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Likelihood prediction for generalized linear mixed models under
covariate uncertainty

Md Moudud Alam�

Sep. 22, 2010.

Abstract

This paper presents the techniques of likelihood prediction for the generalized linear
mixed models. Methods of likelihood prediction is explained through a series of examples;
from a classical one to more complicated ones. The examples show, in simple cases, that
the likelihood prediction (LP) coincides with already known best frequentist practice such
as the best linear unbiased predictor. The paper outlines a way to deal with the covariate
uncertainty while producing predictive inference. Using a Poisson error-in-variable general-
ized linear model, it has been shown that in complicated cases LP produces better results
than already know methods.
Key words: Predictive likelihood, Pro�le predictive likelihood, Stochastic covariate,

Coverage interval, Future value prediction, Credit risk prediction.

1 Introduction

Predictive inference is a tricky task, especially for non-Bayesian statisticians (Bjørnstad, 1990
and Hinkley, 1979). The core of the problem was understood during the foundational period
of statistics (see e.g. Pearson 1920) but it took a long time for the non-Bayesian statisticians
to come up with a set of reasonable proposals on the predictive tools with Lauritzen (1974)
and Hinkley (1979) being credited as the earliest, theoretically most sound, references. Unless
otherwise stated, by prediction we mean the prediction of one or more unobserved (observable
or not) variables or some function of them after having observed the observable variables. Let
y = (y1; y2; � � � ; yn)T be the vector observations on the response, Y; Xn�p be the matrix of
associated observed covariates, y� = (y�1; y

�
2; � � � ; y�m) be the future observations on Y which are

not observed and _X�m�p be the associated covariate matrix where some of its elements are known
and some are unknown.

Note that we use an asteric ("*") in the superscript (e.g. X�) to indicate that the whole
variable, vector or matrix or a part of it is not observed, but they are observable. The covariates
and the design matrices associated y� are denoted with an over head accent- dot (".", e.g.
_X). As per convention, we use upper case letters to indicate variables, lower cases to indicate
their realized values and bold faces to indicate vectors and matrices. We use the subscripts, i
(i = 1; 2; :::; n) to indicate observed data, j (j = 1; 2; :::;m) to indicate future observations and
their sum is n+m = l.

The unknown elements in _X� are not necessarily missing values in the ordinary sense, e.g.
non-response in a survey as in Bjørnstad (1996) and Bjørnstad and Sommervoll (2001), rather
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they might be some future values which can be observed only in future time while the prediction
is made at current time.

We further assume that, given Xn�p and information on the clustering of Y; the response
can be modeled with a suitable generalized linear mixed model (GLMM). The unknown future
covariates can also be modelled with a suitable stochastic model. The problem of interest is
to predict Y � itself or some function S = s (Y �) and provide a measure of uncertainty of those
predictions based on observed data on Y and X. Some illustrations of the above problem with
known _X are given in Lee et al. (2006).

Natural examples of stochastic covariates with generalized linear models come from the time
series models (Slud and Kedem, 1994; Startz, 2008), dynamic panel discrete choice models
(Honoré and Kyriazidou, 2000) and measurement error models (Buzas and Stefanski, 1996).
Here we motivate the application of unknown future covariates from the credit risk modeling�s
view point. Assume that Y represents whether a credit is default or not and X consists of the
respective �rm level accounting data, industry classi�cation of the �rm, credit bureau observation
(comments) and macro variables e.g. slope of yield curve, output gap etc. (see e.g. Carling et
al. (2004) and Du¢ e et al. (2007)). Some of the covariates, e.g. �rm�s total debt, sales and
macro economic indices, are stochastic and their future values can not be observed at current
time when the prediction is being made. Assume that we model Y given X using a suitable
GLMM and the unobserved components of _X� with missing future values are modelled with a
suitable time-series model. Then, the remaining problem is to predict Y � (or S) and to provide
a measure of uncertainty associated with the prediction.

In the literature of credit risk modelling, the issue of stochastic covariates is handled by the
so called doubly-stochastic models using the framework of survival analysis (Du¢ e et al., 2007;
Pesaran et al., 2006). However, those works do not give proper attention to the uncertainties
caused by the stochastic covariates nor do they distinguish the problem of estimation from the
problem of prediction. Thus the predictive methods presented in this paper may also be applied
to those early works with a view to improve the predictive performances of their models.

Given a prediction problem in hand, one can either try to �nd a frequentist point prediction,
e.g. the best linear unbiased predictor (BLUP), and associated prediction error or try to produce
a likelihood prediction (Bjørnstad, 1990) or follow the Bayesian approach. The �rst approach
does not have a common analytical framework and the existence of the BLUP is not guaranteed,
in general. The Bayesian approach is, in principle, rather straightforward although the choice of
a particular prior as well as the concept of the prior distribution may be criticized. The likelihood
principle (Berger and Wolpert, 1988) provides a uni�ed principle and an analytical framework
to deal with any statistical inference including the prediction of future and unobserved values.
This paper explores the likelihood prediction in the context of GLMM.

The contributions of this paper are as follows. It o¤ers a short overview of the likelihood pre-
diction through a series of standard prediction problems. The examples show that the likelihood
prediction can be implemented in a straightforward way and its solutions often coincide with
already known best frequentist prediction, where such a best prediction exists. The paper also
gives the likelihood prediction in more complicated problems such as error in variable generalized
linear models and GLMM where a best frequentist prediction such as BLUP is not available.
Through an example with a Poisson error-in-variable model it is shown, through simulation,
that the likelihood prediction does a better job than the already existing solutions. The paper
also outlines an analytical guideline to implement the likelihood prediction with GLMM under
covariate uncertainty.

The rest of the paper is organized as follows. Section 2 brie�y introduces the principles of
likelihood prediction through two classical examples. Section 3 extends the likelihood prediction
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for GLMM with covariate uncertainty. Section 4 presents three examples of the likelihood
prediction under covariate uncertainties. Section 5 o¤ers a comparative discussion on the several
proper predictive likelihoods that have been proposed in the literature. Section 6 concludes.

2 Likelihood prediction

An elegant survey on the methods of likelihood prediction is given in Bjørnstad (1990). Often,
the prediction statement is summarized in terms of probability inequality which is called the
prediction interval. A review of the di¤erent methods of producing non-Bayesian prediction
interval is presented in Patel (1989). To illustrate the likelihood prediction we take a classic
example (see Example 1) that was presented in Pearson (1920), with a reference to Laplace
(1774) as the originator, and also discussed by many others including Hinkley (1979), Bjørnstad
(1990) and Pawitan (2001).

Example 1. An event has occurred p times out of p + q = n trials, where we have no apriori
knowledge of the frequency of the events in the total population of occurrences. What is
the probability of its occurring r times in a further r + s = m trials?

Example 1 can be translated in terms of the notation system given in Section 1 as: Y =
(Y1; Y2; � � � ; Yn) are iid Bernoulli distributed with E (Yi) = �; Y � = (Y �1 ; :::; Y

�
m) ; Yi?Yj 8i&j;Pn

i=1 yi = p; S =
Pm
j=1 y

�
j = r and the interest is to predict r given p, n and m: Example 1

quali�es as a fundamental statistical problem which was solved in Laplace (1774) with some
di¢ culty (see Pearson, 1920; Stigler, 1986) using the Bayesian approach. The Bayesian solution
to the problem is straightforward and with a �at prior for � the posterior predictive distribution
of r is given as (see Bjørnstad(1990))

p (rjp; n) =
�
m
r

��
n
p

��
m+n
r+p

� n+ 1

n+m+ 1
; r = 0; 1; :::;m (1)

Due to the unavailability of the concept of prior distribution, a non-Bayesian solution is not
easy to formulate. If � were known, the distribution of r would be Binomial with mean m�:
Hence a non-Bayesian mean predictor of r would be E (rj�;m) = m�: Thus, a naive prediction
(NP) of r is given as er = m p

n where � is replaced by its maximum likelihood (ML) estimate
obtained from the observed data. Though, b� = p

n is the maximum likelihood estimator of �;er is not a maximum likelihood predictor. In fact, classical likelihood theory does not allow its
application as a predictive criterion (Hinkley, 1979). A likelihoodist sees the above problem as
the one dealing with two unknowns, � and r where r is of inferential interest and � is considered
as a nuisance parameter. The above line of thinking leads the likelihoodists to construct a joint
likelihood function (Bjørnstad, 1990) of � and r as

L (r; �jp;m; n) = L (rjm;n; p; �)L (�jp;m; n)

=

�
m

r

��
n

p

�
�p+r (1� �)n+m�p�r

Alhough L (r; �jp;m; n) is justi�ed as a likelihood for prediction, the likelihood principle does
not state clearly what one should do with � and how the information about r contained in
L (r; �jp;m; n) should be extracted (Berger and Wolpert, 1989). At this point the likelihoodists
introduce the method of pro�le likelihood (Pawitan, 2001) which essentially maximizes the
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likelihood with respect to a subset of parameters treating the remaining parameters as constants
(known). For Example 1, we have the following pro�le likelihood.

Lp (rjp;m; n) = sup
�
L (r; �jp;m; n)

) Lp (rjp;m; n) /
�
m

r

��
n

p

�
(p+ r)p+r (m+ n� p� r)m+n�p�r

The likelihoodists treat Lp di¤erently from the formal (or estimative) likelihood in the sense
that Lp is often normalized to mimic a Bayesian posterior density for r. Such a normalization
is justi�ed since r; unlike the �xed parameters �, has a probability distribution. Using Stirling�s
approximation to Lp (rjp;m; n) it can be shown that

Lp (rjp;m; n) /
p (rjp; n)rb�� �1� b��� (2)

where, p (rjp; n) is the Bayesian posterior predictive density of r under a �at prior and b�� = p+r
m+n

is obtained from maximizing L (r; �jp;m; n) w.r.t. �: A critical drawback of Lp (rjp;m; n) is that
it replaces the nuisance parameter with its MLE thereby introducing an additional uncertainty
in the predictive distribution which in turn calls for some adjustment. We also see that a

multiplicative adjustment term of

rb�� �1� b��� makes L(1)p (rjp;m; n) = p (rjp; n) where L(1)p =rb�� �1� b���Lp is the pro�le adjusted predictive likelihood:
Further note that the adjustment term has the form

rb�� �1� b��� / I�1=2
�=b�� where I�=b�� is the

observed Fisher�s information of � obtained from log (L (r; �jp;m; n)) i.e. I = �@2log(L(r;�jp;m;n))
@�2

.

In matter of fact, the adjustment can always make L(1)p (zjy) / p (zjy) up to an order O
�
n�1

�
(Davison, 1986). Thus we treat L(1)p as equivalent to the Bayesian posterior prediction (PP)
with a �at prior.

The equivalence of the predictive likelihood and the posterior predictive density with �at
prior is easy to understand. The Bayesian posterior with �at prior is mathematically equivalent
to the (estimative) likelihood function and herefore if there exist any predictive likelihood, then
the latter should be equivalent to the posterior predictive distribution with a �at prior.

Predictive statistics for Example 1 and Example 2, below, are given in Table 1. For m = 1,
L
(1)
p (or PP) gives E (rjp;m = 1; n) = P (r = 1jp;m = 1; n) = p+1

n+2 which is di¤erent from the
NP which is er = p

n (see Table 1): Thus the di¤erence between NP and PP matters in cases with
small n and extreme observed p:

Example 1 is a nice example of statistical prediction with independently and identically
distributed (iid) variables. Next we illustrate the problem for a situation with non-identical
distribution by using an example of a linear regression model.

Example 2: Assume a regression model, yi = �+ �xi + "i where, "i
iid� N

�
0; �2

�
with � being

known: We observe the paired sequence fyi; xig ; also xj are known but we do not observe
y�j . The problem here is to predict those unobserved y�j�s which are observable in the
future.
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In Example 2, we have observed data, y = fyig and X = fxig, unobserved future values
y� = (y�1; y

�
2; :::; y

�
m)

T , known future covariates, _X = fxjg and nuisance parameters � = (�; �) :
A naive prediction of y�j is given as ey�j = b�+ b�xj where, b� and b� are the ordinary least square
estimates (also the MLEs in this case) of � and � obtained from the observed data. A naive

variance estimator for y�j is given as V ar
�ey�j� = V ar (b�) + x2jV ar �b�� + 2xjCov �b�; b�� which

does not account for the uncertainty in y�j itself. A reasonable measure of uncertainty in ey�j is
easily computed in this case and is given by V ar

�ey�j� = �2 �1 + _xj
�
XTX

��1
_xTj

�
where _xj is

the jth row of the design matrix, _X: ey�j is known as the best (having minimum mean squared
prediction error) linear unbiased predictor (BLUP).

In cases where � is unknown it is replaced by its unbiased estimate, i.e. e�2 = 1
n�2

Pn
i=1

�
yi � b�� b�xi�2 :

The pro�le adjusted predictive likelihood for Example 2 is given as

L
(1)
P (Y �jy; �) / exp

�
� 1

2�2

�
y�F �XF b���T �y�F �XF b���� j�2 �XTFXF ��1 j� 1

2

) L
(1)
P (Y �jy; �) / exp

�
�1
2

�
y� � _Xb��T ��2 �I+ _X

�
XTX

��1 _XT���1 �y� � _Xb��� (3)

where, y�TF =
�
yT ;y�T

�
is the full response vector, b�� is the MLE of � =(�; �)T based on the

full data, XTF =
�
XT ; _XT

�
and b� = �b�; b��T is the MLE based on the observed data. The

detailed mathematical derivation of (3) is given by Eaton and Sudderth (1998).
The predictive likelihood in (3) is the kernel of a multivariate normal distribution, i.e.

L
(1)
P (y�jy; �) � N(N�n)

�
_Xb�; �2V� where, V = I + _X

�
XTX

��1 _XT : Hence, in this exam-
ple the naive prediction coincides with the mean of the predictive likelihood1. The predictive
statistics for Example 2 are presented in Table 1:

Table 1 Predictive statistics for Examples 1 and 2 according to NP, LP and BLUP
Example Methods Point Predictor Predictive Variance Predictive distribution
Example 1 NP E (r) = m p

n m p
n

�
1� p

n

�
Binomial(m; pn)

L
(1)
P E (r) = m(p+1)

n+2
m(p+1)(n�p+1)
(n+2)2(n+3)

(mr )(
n
p)

(m+nr+p )
n+1

n+m+1 ; r = 0; 1; :::;m

BLUP E (r) = m p
n m p

n

�
1� p

n

�
m+n�1

n NA

Example 2 NP E (Y �) = _Xb� �2 _X
�
XTX

��1 _XT N
�
_Xb�; �2 _X �XTX��1 _XT�

L
(1)
P E (Y �) = _Xb� �2V N

�
_Xb�; �2V�

BLUP E (Y �) = _Xb� �2V N
�
_Xb�; �2V�

Note: V= I+ _X
�
XTX

��1 _XT
Example 2 is still a simple one. To introduce more di¢ cult situations, we next present

prediction with generalized generalized linear mixed models.

1 If �2 is unknown, the above mathematical derivation becomes very tedious therefore, we skip the latter case.
Interested readers are referred to Bjørnstad (1990) for further results .
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3 Prediction with GLMM

For observed Y and X; a generalized linear mixed model can be presented through the following
�ve assumptions: i) Y = fyiktg ; i = 1; 2; :::; nkt; k = 1; 2; :::;K; t = 1; 2; :::; T ; is observed
independently at a given value of the covariateX = fxiktg ; and a given realization of the random
e¤ect ukt, ii) xikt and ukt in�uence the distribution of yikt via a linear function �ikt = xikt�+ukt
which is called the linear predictor, iii) conditional on ukt, �ki = E(ykijuki) satis�es g(�) = �
for some function g which is called a link function, iv) conditional on ut=(ut1; ut2; :::; utK)

T ,
the distribution of yikt belongs to the exponential family of distributions and v) ut follows a
marginal distribution, h(u): Often, ut is assumed to have an independent multivariate normal
distribution i.e. utv NK (0;D) :

An example of GLMM can be given from a spatial data example, e.g. the analysis of
Pittsburgh air particulate matter (PM) data (Lee et. al, 2006; section 8.6.3). Assume that yikt
represent the ith measure (replication) on PM at the kth site on the tth day. The covariate matrix,
X; includes seasonal indicators and the measures on daily weather conditions. The random
e¤ects, ut; represent random site e¤ect which can be explained as the daily random cite-speci�c
�uctuations, where a non-diagonal D implies that the observations from the di¤erent sites are
correlated. Unlike the analysis in Lee et al. (2006), the aim in this application is to predict
future PM, Y � =

�
y�kt0
	
; or some function of it, S = s (Y �) where t0 > T but the number of sites

(K) is �xed. Further assume that the design matrix, associated with y�, can be partitioned as
_X� =

�
_XC j _X�S

�
where _XC is currently known, e.g. the seasonal indicator, and _X�S is currently

unknown, e.g. the precipitation, wind speed etc., and can only be observed in the future.
The above prediction problem �ts well under the framework of unobservable variables, nui-

sance variable and parameters�likelihood presented in Berger and Wolpert (1988; sections 3.5.2

and 3.5.3). In this case � =
�
Y �; _X�

S

�
is the unobserved variable, with Y � being of interest, the

random e¤ects u is the nuisance variable and any parameter in the distributions of Y; � and u is
a nuisance parameter. For further derivation of the predictive criteria we can use the "nuisance
variables likelihood principles" (Berger and Wolpert, 1988).

3.1 Derivation of the predictive likelihood for GLMM

In general, with GLMM, we have observed data, X = (XC ; XS) where XC consists of non-
stochastic andXS consists of stochastic covriates and y = fyiktg (i = 1; 2; :::; nkt; k = 1; 2; :::;K; t =
1; 2; :::; T ); future covariates _X� =

n
_Xjkt0;C ;

_X�
jkt0;S

o
(t0 2 (1; 2; :::;max (t0; T ))) of which _Xjkt0;C

is currently known, future response, y� =
n
y�jkt0

o
, which we want to predict and ut and ut0 are

the random e¤ects which are independently distributed as N (0;D) where D is an unknown but
�xed positive de�nitive matrix. Denote � =(�; �; vech (D)) and the parameter vector in the
distribution of _X�

S as � =(�1; :::; �F ). Assuming no overlap between � and �; i.e. � \ � = ? ,
the joint likelihood function for this case is given by

L (�;u;�;�jy; X;XC) = f
�
y; �;u; _X�

S j�;�;X; _XC
�

(4)

= f
�
y;y�jX; _X�;u;�

�
f (XS ; X

�
S j�) f (ujD) (5)

The principle of marginal likelihood (Berger and Wolpert, 1988) says that any nuisance variable
should be integrated out from the likelihood at the �rst hand. Without loss of generality we can
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denote the clusters (k dimension) in observed data with 1 to K and any cluster appears in the
predictive space but not in observed data with (k + 1), (k + 2) and so on up to K 0 and do the
same for t which goes up to T 0. Therefore, the joint likelihood of �; �;� is given by

L (�; �;�jY ) =
Z
� � �
Z 1

�1

max(T;T 0)Y
t=1

f
�
y;y�jX; _X�;u;�

�
f
�
XS ; _X

�
S jX; _X�

C ;�
�
f (utjD) d (ut)

(6)
The integration in (6) is generally analytically intractable even for the observed data likelihood
(Lee et al. 2006). For the GLMM, equation (6) can be presented in matrix notations as

L (�; �;�jY ) =

0@Z � � �
Z 1

�1

max(T;T �)Y
t=1

exp

"
y�TF;t�t � 1T b (�t)

�
+ 1T c

�
y�F;t; �

�#
f (ut) d (ut)

1AL� _X�
S ;�

�
(7)

where y�TF;t=
�
yTt ;y

�T
t

�
is the vector of observed and unobserved responses, � = f�iktg is the

vector of canonical parameters such that with canonical link �t = �t = XF;t� + Ztut where

XF =
�
XTt ; _X

�T
t

�T
is the design matrix associated with � for the data set at t (quarter) and Zt

is the design matrix associated with ut =
�
u1t; u2t; :::; uK0 t

�T , b () is called the cumulant function
and it is a function in "S" convention i.e. b (�1; �2) = (b (�1) ; b (�2)), � is the dispersion parameter

of the conditional mean model and L
�
_X�
S ;�

�
= f

�
XS ; _X

�
S jXC ; _XC ;�

�
. For binomial and

Poisson GLMM, � = 1:
Applying Laplace approximation to (7) the joint likelihood is simpli�ed , after ignoring terms

having zero expectation (see Breslow and Clayton, 1993; section 2.1), as

L (�; �;�jy) � jI+D�1ZWZT j�
1
2 exp

�
�y

�T
F � � 1T b (�)

�
� 1
2
tr
�
D�1uTu

�
� 1T c (y�F ; �)

�
ju=eu L

�
_X�
S ;�

�
(8)

where W is the GLM weight matrix (McCullagh and Nelder, 1989) and eu = futgT 0�K0 is the
maxima of the integrand function in (7) w.r.t. u: For the detailed derivation of (8) readers are
referred to Breslow and Clayton (1993) and Wand (2002).

The remaining task is to eliminate the nuisance parameter �; � and _X�
S from the model.

Since _X�
S has probability distribution it can either be integrated out or pro�led out while � and

� can only be pro�led out. Since, adjusted pro�le likelihood is same as integrating the nuisance

parameter out using Laplace approximation, we can pro�le out ! =
�
�;�; _X�

S

�
altogether from

(8). Thus we obtain the pro�le adjusted predictive likelihood for Z as

L
(1)
P

�
y�jy;X; _XC

�
= LP

�
y�jy;X; _XC

�
jI� (b!�) j�1=2 (9)

where, LP
�
y�jy;X; _XC

�
= sup

!

n
l
�
!;y�jy;X; _XC

�o
with l = logL

�
!;y�jy;X; _XC

�
and

I� (b!�) = fI�vw (b!�)g with I�vw (b!�) = � @2l
@!v@!w j!=b!� is the observed information matrix for

! with �xed y�. Although equation (9) looks simple, its exact analytical derivation may be
challenging, depending on (8). After L(1)P has been computed one can predict Z from (9) in the
following two ways (Bjørnstad, 1996)

a) mean prediction: normalize L(1)P (y�jy) to make it a pdf (pmf) and predict ŷ� = EP (y�jy) :
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Also base any statistical inference on the normalized L(1)P (y�jy) and
b) ML prediction: predict by� that maximizes L(1)P (y�jy) ; for continuous Y; and treat L(1)P (y�jy)

as a likelihood function to make inference on y�:
Bjørnstad (1996) prefers the mean prediction over the ML prediction considering the short-

comings of ML for the correlated data e.g. b�� and y� are not, in general, invariant under
one�to�one parameter transformation. Since L(1)P is the approximate Bayesian posterior predic-
tive density with �at prior, we may use the available Bayesian MCMC procedures (Gelman et
al., 2004) to facilitate the computation of ŷ� as the posterior mode or the posterior mean:

The prediction problem and its approximate likelihood solution presented in (4)�(8) are quite
general. The above technique is also applicable to the prediction of credit defaults under the
modeling framework of Carling et al. (2004) and Alam (2008). For further simpli�cation of
predictive density (9) we require speci�c model for Y and XS : In the following section some
special cases and their respective simpli�cations of (9) are presented.

4 Examples of likelihood prediction under covariate uncertainty

Prediction problems with GLM and GLMM appear in may applications and they are dealt with
a variety of ways, some of which are mentioned in Section 1. We pick some examples from the
existing literature and give their solutions via the predictive likelihood approach. The examples
are not purposively selected; they were the only articles on prediction with GLM and GLMM
under uncertainty in the response or the covariates found in the existing literature. Example 3
is related to survey sampling and arises because of an error-in-variable super population model
as presented in Bolfarine (1991).

Example 3 Assume a �nite population denoted by P = (1; 2; :::; N) ; where N is known and we
draw a random sample of size n from P. We denote the sample observations by y = fyigni=1
and the unobserved part of the population by y� =

n
y�j

oN
j=n+1

: After observing the sample,

the target is to predict the �nite population total, i.e. T =
P
i yi+

P
j y
�
j and to provide a

measure of uncertainty about the prediction: However, the yi�s are not directly observable,
instead we have to use some instrument to measure yi which gives the observation Xi such
that Xi = yi + �i where �i is a random error which is independent of yi:

We assume that yi�s are realizations of Yi from a super-population following a normal dis-
tribution with some constant mean and variance. We also assume that �i�s follow the normal
distribution with mean 0 and a constant variance: Under these assumptions a naive predictor of
T is eT = NX; where X = 1

n

Pn
i=1Xi and the variance of eT readily found with the NP becomes

BLUP (Bofarine, 1991).
The above assumptions imply that XijYi = yi v N

�
yi; �

2
�

�
. Let, � = (�; �; ��) and � =

(y1; :::; y
�
N ) ; X = (X1; X2; :::; Xn) ; X

� =
�
X�
n+1; :::; X

�
N

�
with T =

P
i yi +

P
j y
�
j being of

interest. For simplicity, we assume � and �� are known2.

The above normality gives the following likelihood

L�;�;X� =

nY
i=1

(f (Xijyi; �) f (yij�))
NY

j=n+1

�
f
�
X�
j jy�j ; �

�
f
�
y�j j�

��
2See Bolfarine (1991) and Buzas and Stefanski (1996) for further discussion on the problems induces by

unknown � and ��
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) L�;� =

nY
i=1

(f (Xijyi; �) f (yij�))
NY

j=n+1

Z
X�
j

f
�
X�
j jy�j ; �

�
f
�
y�j j�

�
dX�

j

=
nY
i=1

(f (Xijyi; �) f (yij�))
NY

i=n+1

f (y�i j�)

) L�;� _ exp

24�1
2

8<:
nX
i=1

�
yi �Xi
��

�2
+

nX
i=1

�
yi � �
�

�2
+

NX
j=n+1

�
y�j � �
�

�29=;
35

Denoting, Y
�
= 1

N

�Pn
i=1 yi +

PN
j=n+1 y

�
i

�
we have

L
(1)
P (�jX;��; �) _ exp

24�1
2

8<:
nX
i=1

�
yi �Xi
��

�2
+

nX
i=1

 
yi � Y

�

�

!2
+

NX
j=n+1

 
y�j � Y

�

�

!29=;
35
(10)

Di¤erentiating (10) w.r.t. yi and setting them to zero gives
Pn
i=1 yi =

Pn
i=1Xi. Again doing

the same for y�j we have
PN
j=n+1 y

�
j =

N�n
n

Pn
i=1Xi. Adding the above two results we obtainbT = N

n

Pn
i=1Xi = NX: The above bT is an unbiased estimator for T and its variance can be

calculated as

V ar
�bT � T� = V ar

 
NXs �

NX
i=1

Yi

!

= N
1� f
f

�2 +
N

f
�2�

where, f = n
N : From equation (??) we see that L�;� is proportional to the Bayesian posterior

with �at prior. The Laplace approximation applied to L�;� in order to obtain L
(1)
P (�jX;��; �)

is exact since the log-posterior is a quadratic function. Thus the Bayesian solutions presented
in Bolfarine (1991) are identical to the predictive likelihood solutions. The above bT is also the
BLUP (Bolfarine, 1991).

Example 3 deals with measurement uncertainty in the response but not in the covariates. A
theoretical example of dealing with uncertainties both in the Y and the X space under the linear
model�s framework is also presented in Bolfarine (1991). Next, Example 4 gives a prediction
problem with GLM under covariate uncertainty. We consider a Poisson GLM with one covariate
which is measured with error. This example is originally presented in Huwang and Hwang (2002)
but their method of solution was di¤erent.

Example 4: Consider a Poisson model, YijUi v Poisson (�i), log (�i) = �i = �0 + �1Ui and
Xi = Ui + �i 8i = 1; 2; :::; n. We also assume that Ui v N

�
�u; �

2
u

�
; �i v N

�
0; �2�

�
and

Ui ? �j 8i; j: Our target is to predict Yn+1 = y�n+1 when Xi, i = 1; 2; :::n + 1; and yi
,i = 1; 2; :::; n, are observed but Ui�s are not observable.

From the virtue of the normality and independence of U and � we have Vi = (Ui; Xi)
T =

N2 (12�u;�) where, 12 is a 2 � 1 column vector of 1�s and � =
�
�2u �2u
�2u �2u + �

2
�

�
. Denote,

� =
�
�0; �1; �u; �

2
u; �

2
�

�
and � = (Yn+1; U1; :::Un+1). Using the independence assumption we can

9



construct the following joint likelihood

L�;� = f
�
y�n+1j�; Un+1; Xn+1

�
f (Un+1; Xn+1j�)

nY
i=1

f (yij�; Ui; Xi) f (Ui; Xij�) (11)

The second term in the right-hand-side of equation (11) is the pdf of a bivariate normal distri-
bution. Therefore, the joint distribution of f (Ui; Xij�) in the likelihood can be factored as

f (Ui; Xij�) = f (UijXi�) f (Xij�)

De�ning, E (UijXi) = 0+1Xi and �2 = V ar (UijXi) where, 0 = (1� 1)�u; 1 =
�2u

�2u+�
2
�
and

�2 = �2u

�
1� �2u

�2u+�
2
�

�
. Now, using the usual tricks for bivariate normal distribution (see Berger

and Wolpert (1988), pp�41.4) it can be shown that X = (X1; X2; :::Xn) is ancillary for 0; 1; �
and U . Hence, f (Xij�) carries no information about the parameters needed for prediction and
it can therefore be ignored in the construction of the predictive likelihood. Thus, the joint
likelihood (11) reduces to

L�;� / exp
�
yTF � � 1T b (�)� c (yF )

� 1

�n+1
exp

"
� 1

2�2

n+1X
i=1

(ui � 0 � 1Xi)2
#

) L�;� / exp
�
yTF �

0 � 1T b
�
�0
�
� c (yF )

� 1

� 0n+1
exp

"
� 1

2� 02

n+1X
i=1

u02i

#
(12)

where yTF =
�
y1; :::; yn; y

�
n+1

�
; �

0
= �

0
0 + �

0
1xi + u

0
i; �

0
0 = �0 + �10; �

0
1 = �11; �

0 = ��1 and
u
0
i = �1 (ui � 0 � 1Xi) : Note that the equation (12) is the joint likelihood of a Poisson-Normal
mixed model. Thus we conclude that the prediction problem under the measurement error in
GLM reduces to the prediction problem with its GLMM analogue. However, an exact analytical
solution of the problem is not possible. In absence of an exact analytical solution we may obtain
L
(1)
P through Bayesian posterior simulation.
As a competing approach, Huwang and Hwang (2002) suggested a pseudo likelihood (PsL)

method for the prediction with Poisson error-in-variable model. We consider PsL as the bench-
mark to compare with L(1)P . In order to compare the performance of L

(1)
P with the PsL, we

conduct a simulation study with �0 = �1 = 1, �u = 0; �2u = 0:25 and �2� = 0:1 and 0:25.
We consider the sample sizes to be n = 30; 50; and 100 and predict one out of sample re-
sponse (yn+1) based on the observed data and Xn+1: The choice of the parameter value and
sample size matches Huwang and Hwang (2002). The computation of the L(1)P is carried out
through Bayesian posterior simulation implemented in OpenBugs (Spigelhalter, 2007). A �at
prior, Uniform(0; 100) for � 0 and N (0; 10000) for �

0
0 and �

0
1 was used for the Bayesian model.

We compare the performances of L(1)P and PsL in terms of the coverage interval and the average
length of prediction intervals for a nominal level, 0:95. We use 1000 Monte-Carlo replication to

10



obtain the results which are presented in Table 2.

Table 2 Coverage Probabilities and the average length of prediction intervals for the
Poisson error-in-variable prediction (Example 4) with nominal probability 0.95.

Sample Size V ar (�i) Coverage probability Length of prediction interval

n �2� L
(1)
P PsL L

(1)
P PsL

30 0.25 0.982 0.945 8.733 8.825
50 0.969 0.958 8.355 8.362
100 0.976 0.961 7.909 8.231
30 0.1 0.984 0.954 8.405 8.386
50 0.984 0.964 7.737 7.785
100 0.986 0.943 7.518 7.642
Note: The results of the PsL are quoted from Huwang and Hwang (2002)

Though the coverage probability for L(1)p exceeds the nominal level by a big margin (Table 2), it

may not be a problem of L(1)P ; rather it may be due to discrete predictive distribution for which

an exact 95% prediction interval may not be possible to construct. However, L(1)p guarantees
that the coverage probability is not less than the nominal level while keeping the average length
of the prediction interval shorter than PsL: The average length of the L(1)P decreases at a rate
faster than PsL as the sample size increase.

In the simulation, �2u and �
2
� are quite small and therefore a naive prediction implemented

through a simple Poisson GLM of y on X does not perform bad. For example, with n = 30; �2u =
0:25 and �2� = 0:25 a 95% prediction interval of a simple GLM gives 94% coverage probability.
However, as we increase the variance parameters to �2u = 1:25 and �

2
� = 1:25 and set �0 = 0:5

and �1 = 1:5 with n = 30; the simulation results for 95% prediction interval in L
(1)
P still having a

98% coverage probability whereas a naive GLM prediction interval covers the true future values
only in 77% cases.

The �nal example of prediction with GLMM under covariate uncertainty is a hypothetical
model for credit risk prediction.

Example 5: Let us assume that a portfolio of loans consists of nkt loans in industry k, k =
1; 2; :::;K at time t, t = 1; 2; :::; T: The event that the ith loan in industry k is default at time
t is given by yikt which takes the value 1 if the loan defaults and 0 otherwise. Further,
assume that the default probability is modeled as a binomial GLMM. In predicting a
default event at time t+ 1; the information path at t is observed while some of the future
covariates are unknown at the time. For simplicity we assume that there are p+1 covariates
and only the value of the last covariate, _X�

jk(T+1)(p+1) is unknown at time T although the
covariate, Xikt(p+1); is known to follow an AR (1) process.

For simplicity we set p = 3 and assume that the random time e¤ects in cluster k at each
time t is distributed as ukt v N

�
0; �2k

�
, ukt ? uk0t08k 6= k0 & t 6= t0. Denote, the future

_X�
jk(T+1)(p+1) = x� and we want to predict E

�
y�jk(t+1)

�
= ��jk(t+1): A naive approach would

suggest predicting x� from the historical data on X and then predict ��jk(t+1) as if x
� were

known and that the other model parameters also were known and equal to the MLE obtained
from the observed data up to time T . However, for the likelihood principle, the joint likelihood,
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considering all the uncertainties, is given as

l (�;y�; �jy; x) =
Z
exp

�
y�TF � � 1Tdiag fb (�)g

�
f (u) f (x�jx) f (x) dudx�

) l (�;y�; �jy; x) =
Z
exp

"X
t

X
k

 X
i

yikt�ikt � b (�ikt)
!#

1q
2��2k

exp

�
� u

2
kt

2�2k

�
f (x�jx; �) f (xj�) dudx�

where �ikt = �0 + �1x1ikt + �2x2ikt + ukt and � represents the parameter vector required to
model X. Assuming, X2ikt varies only over t an AR(1) precess on X is de�ned as Xt+1 =
� + �Xt + et; j�j < 1 and et v iid N

�
0; �2e

�
giving � =

�
�; �; �2e

�
: The assumptions lead to a

simpli�cation of the joint likelihood

l (�; y�; �jy; x) =

Z
exp

"X
t

X
k

 X
i

yikt�ikt � b (�ikt)
!#

1q
2��2k

exp

�
� u

2
kt

2�2k

�
:

f
�
x�T+1jxT ; �

�
f (x1j�)

T+1Y
t=2

f (xtjxt�1; �) dudx� (13)

Thus, in order to estimate � parameters we only need to maximize the second line of (13).
However, under likelihood principle we consider the full likelihood (13) for the prediction of x�

while in a formal time series prediction (forecasting) one would predict x� only on the basis of
the the second line in (13).

5 Motivations of L(1)P
We provide likelihood solution of the selected examples through pro�le adjusted predictive like-
lihood, L(1)P : However, L

(1)
P is not the the only choice to carry out likelihood prediction. Initially

L
(1)
P was motivated through its approximate equivalence of Bayesian posterior with �at prior

(Davison, 1986). In this section we show that, apart from the Bayesian justi�cation, L(1)P does
have other attractive explanations.

Bjørnstad (1990) surveyed 14 di¤erent types of predictive likelihoods. Many of them are
equivalent but not all of them comply with the likelihood principle. Bjørnstad (1996) presented
a de�nition of the proper predictive likelihood based on the likelihood principle. A predictive
likelihood L (y�jY ) is said to be proper if, given two experiments E1 and E2, L� (y; y�jE1) /
L� (y; y

�jE2) implies L (y�jy;E1) / L (y�jy;E2) : According to the above de�nition, only 5 out 14
predictive likelihoods surveyed in Bjørnstad (1990) qualify as the proper predictive likelihoods.
Denoting b� as the MLE of � based on observed data only and b�� as the MLE of � based on
both observed and unobserved data the proper predictive likelihoods are given as

1. Le = L
�
y�jy;� = b�y� where, . Le is called the estimative likelihood.

2. LP = L
�
y�jy;� = b��� where, . LP is called the pro�le likelihood.

12



3. L
(1)
P = L

�
y�jy;� = b��� jI� �b��� j�1=2 where, I� = �@2 log(L�(z;y))

@�@�T
j
�=b�� which is called

pro�le adjusted predictive likelihood.

4. L(2)P = L
(1)
P

 @b�
@b��
 which is a transformation invariant version of L(1)P :

5. L(3)P = sup�

n
L�(y;y

�)
supy�ff�(y�jy)g

o
Bjørnstad (1996) did not o¤er any discussion as to whether all of the above 5 predictive like-

lihoods are equally as good. However, a careful inspection of the above 5 predictive likelihoods
reveals that all of them are based on the joint likelihood and they di¤er only in the way they
pro�le the nuisance parameters out of the joint likelihood. Like the naive approach, Le does
not take into account the fact that the parameter b�y is estimated. Hence, Le undermines the
uncertainty associated with the prediction. LP can be recognized as the �rst order Taylor�s ap-
proximation to the joint likelihood around � = b�� while the second order Taylor�s approximation
to log(L� (y; y�)) around b�� gives

L� (y; z) � L
�
zjy;� = b��� exp ��� � b���T I� �b����� � b����

Assuming normality of b�� i.e. g �b��j�� = N ��;�I� �b�����1� we have

L� (y; y
�) �

L
�
y�jy;� = b��� exp ��� � b���T I� �b����� � b����

g
�b��j�� g

�b��j��

) L� (y; y
�) � L

�
y�jy;� = b�z� jI� �b��� j�1=2g �b��j�� (14)

From (14), we see that

L� (y; y
�) � L(1)P g

�b��j��
where L(1)P contains information only on y� and g

�b��j�� contains all the information on � in
addition to partial information on y�. Therefore, the amount of information on y� contained in

g
�b��j�� is likely to be small compared to that contained in L(1)P and may be negligible. Under

the above, assumption, L(1)P is also the partial likelihood of y�. Again, L� (y; y�) = f (y; y�j�) and
f
�
y; y�;b�j�� = f (y; y�j�) implies that L(1)P is the approximate conditional distribution of y and

y� given � = b�� i.e., L(1)P � f
�
y; y�j� = b���. Thus, L(1)P does not have to be motivated through

the Bayesian argument rather it has its own frequentist interpretation which is missing for the
other proper predictive likelihoods. L(2)P is applicable only if b�� can be expressed as a function ofb� which is not possible while we need to use numerical method to obtain the maximum likelihood
estimator. L(3)P is also a �rst order Taylor�s approximation around a di¤erent estimate of � thanb�y and b��:

13



6 Concluding discussion

This paper demonstrate that the likelihood principle gives a uni�ed analytic framework for
predictive inference. For a particular problem in hand, one might be able to �nd a technique e.g.
BLUP for linear models, which enjoy some nice frequentist properties. However, a generalization
of those techniques may be challenging. In contrast, pro�le predictive likelihood method provides
a general and uni�ed principle and method. The exact computation of the pro�le likelihood may
be problematic. Moreover, the lack of computational procedures for pro�le predictive likelihood
is also a hindrance in implementation. We leave the last two issues for possible future work.

Though there are many predictive likelihoods in the literature we prefer pro�le adjusted pre-
dictive likelihood, L(1)P ; for the following reasons. First, it has nice frequentist explanation (see
section 5) and second, due to its equivalence of Bayesian posterior distribution (Davison, 1986),
the computation of it can be carried out by using existing Bayesian computational procedures
such as by using WinBugs. For a Poisson error-in-variable GLM (example 4), we carry out pre-
dictive inference through Bayesian posterior simulation by using OpenBugs. Simulation results
show that L(1)P performs better than the pseudo likelihood approach and the naive approach.
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