, n,M), α ∈ (0, 1), such that∣∣∣∣log

u(y1)

v(y1)
− log

u(y2)

v(y2)

∣∣∣∣ ≤ c1

(
|y1 − y2|

r

)α
whenever y1, y2 ∈ Ω ∩B(w, r/c1).

Let Ω be a bounded Lipschitz domain; for 0 < b < 1 and y ∈ ∂Ω, let

Γ(y) = Γb(y) = {x ∈ Ω : d(x, ∂Ω) > b|x− y|} .

Fix w ∈ ∂Ω and 0 < r < r0. Given a measurable function k defined on

∪y∈∆(w,2r)Γ(y) ∩B(w, 4r),

we define the non-tangential maximal function of k as

N(k) : ∆(w, 2r)→ R , N(k)(y) = sup
x∈Γ(y)∩B(w,4r)

|k|(x) .

Given a measurable function f on ∆(w, 2r) we say that f is of bounded mean oscillation on
∆(w, r), and we write f ∈ BMO(∆(w, r)), if there exists A, 0 < A <∞, such that

(2.5)

∫
∆(y,s)

|f − f∆|2dHn−1 ≤ A2Hn−1(∆(y, s))

whenever y ∈ ∆(w, r) and 0 < s ≤ r. Here f∆ denotes the average of f on ∆ = ∆(y, s)
with respect to the surface measure Hn−1. The least A for which (2.5) holds is denoted by
‖f‖BMO(∆(w,r))

. If f is a vector-valued function, f = (f1, .., fn), then f∆ = (f1,∆, .., fn,∆) and

the BMO-norm of f is defined as in (2.5) with |f − f∆|2 = 〈f − f∆, f − f∆〉. For more details
on BMO functions we refer the reader to chapter IV of [98]. Suppose now that u is a positive
p-harmonic function in Ω∩B(w, 4r), u is continuous in Ω̄∩B(w, 4r), and u = 0 on ∆(w, 4r).
Extend u to B(w, 4r) by defining u ≡ 0 on B(w, 4r) \ Ω. Then there exists (see Lemma 2.5)
a unique locally finite positive Borel measure ν on Rn, with support in ∆(w, 4r), such that

(2.6)

∫
Rn

|∇u|p−2〈∇u,∇θ〉dx = −
∫
Rn

θdν
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whenever θ ∈ C∞0 (B(w, 4r)). Moreover, using Lemma 2.5 and Harnack’s inequality for p-
harmonic functions we can conclude that ν is a doubling measure in the following sense.
There exists c = c(p, n,M), 1 ≤ c <∞, such that

ν(∆(z, 2s)) ≤ cν(∆(z, s)) whenever z ∈ ∆(w, 3r), s ≤ r/c .

Here and henceforth, we say that ν is an A∞-measure with respect to Hn−1 on ∆(w, 2r),
dν ∈ A∞(∆(w, 2r), dHn−1) for short, if for some γ > 0 there exists ε = ε(γ) > 0 with the
property that if z ∈ ∆(w, 2r), 0 < s < r and if E ⊂ ∆(z, s), then

Hn−1(E)

Hn−1(∆(z, s))
≥ γ implies that

ν(E)

ν(∆(z, s))
≥ ε .

The following result is a summary of Theorems 1 and 3 in [60].

Theorem 2.8. Suppose that 1 < p < ∞. Let Ω ⊂ Rn be a bounded Lipschitz domain with
constants M, r0. Given w ∈ ∂Ω, and 0 < r < r0, suppose that u is a positive p-harmonic
function in Ω ∩ B(w, 4r), continuous in Ω̄ ∩ B(w, 4r), and u = 0 on ∆(w, 4r). Extend u to
B(w, 4r) by defining u ≡ 0 on B(w, 4r) \ Ω and let ν be as in (2.6). Then ν is absolutely
continuous with respect to Hn−1 on ∆(w, 4r) and dν ∈ A∞(∆(w, 2r), dHn−1). Moreover,

∇u(y) := lim
x∈Γ(y)∩B(w,4r),x→y

∇u(x)

exists for Hn−1-a.e. y ∈ ∆(w, 4r) and for some b, 0 < b < 1, fixed in the definition of Γ(y).
Also, there exists q > p and a constant c ≥ 1, both depending only on p, n,M , such that

(i) N(|∇u|) ∈ Lq(∆(w, 2r)),

(ii)

∫
∆(w,2r)

|∇u|qdHn−1 ≤ cr(n−1)( p−1−q
p−1

)

( ∫
∆(w,2r)

|∇u|p−1dHn−1

)q/(p−1)

,

(iii) log |∇u| ∈ BMO(∆(w, r)), ‖ log |∇u|‖BMO(∆(w,r))
≤ c,

(iv) dν = |∇u|p−1dHn−1, Hn−1-a.e. on ∆(w, 2r).

Finally, ∆(w, 4r) has a tangent plane at y ∈ ∆(w, r) for Hn−1 almost every y. If n(y) denotes
the unit normal to this tangent plane pointing into Ω ∩B(w, 4r), then ∇u(y) = |∇u(y)|n(y).

2.2. Basics of convex domains. By definition, a domain in Rn is a (non-empty) open and
connected subset of Rn. In general we will work with bounded convex domains and will often
simply refer to such a domain as a convex domain. The closure of a (bounded) convex domain
is called a bounded convex body, or simply a convex body, and hence a convex body is a
compact convex set with non-empty interior. In convex geometry, convex bodies are usually
the objects of study. However, most notions and results for convex bodies carry over to convex
domains without any difficulty and hence we will freely use many of these notions for open as
well as closed domains. The book of Schneider [93] is a standard reference for convex bodies.

Let K be a convex body in Rn. The support function hK : Rn → R of K is defined, for
x ∈ Rn, by

hK(x) = sup
y∈K

x · y.

The support function is a convex function that is homogeneous of degree 1. Let K1 and K2

be convex bodies in Rn and let α, β ≥ 0. The Minkowski linear combination of K1 and K2,
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with coefficients α and β, is defined by

αK1 + βK2 = {αx+ βy : x ∈ K1 , y ∈ K2} .
This is a convex body whose support function is given by

hαK1+βK2 = αhK1 + βhK2 .

When α = 1 = β the result is often referred to as the Minkowski sum of K1 and K2. In what
follows Ω ⊂ Rn will be a bounded convex domain and K ⊂ Rn its closure. In particular, K is
a convex body. Convexity guarantees that Ω is a Lipschitz domain, i.e. its boundary can be
written locally as the graph of a Lipschitz function, see (2.3). Using this we see that the outer
unit normal vector to ∂K at x, denoted by g(x), is well defined for Hn−1 almost all x ∈ ∂K.
The map g : ∂K → Sn−1 is called the Gauss map of K. For ω ⊂ Sn−1, let

g−1(ω) = {x ∈ ∂K : g(x) is defined and g(x) ∈ ω} .
If ω is a Borel subset of Sn−1, then g−1(ω) is Hn−1-measurable (see [93], Chapter 2). The
Borel measure SK , on Sn−1, is defined for Borel ω ⊂ Sn−1 by

SK(ω) = Hn−1(g−1(ω)),

and is called the surface area measure of K. For every f ∈ C(Sn−1),

(2.7)

∫
Sn−1

f(ξ) dSK(ξ) =

∫
∂K

f(g(x)) dHn−1(x) .

If K contains the origin, then the radial function ρK : Sn−1 → (0,∞) of K is defined, for
ξ ∈ Sn−1, by

ρK(ξ) = sup{ρ ≥ 0 : ρ ξ ∈ K}.
The radial map rK : Sn−1 → ∂K is

rK(ξ) = ρK(ξ) ξ,

for ξ ∈ Sn−1, i.e. rK(ξ) is the unique point on ∂K located on the ray parallel to ξ and
emanating from the origin.

Remark 2.9. Let Ω ⊂ Rn be a bounded convex domain and assume that 0 ∈ Ω. Let rint be
the largest radius such that B(0, rint) ⊂ Ω. Similarly, let rext be the smallest radius such that
Ω̄ ⊂ B(0, rext). Using the convexity of Ω, one can prove that Ω is a starlike Lipschitz domain
with Lipschitz constant M bounded by rext/rint.

Given a bounded convex domain Ω ⊂ Rn, we have, using Remark 2.9, that there exists a
finite set of balls {B(xi, ri)}, with xi ∈ ∂Ω, ri > 0, such that {B(xi, ri)} constitutes a covering
of an open neighborhood of ∂Ω and, for each i, the representation in (2.3) in an appropriate
coordinate system, for a convex Lipschitz function φ := φi. A bounded convex domain Ω, or
body K := Ω̄, is said to be of class C2,α if its boundary is C2,α-smooth, for some α ∈ (0, 1),
i.e., if each φ := φi can be chosen to be C2,α-smooth. Ω, K, are said to be strongly convex,
locally at (y′, φ(y′)) if the matrix (n − 1) × (n − 1)-dimensional matrix ∇2φ(y′) is positive
definite. If this holds at all boundary points of Ω, K, then Ω, K, are said to be strongly
convex. If K := Ω̄ is C2,α-smooth and strongly convex then the Gauss map gK : ∂K → Sn−1

is a diffeomorphism. Hence, for every ξ ∈ Sn−1 there exists a unique x ∈ ∂K such that
gK(x) = ξ. Furthermore, locally the function φ := φi satisfies

(2.8) det(∇2φ(y′)) = (1 + |∇φ(y′)|2)(n+1)/2κ(ξ), ξ = (−1,∇φ(y′))/(1 + |∇φ(y′)|2)1/2



12 A. COLESANTI, K. NYSTRÖM, P. SALANI, J. XIAO, D. YANG, G. ZHANG

where κ(·) denotes the Gauss curvature. In particular, if K is C2,α-smooth and strongly
convex then the Gauss curvature is positive. In the following we say that Ω, K, are of class
C2,α

+ if its boundary is C2,α-smooth, for some α ∈ (0, 1), and of positive Gauss curvature.
Finally, Ω, K, are said to be strictly convex if their boundary contain no line segments.

If a convex body K is of class C2,α
+ then, using the notation introduced above, the support

function of K can be expressed as

(2.9) hK(ξ) = ξ · g−1
K (ξ) = gK(x) · x, where ξ ∈ Sn−1, gK(x) = ξ, x ∈ ∂K.

Moreover, the gradient of hK satisfies

(2.10) ∇hK(ξ) = g−1
K (ξ),

and hK is of class C2,α. Let {e1, e2, . . . , en−1} be an orthonormal frame on Sn−1. Denote by
hi and hij the first and second order covariant derivatives of hK on Sn−1, and by ∇hK and
∇2hK the gradient and Hessian of hK in Rn. Then,

(2.11) ∇hK(ξ) = hiei + hξ, (∇2hK(ξ))ei = aijej,

where aij = hij + hδij, h = hK(ξ), δij is the Kronecker delta, and we will use the usual
convention that repeated indices means summation over all possible values of that index.
Note that if K is of class C2,α

+ , then the (n − 1) × (n − 1) matrix (aij) is symmetric and
positive definite. The matrix (aij) is the inverse of the matrix associated with the Weingarten
map with respect to the frame {e1, e2, . . . , en−1}. In particular, the Gauss curvature of K, κ,
is given by

(2.12) κ(g−1
K (ξ)) =

1

det(aij(ξ))
=

1

det(hij(ξ) + h(ξ)δij)
.

Denote by (cij) the cofactor matrix of the matrix (aij), and let cijk be the covariant derivative
tensor of cij. Then

(2.13)
∑
j

cijj = 0 ,

see [21] for a proof. Let F (ξ) = g−1(ξ) be the inverse Gauss map of ∂K. Then, using (2.11)
we see that F (ξ) = ∇hK(ξ) and

(2.14) F (ξ) = hiei + hξ, Fi = aijej, Fij = aijkek − aijξ,

where aijk are the covariant derivatives of aij. As mentioned above, if K is of class C2,α
+ , then

the matrix (hij + hδij) is positive definite. Conversely, if h ∈ C2,α(Sn−1) and (hij + hδij) is

positive definite, then there exists a unique convex domain K, of class C2,α
+ , such that h = hK ,

see [16] and Proposition 1 in [50]. As a consequence, the set of functions

(2.15) C = {h ∈ C2,α(Sn−1) : (hij + hδij) is positive definite} ,

consists precisely of support functions of convex domains of class C2,α
+ . Furthermore, when

K is of class C2,α
+ , the surface area measure SK is absolutely continuous with respect to the

Lebesgue measure on Sn−1 and

(2.16) dSK(ξ) = det(hij(ξ) + h(ξ)δij) dξ .
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The following lemma, see Alexandrov [3] and also [52], provides a change of variable formula
based on the radial map, along with some related properties. We recall that rint and rext
were defined in Remark 2.9.

Lemma 2.10. Let Ω be a bounded convex domain that contains the origin, let K = Ω̄ and let
f : ∂K → R be Hn−1-integrable. Then,∫

∂K

f(x) dHn−1(x) =

∫
Sn−1

f(rK(ξ))J(ξ) dξ ,

where J is defined Hn−1-a.e. on Sn−1 by

J(ξ) =
(ρK(ξ))n

hK(gK(rK(ξ)))
.

Moreover, there exist constants c1, c2 > 0, depending only on rint(K) and rext(K) , such that
c1 ≤ J(ξ) ≤ c2 for Hn−1-a.e. ξ ∈ Sn−1. Furthermore, assume that {Ki}i∈N is a sequence of
bounded convex bodies converging to K with respect to the Hausdorff metric. Define functions
Ji : Sn−1 → (0,∞),

Ji(ξ) =
(ρKi(ξ))

n

hKi(gKi(rKi(ξ)))
, for i ∈ N.

Then there exists i0 ≥ 1 such that if i ≥ i0, then Ji(ξ) is bounded from below and above,
uniformly with respect to ξ and i, and {Ji} converge to J , Hn−1-a.e. on Sn−1.

The following divergence formula for unbounded domains will also be needed.

Lemma 2.11. Let Ω be a bounded convex domain of class C2,α
+ with Gauss map g, and let X

be a C1 vector field in Rn \ Ω̄. Assume,

(i) The limit X(x) := lim
t→0+

X(x+ tg(x)) exists for almost all x ∈ ∂Ω,

with respect to Hn−1.

(ii) The integrals

∫
∂Ω

|X| dHn−1(x) and

∫
Rn\Ω̄

divX dx, exist.

(iii) |X| = o
(
|x|1−n

)
as x→∞.

Then ∫
Rn\Ω̄

divX dx = −
∫
∂Ω

X(x) · g(x) dHn−1(x).

Proof. For t > 0, let

Ωt = Ω ∪ {x+ τg(x) : x ∈ ∂Ω, 0 ≤ τ < t}.
Let R � 1 be such that Ωt ⊂ B(0, R). By the divergence theorem, on the bounded domain
B(0, R) \ Ωt, we have that∫

B(0,R)\Ω̄t
divX dx = −

∫
∂Ωt

X(x) · gt(x) dHn−1(x) +

∫
∂B(0,R)

X · x
|x|

dHn−1(x),

where gt is the Gauss map of ∂Ωt. For x ∈ ∂Ω, let xt = x + tg(x) ∈ ∂Ωt. This is a
diffeomorphism between ∂Ω and ∂Ωt. The surface area elements satisfy

dHn−1(xt) = (1 +O(t))dHn−1(x),
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and the Gauss maps satisfy

gt(xt) = g(x).

Thus, ∫
∂Ωt

X(x) · gt(x) dHn−1(x) =

∫
∂Ω

X(x+ tg(x)) · g(x)(1 +O(t)) dHn−1(x).

From (i) and (ii) in the hypothesis of the lemma, and the Lebesgue dominating convergence
theorem, we deduce that as t→ 0+,∫

∂Ω

X(x+ tg(x)) · g(x)(1 +O(t)) dHn−1(x)→
∫
∂Ω

X(x) · g(x) dHn−1(x).

Finally, from (iii) in the hypothesis of the lemma we see that, as R→∞,∫
∂B(0,R)

X · x
|x|

dHn−1(x)→ 0.

This completes the proof of the lemma. �

2.3. p-capacity of convex domains and its integral formulas. Suppose 1 < p <∞, and
let Ω ⊂ Rn be a bounded convex domain. The p-capacity Cp(Ω) was defined in (1.9). Recall
that the associated p-equilibrium potential is the function U which is defined and continuous
on the closure of Rn \ Ω̄, and which solves

(2.17)

 ∆pU = 0 in Rn \ Ω̄,

U = 1 on ∂Ω, and lim|x|→∞ U(x) = 0 .

In particular, U ∈ W 1,p
0 (Rn\Ω̄) is a weak solution to (2.17) in the sense of (2.1). As mentioned

in the introduction, a proof of the existence and uniqueness of U can be found in Lewis [57],
see also Theorem 2 in [28]. For the following theorem we refer to Lewis [57].

Theorem 2.12. Suppose 1 < p < n, and let Ω ⊂ Rn, n ≥ 2, be a bounded convex domain.
Then there exists a unique weak solution U to (2.17) satisfying the following.

(a) U ∈ C∞(Rn \ Ω̄) ∩ C(Rn \ Ω).

(b) 0 < U < 1 and |∇U | 6= 0 in Rn \ Ω̄.

(c) Cp(Ω) =

∫
Rn\Ω̄
|∇U |p dx .

(d) If U is defined to be 1 in Ω, then Ωt = {x ∈ Rn : U(x) > t}
is convex for each t ∈ [0, 1] and ∂Ωt is a C∞ manifold for 0 < t < 1.

Note that by the definition of p-capacity, and (c) of Theorem 2.12, we have

(2.18)

∫
Rn\Ω̄
|∇U |p dx = inf

{∫
Rn
|∇u|p dx, u ∈ C∞0 (Rn), u ≥ 1 on Ω

}
.

For 0 < b < 1, y ∈ ∂Ω we let

Γ̃(y) = Γ̃b(y) = {x ∈ Rn \ Ω̄ : d(x, ∂Ω) > b|x− y|} .(2.19)

The following lemma is a direct consequence of Theorem 2.8 stated above.
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Lemma 2.13. Suppose 1 < p < n, and let Ω ⊂ Rn, n ≥ 2, be a bounded convex domain.
Then

∇U(y) := lim
x→y, x∈Γ̃(y)

∇U(x),

exists for Hn−1 almost all y ∈ ∂Ω. Moreover, for Hn−1 almost all y ∈ ∂Ω,

∇U(y) = −|∇U(y)|g(y),

and |∇U | ∈ Lp(∂Ω,Hn−1).

Remark 2.14. Let Ω and U be as in the statement of Lemma 2.13. Then, as stated, ∇U has
non-tangential limits at Hn−1 almost all boundary point of Ω. Furthermore, the quantitative
statement of Theorem 2.8 holds with constants q and c, where q > p, and c ≥ 1, depending
only on p, n and the eccentricity of Ω, i.e. the quotient between rext and rint, see Remark
2.9. In particular, based on Lemma 2.13 we can conclude that the measure µp(Ω, ·) in (1.11)
is well-defined.

The following lemma concerns the behavior at infinity of the p-equilibrium potential U and
its gradient. It was mentioned in a remark in [56, Remark 1.6] (see also [28]). For the sake of
completeness we provide the proof of this result.

Lemma 2.15. Suppose 1 < p < n, and let Ω ⊂ Rn, n ≥ 2, be a bounded convex domain. If
U is the solution of (2.17), then

(a) lim
|x|→∞

U(x)|x|
n−p
p−1 = (nωn)

1
1−p

( p− 1

n− p

)
Cp(Ω)

1
p−1 ,

(b) lim
|x|→∞

|x|
n−1
p−1 |∇U(x)| = (nωn)

1
1−pCp(Ω)

1
p−1 ,

where ωn is the volume of the unit ball in Rn.

Proof. Let in the following ς : Rn\{0} → R denote the fundamental solution of the p-Laplace

equation, ς(x) = |x|
p−n
p−1 . Then ∆pς = 0 in Rn \ {0}. Let R1, R2 > 0 be such that

B(0, R1) ⊂ Ω , Ω ⊂ B(0, R2).

Step 1. There exist positive constants C1 and C2 such that

(2.20) C1ς(x) ≤ U(x) ≤ C2ς(x),

for all x such that |x| ≥ R2. This is a straightforward consequence of the comparison principle
for p-harmonic functions. Indeed, consider the functions U1, U2 : Rn \ {0} → R defined as

U1(x) = R
n−p
p−1

1 ς(x), U2(x) = R
n−p
p−1

2 ς(x).

Then by the comparison principle we see that

U1(x) ≤ U(x) ≤ U2(x)

for all x such that |x| ≥ R2 and this proves (2.20).

Step 2. There exist C, R > 0, σ ∈ (0, 1) such that

(2.21) |x| |∇U(x)| ≤ Cς(x), |∇U(x)−∇U(x′)| ≤ C
ς(x)|x− x′|σ

|x|1+σ
,
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for all |x|, |x′| ≥ R. To see this, let R0 > 3R2 and let

V (y) := U(R0 y)R
n−p
p−1

0 .

Then V is a p-harmonic function in

O := {y ∈ Rn : 3 < |y| < 6} .
Moreover, by the previous step, in O, V is bounded by constants depending on Ω only. Now,
using Theorem 1 in [58], see also Lemma 2.4 stated above, there exist A > 0 and σ ∈ (0, 1),
both depending on Ω, n and p, such that

(2.22) |∇V (y)| ≤ A, |∇V (y)−∇V (y′)| ≤ A|y − y′|σ,
whenever y, y′ ∈ D and where D = {y : 4 ≤ |y| ≤ 5}. Hence

(2.23) R
n−p
p−1

0 R0 |∇U(x)| ≤ A, whenever 4R0 ≤ |x| ≤ 5R0.

Using the restriction R0 > 3R2 and (2.23) we can conclude, in particular, that there exists
A′ > 0, depending on Ω, n and p, such that

(2.24) |x| |∇U(x)| ≤ A′ς(x), whenever |x| ≥ R := 12R2.

Furthermore, again using (2.22) we see that

R
n−p
p−1

0 R0 |∇U(x)−∇U(x′)| ≤ A′
|x− x′|σ

Rσ
0

,

for all x, x′ such that 4R0 ≤ |x|, |x′| ≤ 5R0 and by arguing as above we deduce that

|∇U(x)−∇U(x′)| ≤ A′
ς(x)

|x|σ+1
|x− x′|σ,

for every x, x′ such that |x|, |x′| ≥ R. This concludes the proof of (2.21).

Step 3. There exists a constant γ such that

(2.25) lim
|x|→∞

U(x)

ς(x)
= γ.

Let

γ := lim sup
|x|→∞

U(x)

ς(x)
.

Then, using [99, Proposition 3.3.2], see also [56, Corollary 1.1], it follows that

sup
R0<|x|≤R

U(x)

ς(x)
= sup
|x|=R

U(x)

ς(x)

and hence

(2.26) γ = lim
R→∞

(
sup
|x|=R

U(x)

ς(x)

)
.

Consequently, from (2.26) and by the continuity of U it follows that there exists, whenever
r ≥ 2R2, xr ∈ Rn, such that |xr| = r and such that

lim
r→∞

U(xr)

ς(xr)
= γ.
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Now, for r ≥ 2R2, we consider

Ur(ξ) = U(rξ) r
n−p
p−1 , whenever |ξ| ≥ 1

2
.

In particular, {Ur}r≥2R2 , is a family of functions defined for |ξ| ≥ 1
2
. Using (2.21) and the

Ascoli-Arzelá theorem, we can conclude that there exists a sequence {rk}k∈N, with rk → +∞
as k → +∞, and a function W = W (ξ), defined for |ξ| ≥ 1

2
, such that Urk converges to W in

the norm C1, on compact sets. In particular, W is p-harmonic on |ξ| ≥ 1
2
. Since

Ur(ξ)

ς(ξ)
=
U(rξ)

ς(rξ)
,

(2.26) implies that

W (ξ)

ς(ξ)
≤ γ, whenever |ξ| ≥ 1

2
.

For k ∈ N, we let ξrk = 1
rk
xrk . Note that {ξk}k∈N is a compact family of points and hence

{ξk} converges to some point ξ0, with |ξ0| = 1, as k → +∞. Using the definition of xr, and
the uniform convergence, we see that

W (ξ0)

ς(ξ0)
= lim

k→+∞

Urk(ξrk)

ς(ξrk)
= lim

k→+∞

U(xrk)

ς(xrk)
= γ.

Next, again using Proposition 3.3.2 in [99] we deduce that

W (ξ)

ς(ξ)
= γ, whenever |ξ| ≥ 1

2
,

and, in particular, it follows that the family Ur (and not just a subsequence of it) converges
to W as r → +∞. Using this we see that

lim
r→+∞

U(rξ)

ς(rξ)
= γ,

uniformly on the unit sphere, and consequently (2.25) holds.

The final step. By Step 3 we have

lim
r→+∞

Ur(ξ) = W (ξ) = γς(ξ), whenever |ξ| ≥ 1
2
,

and the convergence is C1 on compact subsets. Using this it follows that

lim
r→+∞

∇Ur(ξ) = lim
r→+∞

∇U(rξ) r
n−1
p−1 = ∇W (ξ) = γ

p− n
p− 1

|ξ|−
n−1
p−1

ξ

|ξ|
,

and hence

(2.27) lim
r→+∞

|rξ|
n−1
p−1 |∇U(rξ)| = n− p

p− 1
γ,

whenever |ξ| ≥ 1
2
. Note that the convergence in the last display is uniform on compact sets.

Finally, to deduce the value of the constant γ we can argue as in [28]. Indeed, we first note
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that ∫
Ωt\Ω̄

|∇U |pdx =

∫
Ωt\Ω̄

∇ · ((U − 1)|∇U |p−2∇U)dx

= (1− t)
∫
∂Ωt

|∇U |p−1dHn−1,

where Ωt = {x ∈ Rn, U(x) > t}. Taking the limit as t → 0+ in the last display, using
Theorem 2.12 (c) and (2.27), we can conclude that

Cp(Ω) = nωn(
n− p
p− 1

γ)p−1 lim
r→+∞

rn−1 · (r
1−n
p−1 )p−1 = nωn.(

n− p
p− 1

γ)p−1

This completes the proofs of (a) and (b) in the statement of the lemma. �

Lemma 2.16. Suppose 1 < p < n. Let Ω ⊂ Rn, n ≥ 2, be a bounded convex domain of class
C2,α

+ . Let Ωt = {x ∈ Rn : U(x) > t}. Then,

(a) Cp(Ω) =

∫
∂Ωt

|∇U |p−1 dHn−1 for every t ∈ (0, 1).

(b) Cp(Ω) =
p− 1

n− p

∫
∂Ω

|∇U(x)|p
(
x · g(x)

)
dHn−1(x) .

Proof. To prove the statement in (a), let Φ denote for the class of all non-decreasing C∞

functions φ : R→ R such that  φ(t) = 0 as t ∈ (−∞, 0],
supp(φ′) ⊂ (0, 1),
φ(t) = 1 as t ∈ [1,∞).

Let

f(t) =

∫
∂Ωt

|∇U |p−1 dHn−1.

Then, using (c) and (d) of Theorem 2.12, and the co-area formula, we conclude that

Cp(Ω) =

∫ 1

0

(∫
∂Ωt

|∇U |p−1 dHn−1
)
dt =

∫ 1

0

f(t) dt.(2.28)

Next, using (2.18), the co-area formula, and (2.2.3) of [80, Chapter 2], we see that

Cp(Ω) = inf
φ∈Φ

∫
Rn\Ω̄
|∇φ(U)|p dx = inf

φ∈Φ

∫
Rn\Ω̄
|φ′(U)|p|∇U |p dx

= inf
φ∈Φ

∫ 1

0

|φ′(t)|pf(t) dt =
(∫ 1

0

f
1

1−p (t) dt
)1−p

.(2.29)

Combining (2.28), (2.29), and using the Hölder inequality, we conclude that

1 ≤
(∫ 1

0

f(t) dt
) 1
p
(∫ 1

0

f
1

1−p (t) dt
) p−1

p
= 1.

From this, it follows that f(t) = cf(t)1−p for a constant c > 0 and that f(t) must be identical
to Cp(Ω) for all t ∈ (0, 1). This completes the proof of the statement in (a).
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The statement in (b) is proved by repeated integration by parts. As mentioned above,
we adopt the Einstein convention for summation over repeated indices. We denote, for j =
1, . . . , n, by Ui and Uij the first and second partial derivatives of U , respectively. Note that
by statement (a) of Theorem 2.12 we have U ∈ C∞(Rn \ Ω̄) ∩ C(Rn \ Ω) and hence we can
differentiate U freely in Rn \ Ω̄. To proceed, recall that ∇· denotes the divergence operator,
we first observe the identities

∇ · (|∇U(x)|px) = n|∇U(x)|p + p|∇U(x)|p−2Uij(x)xiUj(x)

and

∇ ·
(
∇U(x)|∇U(x)|p−2(∇U(x) · x)

)
(2.30)

= ∇ ·
(
∇U(x)|∇U(x)|p−2

)(
∇U(x) · x)

)
+ |∇U(x)|p−2

(
∇U(x) · ∇(∇U(x) · x)

)
.

Using (2.17) we see that (2.30) implies that

(2.31) ∇ ·
(
∇U(x)|∇U(x)|p−2(∇U(x) · x)

)
= |∇U(x)|p + |∇U(x)|p−2Uij(x)xiUj(x),

and, consequently, we can conclude that

(n− p)|∇U(x)|p = ∇ ·
(
x|∇U(x)|p

)
− p∇ ·

(
∇U(x)|∇U(x)|p−2

(
∇U(x) · x

))
(2.32)

holds, whenever x ∈ Rn \ Ω̄. Integrating both sides of (2.32) over Rn \ Ω̄, and using (c) of
Theorem 2.12, we see that

(n− p)Cp(Ω) =

∫
Rn\Ω̄
∇ ·
(
x|∇U(x)|p

)
dx

−p
∫
Rn\Ω̄
∇ ·
(
∇U(x)|∇U(x)|p−2

(
∇U(x) · x

))
dx.

Next, using Lemma 2.15 and Lemma 2.13, we can apply Lemma 2.11 and conclude that

(n− p)Cp(Ω) = −
∫
∂Ω

|∇U(x)|p
(
x · g(x)

)
dHn−1(x)

−p
∫
∂Ω

(
g(x)|∇U(x)|p−1

(
∇U(x) · x

))
· g(x) dHn−1(x)

= (p− 1)

∫
∂Ω

|∇U(x)|p
(
x · g(x)

)
dHn−1(x) .

This completes the proof of statement in (b) and hence the proof of Lemma 2.16. �

Remark 2.17. Using (2.7) and (2.9) we see that the statement in Lemma 2.16 (b) can be
expressed as

(2.33) Cp(Ω) =
p− 1

n− p

∫
Sn−1

hΩ(ξ)|∇U(g−1(ξ))|p dSΩ(ξ) .

Hence, from the definition of the measure µp(Ω, ·), see (1.11), we have

(2.34) Cp(Ω) =
p− 1

n− p

∫
Sn−1

hΩ(ξ) dµp(Ω, ξ).
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Lemma 2.18. Suppose 1 < p < n. Let Ω ⊂ Rn, n ≥ 2, be a bounded convex domain, assume
0 ∈ Ω and let R > 0 be such Ω̄ is contained in B(0, R). Let U be the unique solution to (2.17).
Then there exists c = c(n, p,R), with 1 ≤ c <∞, such that

|∇U | ≥ c−1, Hn−1-a.e. on ∂Ω.

Proof. Using the continuity of U in Rn \Ω, and (b) of Theorem 2.12, we see that there exists
t̂ ∈ (0, 1) such that

Ωt := {x ∈ Rn \ Ω : U(x) > t} ⊆ B(0, R),(2.35)

for all t ∈ (t̂, 1). We fix t ∈ (t̂, 1) and consider

Û(x) =
U(x)

t
, for all x ∈ Rn \ Ωt.(2.36)

Then Û is the p-equilibrium potential of Ωt. Using (d) of Theorem 2.12 we conclude that

the closure Ωt of Ωt is a C2,α-smooth (even C∞-smooth) convex body. Let θt = −〈x,∇Û〉.
Then, essentially using (a) of Theorem 2.12 and [69] we can conclude that θt is at least Hölder
continuous on the closure of Ωt. Furthermore, using barrier arguments, see [58] or Lemma 2.4,
Lemma 2.5 in [59], we can conclude, for some ε > 0, that θt ≥ ε at every point of ∂Ωt. This

implies that that closure Ωt of Ωt is a convex body of class C2,α
+ . In particular, Û ∈ C2(Rn\Ωt)

and the closure of

Ω̃s = {x ∈ Rn \ Ωt : Û(x) > s},(2.37)

is a convex body of class C2,α
+ for all s ∈ (0, 1). Based on this, we now consider the function

h = h(x, s), (x, s) ∈ Sn−1 × (0, 1](2.38)

where, for every s ∈ (0, 1], the function h(·, s) : Sn−1 → R1, is defined as the support function
of the closure of Ω̃s. Note that the function h, which was studied in [28], is well-defined since,
for each s ∈ (0, 1), the closure of Ω̃s is a convex body of class C2,α

+ . Since Ω̃1 = Ωt ⊆ B(0, R)

we can use the maximum principle to conclude that Û is dominated, in Rn \ B(0, R), by the
p-equilibrium potential of B(0, R). This implies, in particular, that

diam(Ω̃1/2) ≤ D,

where D > 0 is a constant depending on n, p, R. As a consequence,

0 ≤ h(x, 1/2) ≤ D, for each x ∈ Sn−1.(2.39)

Using [28, Proposition 1] we have that ∂h
∂s

(x, ·) is non-decreasing for every fixed x, and

h(x, 1) = h(x, 1/2) +

∫ 1

1/2

∂h

∂s
(x, s) ds,(2.40)

for each x ∈ Sn−1. Thus, for x ∈ Sn−1, we deduce that

∂h

∂s
(x, 1) ≥ 2

[
h(x, 1)− h(x, 1/2)

]
≥ −2h(x, 1/2) ≥ −2D.(2.41)

On the other hand, using [28, Theorem 4], we see that

∂h

∂s
(x, 1) = −1/|∇Û(x)|, at x = ∇Û(x)/|∇Û(x)|.(2.42)
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Hence, we can first conclude that there is a constant c′ = c′(n, p,R), such that 1 ≤ c′ < ∞,
and such that

|∇Û(x)| ≥ (c′)−1 for all x ∈ ∂Ωt.(2.43)

Then, using the definition of Û , we see that (2.43) implies that

|∇U(x)| ≥ c−1 for all x ∈ ∂Ωt,(2.44)

for yet another constant 1 ≤ c = c(n, p,R) < ∞. To complete the proof, we let t → 1− and
use Lemma 2.13. �

We end this section by recalling an important Brunn-Minkowski type inequality for p-
capacity.

Theorem 2.19. Suppose n ≥ 2, and that Ω0, Ω1 ⊂ Rn are bounded convex domains. If
1 < p < n, then

Cp(Ω0 + Ω1)
1

n−p ≥ Cp(Ω0)
1

n−p + Cp(Ω1)
1

n−p ,

with equality if and only if Ω0 and Ω1 are homothetic.

Remark 2.20. The classical Brunn-Minkowski inequality states that the volume (i.e. Lebesgue
measure) raised to power 1/n is concave with respect to Minkowski addition in the class of
convex bodies in Rn, i.e. V 1/n(A + B) ≥ V (A)1/n + V (B)1/n, where A,B ⊂ Rn are convex
bodies. It is at the core of the Brunn-Minkowski theory of convex bodies and it is strongly
related to many other important inequalities of analysis, see [93] and the beautiful paper by
Gardner [33]. The Brunn-Minkowski inequality in fact holds for measurable sets (provided
their Minkowsky sum is measurable as well) and suitable versions hold for the other quer-
massintegrals, see [93, Theorem 6.4.3]. Recently, Brunn-Minkowski type inequalities have
been proved also for several functionals from calculus of variations, among which there are
of course the Newton capacity [8, 18] and the p-capacity [28]; other examples are the first
Dirichlet eigenvalue of the Laplacian [11,13,24], the torsional rigidity [10], the logarithmic ca-
pacity (or transfinite diameter) in the plane [9] and its n-dimensional counterpart [26] (which
is the natural extension of the p-capacity when p = n), the Monge-Ampère eigenvalue [91],
the Dirichlet eigenvalue of the p-Laplacian and the p-torsional rigidity [27], the Bernoulli con-
stant [7], eigenvalues of Hessian equations [70,92], the first Dirichlet eigenvalue for the Finsler
laplacian [103]. In general, Brunn-Minkowski type inequalities include the characterization
of equality conditions, and this often plays an important role in Minkowski type problems,
especially for the uniqueness part. In the case of p-capacity, this characterization has been
obtained in [18] for p = 2 and in [28] for 1 < p < n.

Remark 2.21. As mentioned in the introduction there are many extensions of the classical
Minkowski problem. One of them is the so-called Lp-Minkowski problem considered in Lutwak
[74], [75] (extending Firey [32]), Lutwak-Oliker [76], Lutwak-Yang-Zhang [77], Chou-Wang
[22], Hug-Lutwak-Yang-Zhang [48], Stancu [96], [97], Umanskiy [100], and Haberl-Lutwak-
Yang-Zhang [44]. This problem arises from the notion of Lp surface area measure of a convex
body K, introduced in [74], whose total mass is the p-surface area Sp(K) given by

Sp(K) =

∫
∂K

|x · g(x)|1−p dHn−1(x).
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In connection with p-capacity, studied here, we mention the following sharp inequality proved
by Ludwig-Xiao-Zhang [73]:

Sp(K) ≥
( p− 1

n− p

)p−1

Cp(K).

See also Pólya-Szegö [88] for (n, p) = (3, 2) as well as Maz’ya [80] and Xiao [104] for p = 1.

3. Variational formula for the p-capacity of smooth convex domains

In this section we prove Theorem 1.1 and Theorem 1.2 for bounded convex domains of class
C2,α

+ . In the following we let Ω, Ω̃ be two such domains, and we let h and v be the support

functions of Ω and Ω̃, respectively. We let g denote the Gauss map of ∂Ω. Recall the definition
of the class C in (2.15) and note that h, v ∈ C. Then, also h+ tv ∈ C for |t| sufficiently small,
and hence there exists a convex body Kt of class C2,α

+ with support function ht := h+ tv. We

let Ωt denote the interior of Kt and we note, for t ≥ 0, that Ωt = Ω + tΩ̃. In the following we
we first develop an explicit expression for dCp(Ωt)/dt at t = 0.

3.1. A self-adjoint operator. Using the notation above, we let Ut = U(x, t) be the solution
to the problem in (1.10) in Rn \ Ω̄t. We are interested in the functional F : C → C(Sn−1) ,
defined, for ξ ∈ Sn−1, by

F(h)(ξ) =
|∇U(g−1(ξ))|p

κ(g−1(ξ))
= |∇U(g−1(ξ))|p det(hij(ξ) + h(ξ)δij).

Given v ∈ C∞(Sn−1), let

L(v) =
d

dt
F(h+ tv)

∣∣∣
t=0

denote the directional derivative of F at h along v. As we will see, L is a linear functional
acting on C∞(Sn−1). One of the key steps in computing the first variation of Cp(Ωt) is to
prove that L is self-adjoint on L2(Sn−1), viewing L2(Sn−1) as equipped with the standard
scalar product.

Lemma 3.1. Suppose 1 < p < n. Let Ω, Ω̃, Ωt, h, v, g, ht, U , Ut, be as above. Then, for
each fixed x ∈ Rn \ Ω̄, the function t→ U(x, t) is differentiable with respect to t at (x, 0). Let
U̇(x) = ∂U

∂t
(x, 0). The function U̇ : Rn\Ω̄→ R can be extended to ∂Ω so that U̇ ∈ C2(Rn\Ω).

Moreover,

(a) U̇(x) = |∇U(x)|v(g(x)) for all x ∈ ∂Ω,

and there exists c = c(n, p) such that

(b) 0 ≤ U̇(x) ≤ c|x|
p−n
p−1 as |x| → ∞,

(c) 0 ≤ |∇U̇(x)| ≤ c|x|
1−n
p−1 as |x| → ∞.

Furthermore,

(d) ∇U̇(y) := lim
x→y, x∈Γ̃(y)

∇U̇(x) exists for every y ∈ ∂Ω,

with Γ̃(y) defined as in (2.19), and

(e)

∫
∂Ω

|∇U |p−1|∇U̇(x)| dHn−1 <∞.
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Proof. Assume, without loss of generality, that 0 ∈ Ω̃, which implies v ≥ 0 on Sn−1. Then Ωt

contains Ω for t > 0 and Ωt is contained in Ω for t < 0. Recall that, for |t| small, Ω, Ω̃, and
Ωt are all bounded convex domains of class C2,α

+ .

Step 1. We first prove that there exist ε, such that 0 < ε � 1, and a constant c, such that
1 ≤ c <∞, for which we have

(3.1) |∇U(x, t)| ≤ c for all (x, t) ∈ (Rn \ Ωt)× [−ε, ε].
Let ε > 0 be such that Ωt is of class C2,α

+ for |t| ≤ ε, and fix t restricted to |t| ≤ ε. Us-
ing [28, Proposition 1], we get that ∂h

∂s
(x, ·) is non-decreasing for every fixed x. Thus [28, The-

orem 4] implies that |∇U(x, t)| attains its maximum on ∂Ωt. Now let x ∈ ∂Ωt and note
that there exists a ball B, included in Ωt and internally tangent to ∂Ωt at x, with radius r
which can be chosen to be independent of t and x. Let Ũ be the p-equilibrium potential of
B. By the comparison principle Ũ(·) ≤ U(·, t) in Rn \ Ωt, and, since U(x) = Ũ(x, t),we have
|∇U(x, t)| ≤ |∇Ũ(x)|. On the other hand the value |∇Ũ(x)| can be explicitly computed and
is a positive constant depending on r and n only. Hence (3.1) is proved.

Step 2. We let, for (x, t) ∈ (Rn \ (Ω ∪ Ωt))× [−ε, ε],
V (x, t) = U(x, t)− U(x, 0) ,(3.2)

and, for t 6= 0,

W (x, t) =
V (x, t)

t
.(3.3)

Consider t > 0 and recall that this implies that Ωt contains Ω. Then, using (b) of Theorem 2.12,
we see that U(x) = U(x, 0) ≤ 1 = U(x, t) when x ∈ ∂Ωt. Moreover, since U(x), U(x, t)→ 0 as
|x| → ∞ it follows directly from the comparison principle for the p-Laplacian, see [89, Theorem
5.4], that whenever x ∈ Rn \ Ωt, we have U(x, 0) ≤ U(x, t). Let

ψ(t) :=
1

minx∈Ωt U(x)
=

1

minx∈∂Ωt U(x)
(3.4)

where the equality in (3.4) follows from the comparison principle on the domain Ωt \ Ω.
Moreover, we have ψ(t) > 0 by the strong maximum principle and ψ is an increasing function
of t. Furthermore, using (3.1) it is easy to see that there exists a constant c, depending on Ω
but independent of t, such that for all t ∈ (0, ε],

ψ(t)− ψ(0)

t
≤ c.(3.5)

In particular, for all x ∈ ∂Ωt and t ∈ (0, ε],

U(x, t) ≤ ψ(t)U(x, 0).(3.6)

By the maximum principle we see that this inequality also holds in Rn \ Ωt, and hence we
have proved that

0 ≤ W (x, t) ≤ c U(x, 0) whenever (x, t) ∈ (Rn \ Ωt)× (0, ε].

An analogous estimate can be found for t < 0 and all in all we can conclude that there exists
a constant c > 0, depending on Ω but independent of t, such that

(3.7) |W (x, t)| ≤ c U(x, 0) ≤ c whenever (x, t) ∈ (Rn \ (Ω ∪ Ωt)× ([−ε, ε] \ {0}) .
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From this inequality it follows, in particular, that U(·, t) converges to U(·, 0) as t tends to 0,
uniformly on compact subsets of Rn \ Ω̄.

Step 3. In the following, let D be a compact subset of Rn \ Ω̄. Then, using (3.1) and Lemma
2.4, concerning interior Hölder continuity of partial derivatives, see also Theorem 1 in [58],
we can conclude that there exists σ ∈ (0, 1) and a constant c̃, with 1 ≤ c̃ < ∞, both (σ and
c̃) independent of t such that ‖U(·, t)‖C1,σ(D) ≤ c̃, whenever t ∈ [−ε, ε] \ {0}. Consequently,
using the Ascoli-Arzelá Theorem, we can conclude that U(·, t) converges to U(·, 0) in C1(D),
as t→ 0. Now using (b) of Theorem 2.12 we see that there exists ε > 0 and a constant ĉ > 0,
independent of t, such that

(3.8) |∇U(x, t)| ≥ ĉ whenever (x, t) ∈ D × [−ε, ε] .
Note that

0 = ∆pU(x, t)−∆pU(x, 0)

=

∫ 1

0

d

ds
∆p(sU(x, t) + (1− s)U(x, 0)) ds

=
∂

∂xi

(
bij(x, t)

∂

∂xj
V (x, t)

)
,(3.9)

where, for i, j = 1 . . . , n,

bij(x, t) =

∫ 1

0

(
|∇Us(x, t)|p−4

(
(p− 2)(Us(x, t))xi(Us(x, t))xj + δij|∇Us(x, t)|2

))
ds ,

Us(x, t) = sU(x, t) + (1 − s)U(x, 0), and δij is the Kronecker delta. As t → 0, we see that
Us(·, t) → U(·, 0), uniformly and, by the argument above, we see that bij(·, t) converges uni-
formly to

bij(x) = |∇U(x, 0)|p−4
(
(p− 2)(U(x, 0))xi(U(x, 0))xj + δij|∇U(x, 0)|2

)
.

Dividing in (3.9) by t we can conclude that W solves

(3.10)
∂

∂xi

(
bij(x, t)Wj(x, t)

)
= 0 ,

in D. Now, using (3.1), (3.8), and (3.10), we see that equation in (3.10) is uniformly elliptic in
D with ellipticity constants independent of t. Moreover, the C0,σ(D) norms of the coefficients
bij are uniformly bounded. Hence, using Schauder estimates (see, for instance, [34, Theorem
6.2]), we deduce that there exists a constant c such that

‖W (·, t)‖C2,α(D) ≤ c whenever t ∈ [−ε, ε] \ {0}.
Applying again the Ascoli-Arzelá Theorem and a standard diagonalization procedure, we
obtain a sequence {tk}k∈N, tending to 0 as k tends to infinity, and a function U̇ : Rn \Ω→ R,
such that, as k →∞, we have W (·, tk) converging to U̇(·) uniformly on compact sets of Rn\Ω̄.
Using (3.10) we then have

(3.11)
∂

∂xi

(
bij(x)

∂

∂xj
U̇(x)

)
= 0 whenever x ∈ Rn \ Ω̄ .

We have thus proved the existence of the limit of W (·, t), as t tends to 0, at least up to choos-
ing a suitable sequence of t’s in the interior of Rn \ Ω̄. In particular, for each fixed x ∈ Rn \ Ω̄,
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the function t→ U(x, t) is differentiable with respect to t at (x, 0).

Step 4. We now focus on the boundary behavior of U̇ . Let R > 0 be such that Ωt ⊂ BR for
every t ∈ [−ε, ε]. In what follows we let K := Ω̄ and Kt = Ωt. From the assumption that
Kt is of class C2,α

+ and using a standard compactness argument, it follows that there exists
ρ > 0 such that for every t ∈ [−ε, ε] and for every x ∈ ∂Kt, there exists a closed ball B, of

radius ρ, with B ⊃ Kt and x ∈ ∂B. Let Û be the p-equilibrium potential of B. From the
comparison principle we see that Û(·) ≥ U(·, t) in Rn \ B and, since they coincide at x, that

|∇U(x, t)| ≥ |∇Û(x)|. Observe that |∇Û(x)| can be explicitly computed and it is a positive
constant depending on ρ and n. Hence there exists a constant c > 0 such that

(3.12) |∇U(x, t)| ≥ c, for all (x, t) ∈ BR \ (Ω ∪ Ωt) .

This, together with (3.1), implies that the p-Laplace operator is uniformly elliptic on U(·, t)
in BR \ Kt, and that the ellipticity constants can be chosen to be independent of t. As a
consequence, using also the smoothness assumptions on ∂Kt, the boundary condition verified
by U(·, t) and (3.1), we may apply the boundary Hölder estimates for the gradient of solutions
of quasi-linear elliptic equations, see [34, Theorem 13.2], to infer that there exist σ ∈ (0, 1)
and a constant c > 0 such that

‖∇U(·, t)‖C0,σ(BR\Ωt) ≤ c , for all t ∈ [−ε, ε] .
This in turn implies that the coefficients of equation (3.10) are uniformly bounded in the norm
of C0,σ(Br \ Ωt). Hence, by Theorem 6.6 in [34], there exists c > 0, independent of t, such
that

(3.13) ‖W (·, t)‖C2,σ(Br\(Ω∪Ωt)) ≤ c, for all t ∈ [−ε, ε] \ {0}.

Clearly the same estimate extends to the function U̇ :

(3.14) ‖U̇‖C2,σ(BR\Ω) ≤ c .

In particular, the function U̇ : Rn \ Ω̄→ R can be extended to ∂Ω so that U̇ ∈ C2(Rn \ Ω).

Step 5. Proof of (a) and (b). Let x ∈ ∂Ω and let g(x) be the outer unit normal to ∂Ω at x.
For k ∈ N, let xk ∈ ∂Ωtk be the point whose outer unit normal to ∂Ωtk is g(x). Since Kt is of

class C2,α
+ , the point xk is uniquely determined and the sequence xk tends to x as k tends to

infinity. We have

xk = ∇hΩtk
(ξ) = ∇hΩ(ξ) + tk∇v(ξ) = x+ tk∇v(ξ),

and thus,
xk − x
tk

= ∇v(ξ),

where ξ = g(x). From (3.13),

U̇(x) = lim
k→∞

Wk(xk) ,

and hence

U̇(x) = lim
k→∞

U(xk, tk)− U(xk, 0)

tk
= lim

k→∞

1− U(xk, 0)

tk

= lim
k→∞

U(x, 0)− U(xk, 0)

tk
= −∇U(x) · ∇v(ξ)
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= |∇U |ξ · ∇v(ξ) = |∇U(x)|v(g(x)) ,(3.15)

and this completes the proof of part (a). Note also that by (3.7) we have, as |x| → ∞, that

U̇(x) ≤ c|x|
p−n
p−1 . Hence, from (3.11) and the maximum principle, U̇ is uniquely determined.

As a consequence, as t tends to zero, the family of functions W (·, t) tends to U̇ (not just some
sequence of it). In particular, the proofs of statements (a) and (b) are complete.

Step 6. Proof of (c), (d), (e). let R1, R2 > 0 be such that R1 < R2 and K ⊂ B(0, R1).

Furthermore, for r > 0 we define ς(r) = r
p−n
p−1 , and consider,

Ẋ(y) =
U̇(ry)

ς(r)
, Z(y) =

U(ry)

ς(r)
for y ∈ D = {y ∈ Rn : R1 < |y| < R2}.(3.16)

Now, arguing as above we see that Ẋ(y) is a bounded solution of

∂

∂yi

(
cij(y)

∂

∂yj
Ẋ(y)

)
= 0 in D,(3.17)

where

cij(y) = |∇Z(y)|p−4
(
(p− 2)(Z(y))yi(Z(y))yj + δij|∇Z(y)|2

)
.(3.18)

Using the asymptotic behavior of ∇U(x) as |x| → ∞, see Lemma 2.15 (b), we can conclude
that the equation in (3.17) is uniformly elliptic in D with ellipticity constants independent of
r. Furthermore, using uniform Hölder continuity of the coefficients {cij(y)} in D, it follows
from statement (b) of the lemma as well as well-known a priori estimates for such equations,
see, for instance, [37, Lemma 3.1], that

|∇Ẋ(y)| ≤ c whenever y ∈ D = {y ∈ Rn : R1 < |y| < R2},(3.19)

and for some constant c independent of r. Hence, letting r →∞ the proof of (c) is complete.
Furthermore, also (d), (e), are easily seen to hold and we omit further details. �

Lemma 3.2. Suppose 1 < p < n. Let Ω be a bounded convex domains of class C2,α
+ , with

support function h, and let g denote the Gauss map of ∂Ω. For i = 1, 2, let Ωi be a convex
domain of class C2,α

+ with support function vi. Let ε > 0 be such that, for both i = 1, 2, the
function h + tvi ∈ C whenever |t| ≤ ε. For |t| ≤ ε, and i = 1, 2, let Ωi,t be the uniquely

determined convex domain of class C2,α
+ such that h+ tvi is the support functions of Ωi,t. Let

Ui(x, t) be the solution to problem (1.10) in Ωi,t. Using Lemma 3.1, let

U̇i(x) =
∂

∂t
Ui(x, t)

∣∣∣∣
t=0

for all x ∈ Rn \ Ω.

Then, ∫
∂Ω

v1(g(x))|∇U(x)|p−1(g(x) · ∇U̇2(x)) dHn−1(x)

=

∫
∂Ω

v2(g(x))|∇U(x)|p−1(g(x) · ∇U̇1(x)) dHn−1(x) .

Proof. Arguing as in the proof of Lemma 3.1, see (3.11), we have

∇ ·
(
(p− 2)|∇U |p−4(∇U · ∇U̇1)∇U + |∇U |p−2∇U̇1

)
= 0 ,

∇ ·
(
(p− 2)|∇U |p−4(∇U · ∇U̇2)∇U + |∇U |p−2∇U̇2

)
= 0 .(3.20)
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Therefore,

0 =U̇2∇ · ((p− 2)|∇U |p−4(∇U · ∇U̇1)∇U + |∇U |p−2∇U̇1)

− U̇1∇ · ((p− 2)|∇U |p−4(∇U · ∇U̇2)∇U + |∇U |p−2∇U̇2)

=∇ · (U̇2((p− 2)|∇U |p−4(∇U · ∇U̇1)∇U + |∇U |p−2∇U̇1))

− ∇ · (U̇1((p− 2)|∇U |p−4(∇U · ∇U̇2)∇U + |∇U |p−2∇U̇2)) .(3.21)

Now, applying Lemma 2.11 to (3.21), using Lemma 2.13, Lemma 2.15, and Lemma 3.1, we
can conclude that∫

∂Ω

U̇2

(
(p− 2)|∇U |p−4(∇U · ∇U̇1)(g · ∇U) + |∇U |p−2(g · ∇U̇1)

)
dHn−1

=

∫
∂Ω

U̇1

(
(p− 2)|∇U |p−4(∇U · ∇U̇2)(g · ∇U) + |∇U |p−2(g · ∇U̇2)

)
dHn−1.

Hence, a final application of Lemma 2.13, together with (a) of Lemma 3.1, completes the
proof. �

Lemma 3.3. Suppose 1 < p < n. Let e1, . . . , en−1 be an orthonormal frame on Sn−1. Let Ω
be a bounded convex domain of class C2,α

+ in Rn and let h be the support function of Ω. Let U
be the solution to (2.17). Let ξ ∈ Sn−1 and x ∈ ∂Ω be such that g(x) = ξ. Then,

(a)
(
∇2U(x)ei

)
· ej = −κ(x) |∇U(x)| cij(ξ),

(b)
(
∇2U(x)ei

)
· ξ = −κ(x)

∑
j cij(ξ)|∇U(x)|j,

(c)
(
∇2U(x)ξ

)
· ξ = (p− 1)−1κ(x) |∇U(x)|

∑
i cii(ξ),

where κ(x) denotes the Gauss curvature of ∂Ω at x ∈ ∂Ω, |∇U(·)|j denotes first covariant
derivatives of |∇U(·)| on Sn−1, and (cij) is the cofactor matrix introduced below (2.12).

Proof. Lemma 3.3 is a generalization of Lemma A in [50], see also [52], to the non-linear
setting. Compared to [50] though, we here give a different and simpler proof. We first note,
since Ω is a bounded convex domain of class C2,α

+ in Rn, that it follows, as in Step 4 of the
proof of Lemma 3.1, from an elementary barrier argument, and boundary Schauder estimates
for quasi-linear elliptic equations, see [34], that partial derivatives of U up to, and including,
order two are pointwise well-defined on ∂Ω. Using this we start the proof of Lemma 3.3 and
we first note, using Lemma 2.13 and (2.14), that ∇U = −|∇U |ξ and ∇U · Fi = 0, where
F (ξ) = g−1(ξ) is the inverse Gauss map of ∂Ω. Differentiating the second relation gives

((∇2U)Fj) · Fi +∇U · Fij = 0.

Recalling (2.14) we have that

Fi = aijej, Fij = aijkek − aijξ,
where aijk are the covariant derivatives of aij. In particular, combining the last two displays
we see that

(3.22) aikajl((∇2U)el) · ek + aij|∇U | = 0.

Multiplying (3.22) by the cofactor matrix cij of aij we see that (a) holds. Similarly, taking
the covariant derivative of |∇U | = −ξ · ∇U , and using (2.14), we see that

|∇U |i = −ei · ∇U − ξ · ((∇2U)Fi) = −aij((∇2U)ej) · ξ.
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Next, again multiplying by the cofactor matrix cij of aij we see that (b) holds. Finally, using
the p-Laplace equation for U , we have

(p− 2)((∇2U)ξ) · ξ + ∆U = 0.

This and (a) allows us to conclude that

(p− 1)((∇2U)ξ) · ξ = ((∇2U)ξ) · ξ −∆U

= −((∇2U)ei) · ei = κ|∇U |
∑
i

cii,

which completes our proof. �

Lemma 3.4. Suppose 1 < p < n. Let Ω be a bounded convex domain of class C2,α
+ and let U

be the unique solution to (1.10). Define the operator L : C→ C(Sn−1) by

L(v)(ξ) = −p|∇U(g−1(ξ))|p−1

κ(g−1(ξ))
(ξ · ∇U̇(g−1(ξ)))

+
∑
j

(|∇U(g−1(ξ))|p
∑
i

cij(ξ)vi(ξ))j(3.23)

−(p− 1)−1|∇U(g−1(ξ))|p v(ξ)
∑
i

cii(ξ) ,

where U̇ is the function defined in Lemma 3.1 corresponding to v and where κ(x) denotes the
Gauss curvature of ∂Ω at x. Then L is self-adjoint on L2(Sn−1), i.e.∫

Sn−1

v1 L(v2) dξ =

∫
Sn−1

v2 L(v1) dξ, for all v1, v2 ∈ C .

Proof. For i = 1, 2, 3, let Li : C→ C(Sn−1) be defined by

L1(v)(ξ) = −p|∇U(g−1(ξ))|p−1

κ(g−1(ξ))

(
ξ · ∇U̇(g−1(ξ)

)
,

L2(v)(ξ) =
∑
j

(|∇U(g−1(ξ))|p
∑
i

cij(ξ)vi(ξ))j ,

L3(v)(ξ) = −(p− 1)−1|∇U(g−1(ξ))|pv(ξ)
∑
i

cii(ξ) ,

Note that L = L1 + L2 + L3. Using this decomposition we see immediately that L2 and L3

are self-adjoint. To prove that L1 is self-adjoint, use the change of variable formula (2.7),
together with (2.16), and Lemma 3.2. �

3.2. Variational formula and uniqueness for smooth domains. We are now ready to
state and prove Theorem 1.1 in the context of bounded convex domains of class C2,α

+ .

Theorem 3.5. Suppose 1 < p < n. Let Ω and L be bounded convex domains of class C2,α
+ ,

with support functions h and v, respectively, and let g denote the Gauss map of Ω. For t ∈ R
with |t| sufficiently small, let Ωt be the bounded convex domain having h + tv as its support
function. Then,

d

dt
Cp(Ωt)

∣∣∣
t=0

= (p− 1)

∫
∂Ω

v
(
g(x)

)
|∇U(x)|p dHn−1(x)
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= (p− 1)

∫
Sn−1

v(ξ) dµp(Ω, ξ) ,(3.24)

where µp is the measure defined in (1.11).

Proof. Note that from the definition of the measure µp and (2.7) it suffices to prove that

d

dt
Cp(Ωt)

∣∣∣
t=0

= (p− 1)

∫
Sn−1

v(ξ) dµp(Ω, ξ).(3.25)

Let U(·, t) be the unique solution to (1.10) in Ωt, and let ht(·), g(·, t), and F (·, t) = g−1
t (·, t)

denote the support function of Ωt, its Gauss and its inverse, respectively. Let U̇(·), ḣ(·), ġ(·)
and Ḟ (·) denote the partial derivatives of these functions, with respect to t, at t = 0. Since

ht = h+ tv we observe that ḣ = v. Moreover, assuming that an orthonormal coordinate frame
e1, . . . , en−1 has been chosen on Sn−1, from (2.14) it follows, for ξ ∈ Sn−1, that

(3.26) Ḟ (ξ) = vi(ξ)ei + v(ξ)ξ.

Using (1.11), (2.7), and (2.16), we see that

dµp(Ωt, ·) = |∇U(F (ξ, t), t)|p det((ht)ij(ξ) + ht(ξ)δij) dξ .

For ξ ∈ Sn−1, let

F(ht)(ξ) = |∇U(F (ξ, t), t)|p det((ht)ij(ξ) + ht(ξ)δij).

Then, using the representation formula (2.34) we see that

d

dt
Cp(Ωt)

∣∣∣
t=0

=
p− 1

n− p
d

dt

∫
Sn−1

htF(ht) dξ
∣∣∣
t=0

=
p− 1

n− p

∫
Sn−1

(
vF(h) + h

d

dt
F(ht)

∣∣∣
t=0

)
dξ.(3.27)

Let (cij) be the cofactor matrix of (hij + hδij). By standard properties of the cofactor matrix
we have

d

dt
(det((ht)ij + htδij))

∣∣∣
t=0

= cij(vij + vδij),

and hence
d

dt
F(ht)

∣∣∣
t=0

(ξ) = |∇U(F (ξ))|pcij(ξ)(vij(ξ) + v(ξ)δij)

+ p|∇U(F (ξ))|p−1 det(hij(ξ) + h(ξ)δij)
d

dt
|∇U(F (ξ, t), t)|

∣∣∣
t=0

,(3.28)

where for simplicity, we have let F (·) = F (·, 0). Using the boundary condition in problem
(1.10) we see that

|∇U(F (ξ, t), t)| = −∇U(F (ξ, t), t) · ξ .
and hence

d

dt
|∇U(F (ξ, t), t)|

∣∣∣∣
t=0

= −∇2(U(F (ξ)))ξ · Ḟ (ξ)−∇U̇(F (ξ)) · ξ
= −∇2(U(F (ξ)))ξ ·

(
vi(ξ)ei + v(ξ)ξ

)
−∇U̇(F (ξ)) · ξ

= κ(F (ξ))cij(ξ)(|∇U(F (ξ))|)jvi(ξ)
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−(p− 1)−1κ(F (ξ))cii(ξ)|∇U(F (ξ))|v(ξ)−∇U̇(F (ξ)) · ξ ,
where we have used (3.26) and Lemma 3.3. In particular, using (2.12), (3.28), and (2.13), we
see that

d

dt
F(ht)

∣∣∣
t=0

(ξ) = −p|∇U(F (ξ))|p−1 det(hij(ξ) + h(ξ)δij)(∇U̇(F (ξ)) · ξ)

−(p− 1)−1|∇U(F (ξ))|pcii(ξ)v(ξ) + (cij(ξ)|∇U(F (ξ))|pvj)i .
All put together, we can conclude that

(3.29)
d

dt
F(ht)

∣∣∣
t=0

= L(v) ,

where L is the operator defined in Lemma 3.4. Next, by a standard homogeneity argument
we note that

F((1 + t)h) = (1 + t)n−p−1F(h) ,

and hence by taking v = h, we see that

(3.30) L(h) = (n− p− 1)F(h).

Using (3.27), (3.29), Lemma 3.4, and (3.30) we have

d

dt
Cp(Ωt)

∣∣∣
t=0

=
p− 1

n− p

∫
Sn−1

(vF(h) + hL(v)) dξ

=
p− 1

n− p

∫
Sn−1

(vF(h) + vL(h)) dξ

= (p− 1)

∫
Sn−1

vF(h)dξ.

Hence the proof of the lemma is complete. �

Let Ω0, Ω1 be bounded convex domains in Rn. Define the mixed p-capacity of Ω0 and Ω1

by

Cp(Ω0,Ω1) =
p− 1

n− p

∫
Sn−1

hΩ1(ξ) dµp(Ω0, ξ).

Obviously, Cp(Ω0,Ω0) = Cp(Ω0). The following theorem gives the Minkowski inequality for

p-capacity in the context of bounded convex domains of class C2,α
+ .

Theorem 3.6. Suppose 1 < p < n. Let Ω0, Ω1 be bounded convex domains in Rn of class
C2,α

+ . Then
Cp(Ω0,Ω1)n−p ≥ Cp(Ω0)n−p−1Cp(Ω1),

with equality if and only if Ω0,Ω1 are homothetic.

Proof. From the Brunn-Minkowski inequality for p-capacity, see Theorem 2.19, we see that
the function

f(t) = Cp(Ω0 + tΩ1)
1

n−p − Cp(Ω0)
1

n−p − tCp(Ω1)
1

n−p , t ≥ 0,

is non-negative and concave. Now, using the variational formula for p-capacity established in
(3.24) we have

lim
t→0+

f(t)− f(0)

t
= Cp(Ω0)

1
n−p−1Cp(Ω0,Ω1)− Cp(Ω1)

1
n−p ≥ 0.

Hence, if equality holds, then f must be linear and Ω0,Ω1 must be homothetic. �
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We are now ready to state and prove Theorem 1.2 in the context of bounded convex domains
of class C2,α

+ .

Theorem 3.7. Suppose 1 < p < n. Let Ω0,Ω1 be bounded convex domains in Rn of class C2,α
+ .

If Ω0,Ω1 have the same p-capacitary measure, then Ω0 is a translate of Ω1 when p 6= n − 1,
and Ω0,Ω1 are homothetic when p = n− 1.

Proof. By the assumption and using Theorem 3.6 we see that

Cp(Ω0) = Cp(Ω0,Ω0) = Cp(Ω1,Ω0) ≥ Cp(Ω1)1− 1
n−pCp(Ω0)

1
n−p .(3.31)

Hence, Cp(Ω0)1− 1
n−p ≥ Cp(Ω1)1− 1

n−p and by reversing the roles of Ω0 and Ω1 we can conclude
that Cp(Ω0) = Cp(Ω1) when p 6= n− 1. In particular, this implies that there is equality in the
Minkowski inequality for p-capacity and hence Ω0 must be a translation of Ω1 when p 6= n−1,
and Ω0,Ω1 are homothetic when p = n− 1. �

4. Weak convergence of p-capacitary measures

The purpose of the section is to prove the following important lemma.

Lemma 4.1. Suppose 1 < p < n. Let Ω be a bounded convex domain and let {Ωi}∞i=1 be a
sequence of bounded convex domains in Rn. If {Ωi} converges to Ω in the Hausdorff distance
sense, then the sequence of measures {µp(Ωi, ·)} converges weakly to µp(Ω, ·).

4.1. A refined integral estimate for p-harmonic functions. The following Theorem 4.2
is a refinement of Theorem 2.8 and it will be important in the proof of Lemma 4.1. The
proof of Theorem 4.2, which we provide for completeness, is implicitly contained in Theorem
2 of [60], while for p = 2 it is Corollary 5.2 of [55].

Theorem 4.2. Suppose 1 < p < ∞, let 1 < M < ∞, r0 > 0, and consider 0 < r < r0. For
every ε > 0, ε� 1, there exists η = η(ε) such that the following is true. Assume that Ω ⊂ Rn

is a Lipschitz domain with constants M, r0, 0 ∈ ∂Ω, and that

∂Ω ∩B(0, 4r) = {(x′, φ(x′)) : x′ ∈ Rn−1} ∩B(0, 4r),

φ(0) = 0, sup
|x′|<r

|∇x′φ(x′)| < η.

Then, for every positive p-harmonic function u in Ω ∩ B(0, 4r), continuous on Ω̄ ∩ B(0, 4r)
with u = 0 on ∆(0, 4r), and for every y ∈ ∆(0, ηr) and s < ηr, there exists a constant
c∆(y,s) = c∆(y,s)(u) such that

1

Hn−1(∆(y, s))

∫
∆(y,s)

∣∣ log |∇u| − c∆(y,s)

∣∣ dHn−1 < ε .

Proof. Let q be as in the statement of Theorem 2.8 and let q̃ = min{(q + p − 1)/2, p}. Note
that we may, without loss of generality, assume that r = 1. To prove the theorem it suffices,
by way of a lemma of Sarason (see [55]), to prove that there exists ε̃0 > 0 and η̃ = η̃(ε̃), defined
for ε̃ ∈ (0, ε̃0), such that if Ω ⊂ Rn is a Lipschitz domain with constants M, r0, 0 ∈ ∂Ω,

∂Ω ∩B(0, 4) = {(x′, φ(x′)) : x′ ∈ Rn−1} ∩B(0, 4),

φ(0) = 0, sup
|x′|<1

|∇x′φ(x′)| < η̃,
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and y ∈ ∆(0, η̃) and 0 < s < η̃, then

(4.1)
1

Hn−1(∆(y, s))

∫
∆(y,s)

|∇u|q̃ dHn−1 ≤ (1+ε̃)

 1

Hn−1(∆(y, s))

∫
∆(y,s)

|∇u|p−1 dHn−1


q̃
p−1

,

whenever u is as in the statement of the present theorem. Indeed, assuming (4.1) for now,
consider y ∈ ∆(0, η̃), 0 < s < η̃, let ∆ = ∆(y, s), k = |∇u|p−1, and introduce the measure

dλ = (

∫
∆

kdHn−1)−1kdHn−1.

Let β be defined through the relation (p− 1)(1 + β) = q̃. The, applying the Hölder inequality
we see that∫

∆

kβdλ

∫
∆

k−βdλ =

(∫
∆

kdHn−1

)−2 ∫
∆

k1+βdHn−1

∫
∆

k1−βdHn−1

≤
(

1

Hn−1(∆)

∫
∆

kdHn−1

)−2(
1

Hn−1(∆)

∫
∆

k1+βdHn−1

) 2
1+β

.

In particular, using (4.1) we can conclude that∫
∆

kβdλ

∫
∆

k−βdλ ≤ (1 + ε̃)
2(p−1)
q̃ ≤ 1 + Cε̃.

Applying the lemma of Sarason, see (5.26) of [55], the inequality in above display implies that∫
∆

∣∣∣∣log kβ − (

∫
∆

log kβdλ)

∣∣∣∣ dλ ≤ Cε̃,

which is the desired conclusion once we recall that kdHn−1 ∈ A∞(2∆, dHn−1), see Theorem
2.8. Hence, to prove the theorem it suffices to prove (4.1). For this, we follow the proof of
Theorem 2 of [60] and we argue by contradiction. Indeed, if (4.1) is not true, then there exist
a sequence of Lipschitz domains {Ωm}∞m=1, a sequence of constants {η̃m}∞m=1, a sequence of
functions {um}∞m=1 and sequences {sm}∞m=1, {ym}∞m=1, for which the following facts hold. For
every m, Ωm is a Lipschitz domain with constants M, r0, such that 0 ∈ ∂Ωm,

∂Ωm ∩B(0, 4) = {(x′, φm(x′)) : x′ ∈ Rn−1} ∩B(0, 4),

φm(0) = 0, sup
|x′|<r

|∇x′φm(x′)| < η̃m,

with η̃m → 0 as m→∞, um is p-harmonic in Ωm ∩B(0, 4), um is continuous in Ω̄m ∩B(0, 4),
and um = 0 on ∂Ωm ∩B(0, 4). Furthermore, ym ∈ ∂Ωm ∩B(0, η̃m), sm ≤ η̃m, and

1

Hn−1(∆m)

∫
∆m

|∇um|q̃ dHn−1 > (1 + ε̃)

 1

Hn−1(∆m)

∫
∆m

|∇um|p−1 dHn−1

q̃/(p−1)

.(4.2)

Here and in the following, ∆m = ∆m(ym, sm) = ∂Ωm ∩B(ym, sm). For fixed 0 < ε̃� 1, let

A = e1/ε̃, η̃ = ε̃2.(4.3)

Since η̃m → 0 as m→∞ we may assume that

0 < η̃m ≤ η̃, for every m.
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Let nm(ym) be the inner unit normal to ∂Ωm at ym ∈ ∂Ωm and Pm(ym) be the hyperplane
which is orthogonal to nm and which contains ym. Using coordinates x = (x′, xn), with
x′ = x− xnnm(ym) ∈ Pm(ym), we introduce, for s > 0, the cylinders

Cm(ym, s) = {x = (x′, xn) = x′ + xnnm(ym) such that x′ ∈ Pm(ym) ∩B(ym, s), |xn| ≤ s}.
For brevity we let

Pm = P (ym), nm = n(ym, Asm) and Cm = C(ym, Asm) .

Extend um to B(0, 4) by letting um ≡ 0 in B(0, 4) \ Ω̄m and let νm be the measure associated
with um in the sense of Lemma 2.5. In view of (iv) of Theorem 2.8,

νm(∆m) =

∫
∆m

|∇um|p−1 dHn−1.

Let

Am =
1

Hn−1(∆m)

∫
∆m

|∇um|q̃ dHn−1 .

Below we prove that there exists c ≥ 1, independent of m, such that

lim sup
m→∞

Am

(
Hn−1(∆m)

νm(∆m)

)q̃/(p−1)

≤ (1 + e−1/(cε̃)).(4.4)

To see that this is sufficient to reach a contradiction, note that (4.2) and (4.4) give

1 + ε̃ ≤ lim sup
m→∞

Am

(
Hn−1(∆m)

ν(∆m)

)q̃/(p−1)

≤ 1 + e−1/(cε̃)(4.5)

for some c ≥ 1 independent of m, provided ε̃0 is sufficiently small. Choosing ε̃0 still smaller, if
necessary, we see that (4.5) can not hold if 0 < ε̃ ≤ ε̃0. Hence the statement above and (4.1)
must hold.

To start the proof of (4.4), we let ŷm = ym + 1
10
Asmnm. Note that if ε̃ is sufficiently small,

then the domainDm, obtained by drawing all line segments from points inB(ŷm,
Asm
100

) to points

in ∂Ωm ∩ B(ym,
Asm
10

), is starlike Lipschitz with respect to ŷm. Let D̂m = Dm \ B̄(ŷm,
Asm
1000

)

and note that the Lipschitz constant of D̂m is smaller or equal to c = c(n,M). Let ûm be the

p-capacitary function for D̂m, i.e. ûm is non-negative, ûm = 0, and ûm = 1 continuously on
∂Dm and ∂B(ŷm,

Asm
1000

), respectively, and ûm is p-harmonic in D̂m. Extend ûm to Rn \Dm by
setting ûm ≡ 0 on Rn\Dm and let ν̂m be the measure, with support on ∂Dm, corresponding to
ûm as in Lemma 2.5. Next suppose ε̃0 is so small that A/100 ≥ 2c1, where c1 is as in Theorem
2.7. Then, using Theorem 2.7 with r, w, u1, u2 replaced by Asm/100, ym, um, ûm, we deduce,

for ε̃ sufficiently small, that if w1, w2 ∈ B(ym, 2sm) ∩ D̂m, then∣∣∣∣log

(
ûm(w1)

um(w1)

)
− log

(
ûm(w2)

um(w2)

)∣∣∣∣ ≤ cA−α,(4.6)

where c, α are the constants in Theorem 2.7 and hence independent ofm. Letting w1, w2→z1, z2 ∈
∂D̂m ∩B(y−m, 2sm) in (4.6) and using Theorem 2.8 we see that∣∣∣∣log

(
|∇ûm(z1)|
|∇um(z1)|

)
− log

(
|∇ûm(z2)|
|∇um(z2)|

)∣∣∣∣ ≤ cA−α(4.7)
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for Hn−1-almost all z1, z2 ∈ ∂D̂m ∩B(ym, 2sm). From the inequality in (4.7) we deduce

(1− cA−α)
|∇ûm(z1)|
|∇ûm(z2)|

≤ |∇um(z1)|
|∇um(z2)|

≤ (1 + cA−α)
|∇ûm(z1)|
|∇ûm(z2)|

,(4.8)

where c = c(p, n,M). Let

Âm :=
1

Hn−1(∆m)

∫
∆m

|∇ûm|q̃ dHn−1.(4.9)

From (4.8) and Theorem 2.8, we see that

Âm
(ν̂m(∆m))q̃/(p−1)

≥ (1− cA−α)q̃
Am

(νm(∆m))q̃/(p−1)
.(4.10)

One concludes from (4.9)-(4.10) and simple estimates that it suffices to prove (4.4) with νm, um,
replaced by ν̂m, ûm. Thus one desires to prove that, for c = c(p, n,M) suitably large and ε̃0
sufficiently small,

lim sup
m→∞

Âm

(
Hn−1(∆m)

ν̂m(∆m)

)q̃/(p−1)

≤ 1 + e−1/(cε̃).(4.11)

To prove (4.11), let Tm be a conformal affine mapping of Rn which maps the plane W contain-

ing the origin and with normal en onto P̂m with Tm(0) = ym and Tm(en) = ŷm. Let D̃m, ũm
be such that Tm(D̃m) = D̂m and ûm(Tmx) = ũm(x) whenever x ∈ D̃m. Then, since the p-
Laplace equation is invariant under translations, rotations, and dilations, we see that ũm is
the p-capacitary function for D̃m. Moreover, if ν̃m corresponds to ũm as in Lemma 2.5, then

Âm

(
Hn−1(∆m)

ν̂m(∆m)

)q̃/(p−1)

= Ãm

(
Hn−1(∂D̃m ∩B(0, 10/A))

ν̃m(∂D̃m ∩B(0, 10/A))

)q̃/(p−1)

,(4.12)

where

Ãm :=
1

Hn−1(∂D̃m ∩B(0, 10/A))

∫
∂D̃m∩B(0,10/A)

|∇ũm|q̃ dHn−1.

Letting m→∞, one deduces from Lemma 2.1 and Lemma 2.2 that ũm converges uniformly
on Rn to ũ where ũ is the p-capacitary function for the starlike Lipschitz ring domain, D̃ =
D̂ \ B(en, 1/100). Now, D̂ is obtained by drawing all line segments connecting points in
B(0, 1)∩W to points in B(en, 1/10). Using a Rellich type inequality and arguing as in (5.27)-
(5.41) in [59], it follows that

(4.13)


lim supm→∞(Ãm)1/q̃ ≤

 1
ΓA

∫
W∩B(0,10/A)

|∇ũ|p dHn−1


1/p

lim infm→∞ ν̃m(∂D̃m∩B(0,10/A))

Hn−1(∂D̃m∩B(0,10/A))
≥ 1

ΓA

∫
W∩B(0,10/A)

|∇ũ|p−1 dHn−1,

where ΓA = Hn−1(W ∩B(0, 10/A)) and Hn−1 denotes (n− 1)-dimensional Lebesgue or Haus-
dorff measure on W. Assuming (4.13), by using Schwarz reflection, we note that ũ has a
p-harmonic extension to B(0, 1/2) with ũ ≡ 0 on W ∩ B(0, 1/2). From barrier estimates,
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we have c−1 ≤ |∇ũ| ≤ c on B(0, 1/4), where c depends only on p, n,. From Lemma 2.4 we
find that |∇ũ| is Hölder continuous with exponent σ on B̄(0, 1/4)∩W . Using these facts, we
conclude first that there exist ẑ ∈ B̄(0, 10/A) ∩W and a constant c such that

(1− cA−σ) |∇ũ(ẑ)| ≤ |∇ũ(z)| ≤ (1 + cA−σ) |∇ũ(ẑ)|,(4.14)

whenever z ∈ B(0, 10/A) ∩ W . Combining (4.12), (4.13), and (4.14), in light of (4.3), we
deduce that, for c and ε̃−1

0 sufficiently large,

lim sup
m→∞

Âm

(
Hn−1(∆m)

ν̂m(∆m)

)q̃/(p−1)

≤ (1 + cA−σ)q̃ ≤ 1 + e−1/(cε̃),

which is (4.11). This completes the proof of Theorem 4.2. �

4.2. L1 convergence of the p-capacitary density. To prove Lemma 4.1, we first prove
the L1 convergence of p-capacitary densities. To begin the argument, we recall the following
purely geometric lemma due to Jerison, see [52, Lemma 3.3]. The lemma essentially says that
∂Ω and ∂Ω′ are flat on a set of large measure.

Lemma 4.3. Let Ω and Ω′ be bounded convex domains in Rn, and let ε1 > 0 be given. Then
there exist δ1 > 0 and a finite collection of balls B(xj, rj), j = 1, . . . , N , such that xj ∈ ∂Ω
for every j,

(a) Hn−1(∂Ω \ ∪Nj=1B(xj, rj)) ≤ ε1,

and such that, if the Hausdorff distance between Ω and Ω′ is less than δ1, then

(b) for every j ∈ {1, . . . , N}, both ∂Ω ∩B(xj, rj/ε1) and ∂Ω′ ∩B(xj, rj/ε1) can, after

a suitable translation and rotation of coordinates depending on j, be expressed

as the graphs of two functions φ and φ′, respectively, such that |∇φ| , |∇φ′| ≤ ε1,

for all x ∈ Rn such that |x| < rj/ε1.

Given Ω we in the following let rint and rext be defined with respect to Ω. Let now {Ωi}∞i=1

be a sequence of bounded convex domains in Rn which converges to Ω in the Hausdorff distance
sense. We let, for i ∈ N, Ui = UΩi denote the p-equilibrium potential of Ωi and we let gi denote
the Gauss map of Ki = Ωi. Let U = UΩ and g be the corresponding objects defined with
respect to Ω. In the following we can assume, without loss of generality, that 0 ∈ Ω and
that 0 ∈ Ωi for every i ∈ N. This implies that the radial maps, rK and rKi , of K and Ki,
respectively, are well defined, see Section 2. Let J and Ji, i ∈ N, be the Jacobian functions
introduced in Lemma 2.10 associated with K and Ki respectively, and let

qi(ξ) =
Ji(ξ)

J(ξ)
whenever ξ ∈ Sn−1.(4.15)

Using Lemma 2.10 we see that this quotient is bounded above and below, for i large enough,
by positive constants, uniformly with respect to i, and

qi(ξ)→ 1, Hn−1-a.e. on Sn−1, as i→∞.(4.16)

Finally, we let, for Hn−1-a.a ξ ∈ Sn−1

Hi(ξ) = |∇Ui(rKi(ξ))| (Ji(ξ))
1
p ,(4.17)
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and

H(ξ) = |∇U(rK(ξ))| (J(ξ))
1
p .(4.18)

These are the p-th roots of the densities of the pullback measures, with respect to the corre-
sponding radial maps, of µp(Ωi, ·) and µp(Ω, ·), respectively. Recall that we denote the Haus-
dorff distance between Ωi and Ω by h(Ωi,Ω). Using that {Ωi}∞i=1 is a sequence of bounded
convex domains in Rn which converges to Ω in the Hausdorff distance sense we can in the
following assume, with out loss of generality, by using Lemma 2.10 and Lemma 2.18, that
there exists a constant c, 1 ≤ c <∞ such that

min{Hi(ξ), H(ξ)} ≥ c−1, for Hn−1-a.a ξ ∈ Sn−1 and for all i.(4.19)

In fact, c can be chosen to depend only on p, n and the Euclidian diameter of Ω. The following
lemma is a non-linear version of Lemma 3.7 in [52].

Lemma 4.4. Suppose 1 < p < n. Then, for every ε2 > 0 and γ > 0, there exist s0 > 0,
δ2 > 0, and a family of balls B on Sn−1, such that the following holds.

(a) Every member in B has radius s0.

(b) There is a constant c > 0, depending only on rint and rext,

such that any point of Sn−1 lies in at most c balls of B.

(c) Hn−1(Sn−1 \ F ) < ε2, where F = ∪B∈BB.
(d) If h(Ωi,Ω) < δ2, then, for any B ∈ B,

s1−n
0

(∫
B

∣∣∣(Hi

H

)p−1

− 1
∣∣∣γ dξ +

∫
B

∣∣∣(H
Hi

)p−1

− 1
∣∣∣γ dξ) < ε2 .

Proof. Our proof of Lemma 4.4 proceeds along the lines of Lemma 3.7 in [52], with Theorem
4.2 replacing Lemma 3.6 of [52]. Let ε2 > 0 and γ > 0 be given and let in the following ε > 0
be a degree of freedom to be determined based on ε2 > 0 and γ > 0. Given ε > 0 we let
η = min{η(ε), ε/10} where η(ε) is as stated in Theorem 4.2. Using this η we let ε1 = η/10
and apply Lemma 4.3. Doing this we get δ1 = δ1(ε1) = δ1(ε), {B(xj, rj)}, as in Lemma 4.3
and we in the following only consider i large enough to ensure h(Ωi,Ω) < δ1. Next, following
the proof of Lemma 3.7 in [52] we let s0 < min{rj : j = 1, . . . , N} be small enough to ensure
that the oscillation of J and Ji is less than ε1 when the oscillation of ξ is bounded by s0 and
rK(ξ) ∈ B(xj, rj/ε1) for some index j. One can then choose a family B of balls for which
properties (a), (b), hold and for which

Hn−1(Sn−1 \ F ) < ε1 ≤ ε, where F = ∪B∈BB.(4.20)

Now, using Theorem 4.2, and the choice for η made above, we see that if B̃ ∈ B, and if B is
a ball of radius s ≤ s0, contained in the concentric copy of B̃ rescaled by 1/ε1, then

(4.21)
1

Hn−1(B)

∫
B

| logH − cB|dξ < ε, cB =
1

Hn−1(B)

∫
B

logH dξ.

That cB can be chosen as stated follows from the proof of Theorem 4.2. Furthermore, using
Lemma 4.3 and the choice for δ1 made above, and arguing similarly, we see that if h(Ωi,Ω) < δ1,
then also

(4.22)
1

Hn−1(B)

∫
B

| logHi − cB,i|dξ < ε, cB,i =
1

Hn−1(B)

∫
B

logHi dξ.
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Let

(4.23) Ii(B) :=

∫
B
|Hi|p−1dξ∫

B
|H|p−1dξ

Then, using the construction above, using Theorem 4.2, Theorem 2.8, (4.21), (4.22), (4.19)
and the John-Nirenberg inequality, see [54], we can conclude, given γ > 0, that if h(Ωi,Ω) < δ1

then

(4.24) s1−n
∫
B

∣∣∣∣∣Ii(B)

∣∣∣∣HHi

∣∣∣∣p−1

− 1

∣∣∣∣∣
γ

dξ ≤ ĉε

for a harmless constant ĉ which may depend on p, n, γ but which is independent of ε. Further-
more, using Lemma 4.5, stated and proved below, we see that given ε there exists δ3 = δ3(ε)
such that if h(Ωi,Ω) < δ3, then

(4.25) |Ii(B)− 1| =
∣∣∣∣
∫
B
|Hi|p−1dξ∫

B
|H|p−1dξ

− 1

∣∣∣∣ ≤ 2ĉε

Combining (4.24) and (4.25), and using (4.19), we deduce that

s1−n
∫
B

∣∣∣(H
Hi

)p−1

− 1
∣∣∣γ dξ ≤ cε

(
1 + s1−n

∫
B

∣∣∣∣HHi

∣∣∣∣(p−1)γ

dξ

)
≤ ĉε

(
1 + cs1−n

∫
B

H(p−1)γdξ

)
,(4.26)

where all constants c may depend on p, n, γ but are independent of ε. Finally, using Theorem
4.2, Lemma 2.5, choosing ε = ε(p, n, γ) sufficiently small, and elementary estimates we can
conclude that

s1−n
∫
B

∣∣∣(H
Hi

)p−1

− 1
∣∣∣γ dξ ≤ c̄ε(4.27)

for yet an other constant c̄ may depend on p, n, γ but which is independent of ε. Given ε2 > 0
we now choose ε so small that c̄ε ≤ ε2, δ2 := min{δ1, δ3} = min{δ1(ε), δ3(ε)}. Then (c)
through (4.20) holds and the proof of one half of (d) is complete. The other part of (d) is
proved similarly. �

Lemma 4.5. Suppose 1 < p < n. Given ε, B, as in the proof of Lemma 4.4 there exists
δ3 = δ3(ε) such that if h(Ωi,Ω) < δ3, then

(4.28) |Ii(B)− 1| =
∣∣∣∣
∫
B
|Hi|p−1dξ∫

B
|H|p−1dξ

− 1

∣∣∣∣ ≤ 2ĉε

Proof. Using (4.15) we see that that is suffice to prove that there exists δ3 = δ3(ε) such that
if h(Ωi,Ω) < δ3, then

(4.29)

∣∣∣∣
∫
g−1
i (B)

|∇Ui|p−1dσj∫
g−1(B)

|∇U |p−1dσ
− 1

∣∣∣∣ ≤ 2ĉε

where dσi and dσ here denote the surface measure on ∂Ωi and ∂Ω, respectively. Let ∆i =
g−1
i (B), ∆ = g−1(B) and note, using Theorem 2.8, that (4.29) can be rewritten as

(4.30)

∣∣∣∣νi(∆i)

ν(∆)
− 1

∣∣∣∣ ≤ 2ĉε
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where νi and ν are, respectively, the measures associated to Ui and U in the sense of Theorem
2.8. (4.30) can now be proved by essentially arguing by contradiction as in the proof of
Theorem 4.2, see the proof of Lemma 4.4 in [66] for example. We here omit further details. �

Lemma 4.6. Suppose 1 < p < n. Then,

lim
i→∞

∫
Sn−1

|Hp
i −Hp| dξ = 0 .

Proof. To prove Lemma 4.6 we use an argument similar to [52, Proposition 3.14]. In the
following the notation A . B simply means that A/B is bounded from above by a positive
constant. Let q > p be as in Theorem 2.8 (i), (ii). Using this q, let γ := pq/((p− 1)(q − p)).
Given ε2 > 0 and γ, we can use Lemma 4.4 to conclude that there exist s0 > 0 and δ2 > 0,
and a family of balls B on Sn−1 such that statements (a) − (d) of Lemma 4.4 hold. In the
following let F be as in the statement of Lemma 4.4. Now, using the elementary fact that

|ap − bp| ≤ p(p− 1)−1(a+ b)|ap−1 − bp−1| for all a, b ≥ 0,

we see that ∫
F

|Hp
i −Hp| dξ .

∫
F

|Hp−1
i −Hp−1|(Hi +H) dξ.(4.31)

Next, using the Hölder inequality we see that∫
F

|Hp
i −Hp| dξ .

(∫
F

|Hp−1
i −Hp−1|

p
p−1 dξ

) p−1
p
(∫

F

(Hi +H)p dξ

) 1
p

=

(∫
F

∣∣∣(Hi

H

)p−1

− 1
∣∣∣ p
p−1
Hp dξ

) p−1
p
(∫

F

(Hi +H)p dξ

) 1
p

.(4.32)

Using the Hölder inequality once again we get(∫
F

∣∣∣(Hi

H

)p−1

− 1
∣∣∣ p
p−1
Hp dξ

) p−1
p

.

(∫
F

∣∣∣(Hi

H

)p−1

− 1
∣∣∣γ dξ)1/γ (∫

F

Hq dξ
) p−1

q
.(4.33)

Furthermore, using Theorem 2.8, Lemma 2.5 and elementary estimate we see that there exists
a constant c, independent of ε and well as i, so that(∫

F

(Hi +H)p dξ

) 1
p

+
(∫

F

Hq dξ
) p−1

q ≤ c.(4.34)

In particular, using this and the above displays, we can conclude that∫
F

|Hp
i −Hp| dξ . c

(∫
F

∣∣∣(Hi

H

)p−1

− 1
∣∣∣γ dξ)1/γ

.(4.35)

Hence, using statement (d) of Lemma 4.4, and the last display, we get

(4.36)

∫
F

|Hp
i −Hp| dξ . ε2 as i→∞ .
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Furthermore, again using the Hölder inequality, we obtain∫
Sn−1\F

|Hp
i −Hp| dξ ≤

∫
Sn−1\F

(Hp
i +Hp) dξ

≤
(
Hn−1(Sn−1 \ F )

) q
q−p

(∫
Sn−1\F

(Hq
i +Hq) dξ

) p
q

.

Now, this, (c) of Lemma 4.4 and Theorem 2.8 (ii) give us the desired result. �

4.3. The final proof of Lemma 4.3: weak convergence of p-capacitary measures.
Let ρi, ρ, and gi, g be the radial functions and Gauss maps of Ωi, Ω, respectively. Define

αi(ξ) = gi(ρi(ξ)ξ), α(ξ) = g(ρ(ξ)ξ), whenever ξ ∈ Sn−1.

Using that gi converges to g almost everywhere on Sn−1, and that ρi converges to ρ uniformly,
we see that αi converges to α almost everywhere on Sn−1 as i → ∞. To prove that µp(Ωi, ·)
converges to µp(Ω, ·) weakly, we need to prove that∫

Sn−1

f(ξ) dµp(Ωi, ξ)−
∫
Sn−1

f(ξ) dµp(Ω, ξ)→ 0,

or equivalently, that ∫
Sn−1

f(αi)H
p
i dξ −

∫
Sn−1

f(α)Hp dξ → 0,(4.37)

for each continuous function f on Sn−1. However, (4.37) follows immediately from Lemma
4.6, Theorem 2.8, the a.e. convergence of αi, and the inequality,∣∣∣∣∫

Sn−1

f(αi)H
p
i dξ −

∫
Sn−1

f(α)Hp dξ

∣∣∣∣
≤
∣∣∣∣∫

Sn−1

f(αi)(H
p
i −Hp) dξ

∣∣∣∣+

∣∣∣∣∫
Sn−1

(f(αi)− f(α))Hp dξ

∣∣∣∣ .
This completes the proof of Lemma 4.3. �

5. Variational formula for p-capacity of general convex domains

In this section we present the proof of Theorem 1.1 and Theorem 1.2. Given a bounded
convex domain, Ω ⊂ Rn, let hΩ denote the support function of Ω, let SΩ denote the surface
area measure on ∂Ω, and let g be the Gauss map of ∂Ω. Let Cno denote the class of all bounded
convex domains in Rn that contain the origin, and C+(Sn−1) the class of positive continuous
function on Sn−1.

5.1. Aleksandrov domains. Given a function h ∈ C+(Sn−1), let Ω ⊂ Rn be such that

(5.1) Ω̄ :=
⋂

ξ∈Sn−1

{x ∈ Rn : x · ξ ≤ h(ξ)}.

Note that since h is both positive and continuous, Ω must be an element of Cno . The convex
domain Ω ⊂ Rn is often called the Aleksandrov domain associated with h. For the Aleksandrov
domain Ω associated with h, we see that

hΩ ≤ h.
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Let

ωh = {ξ ∈ Sn−1 : hΩ(ξ) < h(ξ)}.
A basic fact established by Aleksandrov is that

SΩ(ωh) = 0.

Consequently,

(5.2) hΩ = h, a.e. with respect to SΩ.

By (2.34) and Lemma 4.1, we have for the p-capacity of any bounded convex domain Ω ⊂ Rn,

(5.3) Cp(Ω) =
p− 1

n− p

∫
Sn−1

hΩ(ξ) dµp(Ω, ξ).

For ω ⊂ Sn−1, if SΩ(ω) = 0, then µp(Ω, ω) = 0. This follows from the definition of µp(Ω, ·)
since |∇U |p is integrable on ∂Ω. Thus, µp(Ω, ·) is absolutely continuous with respect to SΩ.
Using Theorem 3.6 and Lemma 4.1, we obtain

(5.4) Cp(Ω, L)n−p ≥ Cp(Ω)n−p−1Cp(L),

for all convex domains Ω and L in Rn whenever 1 < p < n. Obviously, if h is the support
function of a convex domain Ω ∈ Cn0 , then Ω itself is the Aleksandrov domain associated
with h. We need Aleksandrov’s Convergence Lemma: if the functions hi ∈ C+(Sn−1) have
associated Aleksandrov domains Ωi ∈ Cn0 , then

(5.5) hi → h ∈ C+(Sn−1) uniformly =⇒ Ωi → Ω in the Hausdorff metric,

where Ω is the Aleksandrov domain associated with h. For h ∈ C+(Sn−1), denote by Cp(h)
the p-capacity of the Aleksandrov domain associated with h. Since the Aleksandrov domain
associated with the support function hΩ of a convex domain Ω ∈ Cn0 is the domain Ω itself,
we have

(5.6) Cp(hΩ) = Cp(Ω).

From Aleksandrov’s convergence lemma and the continuity of p-capacity on Cno we see that

Cp : C+(Sn−1)→ R is continuous.

Let I ⊂ R be an interval containing 0 and suppose that

ht(ξ) = h(t, ξ) : I × Sn−1 → (0,∞)

is continuous. For fixed t ∈ I, let Ωt ⊂ Rn be such that

Ωt =
⋂

ξ∈Sn−1

{x ∈ Rn : x · ξ ≤ h(t, ξ)}.

This is the Aleksandrov domain associated with ht. The family of convex domains {Ωt}t∈I
will be called the family of Aleksandrov domains associated with ht. Obviously, from (5.2) we
have, for each t ∈ I,

(5.7) hΩt ≤ ht and hΩt = ht, a.e. with respect to SΩt .
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5.2. Variation of p-capacity for Alexandrov domains. The proof of the following lemma
regarding the variation of p-capacity is similar to that of its analogue for volume (see [93,
Lemma 6.5.3]).

Lemma 5.1. Let I ⊂ R be an interval containing both 0 and some positive number and let

h(t, ξ) : I × Sn−1 → (0,∞)

be continuous and such that the convergence in

(5.8) h′+(0, ξ) = lim
t→0+

h(t, ξ)− h(0, ξ)

t

is uniform on Sn−1. If {Ωt}t∈I is the family of Aleksandrov domains associated with ht, then

lim
t→0+

Cp(Ωt)− Cp(Ω0)

t
= (p− 1)

∫
Sn−1

h′+(0, ξ) dµp(Ω0, ξ).

Proof. The uniform convergence of (5.8) implies that ht → h0, uniformly on Sn−1. Therefore,
the Aleksandrov convergence lemma, see (5.5), yields

(5.9) lim
t→0+

Ωt = Ω0.

Thus we conclude that µp(Ωt, ·) converges weakly to µp(Ω0, ·) as t → 0. Since the measures
µp(Ωt, ·) are finite, converge weakly to µp(Ω0, ·) and since the convergence in

lim
t→0+

h(t, ξ)− h(0, ξ)

t

is uniform on Sn−1, we obtain

(5.10) lim
t→0+

∫
Sn−1

ht(ξ)− h0(ξ)

t
dµp(Ωt, ξ) =

∫
Sn−1

h′+(ξ, 0) dµ(Ω0, ξ).

Now, (5.3), (5.6), (5.7) and the fact that µp(Ω, ·) is absolutely continuous with respect to SΩ,
imply that

(5.11) Cp(Ωt) =
p− 1

n− p

∫
Sn−1

hΩt(ξ) dµp(Ωt, ξ) =
p− 1

n− p

∫
Sn−1

ht(ξ) dµp(Ωt, ξ).

From (5.11), the definition of mixed p-capacity, and the inequality in (5.7) at t = 0, we have

lim inf
t→0+

Cp(Ωt)− Cp(Ωt,Ω0)

t
=

p− 1

n− p
lim inf
t→0+

∫
Sn−1

ht(ξ)− hΩ0(ξ)

t
dµp(Ωt, ξ)

≥ p− 1

n− p
lim inf
t→0+

∫
Sn−1

ht(ξ)− h0(ξ)

t
dµp(Ωt, ξ),

which, when combined with (5.10), gives

(5.12) lim inf
t→0+

Cp(Ωt)− Cp(Ωt,Ω0)

t
≥ p− 1

n− p

∫
Sn−1

h′+(ξ, 0) dµp(Ω0, ξ).

For the sake of brevity, set

l =
p− 1

n− p

∫
Sn−1

h′+(ξ, 0) dµp(Ω0, ξ).
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Inequality (5.12) and the mixed capacity inequality (5.4) show that

l ≤ lim inf
t→0+

Cp(Ωt)− Cp(Ωt,Ω0)

t
≤ lim inf

t→0+

Cp(Ωt)− Cp(Ωt)
1− 1

n−pCp(Ω0)
1

n−p

t
.

However, (5.9) gives limt→0+ Cp(Ωt) = Cp(Ω0) and hence,

(5.13) l ≤ Cp(Ω0)1− 1
n−p lim inf

t→0+

Cp(Ωt)
1

n−p − Cp(Ω0)
1

n−p

t
.

Now the definition of mixed p-capacity, the inequality in (5.7) and the uniform convergence
in (5.8) give

lim sup
t→0+

Cp(Ω0,Ωt)− Cp(Ω0)

t
=

p− 1

n− p
lim sup
t→0+

∫
Sn−1

hΩt(ξ)− h0(ξ)

t
dµp(Ω0, ξ)

≤ p− 1

n− p
lim sup
t→0+

∫
Sn−1

ht(ξ)− h0(ξ)

t
dµp(Ω0, ξ)

=
p− 1

n− p

∫
Sn−1

h′+(ξ, 0) dµp(Ω0, ξ)

= l.

This, together with the mixed capacity inequality (5.4), yields

l ≥ lim sup
t→0+

Cp(Ω0,Ωt)− Cp(Ω0)

t
≥ lim sup

t→0+

Cp(Ω0)1− 1
n−pCp(Ωt)

1
n−p − Cp(Ω0)

t
,

and hence,

(5.14) l ≥ Cp(Ω0)1− 1
n−p lim sup

t→0+

Cp(Ωt)
1

n−p − Cp(Ω0)
1

n−p

t
.

Combining (5.13) and (5.14) we see that

(5.15) l = Cp(Ω0)1− 1
n−p lim

t→0+

Cp(Ωt)
1

n−p − Cp(Ω0)
1

n−p

t
.

Define a function f : I → R by f(t) = Cp(Ωt)
1

n−p . Identity (5.15) shows that the right
derivative of f exists at 0. But this implies that the right derivative of fn exists at 0 and that

lim
t→0+

f(t)n−p − f(0)n−p

t
= (n− p)f(0)n−p−1 lim

t→0+

f(t)− f(0)

t
.

Thus the definition of f and (5.15) prove that

lim
t→0+

Cp(Ωt)− Cp(Ω0)

t
= (n− p)l.

�

Theorem 5.2. Let I ⊂ R be an interval containing 0 in its interior, and let

h(t, ξ) : I × Sn−1 → (0,∞)

be continuous, such that the convergence in

h′(0, ξ) = lim
t→0

h(t, ξ)− h(0, ξ)

t
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is uniform on Sn−1. If {Ωt}t∈I is the family of Aleksandrov domains associated with h, then

(5.16)
dCp(Ωt)

dt

∣∣∣
t=0

= (p− 1)

∫
Sn−1

h′(0, ξ) dµp(Ω0, ξ).

Proof. From Lemma 5.1 we see that we only need to show that

(5.17) lim
t→0−

Cp(Ωt)− Cp(Ω0)

t
= (p− 1)

∫
Sn−1

h′(0, ξ) dµp(Ω0, ξ).

To that end, define h̃(t, ξ) : −I × Sn−1 → (0,∞) by h̃(t, ξ) = h(−t, ξ). For the corresponding

family {Ω̃−t}t∈I of Aleksandrov domains associated with h̃ we have Ω̃−t = Ωt and Ω̃0 = Ω0.
Thus, by Lemma 5.1,

lim
t→0−

Cp(Ωt)− Cp(Ω0)

−t
= lim

t→0+

Cp(Ω̃t)− Cp(Ω̃0)

t
= (p− 1)

∫
Sn−1

h̃′(0, ξ) dµp(Ω0, ξ).

Obviously, h̃′(0, ξ) = −h′(0, ξ), which immediately implies (5.17). �

Remark 5.3. The Hadamard formula contained in Theorem 3.5 can be seen as a special case
of Theorem 5.2. Indeed, if Ω and L are bounded convex domain of class C2,α

+ , with support
functions hΩ and hL respectively, applying Theorem 5.2 to the function h(t, ξ) = hΩ(ξ)+thL(ξ)
(for t in a sufficiently small neighborhood of the origin) we immediately get h′ = hL and
consequently (5.16) coincides with (3.24).

5.3. Final proof of the variational formula and uniqueness. Let Ω be a bounded convex
domain containing the origin and let hΩ be its support function. Then hΩ > 0 on Sn−1. Let
f be an arbitrary continuous function on Sn−1. For |t| sufficiently small we have ht(ξ) :=
hΩ(ξ) + tf(ξ) > 0 for every ξ ∈ Sn−1. Let Ωt be the Aleksandrov domain associated with
ht. To complete the proof of Theorem 1.1 we simply note that Theorem 1.1 now follows
immediately from Theorem 5.2 applied to ht. To prove Theorem 1.2, we can state, in view
of the general variational formula of p-capacity for general bounded convex domains, the
p-capacitary Minkowski inequality for general bounded convex domains and its important
consequences:

Theorem 5.4. Suppose 1 < p < n. Let Ω0, Ω1 be convex domains in Rn. Then

(5.18) Cp(Ω0,Ω1)n−p ≥ Cp(Ω0)n−p−1Cp(Ω1),

with equality if and only if Ω0,Ω1 are homothetic.

Theorem 5.5. Let Ω0,Ω1 be convex domains in Rn and 1 < p < n. If Ω0,Ω1 have the same
p-capacitary measure, then Ω0 is a translate of Ω1 when p 6= n− 1, and Ω0,Ω1 are homothetic
when p = n− 1.

The proofs of Theorems 5.4 and 5.5 are exactly the same as those of Theorems 3.6 and 3.7
when the general variational formula (5.16) is used. Hence the proofs of Theorem 1.2 and
Theorem 1.1 are complete.

Remark 5.6. Suppose 1 < p < n and Ω is a bounded convex domain in Rn . Let

Cp(Ω,Sn−1) =

∫
Sn−1

dµp(Ω, ξ)
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denote the total p-capacitary measure of Ω. Then, using Theorem 5.4 we have the following
p-capacitary isoperimetric inequality,

(5.19) Cp(Ω,Sn−1)n−p ≥ nωn

(
n− p
p− 1

)p−1

Cp(Ω)n−p−1,

with equality if and only if Ω is a ball. To prove this isoperimetric inequality for p-capacity,
simply let Ω0 = Ω and Ω1 = B, where B is the unit ball, and use the fact that Cp(B) =

nωn

(
n−p
p−1

)p−1

. Then inequality (5.19) follows from the Minkowski inequality for p-capacity

(5.18).

6. Minkowski problem for p-capacity

6.1. Existence in the discrete case. In this part we prove a version of Theorem 1.3 for
purely atomic measures. Let µ be a finite Borel measure on Sn−1. Consider the following
conditions.

(A1) The measure µ is not concentrated on any great subsphere; that is,∫
Sn−1

|θ · ξ| dµ(ξ) > 0, for each θ ∈ Sn−1.

(A2) The centroid of the measure µ is at the origin; that is,∫
Sn−1

ξ dµ(ξ) = 0.

(A3) The measure µ does not have a pair of antipodal point masses; that is,

if µ({x}) > 0, then µ({−x}) = 0 for x ∈ Sn−1.

For a function h ∈ C+(Sn−1), denote by Ω(h) the Aleksandrov domain associated with h.

Lemma 6.1. Suppose 1 < p < 2 and µ is a discrete measure on Sn−1 satisfying conditions
(A1)-(A3). Let

(6.1) b = inf

{∫
Sn−1

h dµ : h ∈ C+(Sn−1) , Cp(Ω(h)) ≥ 1

}
.

Then there exists a polytope P0, with positive support function hP0, such that

(6.2)

∫
Sn−1

hP0 dµ = b , Cp(P0) = 1 ,

and

(6.3) µ =
b(p− 1)

n− p
µp(P0, ·) .

Furthermore, there exists b0 depending only on n and p such that

(6.4) 0 < b < b0

∫
Sn−1

dµ.
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Proof. We first show that the minimization in (6.1) can be reduced to minimizing only over
positive support functions of polytopes. Assume that the discrete measure µ has support
{ξ1, . . . , ξm} and weights ci, i = 1, . . . ,m, that is,

µ =
m∑
i=1

ci δξi .

For h ∈ C+(Sn−1), define

(6.5) P = {x ∈ Rn : x · ξi < h(ξi), i = 1, . . . ,m}.

Hence P is bounded by hyperplanes orthogonal to the vectors ξi with distance h(ξi) from the
origin. By condition (A1), P is bounded and thus P is an open convex polytope. It follows
that Ω(h) ⊂ P and hP (ξi) ≤ h(ξi), i = 1, . . . ,m. Thus,

Cp(P ) ≥ Cp(Ω(h)) and

∫
Sn−1

hP dµ ≤
∫
Sn−1

h dµ.

Therefore, we can take a minimizing sequence {hj} for problem (6.1) so that hj is the support
function of polytope Pj with faces orthogonal to ξi, i = 1, . . . ,m. Since it is a minimizing
sequence, there exists M > 0 such that, for all j,

m∑
i=1

cihPj(ξi) =

∫
Sn−1

hPj dµ ≤M.

Since all the ci’s are positive and Pj contains the origin, we have for all j,

hPj(ξi) ≤M ′ :=
M

min{ci : i = 1, . . . ,m}
.

This implies that the sequence Pj is bounded. By the Blaschke selection theorem (see [93]),
the sequence P̄j has a convergent subsequence with limit P ′, with respect to the Hausdorff
metric. Let P0 be the interior of P ′. By the continuity of p-capacity, hP0 is a minimizer for
problem (6.1). Next we prove that P0 is not empty. Note that P ′ is a polytope whose facets
have outer unit normals that belong to {ξ1, . . . , ξm}. Assume that its interior is empty and
let k < n be its dimension. By condition (A3), no two vectors in {ξ1, . . . , ξm} are antipodal.
This implies that k 6= n− 1, and thus k ≤ n− 2 is left as the only possibility. But p < 2, and
this implies that Cp(P

′) = 0 (see [30, p.154, Theorem 3]), contradicting Cp(P
′) ≥ 1.

By condition (A2), the support function of a translate of P0 is again a minimizer of (6.1).
Hence, we may assume that hP0 > 0 on Sn−1. Let f ∈ C(Sn−1). For t ∈ R, with |t| sufficiently
small, ht = hP0 +tf ∈ C+(Sn−1). But hP0 being a minimizer implies the existence of a constant
b′ such that

d

dt

(∫
Sn−1

ht dµ

)∣∣∣∣
t=0

= b′
d

dt
Cp(Ωt)

∣∣∣∣
t=0

,

where Ωt is the Aleksandrov domain associated with ht. Applying Theorem 1.1 yields∫
Sn−1

f(ξ) dµ(ξ) = b′(p− 1)

∫
Sn−1

f(ξ) dµp(P0, ξ) .

But f being arbitrary allows us to conclude that µ = b′(p− 1)µp(P0, ·). But Cp(P0) = 1, now
yields b = b′(n− p).
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To prove (6.4), we just let r = r(n, p) be such that the ball centered at the origin with
radius r has p-capacity equal to 1. Then,

b ≤
∫
Sn−1

r(n, p) dµ.

�

Lemma 6.2. Suppose 1 < p < 2. Let µ be a discrete measure on Sn−1 satisfying conditions
(A1) - (A3). Then there exists a polytope P such that

µp(P, ·) = µ .

Proof. This follows by appropriately rescaling the polytope P0 of Lemma 6.1. �

6.2. Existence in the general case. We prove the following result, which is Theorem 1.3.

Theorem 6.3. Suppose 1 < p < 2. If µ is a finite Borel measure on Sn−1 satisfying conditions
(A1)-(A3). Then there exists a bounded convex domain Ω such that

µp(Ω, ·) = µ .

Proof. Consider a sequence {µj}∞j=1 of discrete measures, satisfying conditions (A1)-(A3) and
converging to µ weakly. From condition (A1), we see that

inf
θ∈Sn−1

∫
Sn−1

|θ · ξ| dµ(ξ) > 0.(6.6)

Hence from the weak convergence, we may infer the existence of a constant c > 0 such that,
for all j,

inf
θ∈Sn−1

∫
Sn−1

|θ · ξ| dµj(ξ) ≥ c.(6.7)

There are constants c′, c′′ so that

c′ ≤
∫
Sn−1

dµj(ξ) ≤ c′′ .(6.8)

As in Lemma 6.1, let Pj be a polytope that solves the p-capacity Minkowski problem for the
discrete measure µj. Let

bj =

∫
Sn−1

hPj dµj ,

and let dj be the diameter of Pj. By condition (A1), we may assume that Pj has been

translated so that
dj
2
wj and −dj

2
wj belong to P̄j for some unit vector wj. This, and the

definition of a support function, implies that

hPj(ξ) ≥
dj
2
|ξ · wj| , for all ξ ∈ Sn−1.

Thus, using (6.7), we see that

bj =

∫
Sn−1

hPj dµj ≥
dj
2

∫
Sn−1

|ξ · wj| dµj(ξ) ≥
dj
2
c .

Using this, (6.4) and (6.8), we obtain

dj ≤ 2b0c
′′c−1.
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Therefore, the sequence Pj is bounded. A subsequence of P̄j converges to a compact convex
set K with interior Ω.

Case I: Ω is non-empty. In this case the proof is complete. Indeed, using (6.3) and the weak
convergence of p-capacitary measures (Lemma 4.1), we have

µ =
b(p− 1)

n− p
µp(Ω, ·), where b =

∫
Sn−1

hΩ dµ.

The solution of the p-capacity Minkowski problem for µ is now obtained by suitably rescaling
Ω.

Case II: Ω is empty. Then dim(K) < n. Since 1 < p < 2, the continuity of Cp and the fact
that Cp(Pj) = 1, for every j, ensures dim(K) = n− 1. But this is only possible if the surface
area measure, SK , is concentrated at two antipodal point masses in Sn−1 with equal weight,
i.e. there is a real α > 0 and a point x ∈ Sn−1 such that

SK = α(δx + δ−x).

By Lemma 2.18, there is a constant c that depends on n, p and the radius of a ball containing
all Pj so that

|∇Uj| ≥ c−1 a.e. on ∂Ωj,

where Uj is the p-equilibrium potential of Ωj. Suppose f ∈ C(Sn−1) is a non-negative function.
Then, by (1.11) and (6.3), as j →∞,∫

Sn−1

f dµj ≥
p− 1

n− p
bjc
−p
∫
Sn−1

f dSPj

→ p− 1

n− p
bc−p

∫
Sn−1

f dSK =
p− 1

n− p
bc−pα

(
f(x) + f(−x)

)
.

Using the weak convergence we have

lim
j→∞

∫
Sn−1

f dµj =

∫
Sn−1

f dµ

and consequently, ∫
Sn−1

f dµ ≥
(
f(x) + f(−x)

)
/c′ ,

where c′ is a positive constant independent of f . However, this is possible, for all continuous
non-negative f , only if µ has equal point masses at x and −x, see [30, p.42, Theorem 3].
The latter contradicts the assumption in (A3). Hence Case II can not occur and the proof of
Theorem 6.3 is complete. �

7. Regularity for the p-capacity Minkowski problem

In this section we prove Theorem 1.4 by developing a p-harmonic version of the corresponding
regularity theorem valid for p = 2 and developed in [52].
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7.1. More convex geometric facts. To proceed we need to introduce some additional no-
tions and notation from convex geometric analysis. Throughout the section Ω ⊂ Rn will
denote a bounded convex domain, and we first note that, after a translation, we can without
loss of generality, assume that

B(0, rint) ⊂ Ω ⊂ B(0, rext)(7.1)

where rint and rext are the ones defined in Remark 2.9. Recall also (following Remark 2.9)
that the Lipschitz constant of Ω is bounded by a constant depending only on rext/rint, the
eccentricity of Ω. In the following we set r0 = rint/10 and we let M denote the Lipschitz
constant of Ω. In the following, we will also assume, after a dilation and without loss of
generality, that

rint = 1 and hence that the eccentricity of Ω equals rext.(7.2)

Let x ∈ Ω and let Γ(x,Ω) denote the family of all pairs of points (x1, x2) in ∂Ω for which x is
on the line segment joining x1 to x2. The normalized distance, δ(x,Ω), of x to ∂Ω, is defined
by

δ(x,Ω) = min
(x1,x2)∈Γ(x,Ω)

|x− x1|
|x− x2|

.(7.3)

Note that since x, x1 and x2 are collinear in the definition of the set Γ(x,Ω), the distance
δ(x,Ω) is invariant under linear transformations. The distance δ(x,Ω) is referred to as the
normalized distance of x to ∂Ω.

Consider a half-space H in Rn and assume that H ∩ B(0, rint) = ∅. Let Π = ∂H and let
π denote the operation of radial projection onto Π, that is, if y ∈ Π and π(x) = y, then there
exists a(x) ∈ R such that x = a(x)y. We let

γH := H ∩ ∂Ω, Ω̃Π := π(γH).(7.4)

Then Ω̃Π, the radial projection of γH onto Π, is a convex subset contained in the hyperplane Π.
Let x be such that π(x) ∈ Ω̃Π. We then define a normalized distance from x to the boundary
of γH through the relation

δ(x, γH) = δ(π(x), Ω̃Π).

Here δ(π(x), Ω̃Π) is defined in the same way as in (7.3), i.e.

δ(π(x), Ω̃Π) = min
(x̃1,x̃2)∈Γ̃(π(x),Ω̃Π)

|π(x)− x̃1|
|π(x)− x̃2|

,

where Γ̃(π(x), Ω̃Π) denotes the family of all pairs of points (x̃1, x̃2) in ∂Ω̃Π for which π(x) is
on the line segment joining x̃1 to x̃2. This distance is changed by at most a bounded factor
for different choices of π depending on the location of the origin, provided the distance from
the origin to ∂Ω is bounded below by a fixed constant times the inner radius. Note also that
if we let nΠ denote the unit normal to Π pointing into H, then we have, using (7.2) and the
fact that H ∩B(0, 1) = ∅, that

1 ≤ x · nΠ ≤ rext, for all x ∈ Ω̃H .
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7.2. Technical lemmas. Recall that the p-equilibrium potential associated to Ω is the func-
tion U , which is defined and continuous on the closure of Rn \ Ω̄ and satisfies ∆pU = 0 in Rn \ Ω̄,

U = 1 on ∂Ω, and lim|x|→∞ U(x) = 0 .

Let u = 1− U and extend u to be identically equal to zero in Ω. Then, using Lemma 2.5, we
see that there exists a unique locally finite positive Borel measure ν on ∂Ω such that whenever
θ ∈ C∞0 (Rn), such that (supp θ) ∩B(0, 1) = ∅, then∫

|∇u|p−2 〈∇u, ∇θ〉 dx = −
∫
θ dν.

Moreover, there exists c = c(p, n,M), 1 ≤ c <∞, such that if w ∈ ∂Ω, r < r0, then

c−1rp−nν(∆(w, r)) ≤ (u(a′r(w)))p−1 ≤ c rp−n ν(∆(w, r/2)),

where a′r(w) ∈ Rn \ Ω̄ was introduced in (2.4) (ii). Furthermore, combining these facts with
the Hölder inequality and Theorem 2.8 (ii), we see that if w ∈ ∂Ω, r < r0, then(

1

Hn−1(∆(w, r))

∫
∆(w,r)

|∇U |pdHn−1

)1/p

≈
(

ν(∆(w, r))

Hn−1(∆(w, r))

)1/(p−1)

≈ u(a′r(w))

r
.

Using Lemma 2.13 we have that

lim
x∈Γ̃(y),x→y

∇u(x) = ∇u(y)(7.5)

exists for Hn−1 almost all y ∈ ∆(w, r). Assume that the limit in (7.5) exists at y ∈ ∆(w, r),
let Π̃y denote the supporting hyperplane to Ω at y, and let H̃y be the associated half-space

which is contained in Rn \ Ω̄. Without loss of generality, we can assume that y = 0, Π̃y =

{(x′, xn) : xn = 0} and H̃y = {(x′, xn) : xn > 0}. Let D = H̃y ∩ B(0, r) and let û be the
non-negative p-harmonic function in D that satisfies û = 1 on ∂D ∩ {(x′, xn) : xn > r/2},
û = 0 on ∂D ∩ {(x′, xn) : xn < r/4}, which is continuous on D̄ and takes boundary values
between 0 and 1 on ∂D ∩ {(x′, xn) : r/4 ≤ xn ≤ r/2}. Then, using the Harnack inequality
and the maximum principle, we see that

u(x) ≥ c−1u(a′r(w))û(x), whenever x ∈ D ∩B(0, r/10).(7.6)

Hence, using the facts that u(0) = 0 = û(0), that (7.5) exists at y = 0, we see that

〈∇u, en〉(0) ≥ c−1u(a′r(w))〈∇û, en〉(0).(7.7)

Note that 〈∇û, en〉(0) exists by continuity of ∇û up to the boundary ∂D∩{(x′, xn) : xn = 0},
see [69]. Furthermore, using Theorem 2.7 and Theorem 2.6 applied to the pair of functions û,
xn/r, we deduce that

〈∇u, en〉(0) ≥ c−1u(a′r(w))〈∇û, en〉(0) ≥ c−2u(a′r(w))

r
.(7.8)

Combining the estimates above, we see that(
1

Hn−1(∆(w, r))

∫
∆(w,r)

|∇U |pdHn−1

)1/p

≈ u(a′r(w))

r
. 〈∇u, en〉(0).(7.9)
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Since this argument can be repeated for Hn−1 almost all y ∈ ∆(w, r), we can conclude that(
1

Hn−1(∆(w, r))

∫
∆(w,r)

|∇U |pdHn−1

)1/p

≈ u(a′r(w))

r
≈ inf

∆(w,r)
|∇U |,(7.10)

whenever w ∈ ∂Ω, r < r0. We emphasize that all constants in these estimates only depend
on n, p and M . In particular, using (7.10), a simple covering argument and the Harnack
inequality, we can conclude that there exists a constant c = c(n, p,M) such that∫

∂Ω

|∇U |pdHn−1 ≤ c, c−1 ≤ inf
∂Ω
|∇U |.(7.11)

Following [52], the bulk of the argument below is devoted to the extension of estimates like
(7.10) and (7.11) to certain cross sections of ∂Ω which may not be comparable to balls.

Lemma 7.1. Let the sets γH , Ω̃Π be as defined in (7.4). Let r̂ be the inner radius of the set
Ω̃Π. Assume that x1, x̂1 ∈ γH , δ(x1, γH) ≈ 1. Then there exists c = c(p, n,M), 1 ≤ c < ∞,
such that

inf
∆(x1,r̂)

|∇U | ≤ c inf
∆(x̂1,r̂)

|∇U |.

Proof. This lemma is proved by using (7.10) and essentially copying, verbatim, the correspond-
ing proof, valid in the case p = 2, in [52] (see the proof of lemma 6.8 in [52]). In particular, the
proof uses only a few elementary facts about convex sets, the maximum principle, Harnack’s
inequality, the fact that the p-Laplace operator is independent of translations and dilations
and (7.10). Details are omitted. �

Lemma 7.2. Let the sets γH , Ω̃Π be as defined in (7.4). Let r̂ be the inner radius of the set
Ω̃Π. Then there exist c = c(p, n,M), 1 ≤ c <∞, and ε = ε(p, n,M) > 0, such that if x2 ∈ γH ,
then

1

Hn−1(∆(x2, r̂))

∫
∆(x2,r̂)

|∇U(x)|p−1dHn−1(x) ≤ cδ(x2, γH)(−1+ε)(p−1)(inf
γH
|∇U |)p−1.

Proof. Following [52, Theorem 6.13], we let x1 ∈ γH be a central point of γH , i.e. δ(x1, γH) ≈
1. We then choose x3 ∈ ∂γH ∩ Ω̃Π such that π(x2) is on the line segment with endpoints
determined by x3 and π(x1). If δ(x2, γH) ≈ 1, Lemma 7.1 implies that

inf
∆(x2,r̂)

|∇U | ≤ C inf
∆(x1,r̂)

|∇U | ≤ C inf
γH
|∇U |.

This and (7.10) yield the conclusion of Lemma 7.2. Hence, we assume in the following that
δ(x2, γH)� 1, and we note that we may assume, in particular, that

|x2 − x3| < r/10, where r = |x1 − x3|.
To proceed we introduce a number of auxiliary domains and functions. We let D = Ω ∩
B(x1, r/2) and Ω̃ be the convex hull of D and x3. Note that Ω̃ ⊂ Ω. We also let

C = {x3 + t(x− x3) : x ∈ D, t > 0}
and we note that C is an unbounded cone defined through x3 and D. Recall the function
u = 1 − U , where U is the p-capacitary potential for Ω, defined in Rn \ Ω̄. Similarly there
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exists a positive p-harmonic function uΩ̃ in the complement of the closure of Ω̃ which is

identical to zero on ∂Ω̃. In our argument we will also make use of the following lemma.

Lemma 7.3. Let D, x3 and C be as stated above. Let e = (x1−x3)/|x1−x3| and let Sn−1(x3) ⊂
Rn denote the unit sphere centered at x3. Given x ∈ D, let x′ = x3 + (x − x3)/|x − x3|, and
let D′ = DSn−1 denote the set of all such points x′. Then D′ is a bounded convex domain on
Sn−1(x3) with eccentricity bounded by a constant c = c(n,M), 1 ≤ c < ∞, and Rn \ C̄ is an
unbounded Lipschitz domains with Lipschitz constant depending only on n,M . Furthermore,
there exists a unique positive p-harmonic function uC in Rn \ C̄ which vanishes continuously
on ∂C and satisfies uC(x3 − e) = 1. Finally, there exists ε > 0, which is bounded from below
by a positive constant which only depends on n, p,M , such that

uC(x) = |x− x3|εf((x− x3)/|x− x3|),

whenever x ∈ Rn \ C̄.

We postpone the proof of Lemma 7.3 for now and proceed with the proof of Lemma 7.2.
Let A2r(x3) ∈ ∂B(x3, 2r) be such that the Euclidean distance from A2r(x3) to C is r. Based
on uΩ̃, uC, we also introduce the normalized functions

ũΩ̃(x) = uΩ̃(x)
u(A2r(x3))

uΩ̃(A2r(x3))
,

ũC(x) = uC(x)
u(A2r(x3))

uC(A2r(x3))
.

We now first note, simply using the maximum principle, that

u(x)
u(A2r(x3))

uΩ̃(A2r(x3))
≤ ũΩ̃(x),(7.12)

whenever x ∈ Rn \ Ω. By construction, Ω̃ ∩ B(x3, r/2) = C ∩ B(x3, r/2) and using that Ω is
convex we see that the interior of the domain B(x3, r/2) \ Ω̃ = B(x3, r/2) \ C is a Lipschitz
domain with Lipschitz constant determined by M . In particular, using Theorem 2.7 and the
Harnack inequality, we see that

ũC(x)

ũΩ̃(x)
≈ ũC(A2r(x3))

ũΩ̃(A2r(x3))
≈ 1,

whenever x ∈ B(x3, r/4) \ Ω̃. Furthermore, using the Harnack inequality, we also see that

ũΩ̃(x) ≈ ũΩ̃(A2r(x3)) ≈ u(A2r(x3)),(7.13)

whenever x ∈ ∂B(x3, 3r). We now apply the maximum principle in the domain B(x3, 3r) \ Ω̄,
using (7.12) and (7.13), to conclude that

u(x) . ũΩ̃(x), whenever x ∈ B(x3, 3r) \ Ω̄.

Combining this estimate with (7.13), noting that B(x3, r/4) \ Ω ⊂ B(x3, r/4) \ Ω̃, we can
conclude that

u(x) ≤ c̃ũC(x) = c̃uC(x)
u(A2r(x3))

uC(A2r(x3))
,(7.14)
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for all x ∈ B(x3, r/4) \ Ω, where c̃, 1 ≤ c̃ < ∞, depends only on n, p and the eccentricity of
Ω, and hence M . By a similar argument one can also prove (see [52]) that

c̃−1uC(x)
u(A2r(x3))

uC(A2r(x3))
= c̃−1ũC(x) ≤ u(x),(7.15)

for all x ∈ B(x1, r/4) \ C and with c̃ as above. Recall that r̂ is the inner radius of the set Ω̃Π.
Next, following [52] it can be seen that if c is sufficiently large, depending only on n, p and the
eccentricity of Ω, then the segment S = {(1 + cr̂)x : x = tπ(x1) + (1− t)x3, 0 ≤ t ≤ 1} (recall
that 0 ∈ Ω) has the property that every point x ∈ S is at a distance comparable to r̂ from
C and Ω. Using this, the facts that (1 + cr̂)x2 ∈ B(x3, r/4) \ Ω, (1 + cr̂)x1 ∈ B(x1, r/4) \ C,
(7.14) and (7.15), it follows that

u((1 + cr̂)x2) ≤ c̃uC((1 + cr̂)x2)
u(A2r(x3))

uC(A2r(x3))
,

uC((1 + cr̂)x1)
u(A2r(x3))

uC(A2r(x3))
≤ c̃u((1 + cr̂)x1).

Next, let z be located on the line segment between x3 and (1 + cr̂)x1 and at distance δr̂ from
x3 where 0 < δ � 1. In particular, z is at height δr̂ above C and close to π(x2). Arguing
similarly as in the proof of (7.6)-(7.8), we deduce that

uC(z)

δr̂
≥ c̃−1uC((1 + cr̂)x2)

r̂
.

Hence, combining the estimates above, we see that

(7.16) u((1 + cr̂)x2) ≤ c̃2uC(z)

δ

u(A2r(x3))

uC(A2r(x3))
≤ c̃3uC(z)

δ

u((1 + cr̂)x1)

uC((1 + cr̂)x1)
.

Next, using Lemma 7.3 we see that there exists 0 < ε � 1, depending only on n, p and the
eccentricity of Ω, such that

uC(z) = δεuC((1 + cr̂)x1).(7.17)

In particular, combining (7.16) and (7.17) we see that

u((1 + cr̂)x2) ≤ c̃3δ−1+εu((1 + cr̂)x1).(7.18)

By (7.10), we see that (7.18) implies that(
1

Hn−1(∆(x2, r̂))

∫
∆(x2,r̂)

|∇U(x)|p−1dHn−1

)1/(p−1)

. δ−1+ε inf
∆(x1,r̂)

|∇U |.

Since δ(x1, γH) ≈ 1, an application of Lemma 7.1 now completes the proof of the lemma. �

Proof of Lemma 7.3. Recall the definition of D′ stated in Lemma 7.3. Then D′ is a bounded
convex domain on Sn−1(x3), with eccentricity bounded by a constant c = c(n,M), 1 ≤ c <∞,
and Rn \ C̄ is an unbounded Lipschitz domains with Lipschitz constant depending only on
n,M . To prove the existence and uniqueness of uC we can assume, without loss of generality,
that x3 = 0 and that −e = en in an appropriate coordinate system. Given p, 1 < p < ∞,
we say that û is a minimal positive p-harmonic function in Rn \ C̄, relative to ∞, provided
û is a positive p-harmonic function in Rn \ C̄ with continuous boundary value zero on ∂C.
Using this notion we see that to prove the existence and uniqueness of uC, as stated in Lemma
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7.3, it is sufficient to establish the existence and uniqueness of a minimal positive p-harmonic
function û relative to ∞ in Rn \ C̄. To begin the existence part of the proof we note that
the existence of a minimal positive p-harmonic function û relative to ∞ in Rn \ C̄ follows
from standard arguments. For instance, one can take û to be the limit of a subsequence of
{um}∞m=1 where um is a positive p-harmonic function in (Rn \ C̄) ∩ B(0,m) with continuous
boundary value 0 on ∂C∩B(0,m) and um(en) = 1. Existence of um,m = 1, 2, . . . , follows from
a calculus of variations argument. Applying Lemma 2.1 – Lemma 2.4 to um,m = 1, 2, . . . ,
and using Ascoli-Arzelá theorem we can deduce the existence of û such that û(en) = 1. To
prove uniqueness of this û, let v̂ be another minimal positive p-harmonic function in Rn \ C̄
with v̂(en) = 1. Using Theorem 2.7 with Ω = (Rn \ C̄) ∩B(0, 2r), w = 0, we get, upon letting
r→∞, that v̂ = û. Thus û is the unique minimal positive p-harmonic function in Rn \ C̄ with
û(en) = 1. Note also, using Theorem 2.6 and Lemma 2.4, that û is infinitely differentiable in
Rn \ C̄. Finally, to obtain the desired form for uC = û we first note that uniqueness of û and
invariance of the p-Laplace equation under dilations immediately implies that

û(λx) = û(λen)û(x),(7.19)

whenever λ > 0 and x ∈ Rn \ C̄. We now want to prove that there exist ε > 0 such that

û(λen) = λε, for all λ > 0.(7.20)

To do this we first consider 0 < λ < λ′ < 1 and we define ε and ε′ through

û(λen) = λε, û(λ′en) = (λ′)ε
′
.(7.21)

Let σ∗ ∈ Sn−1 \ C̄ be such that

û(σ∗) = sup
σ∈Sn−1\C̄

û(σ).(7.22)

Furthermore, let ν ∈ N and let µ be a non-negative integer in the interval

[(lnλ/ lnλ′)ν, (lnλ/ lnλ′)(ν + 1)].

Then

λν+1 ≤ (λ′)µ ≤ λν .(7.23)

Using the maximum principle we see that

û(λν+1σ∗) ≤ û((λ′)µσ∗) ≤ û(λνσ∗).(7.24)

Now, (7.19), (7.21), (7.23) and (7.24) imply that

λ(ν+1)ε ≤ (λ′)µε
′ ≤ λνε,

λ(ν+1)ε′ ≤ (λ′)µε
′ ≤ λνε

′
.(7.25)

These inequalities imply that

λν(ε−ε′)+ε ≤ 1 ≤ λν(ε−ε′)−ε′ .(7.26)

Hence if ε− ε′ > 0, then since ν ∈ N is arbitrary, we can derive a contradiction based on the
right hand inequality in (7.26). Similarly when ε− ε′ < 0, we see that ε′ = ε and hence (7.20)
follows in this case. Furthermore, ε must be positive. The case 1 < λ < λ′ <∞ can be treated
similarly and by continuity we can then conclude the validity of (7.20), for all 0 < λ < ∞,
and hence

uC(x) = û(x) = û(|x|en)û(x/|x|) = |x|εf(x/|x|).(7.27)
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Finally, we see that it now only remains to establish the bound on ε > 0 from below by a
positive constant which only depends on n, p,M . To do this, we let θ(e, en) be the angle
between e ∈ Rn, |e| = 1, and en. Given θ0 ∈ (0, π], we set

C(θ0) := {λe : θ0 < θ(e, en) ≤ π and 0 < λ <∞}.(7.28)

We note that we can now, as a special case of the above construction, construct a unique
minimal positive p-harmonic function ũ in Rn \C(θ0), relative to∞, which satisfies ũ(en) = 1.
In this case we can specify the form of ũ further by using the fact that uniqueness and the
invariance of the p-Laplace equation under rotations imply that ũ is symmetric about the xn
axis. Thus we write ũ(r, θ) for ũ(x) when x ∈ Rn \C(θ0) and r = |x|, xn = r cos θ, 0 ≤ θ ≤ θ0.
Furthermore, differentiating (7.19) with respect to λ and evaluating at λ = 1 we find that

rũr(r, θ) = 〈x,∇ũ(x)〉 = 〈∇ũ(en), en〉û(r, θ).

Dividing this by rũ(r, θ), integrating, and then exponentiating, we get ũ(r, θ) = rγψ(cos θ)
where γ = 〈en,∇ũ(en)〉. Continuity of γ once again follows from uniqueness of ũ(·, θ0) and
Lemmas 2.1 – 2.4. Also, γ(θ0) is an increasing function of θ0 for θ0 ∈ (0, π), as follows easily
from comparing solutions in different cones and using the maximum principle for p-harmonic
functions. Finally ũ(x) = xn = r cos θ when θ0 = π/2, and hence γ(π/2) = 1. Now let θ̃0 be

the smallest θ̃0 ∈ (0, π) such

Rn \ C(θ̃0) ⊂ Rn \ C̄.
Using this and the maximum principle we see that the ε in (7.20), (7.27), must satisfy ε ≥ θ̃0

and this completes the proof of Lemma 7.3. �

If Q is a cube in Rn−1 with sides of length s, then in the following we denote by Q∗ the
concentric cube with sides of length bns where bn = 10((n− 1)!)2.

Lemma 7.4. Let γH , Ω̃Π be as defined in (7.4). Let E := Ω̃Π and let r̂ be the inner radius
of E. Choose coordinate axes parallel to the axes of an optimal inscribed ellipsoid in E. Let
Q be a tiling of E by cubes with sides of length s parallel to the coordinate axes. Assume that
s < r̂. For each cube Q ∈ Q, let

δ∗(Q) = max
x∈Q∗∩E

δ(x,E).

Then, ∑
{Q: δ∗(Q)<δ}

|Q| ≤ cnδ|E|.

Proof. This purely geometric lemma is a formulation of Lemma 6.16 in [52]. �

Lemma 7.5. Suppose 1 < p < 2. Let Ω ⊂ Rn, n ≥ 2, be a bounded convex domain. Then
there exist c = c(p, n,M), 1 ≤ c <∞, and ε = ε(p, n,M) > 0, such that∫

γH

δ(x, γH)1−ε|∇U(x)|pdHn−1(x) ≤ cHn−1(γH)(inf
γH
|∇U |)p

for every set of the form γH := H∩∂Ω where H is a half-space in Rn such that H∩B(0, rint) =
∅.
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Proof. Let E := Ω̃Π be as introduced in (7.4) and let r̂ be the inner radius of E. Following
Lemma 7.4, let Q be a tiling of E by cubes with sides of length s < r̂. Using Lemma 7.4 we
see, for any ε > 0, that∑

Q∈Q

δ∗(Q)(−1+ε)(p−1)|Q| =
∞∑
k=1

∑
{Q∈Q : δ∗(Q)≈2−k}

δ∗(Q)(−1+ε)(p−1)|Q|(7.29)

≤ c

∞∑
k=1

(2k)(1−ε)(p−1)2−k|E| ≤ cε|E|,

provided that 1 ≤ p ≤ 2. Let Q̂ = π−1(Q). Then Hn−1(Q̂) ≈ |Q| and Hn−1(γH) ≈ |E|. Using
this we deduce∫

γH

δ(x, γH)1−ε|∇U(x)|pdHn−1 ≤
∑
Q∈Q

∫
Q̂

δ(x, γH)1−ε|∇U(x)|pdHn−1

≤
∑
Q∈Q

δ∗(Q)1−ε
∫
Q̂

|∇U(x)|pdHn−1.(7.30)

Hence, using (7.30) and Theorem 2.8 we see that∫
γH

δ(x, γH)1−ε|∇U(x)|pdHn−1 ≤
∑
Q∈Q

δ∗(Q)1−εHn−1(Q̂)

(
1

Hn−1(Q̂)

∫
Q̂

|∇U(x)|p−1dHn−1

)p/(p−1)

.

Combining this estimate, (7.29) and Lemma 7.2 we see that∫
γH

δ(x, γH)1−ε|∇U(x)|pdHn−1 ≤
∑
Q∈Q

δ∗(Q)(1−ε)Hn−1(Q̂)δ∗(Q)(−1+ε)p(inf
γH
|∇U |)p

≤ cHn−1(γH)(inf
γH
|∇U |)p,

and this completes the proof of the lemma. �

7.3. The final proof of regularity. Let O ⊂ Rn−1 be a bounded convex domain and let ν
be a given Radon measure on O. We say that a convex function φ : O → R is an Alexandrov
solution to the Monge-Ampére equation

det(∇2φ) = dν(7.31)

if for any Borel set E ⊂ O it holds that∣∣∣∣⋃
x∈E

∂φ(x)

∣∣∣∣ = ν(E)(7.32)

where ∂φ(x) is the subdifferential of φ at x and |E| here is the (n− 1)-dimensional Lebesgue
measure of E ⊂ Rn−1. If this is the case, we also say that φ solves (7.31) in the sense of
Alexandrov. Recall that ∂φ(x), x ∈ O, is the set of all y ∈ Rn−1 such that the plane

{(z, zn) ∈ Rn : zn = φ(x) + y · (z − x)}
is tangent to the graph of φ at (x, φ(x)). For a subset E ⊂ O, we define

∂φ(E) = ∪{∂φ(x) : x ∈ E}.
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The set-valued mapping ∂φ is related to the set-valued Gauss mapping

g((x, φ(x))) =
{
ξ = (y,−1)/

√
1 + |y|2 ∈ Sn−1 : y ∈ ∂φ(x)

}
.

The coordinate ξn = −1/
√

1 + |y|2 gives the Jacobian of the change of variable dy = |ξn|−ndξ.
Using this notation and (7.32), we see that the function φ is an Alexandrov solution to (7.31)
if

ν(E) =

∫
g(Ē)

|ξn|−ndξ,(7.33)

for every Borel set E ⊂ O and where Ē = {(x, φ(x)) : x ∈ E}.

Theorem 7.6. Let O ⊂ Rn−1 be a bounded convex domain, let ν be a given Radon measure
on O and let ε > 0. Suppose that φ is a convex function which solves

det(∇2φ) = dν

on O in the sense of Alexandrov. Suppose that for every set F of the form F = {x ∈ O :
φ(x) < a · x+ b}, we have ∫

F

δ(x, F )1−εdν(x) ≤ cν(F/2)

for some constant c which is independent of a and b. Suppose that lx0 is a supporting linear
function to φ at x0 ∈ O. Then either

{φ = lx0} = {x0}(7.34)

or

the extremal points of the set {φ = lx0} are contained in ∂O.(7.35)

Furthermore, if φ is strictly convex, then φ ∈ C1,t for some t > 0.

Proof. In the case ε = 1, Theorem 7.6 is a summary of Theorem 1 and Theorem 2 in [17],
see also [15]. In Theorem 7.1 in [52], Jerison extended this theorem to allow for ε > 0 and
the contribution in [52] is the proof of Theorem 7.6 for ε > 0 arbitrarily small. Furthermore,
in [52], see p. 44-45, it is proved that a power δ(x, F )1−ε, for some ε > 0, is the best one can
hope for in Theorem 7.6 and that this power is at the borderline of the regularity theory for
the Monge-Ampére equation. �

Lemma 7.7. If Ω is a bounded convex domain in Rn, 1 < p < n, and let U be the p-equilibrium
potential of Ω. Let µ be a positive measure on Sn−1 satisfying

µp(Ω, E) =

∫
g−1(E)

|∇U |p dHn−1 =

∫
E

dµ

for every Borel set E ⊂ Sn−1. Suppose that dµ = ψ(ξ)dξ for some integrable function ψ and
ψ(ξ) ≥ c > 0 for all ξ ∈ Sn−1. Let φ denote the convex, Lipschitz function defined on a
bounded convex domain O ⊂ Rn−1 whose graph {(x′, φ(x′)) : x′ ∈ O} is a portion of ∂Ω. Then
φ satisfies the Monge-Ampére equation

det(∇2φ(x′)) = (1 + |∇φ(x′)|2)(n+1)/2|∇U(x′, φ(x′))|p(ψ(ξ))−1 with
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ξ =
(−1,∇φ(x′))√
1 + |∇φ(x′)|2

,(7.36)

in the sense of Alexandrov.

Proof. The proof follows along the lines of the proof of Proposition 7.5 in [52]. �

Proof of Theorem 1.4. Let p, 1 < p < 2, be fixed and consider n ≥ 2. Let µ = µp(Ω, ·)
and Ω be as in the statement of Theorem 1.4. Assume that k = 0 and that α ∈ (0, 1). By
assumption dµ = ψdHn−1 with strictly positive density ψ, hence ψ(ξ) ≥ c > 0 for all ξ ∈ Sn−1

and for some c > 0, and if ψ ∈ C0,α(Sn−1) then ψ is also bounded from above. Using (2.3)
and a translation and rotation, we can without loss of generality assume, locally, that

Ω ∩B(0, 4r0) = {x = (x′, xn) ∈ Rn : xn > φ(x′)} ∩B(0, 4r0),

∂Ω ∩B(0, 4r0) = {x = (x′, xn) ∈ Rn : xn = φ(x′)} ∩B(0, 4r0),(7.37)

φ(0) = 0, in an appropriate coordinate system, for a convex Lipschitz function φ and for
some r0 > 0. Let B′(0, 4r0) be the orthogonal projection of the ball B(0, 4r0) onto the plane
xn = 0 in the local coordinate system. Then the graph {(x′, φ(x′)) : x′ ∈ B′(0, 4r0)} describes
∂Ω∩B(0, 4r0). Let η0 = supx′∈B′(0,4r0) φ(x′), consider η ∈ (0, η0) and let Oη = {x′ ∈ B′(0, 4r0) :

φ(x′) < η}. Then Oη is a convex set in Rn−1. Let φη = φ− η in Oη. Now, by construction φη
is convex in Oη, φη = 0 on ∂Oη, and using Lemma 7.7, we can conclude that

(7.38) det(∇2φη(x
′)) = dν(x′), in Oη

in the sense of Alexandrov, where

(7.39) dν =
|∇U(x′, φ(x′))|p

ψ(ξ)(1 + |∇φ(x′)|2)−(n+1)/2
with ξ =

(−1,∇φ(x′))√
1 + |∇φ(x′)|2

,

and where U is the p-equilibrium potential associated to Ω. Using Lemma 7.5 we see there
exist c = c(p, n,M), 1 ≤ c < ∞, and ε = ε(p, n,M), 0 < ε � 1, such that for every set F of
the form F = {x′ ∈ Oη : φη(x

′) < a · x′ + b}, we have∫
F

δ(x′, F )1−εdν(x′) ≤ c

∫
1
2
F

dν(x′).(7.40)

We now want to verify that φη is strictly convex. To do this suppose that lx0 is a supporting
linear function to φη at x′0 ∈ Oη. Using Theorem 7.6 we see that either (7.34) or (7.35) holds.
If (7.34) holds then φη is strictly convex at x′0 ∈ Oη and hence we can assume that (7.35) holds.
In this case the extremal points of the set {φη = lx′0} are contained in ∂Oη and, as there must
be at least two extremal points of the set {φη = lx′0} and since φη = 0 on ∂Oη, we can conclude
that lx′0 ≡ 0. However, since x′0 ∈ Oη and {φη(x0) = lx′0(x′0) ≡ 0} we see that this implies
the existence of extremal points of {φη = lx′0} in the interior of Oη which is a contradiction.
Hence (7.34) must hold and we can conclude that φη is strictly convex in Oη. Next, using
the fact that φη is strictly convex we can apply Theorem 7.6 and conclude that ∂Ω is locally
(and then globally, by a covering argument) C1,t-regular for some t > 0. Having concluded
that Ω is C1,t-regular for some t > 0, it follows from [69] that ∇U is continuous on R \ Ω,

i.e. ∇U is continuous up to the boundary. In fact, ∇U is even C0,t̃-regular, for some t̃ > 0,
up to the boundary. Using this and the fact that U is bounded we can conclude that |∇U |
is bounded from above on ∂Ω. Furthermore, essentially repeating the barrier type argument
in (7.6)-(7.8) and using the strong maximum principle, we can also conclude that |∇U | is
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positively bounded from below on ∂Ω. The same conclusion also follows by an application of
Lemma 2.18. Hence, put together, using this, the assumption on ψ, (7.38), (7.39), we see that
there exists 0 < λ1 < λ2 <∞ such that

(7.41) 0 < λ1 ≤ det(∇2φη(x
′)) ≤ λ2 <∞, in Oη,

and that the right hand side in (7.39) is C0,t̃-regular for some t̃ > 0. Using this and the

results in [15] and [16], we can conclude that φη, and hence φ, is C2,t̃-regular. This implies

that ∇U is C1,t̂-regular up to the boundary of Ω, for some t̂ > 0, and hence, in particular,
that the right hand side of the Monge-Ampére equation is C0,α-regular. Now again using
results in [15] and [16] we can conclude that φ is in fact C2,α-regular. The reminder of the
regularity statements of Theorem 1.4 now follow from the seminal and by now well-known
work of Caffarelli, see [14], [15] and [16]. We omit additional details. 2
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