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Abstract

In this master thesis we present an algorithm for distributed event-triggered
pinning control of a network of nonlinear oscillators.

In order to extend the concepts of connected, switching connected and slow
switching topology to a pinning control scenario, we introduce the definitions of
pinned, switching pinned and frequently pinned topology respectively.

For each of these three topologies we try to identify the conditions under
which the network achieves exponential convergence of the error norm, find a
lower bound for the rate of convergence and prove that the trigger sequences do
not exhibit Zeno behavior.

Some numerical results are presented for each of the considered scenarios;

further numerical results are presented for four elementary static topologies.
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Chapter 1

Introduction

In this chapter we introduce the pinning control problem and we outline the

difference between a pinning control problem and a synchronization problem.

In Section [I.I] we give a quick overview of the existing master thesis about
synchronization and pinning control in a time-continuous fashion. Then we
present the event-triggered approach in automatic control and we introduce its
application to the problems of synchronization and pinning. We mention the
self-triggered approach for completeness as well. In Section [I.2] we explain how
our master thesis contributes to the ongoing research on event-triggered pin-
ning control. In Section [1.3] we present some of the employed notations and
properties. In Section [I.4] we review some well known concepts of elementary
graph theory and then we introduce some new definitions specifically designed
to address the pinning control problem. In Section [I.5] we define the mathemat-
ical model to which our analytical considerations and numerical experiments
refer, giving a description of the plant that we would like to control in terms
of the formalism introduced in Section [1.4l Then we provide a mathematical
expression of the control law as well. Section [1.6|concludes the chapter with the

outline of this master thesis.



6 1.1. EXISTING WORK

1.1 Existing Work

The problem of synchronizing a multi-agent system has been widely addressed
in the literature of the last decade. Among the countless real life applications
of this problem, we can mention sensor fusion [1l 2], flocking [3], platooning and
formation control [ Bl 6] and synchronization of power grids [7]. An extensive
list of applications in biology, neuroscience, computer science, engineering, social
sciences and economy can be found in [§].

In its most basic formulation, this problem features a network of interacting
first-order integrators and the aim is to drive them onto the average of their
initial states applying an appropriate communication protocol. This is usually
referred to as the consensus problem. When agents with more complicated dy-
namics are considered, the aim is to drive them onto a common trajectory, which
in general is not known a priori. This is usually referred to as the synchroniza-
tion problem.

In [9, 10] the consensus problem is addressed with linear and nonlinear inter-
action protocols, taking also into account possible time delays in the communica-
tion, while in [IT], 12} [I3] the problem of synchronizing networks of second-order
integrators is addressed.

Of course a static interaction protocol among the agents is a too restrictive
model for most real world applications. Communication failures, variations in
the intensity of the interactions and formation of new communication channels
must often be taken into account, leading to more complex yet realistic network
models. Synchronization over time-varying topologies is addressed in [I4] [15]
16] for integrators, in [I7] for linear dynamical systems and in [I§] for generic
systems. Active variation of the interaction protocol is addressed in [19] for
simple integrators, in [20] for linear dynamical systems, in [21] for nonlinear
oscillators and in [22] for non identical nonlinear agents. Disconnected topologies
have been recently addressed in [23] for simple integrators and in [24] [25] for
generic systems.

A more challenging problem consists in driving a network of interacting

Pinning Control of Networks: an FEvent-Triggered Approach



CHAPTER 1. INTRODUCTION 7

agents onto a well defined reference trajectory. In this problem, usually referred
to as pinning control problem, a feedback control law is applied to a small sub-
set of the agents which are said to be pinned, while convergence of the other
agents to the reference must be obtained thanks to their interactions with the
pinned agents. Pinning control of nonlinear oscillators over a static topology is
addressed in [26] 27]. Adaptation of interaction intensity is studied for pinning
control of nonlinear oscillators in [28]. In [29] the concept of pinning controllabil-
ity is defined in terms of the spectral properties of the network topology, and the
roles of the coupling and control gains are discussed as well. In [30] criteria for
global pinning controllability of networks of nonlinear oscillators are provided in
terms of the network topology, the oscillator dynamics and the feedback control
law. Strategies for optimal pin selection are presented in [31],[32]. In [33] analyt-
ical tools are developed to study the controllability of a network and to identify
the optimal subset of driver nodes. Decentralized adaptive pinning strategies
are introduced in [34, [35]. In [36] pinning control over a time-varying topology
is investigated. Pinning control with nonlinear interaction protocol is studied
in [37). In [38] pinning controllability in networks with and without commu-
nication delay is investigated and a selective pinning criterion is proposed. In
[39] local stochastic stability of networks under pinning control is studied, with
stochastic perturbations to the interaction intensity. In [40] pinning control is
applied to a network of non identical oscillators. Recently, an overview of the
pinning control problem has been presented in [41].

In many real scenarios a large number of dynamical systems are supposed to
communicate over a wireless medium, which represents a shared resource with
limited capacity, and actuators might have a limited switching frequency. In ad-
dition to this, distributed control laws are supposed to be hosted and executed
on small microprocessors embedded on the network agents. In such scenarios,
time continuous interaction protocols and control laws become unrealistic as-
sumptions, since they require uninterrupted information flow among the agents
and continuous control updating. Limitations imposed by the network have

been traditionally addressed via periodic updates. This approach creates both

Pinning Control of Networks: an FEvent-Triggered Approach



8 1.1. EXISTING WORK

the problem of synchronization of sampling instants among the interconnected
systems and the problem of simultaneous transmission of all the information
over the network. Moreover, the sampling period must be chosen in order to
guarantee stability and performance in all the possible operating conditions,
thus leading to conservative results.

More recently, event-triggered control strategies have been introduced as an
alternative to time-driven control updates. In such strategies, control updating
and communication occur only when some conditions, usually related to the
state of the network, are satisfied. On the other hand, if these conditions are
not satisfied, the control signal is held constant and no communication takes
place. Therefore with this mechanism the sampling rate is adapted according
to the current condition of the network and unnecessary transmission of data
is avoided. Particular attention is paid to avoiding the generation of an infinite
number of events within a finite time interval.

Event-triggered designs have been developed for consensus algorithms and
for control and synchronization of linear dynamical systems. Event-triggered
control strategies are studied in [42], 43|, [44], 451 46, [47] for single dynamical sys-
tems. Event-triggered control is applied in [48] on a network of linear dynamical
systems, while in [49] [50] on a network of simple integrators with particular at-
tention on the comparison between a centralized and a decentralized approach.
Event-triggered control for a network of non identical linear systems is addressed
n [51]. In [52] event-triggered control is applied to integrators interacting over
disconnected time-varying topologies. Event-based communication is applied
to the consensus problem in [53] and in [54] taking into account possible com-
munication delays and double integrators. On-line estimation of some topology
characteristic is exploited in [55] to enhance the performances of event-triggered
consensus algorithms. Performances obtainted with continuous, sampled and
aperiodic updates over a nonlinear interaction protocol are compared in [56] for
simple integrators. In [57] a model based event-triggered control algorithm is
applied for synchronization of nonlinear oscillators.

In order to overcome the problem of checking continuously the triggering

Pinning Control of Networks: an FEvent-Triggered Approach



CHAPTER 1. INTRODUCTION 9

conditions, the self-triggered approach has been developed, in which every trig-
ger instant is computed at the previous one using information on the state of the
system currently available to the controller. Self-triggered control is applied for
single nonlinear systems in [58]. In [59] self-triggered control is applied on a net-
work of simple integrators with particular attention on the comparison between
a centralized and a decentralized approach. A comprehensive introduction to
both event-triggered and self-triggered control has been recently provided in

[60].

1.2 Our Contribution

The main contribution of our master thesis is the application of a decentralized
event-triggered approach on a pinning control scenario for a network of nonlinear
systems. Our starting point is the novel algorithm presented in [57] for event-
based synchronization of nonlinear oscillators. Besides, we apply pinning control
to the oscillators in order to drive them onto a reference trajectory known a
priori. Pinning controllability of the network is studied according to the criteria
introduced in [30]. time-varying topologies are taken into account as well.

For each considered scenario we outline the hypotheses under which conver-
gence to the reference trajectory can be achieved while avoiding accumulation
points of events. Moreover, a lower bound for the rate of convergence is provided

in each case.

1.3 Preliminary Notation and Properties

Let us now present some of the employed notations and properties.

The operator | | on a set shall indicate the cardinality of that set. The
operator || || on a vector shall indicate the euclidean norm of that vector.

For a positive integer n we shall denote with 1, the vector made up of n

unitary components, and with I,, the identity matrix of order n.

Pinning Control of Networks: an FEvent-Triggered Approach



10 1.3. PRELIMINARY NOTATION AND PROPERTIES

The operator ® between two matrices indicates the Kronecker product. Con-
sider two square matrices A € Ry, xn, and B € Ry, xn,. For i =1... N, we
denote with a; and «; the i-th eigenvalue of matrix A and the corresponding
eigenvector, while for j = 1... N, we denote with b; and §; the j-th eigenvalue
of matrix B and the corresponding eigenvector. Then the eigenvalues of matrix
A ® B are given by A;; = a; b; while the corresponding eigenvectors are given

by 'Uij = Oy (29 ﬂj'

Consider four matrices A,B,C,D such that A-C and B-D are defined. Then
it holds that (A® B) - (C® D)= (A-C)® (B - D).

Given a vector v € R,, we shall denote vy = 1ny @ v € Ryy,.

A function f : R, — R, is said to be one-side Lipschitz with a Lipschitz
constant Ly if for any =,y € R,, it holds that (x—y)T [f(z)— f(y)] < L¢|lz—y|*
It is said to be globally Lipschitz if ||f(x) — f(y)|| < Ly||z — y||. It is easy to
show that if a function is globally Lipschitz with a constant Lz, then it is also
one-side Lipschitz with the same constant, while the reverse implication is not

true.

A sequence of time instants 7 = {t; € R} is said to exhibit Zeno behavior
if there exists an interval Z = [a,b] C R such that for any k& > 0 it holds that
|ZNT| > k. In other words, we say that a time sequence exhibits Zeno behavior

if it has an accumulation point somewhere on the time axis.

Remark 1. For a time sequence that exhibits Zeno behavior, there exists at
least ome finite time window in which infinite samples of said sequence can be
found. Vice versa, absence of Zeno behavior guarantees that there is always a
finite number of samples of that sequence in any finite time winodw, but this does
not rule out the possibility of two consecutive samples being arbitrarily close to

each other.

Pinning Control of Networks: an FEvent-Triggered Approach
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1.4 Elements of Graph Theory

Let us consider a set V = {1,2,...,N} and a set £ C V x V. The couple
G = {V,&} is called a graph. The elements of V are called nodes of the graph
while the elements of £ are called edges of the graph.

If (i,j) € € < (j,i) € £ the graph is said to be undirected, otherwise it
is said to be directed. If (i,i) ¢ £ Vi € V the graph is said to be simple. All the
graphs considered in our master thesis are simple and undirected. Therefore, all
the definitions and properties given from now on are related to this particular
kind of graphs.

In a simple undirected graph nodes ¢ and j are said to be neighbors If
(i,7) € €. The set of the neighbors of node i is denoted with A; C V. The
number d; = |N;| of the neighbors of node i is called degree of node i. The
diagonal matrix D = diag{di,da,...,dn} is called degree matriz of the graph.
The maximum degree in the graph shall be denoted with A.

The matrix A = AT = {a;j} € Ryxn such that

1 if nodes ¢ and j are neighbors
Q5 = (11)

0 otherwise

is called adjacency matriz of the graph.

Thecan be shown that the Laplacian has zero row sum, and therefore it holds
that L-1xy = 0. It is also easy to show that a Laplacian is positive semidefinite
with at least one null eigenvalue.

A set C C Vs called a component of the graph if its nodes have no neighbors
outside of C itself. When a component has no subset that is itself a component, it
is said to be connected. It is possible to show that the number of null eigenvalues
of the Laplacian coincides with the number of connected components in the
graph.

The graph formalism provides an excellent starting point to model those
control problems featuring a number of interacting systems. Nevertheless, by

adding just a few more elements we can obtain a solid base to specifically tackle

Pinning Control of Networks: an FEvent-Triggered Approach



12 1.4. ELEMENTS OF GRAPH THEORY

the pinning control problem.

Definition 1 (augmented graph). Given a graph G = {V,E}, let us consider a
set P C V. The nodes belonging to P are said to be pinned. We shall denote
with r the number of pinned nodes in the graph. Let us also consider two positive
definite matrices 'y K > 0 which we shall call interaction protocol and control
protocol respectively. The norms of I', K shall be called coupling and control
strength and shall be denoted with ~, k respectively. The set G = {V,g,P,T,K}
is called augmented graph. The diagonal matriz P = diag{p1,ps...pN} such
that

1 if node i is pinned

0 otherwise
1s called pinning matrix of the augmented graph. Finally, the matriz
L=L®I'+P®K (1.3)

is called augmented Laplacian of the augmented graph.

It is immediate to see that the augmented Laplacian is a positive semidefi-
nite matrix and that it has as many null eigenvalues as the number of connected
components in the augmented graph that do not contain pin nodes. An aug-
mented graph in which all the connected components contain at least one pin
is said to be pinned. In Appendix [A] we prove that the augmented Laplacian of
a pinned graph is positive definite.

The concept of augmented graph provides a formalism specifically designed
to address the pinning control problem. It may be worth pointing out here that
in general none of the elements of an augmented graph are necessarily supposed
to be constant over time. According to the nature of the modeled problem, all

the elements of an augmented graph may well be time-varying.

Pinning Control of Networks: an FEvent-Triggered Approach
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1.5 Problem Statement

Let us consider an augmented graph G = {V,&,P,T',K}. For the moment
being, let us assume that the graph is fixed, meaning that all its elements are
constant over time.

To each node of the graph, let us associate a nonlinear system whose state

is denoted with z; € R,, and whose dynamics is described by

Let function f be globally Lipschitz with a Lipschitz constant L. Let us
assume that we want all the systems to synchronize onto an a-priori known refer-
ence trajectory s(t), whose evolution is described by $ = f(s). We shall call this
goal complete synchronization. It is easy to see that complete synchronization

may be formalized as

lim ||s—|| =0 i=1...N (1.5)

t——+o0

For ¢,j = 1... N, let us introduce the mismatches e; = s — z; and e;; =
Tj — Ty = €; — €5.
For each node 4, let us define a sequence of time instants {t} and let us

assume that the control input u; is calculated as

N
wi=c Y ayley(ty) + epiKei(ty) € [t thiy) (1.6)
j=1

where A = AT = {a;;} and P = diag{p; ...pn} are the adjacency and the
pinning matrix of G respectively and ¢ is the control gain. The control gain can
be time-varying, but it is bounded by 0 < ¢ < ¢jr. Instants t?C are also called
events or triggers for node 1.

Our problem is to outline a set of hypotheses under which the described
network achieves complete synchronization with absence of Zeno behavior for

all the time sequences {t}.

Pinning Control of Networks: an FEvent-Triggered Approach



14 1.6. OUTLINE

Remark 2. Note that the control signal does mot vary in a time-continuous
fashion, but it is held constant within each of the intervals [t},t} ). When a

new sample of the time sequence t occurs, signal u; is updated.

1.6 Outline

The remainder of this master thesis is organized as follows. In Chapter [2] we
propose a distributed algorithm for the generation of the trigger sequences de-
signed to work on static topologies. Then we show that, under opportune hy-
potheses, this algorithm leads to complete synchronization with absence of Zeno
behavior. In Chapters[3]and [l we modify the given control algorithm in order to
extend the results found for static topologies to switching pinned and frequently
pinned topologies respectively. Throughout these chapters, theoretical results
are confirmed by numerical simulations. Chapter [5| presents further numerical
simulations on some static fundamental topologies. Chapter [6] concludes the
master thesis with a summary of the main results and some suggestions for

future developments.

Pinning Control of Networks: an FEvent-Triggered Approach



Chapter 2

Static Topologies

In this chapter we consider networks whose topology does not vary over time,
meaning that all the elements that define the augmented graph are fixed, and
we aim at individuating the hypotheses under which complete synchronization
can be achieved with absence of Zeno behavior.

In Section we describe in detail the control algorithm employed to reach
our goal. In Section we prove that, under opportune hypotheses, the de-
scribed control algorithm indeed achieves the goal of complete synchronization.
In Section we reflect on how these hypotheses can be fulfilled by acting on
the parameters of the network. In Section we prove that, under slightly
more restrictive hypotheses, the time sequences defined in our algorithm do not
exhibit Zeno behavior. Finally in Section [2.5] we describe the network that we

have considered for numerical validation of our algorithm.

2.1 Algorithm Definition

Let us introduce the following state measurement errors, é;(t) = e;(ti) — e; ()
and &;; = e;;(tL) — e;;(t). Let us consider a threshold function s(t) = kce™ st
with k¢, A\c > 0. For each node i of the graph, we update the time sequence {t}

according to the following rule.

15



16 2.1. ALGORITHM DEFINITION

Update Rule 1. Instant t};H is the earliest instant t after t}; when one of the

following conditions is satisfied:
o [|é;;(t)]| > <(t) for some neighbor j of node i;
e ||é;(t)]| > <(t) and node i is pinned.

It is easy to see that if we apply Update Rule [1] at any time ¢ the following

conditions will hold.

l|€:;(£)]] < s(t) for all couples (4,5) of neighbors 2.1)

[l€:(t)]] < <(t) for all pinned nodes i

Remark 3. We notice that, even if errors e; are defined for all nodes, in order
to implement the control signals u; we need to evaluate only those associated
to pin nodes. No information about the state of modes that are not pinned is
considered when computing u;. Similiarly, even if errors e;; are defined for
all couples (i,7), the control signal w; takes into account only the mismatches
relative to neighbors of nodei. No information is needed to be exchanged between

nodes that are not neighbors.

Thanks to Update Rule[l]it is now possible to give a detailed outline of the

control algorithm adopted for the network.

e Step 1. Each of the agents is initialized at a state x;3. The reference
trajectory is also initialized at a state so. All the time sequences {t}} are

initialized with ¢} = 0.

e Step 2. The control signals are computed according to equation .
The agents states evolve according to . The reference trajectory also
evolves according to its dynamics. For each node i, Update Rule [I] is
employed. If node i satisfies the requirements of this rule, sequence {¢}
is updated and the state measurement errors related to such node are

reset.

e Step 3. Repeat from Step 2.

Pinning Control of Networks: an FEvent-Triggered Approach



CHAPTER 2. STATIC TOPOLOGIES 17

Remark 4. It is worth pointing out here that in order to check condition
for itself, an agent needs to know not only its own state but also the state of
all its neighbors at every time instant. This can be accomplished in two ways.
The first way consists in neighboring agents communicating their state to each
other continuously. The second way consists in each agent broadcasting its own
control input to its neighbors any time it is updated to a new value. This allows
an agent to predict the evolution of its neighbors’ state.

Note that the first method requires a larger information flow across the net-
work, while the second one requires a higher computational capacity from the
single agents. Which method is more convenient depends tightly on the consid-

ered application.

2.2 Complete Synchronization

In this section we prove that, under opportune hypotheses, the described control
algorithm achieves the goal of complete synchronization. We also give a lower

bound for the convergence rate of the error norm.

Hypothesis 1. Function f is one-side Lipschitz with Lipschitz constant Ly and
the minimum eigenvalue A of the augmented Laplacian of the network satisfies

cA\ > Lf.

Theorem 1. Under Hypothesis[1], network (L.4) with control signal (1.6) and
Update Rule achieves complete synchronization as defined in (1.5). Moreover,
convergence to zero of the error norm is exponential with rate A\, = min{cA —

Lf,/\g} > 0.

Proof. We divide the proof in two parts. In the first part we find an upper bound
for the time-derivative of the error norm. In the second part we integrate the
expression of this bound and we apply the comparison lemma to upper-bound

the error norm with a negative exponential. O

Pinning Control of Networks: an FEvent-Triggered Approach



18 2.2. COMPLETE SYNCHRONIZATION

2.2.1 Upper Bound for the Time-Derivative of the Error

Norm

For each node ¢, let us consider the dynamics of the mismatch.

Upon substitution of u; with its expression we get

N
éi = f(s) = flw:) — ¢ aijTe(th) — cpiKes(t;,) (2.3)
j=1
Now let us introduce the error stack e = [eTel ... el ]T. Tt is easy to see

that complete synchronization as defined in (|1.5]) corresponds to convergence to

zero of the norm of e. Now let us observe that

N
1d 1d
i%HGHQ = iae% =ele=Y elé; (2.4)
i=1
Substituing é; with expression ([2.2)) we get
1d N N
Sl = D26l | F(s) — Flar) — e aTen(t) — emKedt) | (25)
i=1 j=1

Now let us substitute €; = e;(t%) —e; and &;; = e;;(t}) — e;; into the previous

expression, obtaining

N

N N

1d -

5@”‘%\2 = Z@?[f(s) = flz)] = CZPiezTKei - Czpiezr[(ei
i=1 i=1

i=1
N N N N
7CZ€?ZCLMF6U 7626?20,”1—‘51‘]‘ (26)
i=1  j=1 i=1  j=1
Now we would like to find an upper bound for this derivative. To this aim,
we will bound each of the five addends separately.
Thanks to the one-side Lipschitzianity of function f, the first addend is
upper-bounded by

Pinning Control of Networks: an FEvent-Triggered Approach



CHAPTER 2. STATIC TOPOLOGIES 19

ST eTf(s) - ()] < LyeTe (2.7)

i=1
Using triangular inequality and condition (2.1)), we can bound the third and
the fifth addend respectively with

N N
chieiTKéi < ck:gZpiHeiH < earkrs)lel] (2.8)
i=1 i=1
N N N
cZe?ZaijFéij < c*ngdiHeiH < eryAVN¢||e|| (2.9)
=1 j=1 i=1

The second and the fourth addend can be easily rewritten using the Kro-

necker product, yielding respectively

N N
¢y el ayTej =ce’ (LaT)e (2.10)
=1 j=1
N
chieZTKe,- =cel(P® K)e (2.11)
i=1

Since the augmented Laplacian is positive semidefinite, we can sum these

two addends and easily bound them together with

ce(LOT + P ® K)e > c)le|? (2.12)

So, if we define for convenience 8 = cps(kr +YAVN) > 0, we can finally
bound equation (2.6) with
1d

5 g llell” < Lyllell® + Bsllell — eAlle]? (2.13)

Now let us observe that

1d
2dt

Therefore we can rewrite (2.13)) as

d
llel* = llell Zlell (2.14)

Pinning Control of Networks: an FEvent-Triggered Approach



20 2.2. COMPLETE SYNCHRONIZATION

d
Gillell < (Ly = eA)llel| + B¢ (2.15)
which concludes the first part of the proof.

Remark 5. Note that in the last passage we have divided both members of the
inequality by |le||, assuming implicitly that |le|| > 0. In the event of |le|| = 0
there are two possibilities. If the control inputs are also null, then the error
stays in zero permanently, which means that complete synchronization has been
achieved. If the control inputs are non null, then the time interval in which
[le]| = 0 has null Lebesgque measure, which makes it inifluential when the in-

equality is integrated.

2.2.2 Upper Bound for the Error Norm

For the sake of convenience let us define n = ||e|| so that we can rewrite (2.15)

as

0(t) < (Ly —cAn(t) +Bs(t)  VE=0 (2.16)

Let us integrate inequality (2.16]) on an interval [0, ¢] via Laplace’s formula.

Thanks to the comparison lemma [61], we obtain

t
n(t) < el Ning 4+ 8 / eBr =N (1) dr V>0 (2.17)
0

where we have denoted 19 = 1(0). If we substitute ¢(7) with its expression

we obtain

t
n(t) < e(Lffc)\)t,’?O_’_Bkge([/ffc)\)t-/ ef(/\g+Lffc/\)T dr (218)
0

Now, noting that

t _ —(AHLy—cN)t
/ o~ OtLy—eyr 4o _ L€ (2.19)
) M+ Ls—cA

we can rewrite (2.18) as
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Lo o(Li—cNt _ p=Ast
t) < e k 2.20
77()_6 770+/3§ )\g"‘Lf_C)\ ( )
Therefore, if we define A\, = min{cA — Ly, A¢}, it holds that
Bk ot
t) < _ ¢ 2.21
o0 < (m+ )¢ (221)

Thanks to Hypothesis[I|and to the definition of ¢ as a decreasing exponential
with rate of convergence A. > 0, we can easily state that A\, > 0, thus concluding

the proof of complete synchronization.

Remark 6. We have not considered explicitly the case of \c + Ly —cA =0, in
which integration (2.19) is not true, and the integral yields t instead. However,
in this case we have A¢ = cA — Ly, so that we can rewrite (2.18)) as

n(t) < (o + Bht) et (2:22)

Since t can be upper-bounded with any positive exponential, we still achieve
convergence with an exponential rate as close to \¢ as desired. Specifically, for

any € > 0 we can write t < e—:, so that we have

n(t) < (770 + 51%) e~ (et (2.23)

e
2.3 Topology Requirements for Complete Syn-

chronization

Now that we know that a condition for convergence is that cA > Ly, let us
reflect on how this requirement can be fulfilled by acting on the parameters of
the network.

First of all we need that A > 0. We have mentioned in Section [[.4] that
the augmented Laplacian is positive definite if the augmented graph is pinned,
meaning that all the connected components must contain at least one pin node.

Therefore, in order to get A > 0 we must make sure that all the connected
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components of the graph contain at least one pin node. This makes perfect
sense since, if a connected component did not contain any pin, then its nodes
would not be influenced at all by the reference trajectory. Proof of this property
can be deduced from results available in graph theory about more general kinds
of graphs. Nevertheless, in Appendix [A] we propose a version of such proof

specifically designed to address the augmented graph formalism.

Assuming that the graph is pinned, the minimum eigenvalue of the aug-
mented Laplacian can be largely influenced by variations in the topology of the
connections and in the location of the pin nodes. Given a fixed number of edges
and pins, their optimal disposition among the nodes is, in general, a highly non
trivial problem. For a given topology of connections some criteria for optimal
pin selection may be derived algebrically. We address this problem for a limited
number of fundamental topologies in our second master thesis. Note that even
if the interconnections and the location of the pins are given, A is still influenced

by the norms and the structure of the communication and control protocols.

Of course, even if we assume that the augmented graph for the network is
assigned, so that A\ cannot be changed, Hypothesis [T] can be satisfied selecting
an appropriate value of the control gain c¢. Indeed, if A\ is known it is always

possible to pick a gain which is large enough to satisfy the hypothesis.

Remark 7. We have pointed out that, theorically, it is always possible to select
a control gain ¢ which is large enough to satisfy Hypothesis[]l Obviously in real
applications some constraints have to be put on the gain in order to limit the
energy employed in the process. However, analytical reasons can also be found
to limit the value assumed by c. For example, since B is proportional to cpr, a
smaller upper bound on the control gain results in a better upper bound for the

trajectory of the error norm.
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2.4 Absence of Zeno Behavior

In this section we prove that, under opportune hypotheses, the time sequences

defined in our algorithm do not exhibit Zeno behavior.

Hypothesis 2. Function f is globally Lipschitz with Lipschitz constant Ly and
the minimum eigenvalue A of the augmented Laplacian of the network satisfies

cA> Ly + A

Theorem 2. Under Hypothesis @ the time sequences {ti} withi =1...N do

not exhibit Zeno behavior.

Proof. The proof of this theorem is divided in two parts. In the first part we find
upper bounds for the norm of the time-derivative of all the mismatches, while
in the second part we use such bounds to show that two consecutive samples
belonging to the same sequence are separated by a strictly positive inter-event

time. O

2.4.1 Upper Bounds for the Time-Derivative of the Mis-

matches

First of all let us observe that under Hypothesis [2 inequality (2.21]) holds, and

in particular it can be rewritten as

ﬁkc —Act
< ] s 2.24
”(”‘) A-r-1L;)° X (2:24)

where we have defined

70 B
S 2.2
A RS w y (2.25)

Let us now consider the dynamics of the mismatch e; for each node 1.

N
61 = f(s) — f(a:z) - cZaijF(e,-j =+ éU) — cpiK(ei =+ él) (226)
j=1

Application of the triangular inequality yields
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N

lleall < [1£(s) = Sl +ev Y aii(llel| + [18511) + ckpi(lleil| +1[&l]) (2:27)
j=1

Now we are going to upper-bound each of the addends separately. Thanks

to global Lipschitzianity of function f, and noting that ||e;|| < n < x<, we can
bound the first addend with

1(s) = )l < Lylleall < Lyx < (2.28)

Thanks to condition (2.1)), and noting that ||e;;|| < |les]| + ||ej|| < 27, the
second addend can be upper-bounded by

N
e Y aij(llel + [1E]) < enry(2x +1)di < (2.29)
j=1

while the third addend can be upper-bounded by

ckpi([leill + [leill) < earkpi(x +1) < (2.30)

Therefore we can finally bound ||¢;|| with

[€il] < [Lyx +cnmy(2x + 1)d; + earkpi(x + 1)]s = wis (2.31)

where we have defined

wi = Lrx+emy(2x + 1)d; + epmkpi(x +1) >0 (2.32)

Let us now consider the dynamics of the mismatches é;, for each couple of
nodes %, ¢ in the network. Since é;q = é; — €4, we can apply triangular inequality

and obtain ||é;4]| < ||é;|] + ||é4]], which thanks to (2.31) becomes

l[€iq]] < (wi + wq)s (2.33)

which concludes the first part of the proof.
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2.4.2 Lower Bound for the Inter-Event Time

We are now going to bound the norms of the state measurement errors. First

let us observe that for t}; <t< t§c+1 it holds that

t
/ —é;(7) dr
t,

Now since ¢ is a nonincreasing function, the inequality can be rewritten as

|éi(t)||—|

< /ﬁ [lé:(T)]] dT < w; /ti ¢(7) dr (2.34)

k

lle()|] < wis(t)(t —t}) (2.35)

This means that in order for condition ||é;|| < ¢ to be violated after instant

2, it is necessary to wait at least until an instant ¢ > t}; which satisfies

wis(B)(t — ) = <(t) (2.36)

Substituting ¢ with its expression we obtain

wilt — i) = e A1) (2.37)

whose solution in terms of ¢ — tz is strictly positive. Reasoning in the very

same way for |||, the following inequality holds

liq ()] < (wi + wg)s () (t — ;) (2.38)

This means that in order to violate condition ||é;|| < ¢ after instant t, it

is necessary to wait at least until an instant ¢t > t}c which satisfies

(w; + wg)(t — ti) = e As=1h) (2.39)

This time the solution in terms of ¢ — ¢} is lower than in the previous case,
but still it is strictly positive. Therefore we can state that the inter-event time

between two consecutive samples of the sequence {t:} is lower-bounded by

‘%}2{7 >0 (Wi +wg)T=e N} (2.40)
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This implies that Zeno behavior is excluded.

Remark 8. Note that in this case we have proved that sequences {ti} have finite
inter-event times, which is a stronger property than absence of Zeno behavior.
In the following sections, when we try to extend our results to graphs with time-
varying topologies, we will not be able to retain finiteness of the inter-event

times.

2.5 Numerical Experiments

In this section we are going to describe the network we have considered for
numerical validation of our algorithm on a pinned topology scenario. Moreover,
we show that complete synchronization can be achieved with absence of Zeno
behavior thanks to an appropriate choice of the control parameters.

In our experiments the network is made up of N identical Chua’s oscillators

whose dynamics is described by the following equation

& = a(xy — 21 — ¢(1))

Tog =x1 —Tg + T3 (2.41)
jig = —b.rg
where
1
¢y) =miy +5(mo —ma)(jy+1/ —ly—1)  yeR (2.42)

For parameters a, b, mg and m; we have chosen the following values:

a=1 b=1 mg=-15 my =-05 (2.43)

With this choice it is possible to see that function f is globally Lipschitz
with constant Ly ~ 3.75. We do not know whether this choice is realistic, but it
allows us to have a small value for the Lipschitz constant L. This means that
in order to satisfy Hypothesis[2| we can choose a small value for the control gain

¢, thus allowing the simulation to run more smoothly.
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The network is made up of N = 10 nodes and r = 2 of them are pinned.
The network topology has been generated by selecting randomly N, = 24 edges
among all the possible ones.

As interaction protocol and control protocol we choose I' = I, and K =
4 I, respectively. The pinning matrix P is built by selecting the r pins which
maximize the minimum eigenvalue of the augmented Laplacian. As for the
parameters of the threshold function we choose k. = 0.1 and A¢ = 0.5, so that
Hypothesis [2|is satisfied with a constant control gain worth ¢ = ¢ % ~ 10.7
where we choose ¢ = 1.2. Finally, we choose initial conditions randomly.

Figures 2:1] and [2.2] show the trend of 1 and e; during the simulation.

In Figures and [2.5] we show some variables of interest with regard to

the frequency of trigger events.
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Figure 2.1: trend of the first state variable for nodes i = 1...10 - static topology

scenario

(a) state

(b) state - zoom
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Figure 2.2: trend of the first error variable for nodes i = 1. .. 10 - static topology

scenario
(a) error
1 T T T T
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05 i 1 1 !
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(b) error - zoom
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Figure 2.3: trigger events for nodes ¢ = 1...10 - static topology scenario

(a) first second of the simulation
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Figure 2.4: inter-event time lower bounds for nodes i = 1...10 - static topology

scenario
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Figure 2.5: trend of the first control variable for nodes i = 1...10 - static

topology scenario
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Chapter 3

Switching Pinned
Topologies

In this chapter we consider a particular class of networks with time-varying
topologies and parameters, and we aim at individuating the hypotheses under

which the results found for static topologies still hold.

In Section we give a detailed description of this particular class of net-
works. In Section we describe the control algorithm employed to reach our
goal. In Section we prove that, under opportune hypotheses, the described
control algorithm achieves the goal of complete synchronization. In Section |3.4]
we reflect on how these hypotheses can be fulfilled by acting on the parame-
ters of the network. In Section we prove that, under slightly more restrictive
hypotheses, the time sequences defined in our algorithm do not exhibit Zeno be-
havior. Finally in Section we describe the network that we have considered

for numerical validation of our algorithm.

32



CHAPTER 3. SWITCHING PINNED TOPOLOGIES 33

3.1 Definition of Switching Pinned Topologies

In the scenario we would like to address, new connections may be generated,
existing connections may be cut off, new pins may be introduced and existing
pins may be removed. This means that L and P are two time-varying matrices.
Such changes occur at discrete time instants, with non infinite frequency, but
not necessarily at regular intervals. Conversely, the intensity of the control gain
c may be varied in a time-continuous fashion.

In order to address the described scenario, let us introduce a special class of

time-varying augmented graph, which we shall call switching.

Definition 2 (switching graph). A time-varying augmented graph is said to be

switching with a dwell time 174 > 0 if

e the node set is constant;

e the edge set and the pin set may be modified at discrete time instants, but
the degree of a node and the number of pin nodes are upper-bounded by
some strictly positive constants Ap; and 7r; morevoer, two consecutive

variations are separated by a time interval at least worth 4;

e the interaction protocol I' and control protocol K, and as a conseqence the

coupling strength v and the control strength k, are constant.
Variations in the edge set and the pin set are called switchings.

Thanks to the previous definition, it is possible to introduce now a more
restrictive class of time-varying augmented graph, which we shall call switching

pinned.

Definition 3 (switching pinned graph). A switching graph is said to be pinned

if it is pinned for any time t > 0.
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3.2 Algorithm Description

In order to design a version of our algorithm that can work on switching graphs,
let us make the following observations.

When a switching causes a node ¢ that was not pinned to become a pin node,
error ei(t};) is needed in order to calculate the control signal u;. But e; was not
being measured, since node ¢ was not a pin node. Therefore we believe that it
is necessary to generate a trigger event for sequence {t%} whenever a switching
that causes node ¢ to become a pin node occurs.

Similiarly, when a switching causes a pair (4,j) to become neighbors, error
e;;(t}) is needed in order to calculate the control signal u;. But since nodes i and
J were not neighbors, the mismatch e;; was not being monitored. Therefore we
believe that it is necessary to generate a trigger event for sequence {t}c} whenever

a switching that causes node 7 to acquire a new neighbor occurs.

Hence we update sequence {t;} according to the following rule.

Update Rule 2. Instant t?H_l 1s the earliest instant t after t}:c when one of the

following conditions is satisfied:
o ||éij]| > < for some neighbor j of node i;

e node i acquires a new neighbor because of a switching, that is a;;—a;; (tfﬁ) =

1 forsome j=1...N
e ||&|| > < and node i is pinned;

e node i becomes a pin node because of a switching, that is p; — p;(ti) = 1.

Therefore condition ([2.1)) still holds for all ¢ > 0.

The control algorithm is the same as the one described for a static topology,
with the only difference that Update Rule [2] is used instead of Update Rule
in Step 2.
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3.3 Complete Synchronization

In this section we prove that, under opportune hypotheses, the described control
algorithm achieves the goal of complete synchronization. We also give a lower
bound for the convergence rate of the error norm.

In particular we extend the proof of complete synchronization to the case of
switching graphs. We use the very same passages as in the static case, but the
upper bounds that we introduce are slightly more conservative in order to deal

with the time-dependence of the parameters.

Hypothesis 3. Function f is one-side Lipschitz with Lipschitz constant Ly
and there exists a constant v > 0 such that the minimum eigenvalue A\ of the

augmented Laplacian of the network satisfies cA — Ly > 4 for all t > 0.

Theorem 3. Under Hypothesis[3, network (L.4) with control signal (L.6]) and
Update Rule@ achieves complete synchronization as defined in (1.5). Morevoer,
convergence to zero of the error norm is exponential with rate A\, = min{y, \.} >

0.

Proof. We start as in Subsection but since the number of pin nodes and
the degrees of the nodes are time-varying, we adopt a worst-case approach and

instead of inequalities (2.8)), (2.9) we use the following bounds.

N N
CZpieiTKéi < cqupiHeiH < cepkracsllel| (3.1)

i=1 i=1

N N N
CZ el Zaijféij < c*ngdiHeiH < epryA VNG|l (3.2)

i=1 =1 i=1

Therefore, with the new definition of 8 = cps (kras +vA \/N) > 0, we still
get to inequality (2.15)), which thanks to Hypothesis [3| can be rewritten as

n < —yn+ s (3.3)

From here we proceed as in Subsection just having v instead of cA—Ly,

so that we end up with
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Bk et

n(t) < <no+ e (3.4)
|)‘§ - 1/’|

which concludes the proof. In the unlikely event of ¥ = A., we can always

reason as in Remark [6] O

3.4 Topology Requirements for Synchronization

Here we would like to make some considerations about how Hypothesis[3|can be
fulfilled by acting on the parameters of the network, taking into consideration

that this time the graph configuration is time-varying.

First of all, in order to satisfy Hypothesis [3| we need that A > 0 at every
time instant. This means that all the configurations assumed by the graph over
time must be pinned, meaning that the considered topology must be switching

pinned.

Assuming that the graph is always pinned, we also need that cA > Ly at all
times. This can be obtained by using a control gain ¢ that is large enough. It

is easy to picture some criteria to calculate how large this gain shoud be.

With regard to this, let us indicate with ¢(t¢) the augmented graph exhibited
by network at time ¢, and let us also indicate with G the finite set of aug-
mented graphs corresponding to all the possible configurations of the network
that make the graph pinned. Moreover, let us introduce the lowest and the
highest value assumed by the smallest eigenvalue of the augmented Laplacian

when considering all the possible pinned graphs.

Am = min {A()} > 0, Ay = max {A(t)} >0 (3.5)
g(t)€G g(t)eg

The control gain c is strictly lower-bounded by /% > 0.
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3.5 Absence of Zeno Behavior

Here we extend the proof of absence of Zeno behavior to the case of switching
graphs. Again, we use the very same passages as in the static case, but due to
time-dependence of some graph parameters we end up with more conservative

upper bounds.

Hypothesis 4. Function f is globally Lipschitz with Lipschitz constant Ly and
there exists a constant ¢ > A¢ such that the minimum eigenvalue A of the

augmented Laplacian of the network satisfies cA > Ly + 1 for all t > 0.

Theorem 4. Under Hypothesis |/| the time sequences {ti} with i =1...N do

not exhibit Zeno behavior.

Proof. Following the passages in Subsection[2:4.1] we start off by observing that,
under Hypothesis [4] inequality (3.4) can be rewritten as

n(t) < (770 + wﬂ_kl >e>‘<t (3.6)

B_ >0, we can bound again the error norm

"/’7>‘<

Therefore, defining x = 72 +
with

n<xs Vt>0 (3.7)

Then we proceed as in Subsection [2.4.1] but instead of (2.29)) and (2.30]) we

get the following inequalities that take the switchings into account.

N
¢ aij(llesll + llé]) < earv(@x + DAys (3.8)
j=1

ckpi([leill + [leil]) < eark(x + 1)< (3.9)

Therefore, instead of having a different w; for any of the nodes, we have a

common value

w=Lx+ecuy2x+1)An +cpk(x+1) >0 (3.10)
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Therefore we conclude the first part of the proof with inequalities

el Sws  [léig|] < 2ws (3.11)

The second part of the proof goes as in Subsection with w; = wy = w,
and shows that after an agent violates condition 7 a finite time interval must
pass before the same node violates it once again. This is not sufficient anymore
to prove absence of Zeno behavior, since between two consecutive violations
of conditions more triggers may be generated because of the switchings.
However, since two consecutive switchings involving the same node must be

separated by a finite time 75 > 0, absence of Zeno behavior still holds. O

Remark 9. In this case, absence of Zeno behavior does not imply also a finite
inter-event time. Indeed, an instant after condition is violated by a node,
a switching that involves the same node may occur, generating two events that
may be arbitrarily close. A way to have a finite inter-event time over a switching
graph would be to impose that nodes do not accept to acquire new neighbors, or
to be pinned, before a certain amount of time has passed after their last trigger.
How realistic this assumption is depends on the considered application, but note
that it poses a constraint only on the generation of new links and pins. Failures
in the links and on the pinning feedback, which are less likely to be under control,
can still occur arbitrarily close to other events, since they do not generate a

trigger.

3.6 Numerical Experiments

In this section we are going to present some numerical results obtained on a
switching pinned topology scenario. In particular, we show that complete syn-
chronization can be achieved with absence of Zeno behavior thanks to an ap-
propriate choice of the control parameters.

In this experiment the starting network is made up of N = 10 identical

Chua’s oscillators described by (2.41) and with parameters defined as in ([2.43),
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and the odds of an edge connecting two arbitrary nodes are worth 30%.

As interaction protocol and control protocol we choose I' = I,, and K = 101,,,
respectively. As for the parameters of the threshold function we choose k. = 0.05
and A\. = 0.18. As for the variations in the network topology, we have chosen
a test-bed where N, = 50 switchings occur at constant frequency during the
simulation. Of course this means that a finite number of switchings occurs in
a finite time. In this experiment each switching consists in selecting randomly
a couple of nodes (i,7) with ¢ # j, and changing their state of connection: if
an edge exists between ¢ and j then it is removed, otherwise it is created. We
do not consider switchings causing accidental variations in the pinning matrix
P. On the contrary, everytime a switching causing accidental variations in the
graph Laplacian L occurs, we intentionally adjust the pinning matrix so that,
with the minimum number of pin nodes, it holds that A(t) > Z£ > 0 for all

7.5
t > 0. Then we choose a time-varying control gain worth ¢(t) = w;EtL)f with

1) = 0.5, so that Hypothesis [4] is fulfilled. Finally, we choose initial conditions
randomly.

Figures [3.1] and [3.2] show the trend of 1 and e; during the simulation.

In Figures|3.3| and we show some variables of interest with regard to the

frequency of trigger events.
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Figure 3.1: trend of the first state variable for nodes ¢ = 1...10 - switching

topology scenario

(a) state

(b) state - zoom
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Figure 3.2: trend of the first error variable for nodes ¢ = 1...10 - switching

topology scenario

(a) error
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Figure 3.3: trigger events for nodes ¢ = 1...10 - switching topology scenario

(a) first second of the simulation
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Figure 3.4: trend of the first control variable for nodes ¢ = 1...10 - switching

topology scenario

(a) control
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Chapter 4

Frequently Pinned
Topologies

In this chapter we consider another particular class of networks with time-
varying topologies and parameters, and we aim at individuating the hypotheses
under which the results found for static topologies hold once again.

In Section[4.1|we give a simple description of this particular class of networks.
In Section 4.2| we prove that, under opportune hypotheses, the control algorithm
designed for switching topologies achieves the goal of complete synchronization
also in this new scenario. In Section we reflect on how these hypotheses can
be fulfilled by acting on the parameters of the network. In Section we prove
that, under slightly more restrictive hypotheses, the time sequences defined in
our algorithm do not exhibit Zeno behavior. Finally in Section we describe

the network that we have considered for numerical validation of our algorithm.

4.1 Definition of Frequently Pinned Topologies

In this section we would like to define time-varying networks whose graph is not

always pinned. In other words, we assume that at some time instant there might
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be components of the network that do not contain any pin node. Nevertheless,
we suppose that the amount of time in which the graph is not pinned is small
enough for complete synchronization to be still achievable with absence of Zeno
behavior for the trigger sequences. In order to address the described scenario,
let us introduce a special class of switching graph, which we shall call frequently

pinned.

Definition 4 (frequently pinned graph). A switching graph is said to be fre-
quently pinned on a period T > 0 if, for any time t > 0, there exists a time
t* € [t,t + T) such that the graph is pinned at time t*.

Remark 10. Thanks to the presence of a finite dwell time, it is easy to see that

if a graph is frequently pinned then it holds that

t+T
/ A7) dr >0 (4.1)

for anyt >0 and T>T. Conversely, if inequality (4.1)) holds for a certain

value T' > 0, then the graph is frequently pinned on any period T > T.

4.2 Complete Synchronization

In this section we prove that, under opportune hypotheses, the control algorithm
designed for switching topologies achieves the goal of complete synchronization.
We also give a lower bound for the convergence rate of the error norm.

In particular we extend the proof of complete synchronization to the case of
frequently pinned graphs. We start off by implementing the very same passages

as in the static case.

Hypothesis 5. Function f is one-side Lipschitz with Lipschitz constant Ly and
the minimum eigenvalue \ of the augmented Laplacian of the network satisfies

the following condition.

. 1 t+T
Jp>0,T>0: %/ (cA—Ly)dr > (4.2)
t
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Theorem 5. Under Hypothesis[5, network (L.4) with control signal (L.6) and
Update Rule achieves complete synchronization as defined in (1.5). Morevoer,
convergence to zero of the error norm is exponential with rate A, = min{y, A} >

0.

Proof. The proof of this theorem is divided in two parts: in the former we prove
that a particular sequence of the error norm is upper-bounded by a negative
exponential, in the latter we use the previous result to prove that the error
norm itself is upper-bounded by a negative exponential with the same rate of

convergence. O

4.2.1 Upper Bound for a Sequence of the Error Norm

Reasoning in the same way as the case of a static topology, it is easy to see that

inequality (2.15) still holds with the definition of 8 = cpr(kras +vAuVN) > 0.

(t) < (L = eXn(t) + 5<(t) (4.3)

Integration of the previous inequality via Laplace’s formula and application

of the comparison lemma [61] yield

) 4T
nt+7T) <exp (/t Ly —ce(T)\(T) d7'> n(t)+

t+1 t+1
+ B/t exp (/ Ly —c(o)A(o) dG’) ¢(7) dr (4.4)

Let us notice that the following equality holds V7 € [t,¢ + T]

t+T
/ Ly —chdo=

t+T T
:/ Ly —cA d0+/ cA— Ly do (4.5)
¢ ¢

Therefore, taking into account the previous equality and taking advantage

of Hypothesis [5] we can bound (4.4) with
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n(t+T) < exp(—yT)n(t)+

+ 3 /t " exp(—yT) exp < /t ’ c(o)\(o) — Ly do) <(r) dr (4.6)

The previous inequality can be rewritten as

nt+7T) < exp(—yT) -

n(t) + Bk /tH_T erp (/tT c(o)X(o) do — Ly(t —1t) — )\J) dT‘|

< exp(—yT) -

4T
n(t) + Bke exp((Ly — cprAm)t) /t exp((cprAn — Ly — )\C)T)dTl (4.7)

For the sake of convenience let us define o = Ly + A¢ — cas Ay so that we

can rewrite (4.7) as

e+ 1) < V7 ) = Zeteremen(eet -y -
«

=T [n(t) + %e"\J(l - e_“T)} (4.8)

Let us define now the following time sequence

{th} yheN: thy—tp=T (4.9)

and also n(t) = nn, S(tn) = cn, B = 22(1 - e7oT) > 0.
We can rewrite (4.8)) as

N1 < Nn e VT 4+ Beﬂﬁ e AhT Vh e N (4.10)
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Resolution of the recursive inequality yields
m—1

Nm < Mo eiwmf + Be*w:ﬁ Z 6—)\gh:f“efw(m71,h)j~ _
h=0

m—1
_ e—mT | 3 Z e~ AhT = (m—m)T _

h=0
m—1
=10 efme + Befme Z e("xb*/\s)hT =
h=0

A ~ 1 — e(w—>\<)mT

_ —ymT —ypmT _

=g e + Ge _ =
Mo 8 1 — ot

. e—me N 5 e—wm’f _ e—)\gm’f

1 — e(W=2)T

(4.11)

Therefore, if we define A\, = min{, A} > 0 we can bound (4.11) with

—v 7 - e—)\cm’f
Mm <o € +5 7‘1_e(wf>\g):f“| (4.12)
and of course, defining ¥ = ng + % > 0 as well, we get
T < 0 e e (4.13)

With inequality (4.13)) we conclude the first part of the proof, since sequence

{nn} converges to zero exponentially with rate of convergence A. > 0.

4.2.2 Upper Bound for the Error Norm

Let us now examine what happens to the error norm itself 7(¢) within the time
interval [t,tp11). Taking into account that ¢ is a decreasing function, we can

write

N<(Ly—cA)n+ps<Lyn+Bs<Lyn+pBcw Vt>to (4.14)
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Integration of the previous inequality via Laplace’s formula and application

of the comparison lemma [61] yield

t
0 < elst=tp. | 3o / Ls (=) g —
th

t
= elst=tnlp, 4 gelst </ e_LdeT) Sh =

< LTy, + L*Bf (eLfT - 1) Sno VtE[th,thi1) (4.15)

where the last inequality is true thanks to (4.9)).
Taking advantage of (4.13)), we can upper-bound (4.15)) with

. “ k -~ .
n <9 elrT e AT i; (eLfT - 1) e ety the)  (4.16)

Defining 9 = o &7 + %1? (eLfT - 1) > 0, we can bound (4.16]) with

n <P e T et ther) (4.17)

Since hT' = th>t—TVte [th,tht1), we can write

o~ AT < AT g=Act Vt € [th,the1), VhEN (4.18)

so that we can finally upper-bound (4.17)) with

n(t) <9 T et >0 (4.19)
which concludes the proof of complete synchronization.

Remark 11. We have not considered explicitly the unlikely event of o = 0.

However, even in that case we can rewrite (4.7)) as
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nt+17) < e~ [n(t) + e Bk Te Nt (4.20)

Then, if we define

B=pkT>0 (4.21)

inequality (4.10) still holds and the proof can be carried out in the very same

way.

Remark 12. We have not considered explicitly the unlikely event of ¥ = A..
However, even in that case we can rewrite (4.11]) as

M =10 €™ mBe>mT ym e N (4.22)

Since the linear function m can be upper-bounded with any positive exponen-
tial, we still get an exponential convergence, with a rate of convergence arbitrar-
ily close to A\.. Specifically, for any arbitrarily small € such that 0 < € < A, we

can write

mel < emeT Ym e N (4.23)

and consequently we can rewrite (4.12)) as

- emeT

m S e—/\<mT + BiA
7 o T

e—)\gmj" _

e—)\gmi"_i_ﬁe—(/\g—e)m’f

=To T

< (770 + ?) e~AemamT gy e N (4.24)
€

Inequality (4.24) proves that the sequence {n,} converges to zero exponen-
tially with rate of convergence Ae = Ac—e€, which is slower than A\, yet arbitrarily
close to it. The remaining part of the proof can be carried out in the very same

way, but of course the rate of convergence of the error norm will be itself Ac.

Pinning Control of Networks: an FEvent-Triggered Approach



CHAPTER 4. FREQUENTLY PINNED TOPOLOGIES 51

4.3 Topology Requirements for Synchronization

Here we would like to make some considerations about how Hypothesis [5| can be
fulfilled by acting on the parameters of the network, taking into consideration
that this time the graph configuration is again time-varying and not always
pinned.

First of all, in order to satisfy Hypothesis [b| we need the graph to be fre-
quently pinned on a period T. Assuming that this can be guaranteed, let us
then consider the worst case. In a time window worth 7' the network exhibits
only one pinned topology for the lowest possible time, which is the dwell time
T4, and the minimum eigenvalue of the augmented Laplacian assumes the lowest

possible value as well, which is A,, > 0. In such a scenario, Hypothesis |5 can

Y+Ls T

be satisfied by choosing a control gain strictly lower-bounded by - =

4.4 Absence of Zeno Behavior

Here we extend the proof of absence of Zeno behavior to the case of frequently

pinned graphs.

Hypothesis 6. Function f is globally Lipschitz with Lipschitz constant Ly and
the minimum eigenvalue A of the augmented Laplacian of the network satisfies

the following condition.
) 1 t4+T
Fp>A, T>0: %/ (cA—=Ly)dr > ¢ (4.25)
t

Theorem 6. Under Hypothesis @ the time sequences {t}} withi=1...N do

not exhibit Zeno behavior.

Proof. Under Hypothesis @ equation (4.17) can be rewritten as

n(t) <9 e T VEE [t thga) (4.26)

which, reasoning in the same way as in Theorem [5| leads to
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n(t) <9 AT e >0 (4.27)

9 e)\qT

or equivalently, defining x = ~7— >0, to

n<x< Vi>0 (4.28)

From this point on, the proof of absence of Zeno behavior is analogous to

the one already carried out in the case of a switching pinned topology. O

4.5 Numerical Experiments

In this section we are going to present some numerical results obtained on a
frequently pinned topology scenario. In particular, we show that complete
synchronization can be achieved with absence of Zeno behavior thanks to an
appropriate choice of the control parameters.

In this experiment the starting network is made up of N = 10 identical
Chua’s oscillators described by and with parameters defined as in ,
and the odds of an edge connecting two arbitrary nodes are worth 30%.

As for the variations in the network topology, we have chosen a test-bed
where N, = 50 switchings occur at constant frequency during a simulation
whose duration is worth t¢,, = 15s. In particular we have considered a scenario
in which the incidence matrix and the pinning matrix periodically change during
the simulation among W = 5 possible configurations, just one of which gives rise
to a pinned topology. This means that the network exhibits a pinned topology
every T = 1.5s. We have chosen a scenario in which the number r of pin nodes
varies from 1 to 3.

As interaction protocol and control protocol we choose I' = I, and K =
101, respectively. As for the parameters of the threshold function, we choose
ke =0.025 and A = 0.18.

Since the switchings affecting the network are periodical and each topology

shown by network has the same duration of % = 0.3s, Hypothesis |§| can be
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satisfied by choosing a constant control gain ¢ at least worth ( , Where

Y+L )W
R b}

A represents the minimum eigenvalue of the augmented Laplacian for the only
pinned topology in the experiment.

Specifically, since in our simulation A ~ 0.82, we have chosen ¥ = 0.2 so
that so that Hypothesis [f] is satisfied with a constant control gain worth ¢ = 25.
Finally, we choose initial conditions randomly.

Figuresandshow the trend of 1 and e; and u; during the simulation.

In Figures [£.3] and [£.4] we show some variables of interest with regard to the

frequency of trigger events.
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Figure 4.1: trend of the first state variable for nodes ¢ = 1...10 - frequently

pinned topology scenario

(a) state
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Figure 4.2: trend of the first error variable for nodes ¢ = 1...10 - frequently

pinned topology scenario
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Figure 4.3: trigger events for nodes ¢ = 1...10 - frequently pinned topology

scenario

(a) first second of the simulation
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Figure 4.4: trend of the first control variable for nodes ¢ = 1...10 - frequently

pinned topology scenario
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Chapter 5

Numerical Experiments on
Fundamental Static

Topologies

In this chapter we are going to present some numerical results obtained over
fundamental static topologies in terms of the rate of convergence for the error
norm. In particular we will show how the pin choice influences such a speed for

a network made up of N identical Chua’s oscillators.

In all the experiments we choose k. = 0.1, A\c = 0.5, ' =1, and K =p I,,.
The number of nodes 7, the control gain ¢ and the control strength £ = p are
chosen so that Hypothesis [1| is fulfilled. This means that in all the following

results complete synchronization is always guaranteed.

In Sections and we consider complete graph, star graph,
path graph and ring graph respectively.
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Figure 5.1: error norm - complete graph - N =10, ¢ = 10

(a)yr=1,p=10 (b) r=1,p=50

(c)r=3,p=10 (d)r=3,p=50

5.1 Complete Graph

In this section we are going to present some numerical results obtained over a

complete graph.

Figure [5.1] shows the trend of the error norm for different values of the

number of nodes r and the control strength p.

Figure [5.2] shows the comparison between the trends of the error norm ob-
tained in two different scenarios: in the first case we suppose p = 10 and we
compare the trends obtained for » = 1 and r = 3, while in the second case we

suppose p = 50 and we compare the trends obtained again for r = 1 and r = 3.
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Figure 5.2: error norm comparison - complete graph - N = 10, ¢ = 10
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5.2 Star Graph

In this section we are going to present some numerical results obtained over a
star graph.

Figure|5.3| shows the trend of the error norm when pinning just one node in
two different scenarios: the former when the pin is the central node, the latter
when the pin is a peripheral node. Figure shows the comparison between
these two trends.

Figure [5.5|shows the trend of the error norm in two different scenarios when
pinning m < % nodes: the former when the central node and m — 1 peripheral
nodes are pinned, the latter when the m pin nodes are all peripheral. Figure
[.6] shows the comparison between these two trends. As we expected, the trend
of the error norm when pinning also the central node is better.

Figure shows the comparison between the trends of the error norm ob-

N

tained in two different scenarios when pinning m > 5 nodes and choosing a

control strength p so that the minimum eigenvalue A of the augmented Lapla-

cian is lower than 27’:::{\’ : in the first case we suppose that the m pin nodes are

all peripheral, while in second case we suppose that the central node and m — 1
peripheral nodes are pinned. As we expected, the trend of the error norm when
pinning only peripheral nodes is better.

Figure [5.8 shows the comparison between the trends of the error norm ob-

tained in two different scenarios when pinning m > % nodes and choosing a

control strength p so that the minimum eigenvalue A of the augmented Lapla-

cian is greater than Qn”;”:{v : in the first case we suppose that the m pin nodes

are all peripheral, while in second case we suppose that the central node and
m — 1 peripheral nodes are pinned. As we expected, the trend of the error norm
when pinning also the central nodes is better.

Figure [5.9] shows the comparison between the trends of the error norm ob-
tained in two different scenarios when pinning m = N — 1 nodes: in the first
case we suppose that all the N — 1 peripheral nodes are pinned, while in second

case we suppose that the central node and N — 2 peripheral nodes are pinned.
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Figure 5.3: error norm - star graph - N =10, r =1, ¢ =50, p = 10

(a) central node

(b) peripheral
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Figure 5.4: error norm comparison - star graph - N =10, r =1, ¢ =50, p =10

24

(a) comparison

central pin

central pin
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Figure 5.5: error norm - star graph - N =10, r =3, ¢ =20, p = 10

(a) central + peripheral

(b) all peripheral
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Figure 5.6: error norm comparison - star graph - N =10, r =3, ¢ = 20, p = 10

3 T T I T T T T T T
: : : : central pin +2 peripheral pins
— 3 peripheral pins
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As we expected, the trend of the error norm when pinning only peripheral nodes

is better.

5.3 Path Graph

In this section we are going to present some numerical results obtained over a
path graph.

Figure [5.10 shows the trend of the error norm in three different scenarios
when pinning just one node: in the first case the first node is pinned, in the
second case the second node is pinned while in the last case the central node is
pinned. Figure shows the comparison between these three trends. As we
expected, the further the pin is from the periphery, the better the trend of the
error norm gets.

Figure shows the trend of the error norm in two different scenarios: in

the first case the central node is pinned with double control strength p = 20, in
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Figure 5.7: error norm comparison - star graph - N = 10, r = 6, ¢ = 20, p = 0.5,
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Figure 5.8: error norm comparison - star graph - N = 10, r = 6, ¢ = 20, p = 5,
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Figure 5.9: error norm comparison - star graph- N =10, r=9,c=10,p=5
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Figure 5.10: error norm - path graph - N =9, r =1, ¢ = 150, p = 10

(a) first node

(b) second node

(c) central node
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Figure 5.11: error norm comparison - path graph - N =9, r = 1, ¢ = 150,

p=10
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Figure 5.12: error norm comparison - path graph - N =9, ¢ = 150
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the second case the two peripheral nodes are both pinned, each one with control
strength p = 10. Figure shows the comparison between these two trends.
As we expected, the trend of the error norm when pinning both the peripheral

nodes is better.

5.4 Ring Graph

In this section we are going to present some numerical results obtained over a
ring graph.

Figure [5.13] shows the trend of the error norm when pinning just one node
in two different scenarios: the former when p = 10, the latter when p = 50.
Figure [5.14] shows the comparison between these two trends. As we expected,
the greater the control strength p, the better the trend of the error norm.

Figure shows the trend of the error norm in three different scenarios: in
the first case just one node is pinned with double control strength p = 10, in the
second case two consecutive nodes are pinned, each one with control strength
p =5, and finally in the last case two symmetrical nodes are pinned, each one
again with control strength p = 5. As we expected, the trend of the error norm
when pinning two consecutive nodes is better than when pinning just one node
with double strength. Moreover, the trend of the error norm when pinning two

symmetrical nodes is better than when pinning two consecutive nodes.
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Figure 5.13: error norm - ring graph - N =10, r =1, ¢ = 50
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Figure 5.14: error norm comparison - ring graph - N =10, r =1, ¢ =50
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Figure 5.15: error norm comparison - ring graph - N =8, ¢ = 50
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Chapter 6

Conclusions

This chapter concludes the master thesis with a short summary of our results

and an overview of possible extensions and future developments.

6.1 Main Results Summary

In this master thesis we have presented an algorithm for distributed event-
triggered pinning control on a network of identical nonlinear oscillators. In
order to address the pinning control problem specifically, the augmented graph
formalism has been introduced. Moreover, the concepts of pinned, switching
pinned and frequently pinned topologies have been introduced as an extension
of the concepts of connected, switching connected and slow switching topologies
respectively. Complete synchronization and absence of Zeno behavior have been
proven for each of the considered topologies. A finite inter-event time between
two consecutive triggers of the same time sequence has been guaranteed for
pinned topologies. Numerical experiments confirming the theoretical results

have been presented.
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6.2 Future developments

Pinning control is a relatively newborn branch of automation and a pinning
control theory is in process of formation. Distributed event-triggered control
has been widely addressed in recent papers, but only a small part of them has
dealt with nonlinear oscillators so far. Therefore a large set of open questions
and possibilities for future developments can be outlined from the presented

work. Here we list some points which could be interesting to address.

e First of all, networks whose topology cannot be described as frequently
pinned may be studied. Some interesting results in this direction can be
found in [62], where sufficient conditions for local pinning controllability of
a switching network of nonlinear agents under time-continuous control are
derived analytically. Such sufficient conditions relate to the frequency of
the switchings and to the eigenvalues of the augmnted laplacian of an av-
eraged topology, but do not require that the network be frequently pinned.
Of course these results may serve as an important source of inspiration
if our analysis were to be extended to a more general class of switching
topologies, but in our case global controllability should be investigated

and event-triggered control laws should be considered.

e All our models consists of unweighed and undirected graphs. Weighted
and/or directed graphs may be considered as network topologies. In fact,
some of the properties that we use in our proofs rely on the symmetry of

the Laplacian, which is lost in the case of a directed graph.

e The topologies we have taken into account are made up of identical non-
linear oscillators. Networks with heterogeneous agents may be considered

instead.

e The networks that we have taken into account are made up of nonlinear
oscillators whose model is perfectly known. Uncertainties in the model for

the agents’ dynamics may be considered instead.
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78 6.2. FUTURE DEVELOPMENTS

e Delays in the agents’ dynamics or in the communication protocol may be

considered.

e In order to address more severe limitations on the capacity of the com-
munication channels, a self-triggered algorithm may be designed for the

examined topologies.
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Appendix A

Topology Requirements for
Positive Definiteness of the

Augmented Laplacian

In this appendix we would like to find the topology requirements that an aug-

mented graph has to satisfy for its augmented Laplacian to be positive definite.

Theorem 7. The augmented Laplacian of an augmented graph is positive defi-

nite if and only if the graph is pinned.

Proof. Without loss of generality, let us suppose that network is made up
of M connected components and let us suppose that nodes belonging to the same
component correspond to consecutive entries of the graph Laplacian. Therefore
L can be written as a block-diagonal matrix, with each block corresponding to
one of the connected components. For convenience, let us also write matrix P
as a block-diagonal matrix made up of M blocks, each one corresponding to one

component of the network.
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Ly Pyr

Note that different blocks might have different dimensions, each equal to
the number of nodes in the corresponding component. We shall indicate such

dimensions with M; Vi=1... M.

Let us now define the two following matrices.

LT
Lo®TD
L=rLerT= | (A.2)
Ly®TD

PoK
. PBoK
P=PoK= . (A.3)

Py oK

Note that matrix L is still a symmetric and positive semidefinite matrix,
therefore we can individuate a basis of Ry, made up of its unity-norm eigen-
vectors.

Let us write the generic vector © € Ry, as a linear combination of such

eigenvectors

N n
xr = Z Z Q4505 (24 wy (A4)

i=1 j=1

and let us use this expression to evaluate

N N

n n
Lo = Z Z aij Loy @ w; = Z Z QijAifljv; @ w; (A.5)

i=1 j=1 i=1 j=1
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where v; is the eigenvector of the graph Laplacian L corresponding to its
i-th eigenvalue A;, and w; is the eigenvector of the interaction protocol I' cor-
responding to its j-th eigenvalue p;.

Since the graph Laplacian L has M components, eigenvalues \; are null for

all i =1... M, and consequently

N n
Lz = Z Zaij)\iujvi @ w; (A.6)
i=M+1 j=1
Now let us evaluate
N n N n
2T Lo = Z Z apk(vp ® wk)T Z Z Qi AV @ W, (A7)
h=1k=1 i=M+1 j=1

Since L is a symmetric and positive semidefinite matrix, eigenvectors corre-

sponding to different eigenvalues are orthogonal to each other. Therefore

N n N n
o= Y > afhpllview = Y > (A.8)

i=M+1j=1 i=M+1j=1
Since the eigenvalues A; and y; in equation are strictly positive, the
previous quantity is strictly positive itself, unless a;; = 0Vi = M +1...N,Vj =
1...n.
If this is the case, we can write x = Zi\il E;-lzl ;v @W; = &, and of course
#TLe = 0. Therefore, in order for matrix L+ P tobe positive definite, we have
to choose matrix P so that 27 (L 4+ P)Z > 0 for every such vector &.

Note that since

N n
T = E E aij )\i/ijvi ®U)j =
i=1 j=1

M n N n
= Z ZO&Z‘j )\iujvi@wfr Z ZOLM )\iujvi@)wj = ONn+0Nn = ONn (Ag)
=1 j=1 i=M+1 j=1

vector & can be written as
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e1ly, ® 21
w2l @ 22
&= : (A.10)
@MlMM ® 2Mm
where ¢, €R, 2z, e R, Vi=1... M.
Now let us evaluate
e1(P1 @ K)(1m, ® 21)
, a2 (P2 @ K)(1ar, ® 22)
Pi= . (A.11)

om(Prr @ K)(Lary, @ 201)

and therefore

e1(Pr @ K)(1a, ® 21)
2T Pz = |:<P1(1M1 ®21)T (PM(lMM ®ZM)T =

o (Py @ K)(1ary, ® 2ar)

= 01 (1, ®21) (PIOK) (1, ®21)++ . +93 (Lary, ®200) T (Pu®K) (1, ®201) =

= QD%(pl Z?Kzl+~ .. +Duy Z?I{Zl)+ s +S0?\J(pMI\/I—1+1 Z{JKZNI+' <Py, ZJ,ZV“IKZM) -

My My
= ¢%(Z1TK21)Zpi + . 42 (2T Kzay) Z Di (A.12)
=1 i=Mp—1+1

Since @2, 2} Kz, > 0 Vh € [1, M], from the last expression it is easy to see
that in order for 27 P# to be strictly positive we need at least one node in each
connected component of the network to be a pin node, meaning that the graph

must be pinned. Indeed, in this condition we get
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iTPi=0+3"Pi=2"Li+3"Pi=2"(L+P)z=2"Le>0 (A.13)
Therefore, since 27 Lz > 0 Vz # 7 and as a consequence zT La > 0 Va # &,

we can say that

2TLx >0z € Ryy — {Onn} (A.14)

if and only if each component of the graph contains at least one pin node.
So if we denote with A the minimum eigenvalue of the augmented Laplacian,

we can state that

A >0 <= the graph is pinned (A.15)
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