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� Abstract
As digital imaging is becoming a fundamental part of medical and biomedical research,
the demand for computer-based evaluation using advanced image analysis is becoming
an integral part of many research projects. A common problem when developing new
image analysis algorithms is the need of large datasets with ground truth on which the
algorithms can be tested and optimized. Generating such datasets is often tedious and
introduces subjectivity and interindividual and intraindividual variations. An alterna-
tive to manually created ground-truth data is to generate synthetic images where the
ground truth is known. The challenge then is to make the images sufficiently similar to
the real ones to be useful in algorithm development. One of the first and most widely
studied medical image analysis tasks is to automate screening for cervical cancer
through Pap-smear analysis. As part of an effort to develop a new generation cervical
cancer screening system, we have developed a framework for the creation of realistic
synthetic bright-field microscopy images that can be used for algorithm development
and benchmarking. The resulting framework has been assessed through a visual evalua-
tion by experts with extensive experience of Pap-smear images. The results show that
images produced using our described methods are realistic enough to be mistaken for
real microscopy images. The developed simulation framework is very flexible and can
be modified to mimic many other types of bright-field microscopy images. VC 2015

The Authors. Published by Wiley Periodicals, Inc. on behalf of ISAC

� Key terms
synthetic image generation; Pap-smear; cervical cancer screening; bright-field
microscopy

THE recent trend toward high-throughput screening in medical and biomedical

research has led to a substantial increase of the amount of data produced. This devel-

opment has rendered manual analysis of all the resulting data to no longer being a

feasible approach. Therefore, computer-based evaluations using advanced image

analysis have become an integral part of many research projects, for example, in (1).

A good example of a field where research on the use of image analysis as a diagnostic

tool has been ongoing for many years is that of Papanicolaou (Pap) test analysis.

Attempts at the creation of automated systems have been made since 1950s, and the

problem is still subject to active research (2).

To create an algorithm that is able to, for example, segment nuclei in an image,

the developer is at some point going to need a validation dataset containing a repre-

sentable selection of the material being analyzed, as well as a ground-truth segmenta-

tion for the objects of interest. This is used to measure the performance and

robustness of developed algorithms. Acquiring this ground-truth data can, however,

in many cases be a very difficult prospect. Aside from issues such as obscuring bio-

logical material, the image will have been subjected to aberrations linked to the

modality of the acquisition technique (3). The process of dealing with these degener-

ative effects can often become very complicated. When working with images acquired

from a microscope, one may have to deal with issues such as uneven illumination,
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detector noise, and compression artefacts (4,5). These errors

are added to already existing aberrations related to the physi-

cal limitations of the optics (6).

The classical way to handle the ground-truth issue is to

manually try to obtain ground-truth data with the help of one

or, preferably, several experts. However, this approach is

notoriously prone to introduce errors in itself, due to the limi-

tations in reproducibility for human operators (7). Further-

more, to create a statistically sound ground-truth dataset,

especially when working with biological data and its basically

infinite variations, it is often necessary to manually analyze

huge quantities of data. This can in many cases be an impossi-

ble task.

In this article, we describe a framework for creating real-

istic synthetic images intended to be used for the development

of various kinds of image analysis tasks such as preprocessing

and segmentation. Simulated images can fill several functions

in a development pipeline, for example:

� Parameter optimization (8).

� Algorithm comparison/evaluation (4).

� Benchmarking on large datasets (9).

As ground truth is always readily available, it is possible

to do optimizations, evaluations, and validations on amounts

of data not feasible when relying on manually analyzed

images. Another benefit is the ability to control the character-

istics of the synthetic data both concerning imaging properties

such as uneven illumination and aberrations caused by the

imaging system. This allows for controlled testing of an algo-

rithm’s robustness under very specific circumstances.

Previous attempts at creating images depicting cell- or

nucleus-like objects have primarily been aimed at mimicking

images acquired using fluorescence microscopy. Lehmussola

et al. created a complex simulator, called SIMCEP, which is able

to create populations of realistic two-dimensional (2D) nucleus

populations (4). Svoboda et al. built on the concepts intro-

duced in that article to create fully three-dimensional (3D)

image data (5,10). Recently, they have further extended their

work to also include time-lapse simulation (11). In common,

for the work mentioned above is that they only simulate the

nucleus appearance and did so using parametric methods for

shape and texture generation. Zhao and Murphy (12) instead

uses machine learning to generate the shape of the nucleus and

the cytoplasm as well as the texture of the nucleus.

The simulation described in this article constitutes a

highly flexible framework for emulating Pap-smear images

taken using a standard bright-field microscope. This is, to the

best of our knowledge, only the second attempt at creating

realistic synthetic images emulating data collected using

bright-field microscopes, the first one being our own previous

work (8). This new framework, however, improves greatly on

previous work through the addition of shape and texture gen-

eration based on data obtained from an extensive database of

segmented cells, the inclusion of more debris models, a more

versatile method for object distribution, and an accurate

approximation of the image depth of field, allowing for simu-

lated focus stacks to be created. The resulting images have

been validated using visual inspection of images by trained

individuals with experience in analyzing cell images as well as

cytology experts.

PROBLEM STATEMENT

The goal of this project was to create a simulation frame-

work able to create realistic images containing not only cell

nuclei but also cytoplasms as well as a wide variety of other

objects and artifacts commonly found in Pap-test specimens.

When working with biological data, one of the biggest chal-

lenges lies in trying to deal with the extensive variation present

in the samples. Objects are often subjected to distortions such

as overlapping and folding or obscured by material lying out-

side the current focus plane of the imaging system. If stains

are used, it is common to experience stain intensity variations

on both an intrasample and intersample basis.

For this article, objects that are not usable intermediate

epithelial cells are referred to as debris or artifacts. A selection

of the most common types of artifacts found in Pap-smear

samples have been illustrated in Figure 1. These artifacts intro-

duce an added level of difficulty when trying to achieve goals

such as reliable nucleus segmentation in a high-throughput

setting. When developing a synthetic image generation frame-

work for this type of modality, it is essential that as many of

these types of debris are modeled as accurately as possible and

included in the final results.

The primary focus for this study was to try to imitate the

appearance of samples produced using liquid-based cytology

(LBC) (13). A description of the LBC method can be found in

the reference data section below. This choice was related to

LBC producing cleaner specimens. Regions with well distrib-

uted and mainly free-lying cells on conventional smears look

similar to LBC:s and those are reasonably well represented by

our simulator. By increasing the object distribution density,

the generated images will become more similar to dense

regions on smears. But, the conventional smears also contain

highly dense regions with many layers of cells, mucus, and

other obscuring structures. Simulating that appearance prop-

erly would have required significant additional modeling

efforts without adding to the usefulness of the simulator, as

there are hardly any image analysis algorithms that can extract

useful information from such dense regions.

Although humans analyze Pap-smears in color, computer-

based systems commonly operate on monochrome images.

This is because color has very little diagnostic value when ana-

lyzing specimen stained using the Pap-stain. Instead, when

developing automated systems, achieving a good contrast for

nucleus texture is the highest priority. Therefore, specific filters

are used that produce monochrome images with maximum

nucleus contrast (14). The simulator described in this article is

imitating images taken using such circumstances.

REFERENCE DATA

To create synthetic images that are sufficiently similar to

reality, access to real data is a necessity. For the development
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of the framework described in this article, a large database of

Pap-smear images, acquired at several focus levels, was avail-

able. In the following sections, the source material will be dis-

cussed in more detail.

The Papanicolaou Test

The goal of the Papanicolaou test is the detection of neo-

plastic (cancerous) and proneoplastic (precancerous) cell

changes in the cervix before they reach an invasive stage.

Using a spatula or a brush, the area known as the transforma-

tion zone of the uterine cervix is scraped to obtain epithelial

cells. The epithelium has a layered structure consisting of

basal, parabasal, intermediate, and superficial cell. Out of

these, the intermediate cells are the most common and have

frequently been the target of automated analysis studies (13).

The collected material is smeared onto a glass slide to produce

the Pap-smear. The sample is fixed and stained to enhance the

contrast between nucleus and cytoplasm (15).

Although the Pap-smear has shown its worth through

decades of use, it is hampered by certain difficulties, for exam-

ple, variable smear thickness, uneven cell distribution across

the field of view, obscuring elements such as blood and

inflammatory cells, and variable fixation and staining results.

To overcome some of these problems, so-called LBC prepara-

tion methods have been developed. Using LBC, the sample is

immersed in a solution that is then subjected to a number of

processes that work to homogenize the sample, remove

unwanted components (e.g., red blood cells) and finally

deposit a suitable mono-layer sample on a glass slide (13).

These samples are considerably less cluttered and while thick-

ness of the cells distribution still varies, it is overall far less

than for the conventional smear. However, the types of debris

objects described in the Problem Statement section earlier will

still be present in samples prepared using an LBC protocol.

Materials

Data from more than 900 fields of view, acquired as

focus-stacks from 82 specimens, were available for the devel-

opment of the simulation method. The database contains

specimen prepared using both the conventional method as

well as the LBC method. Image acquisition was performed

using an Olympus BX51 bright-field microscope equipped

Figure 1. A selection of artifacts that commonly occur in bright-field microscopy images of Pap-smears. From top to bottom: bacilli (small

linear objects), WBC (small dark elliptical objects), dye specks, and OOF objects.
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with a 403, 0.95 NA lens and a Hamamatsu ORCA-05G 1.4

Mpx monochrome camera, giving a pixel size of 0.25 mm. The

microscope light path was filtered using a 570-nm bandpass

filter, a wavelength previously shown to maximize the contrast

of nuclei in Pap-smears (14). The microscope was fitted with

an E-662 Piezo server controller (Physik Instrumente GmbH

& Co. KG, Karlsruhe, Germany). This allowed for z-axis step

control with a 0.1 mm resolution during image acquisition.

The algorithms described in this article were imple-

mented in MATLAB (2011b, The MathWorks, Natick, MA) using

the image processing toolbox DIPimage (16).

SIMULATION METHODS

The framework described in this article includes the crea-

tion of a wide variety of objects, ranging from the individual

cells to clusters of bacilli, as well as an emulation of an optical

system paired with a detector. Svoboda et al. (5) suggested

that the simulation process can be split into three main

phases: phantom object generation, signal transmission, and

finally, signal detection and image formation.

Phantom object generation refers to the creation of the

primitives that constitute the main content of an image. In

some cases, these objects can be quite simple point-like objects

(17), whereas others entail the creation of full 3D representa-

tions (5). For some simulation frameworks, phantom genera-

tion includes not only the creation of single objects but also

entire populations of object occurrences (4,18).

The way the signal transmission is approximated is natu-

rally highly dependent on the modality being simulated. Per-

haps, the most important phenomenon is the impulse

response of the system, also known as the point spread func-

tion (PSF), which is a central aspect of all types of microscopy

(3). The PSF is most often replaced by a Gaussian kernel as its

generally accepted to be a good approximation (4,8,17). Other

aspects belonging to this stage are uneven illumination (10)

and various kinds of chromatic aberrations (19).

The final stage aims to emulate the performance of the

device sensor and its conversion of incoming light into a digi-

tal representation. Sensors introduce Poisson noise (20) that

can be seen with the naked eye. Furthermore, the A/D con-

verter and amplification circuits introduce noticeable levels of

noise (20). Other possible aberrations include dark current

noise, fixed pattern noise, and blooming effects (5).

Figure 2 depicts a flowchart, organized as suggested by

Svoboda et al., illustrating the synthesis process of the algo-

rithm described in this article. In the following sections, we

are going to describe the steps of the method in more detail.

Squamous Intermediate Cell Phantoms

As the squamous intermediate cell is the target for most

studies related to Pap-smear analysis, it is of utmost impor-

tance that it is as accurately modeled as possible. The cells

can, for modeling purposes, be divided into two main compo-

nents, the cytoplasm and the nucleus.

The cytoplasms appear as a mostly transparent gel-like

substance. It has little stability and is thus easily deformed,

resulting in variations in shape and size between cells. The

cytoplasm of a healthy cell displays little in the way of a regu-

lar texture other than a fine network of fibers, these are known

as the cytoskeleton.

The nucleus is in contrast to the cytoplasm a more rigid

structure that has a principally elliptical shape. Because of the

staining involved when preparing the Pap-smear, it is gener-

ally darker relative to the cytoplasm. The appearance of the

nucleus texture is related to the distribution of the chromatin

within the nucleus membrane.

Shape generation. To generate the shape of the cytoplasm

and nucleus phantoms as accurately as possible, we used our

cell image database. From our database of some 12,000 seg-

mented cell nuclei, we randomly selected 100 normal squamous

intermediate cell nuclei. The nuclei were segmented through a

manually seeded watershed algorithm. The corresponding cyto-

plasm was interactively segmented using the live-wire tool (21).

For each cell, the shapes of the cytoplasm and the nucleus have

been parameterized using a method for Fourier shape represen-

tation described by Zhang and Lu (22). The boundary of an

object mask is sampled at a predefined number, K, points

spaced at an equal arc length. Starting at an arbitrary point,

(x(0), y(0)), coordinate pairs (x(1), y(1)), (x(2),y(2)), . . .,
(x(K 2 1), y(K 2 1)) are encountered when traversing the

boundary in a preselected direction. The shape boundary coor-

dinates can be represented as a sequence of coordinates

s(k) 5 [x(k), y(k)], for k 5 0,1,2,. . ., K 2 1. Also, each coordi-

nate pair can be treated as a complex number so that

zðkÞ5xðkÞ1iyðkÞ (1)

where i is the unit imaginary number. This reduces our 2D

data to at 1D problem. We can now calculate the discrete Fou-

rier transform of z(k) as

ul5
1

K

XK21

k50

zðkÞe2i2plk=K ; (2)

where l50; 1; . . . ;K21. The complex coefficients un are called

the Fourier shape descriptors (FSD) of the boundary. These

descriptors represent the shape of the object in the frequency

domain. We carry out this kind of FSD extraction on a repre-

sentative population of nuclear shapes and thus collect a set of

statistical populations of FSD. We can now use naive Bayesian

theory to generate new shapes. This means that we from these

populations extract the mean and standard deviation for each

descriptor and use that to define a statistical distribution from

which we draw samples at random. These samples define a

new shape which is returned to real space through inverse

Fourier transform. The FSD can be normalized with respect

to size by dividing the descriptors with the magnitude of the

second component, ju1j, of the signal, yielding the normalized

shape descriptor vector û as

û5
u0

ju1j
;

u1

ju1j
; :::;

uK21

ju1j

� �T

: (3)

The DC component, u0, depends only on the position of

the shape, which in this setting is of no importance and can
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therefore be removed, u0 5 0. By normalizing the size of the

shapes in the database, it is now possible to add a scale parame-

ter to the generation of the new shapes. This gives us an

increased control and makes it possible to, for example, link our

shape size to a pixel resolution or add controlled random size

variations to the generated shapes. A few examples of randomly

generated nucleus and cytoplasm shapes can be seen in Figure 3.

Texture synthesis. For this study, nucleus textures have been

created using a texture synthesis approach, well known in com-

puter graphics, called patch-based texture generation (23). The

goal of this method is to be able to create a texture image of

any size based on a small texture sample. A schematic descrip-

tion of the texture generation process can be seen in Figure 4.

The process is initialized by randomly selecting an initial

texture patch, B0, of predefined size from the sample texture,

Ts, and placing it in a corner of the target texture,Tout. A

boundary zone, EBk
, of width, wE, is defined for each patch. A

random coordinate pair, (x, y), is generated in Ts and a patch

candidate, B(x,y) is acquired. If the distance between the over-

lap regions, d EBðx;yÞ ; EB0

� �
, is lower than a predefined distance

threshold, dmax, the patch is accepted to be pasted to the gen-

erated texture. The distance metric used is usually the mean

squared error. As a final step, the pixels in the overlap region

need to be blended together to avoid sharp edges in the tex-

ture. This can be achieved using feathering (24) or a mini-

mum error boundary cut (23). For our implementation, we

use feathering, that is, pixel intensities are weighted relative to

their distance to the edges of the patches.

Figure 2. A flowchart depicting the simulation framework described in this article. The simulation process is divided into three phases. In

the first phase shape primitives, phantoms, are created. These objects include cell nuclei, cell cytoplasms, bacilli, WBC, OOF objects, and

speckles. Once the primitives are created they are distributed over the image using a weighted distribution model. Also, each object is

given a depth coordinate. In the second phase image degradation similar tp, the one seen in bright-field microscopes is simulated. Finally,

in phase 3, sensor noise is simulated according to the characteristics of a CCD sensor.

Figure 3. Examples of nucleus and cytoplasm shapes created

using the FSD method.
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To add randomness to the nucleus texture generation,

each new texture is generated from three different sample

nuclei randomly selected from the database. This significantly

reduces the risk of recurring texture details. Furthermore, we

have added weighting to the patch selection so that patches

that are to be placed close to the center of the phantom are

more likely to be found in central parts of the sample images.

An example of a generated nucleus can be seen in Figure 5.

The cytoplasm texture is difficult to define as it is mainly a

result of which deformations it has been exposed to. To that

end, a cloth simulation algorithm (25) has been used to simu-

late cytoplasm deformations. The cloth simulator starts with a

circular mesh, that is, a grid-like structure consisting of a num-

ber of points (vertices), x5ðx; y; zÞ, connected by edges. This

mesh is then deformed using a force-field that gradually shrinks

to the generated shape’s outer boundary and pushing on verti-

ces that it touches on the way. The deformation of the cloth

takes place in 3D with a ground plane limiting movements in a

negative z-direction. In the end, the cloth object will have an

outer boundary that corresponds to the generated shape, but

the vertices that make up the central part of the mesh will be

pushed to produced wrinkles and folds. The cloth simulation is

an iterative physics simulation where each vertex in the cloth

mesh is given acceleration depending on outer forces that affect

it as well as inner forces decided by the distances to its neigh-

bors. One iteration of the simulation is called a time-step. The

index t gives the time that has passed as the initiation of the

simulation, and Dt is used to indicate how much time is

increased between iterations. At each iteration, a vertex’s new

position, xt1Dt , is calculated using the Verlet integration (26),

xt1Dt 52xt 2xt2Dt 1v0t Dtð Þ2; (4)

where v0t is the acceleration of the vertex after previous

iteration.

When the cloth mesh has undergone deformation, a sur-

face render is performed to get a base texture for the

Figure 4. Conceptual illustration of patch-based texture synthesis. (Left) Sample image. (Middle) Patch evaluation based on the distance

between the overlap region of two patches. (Right) Finished synthesized texture. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]

Figure 5. Nucleus texture generation. (Top row) The three nuclei used as texture samples. (Bottom row) Generated nucleus texture and

final generated nucleus.

Original Article

Cytometry Part A � 87A: 212�226, 2015 217

http://wileyonlinelibrary.com


cytoplasm. The cloth simulation process has been illustrated

in Figure 6. Note that through the simulation process, a natu-

rally looking folding pattern has been created at the edge of

the cytoplasm shape which propagates into the central part of

the cytoplasm phantom.

To finish the cytoplasm generation, three levels of details

are added. Each of these are optional and can be excluded if

sample specifications dictate it. The first level is a low fre-

quency Gaussian noise that adds intensity variations to the

texture. The second level is composed of thresholded Brown-

ian noise, which is a correlated noise whose power spectrum

decreases as a function of f 2. This noise appears as clouds of

small flecks that are unevenly distributed over the cytoplasm,

which corresponds to, for superficial squamous cells, fairly

commonly seen keratin precursors. The final level of detail

entails the simulation of a cytoskeleton structure. The skeleton

is generated by first generating a random Voronoi diagram by

randomly placing points in an image. The diagram is relaxed

using Lloyd’s algorithm (27) to get a more evenly spaced point

distribution. A radial distance transform is generated from the

edge of the image to create a downward slope from the middle

of the image to the edges. Random vertices of the Voronoi dia-

gram are then selected and a line is created by following the

edges of the diagram by steepest descent according to the dis-

tance transform. A random chance of branching at each vertex

results in a random tree structure that is very similar in

appearance to cytoskeletons observed in reference images. In

Figure 7, the three levels of details that can be added to the

cytoplasm base texture have been illustrated as well as an

example of a finished textured cytoplasm.

Population Distribution Generation

The distribution of generated objects is an important fac-

tor of the simulated image generation process. The simplest

approach to generating a coordinate pair, (x, y), for an image

with dimensions (M, N) is to draw the coordinates from a

uniform distribution, U(a, b) where a and b describes the

interval,
x5Uð0;MÞ

y5Uð0;NÞ: (5)

The problem with this approach is that populations gen-

erated using this method will not look natural. Objects in bio-

logical samples tend to end up in more concentrated groups

(28). The problem of population generation has previously

been studied as described in (4) and (29) showing meaningful

results. For this study, we have instead chosen to use a differ-

ent approach, a method known as rejection sampling (30), in

computer graphics also known as Russian Roulette Monte

Carlo sampling (31), to generate our distributions. The basic

concept behind rejection sampling is that a coordinate pair

drawn from a uniform distribution is accepted with a proba-

bility Wx,y, where W 5½wi;j �M3N ;wi;j 2 ½0; 1�. We call W a

weight-map and a distribution created using W a weighted

distribution. New coordinate pairs are drawn until a specified

number of coordinates have been accepted. This approach is

simple to use and produce good results as long as W contains

large enough areas with a relatively high probability score. For

weight-maps, where all positions have a low probability the

algorithm will take a long time to execute as the rejection rate

will be high. However, with proper understanding of the

method’s limitations the approach works exceedingly well.

The addition of W gives us the ability to control how

generated objects are distributed over an image. There are

many benefits to this approach. The weight-map allows us to

both customize the distribution, perhaps in an attempt to

match the distribution of a specific sample image, and create

random distributions with certain characteristics, for example,

single cluster, multiple clusters, or perhaps a swath of material

across the image. Examples of weighted distributions can be

seen in Figure 8. In our present study, we have only used these

possibilities to a limited extent generating some simple distri-

bution patterns.

Debris Object Generation

As has been previously stated, and illustrated in Figure 1,

debris objects are a common problem when developing any

kind of analysis algorithm. In the following sections, the types

of debris that have been added to the simulation will be

described in more detail.

White blood cells. White blood cells (WBC), or leukocytes,

are a typical indication of an inflammation of the cervix. They

usually appear as dark elliptical objects, often clustered

together in small groups spread over the image. In the case of

more serious cases of inflammation, larger sheets of WBC can

be found, often obscuring significant sections of a sample.

Figure 6. Illustration depicting the steps of the cloth simulation process: (a) Initial shape generated according to method described in

Shape generation section that is used as the target for the deformation, (b) Initial cloth mesh prior to any deformation, (c) cloth mesh after

deformation, and (d) final rendered result produced by adding a transparent material to the mesh.
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Figure 7. (Left) The three levels of texture details (Low frequency Gaussian noise, thresholded Brownian noise, simulated cytoskeleton

shape). (Right) Example of a final cytoplasm result (for this example a different base texture than the one shown in Fig. 6 has been used).

Figure 8. Result of weighted distribution generation. Two weight-maps (top) and their resulting distributions (bottom).
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In Figure 9, the steps of the WBC phantom generation

have been illustrated. The simulation process is divided in two

main steps: the creation of each cell and the construction of

clusters. For cell shape generation, we have used a parametric

model previously used by Lehmussola et al. (4). The shape of

a cell is based on the parametric form of a circle, where each

coordinate pair is written as ðxðhÞ; yðhÞÞ and generated by

xðhÞ5cosðhÞ

yðhÞ5sinðhÞ (6)

where h 2 ½0; 2p� is the polar angle. Perturbations to the verti-

ces of the shape are added by

xiðhiÞ5s Uð2a; aÞ1cosðh1Uð2b; bÞÞ½ �

yiðhiÞ5s U ð2a; aÞ1sinðh1Uð2b;bÞÞ½ � (7)

for i 5 1, . . ., K, where K is the number of boundary points, a;
b 2 R controls the range of values drawn from the uniform

distribution and s is a scale parameter.

To distribute the generated objects in naturally looking

clusters, we use the weighted distribution method described

in the Population Distribution Generation section with ran-

domly generated weight-maps. Finally, the leukocyte phan-

toms are textured using the common Perlin noise model (32).

Bacilli. Bacilli are a fairly common occurrence in Pap-smear

images, the most common kind being the Lactobacilli, or, as it

is also known, D€oderlein’s vaginal bacillus (33). They appear

as simple, single line structures, and always in clusters of vary-

ing size.

The simulation process for bacilli generation starts with

the generation of randomly oriented short binary lines. These

line segments are then clustered in the same way as described

for the WBC generation in the end of White Blood Cells

section.

Speckles. We will define speckles as point noise that is dis-

tributed in a uniform way across an image. The cause of a sin-

gle speckle can vary, with common sources being dust, glass

impurities, stain particles, or other small biological objects.

Regardless of the source, however, they are very similar in

their appearance and can thus be grouped together as a single

type of simulation. The base speckle is created as a single pixel

that is then extended one pixel in a random direction.

Depending on the size of speckles that is required for a spe-

cific simulation this shape can then be made bigger using

binary dilation (3).

Out of focus objects. It is common for images taken of Pap-

smears to contain objects that lie well outside the current

focus plane. The source of these objects varies. Sometimes it is

biological material such as cells, WBC clusters or mucus.

Other times, the cause is dirt on the cover glass of the samples

or air bubbles in the fixation liquid. These artifacts can take

on many forms, and it is an ambitious task to try to simulate

all of them. However, because they generally are placed so far

outside the focus plane, their appearance is very blurred. To

that end, we have created an out of focus (OOF) debris group

where an object is created using the same parametric model

and textured the same way as the WBC described in White

Blood Cells section. These objects are then taken to be placed

at a focus plane well outside the defined space and blurred

accordingly (see Impulse response section).

Signal Transmission

The second phase of the image synthesis process is the

simulation of light as it travels through the sample to the

detector. Three primary factors of this problem have been

considered for this project; background illumination specifi-

cations, how individual objects absorb the light, and finally

the approximation of the impulse response function in three

dimensions.

Background illumination. Under perfect circumstances the

background illumination should be a uniform function. This,

however, is rarely the case. The most common kind of aberra-

tion for bright-field microscopy is uneven illumination, a low

frequency light intensity variation over the field-of-view. Fur-

thermore, for bright-field microscopy the light path has to

pass through a glass slide. This will generate aberrations

caused by the optical properties of glass as well as by scratches

and dirt on the surface. To simulate these phenomena, two

principal degradation steps have been added to the back-

ground generation process.

The uneven illumination is simulated by calculating a

distance transform, Id(x, y), initialized from the edge of the

image. We scale the distance transform to [0,1] and add an

Figure 9. The creation process of leukocyte clusters. (Left) Shapes generated using parametric model. (Middle) Shape masks added to the

final cluster. (Right) The final result with added Perlin noise.
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exponent, Id(x, y)n. The background is initialized as a uniform

image, H(x, y), with a predefined intensity, H(x, y) 5 b. The

perturbed background illumination can then be written as

Ibðx; yÞ5Hðx; yÞIdðx; yÞn; (8)

where the exponent, n, controls the strength of the variation.

We can now add the second type of aberration which is related

to light scattering in the slide. To simulate these effects, we

have chosen to use a Perlin noise image, Ipe(x, y): [0,1],

together with a constant, cpe, that controls the strength of the

variations. Perlin noise is a computationally efficient way of

generating correlated noise (32). It is commonly used in com-

puter graphics to generate natural looking textures. It is not

directly based on any physical model of light transport, but

the results are visually similar to that caused by the light scat-

tering effects.

The Perlin noise variations are added to the background

illumination as

Ibðx; yÞ5 Hðx; yÞ2cpeIpeðx; yÞ
� �

Idðx; yÞn: (9)

The final step of the background generation is to calcu-

late the logarithm of the generated image,

Ibðx; yÞ5log10 Hðx; yÞ2cpeIpeðx; yÞ
� �

Idðx; yÞn
� 	

: (10)

This is done to facilitate the use of absorbance values, as

will be explained in the following section.

Absorbance. In bright-field microscopy an object’s color is

related to its light absorption properties. This behavior can be

described using the well known Beer–Lambert law (34), which

states that

Ak52log10

I1

I0

; (11)

where Ak is the material’s absorbance at a specific wavelength,

k, of incoming light, I0 is the intensity of the light before it

passes through the sample, and I1 is the intensity of light that

remains after passing through the sample. Essentially, for the

Pap-smear application, the Beer–Lambert law relates the

absorbance of the Pap-stain to its concentration

Ak5k3c3l; (12)

where k is a constant commonly referred to as the extinction

coefficient (a characteristic of the dye), c is the concentration

of the dye, and l is the length of the light path.

For the simulation, each object type is given a specific

absorbance value. These values can be directly based on meas-

urements taken from source materials or selected based on a

specific desired target appearance. In this project, we meas-

ured representative values from our cellular database.

Impulse response. The shape of the PSF for a specific

bright-field microscopy setup is dependent on the NA of the

objective used, the refractive index of the medium between

the sample and the objective lens and the wavelength, k, of the

image forming light (6). Trying to mathematically determine

the precise degenerative effects of the PSF for specific hard-

ware specifications can be exceedingly difficult. For this study,

we have instead chosen to simplify the process by approximat-

ing the impulse response function with a Gaussian function,

Gr. Furthermore, for simplicity and speed, we have elected to

separate the blurring process into a depth of focus blurring,

GDz, and an image plane blurring, GDx,y.

Because of the availability of focus stacks as reference

data, we have been able to quantifiably determine a suitable

standard deviation for the Gaussian kernel related to the

depth of focus. This was achieved by first studying a nucleus

at the focus level at which it is in focus. This level was deter-

mined by summing the gradient magnitude values within the

cell nuclei for all focus levels and choosing the level with the

greatest sum. We can then compare each offset step in the

focus stack to a Gaussian blurred version of the focused

image, allowing us to decide which sigma yields a degradation

that lies closest to the observed one. The quantification is

achieved by taking the sum of the intensity difference for each

pixel of the nucleus. In Figure 10, a plot showing the optimal

ratio r/mm, relative to each focus level offset can be seen for a

sample cell. The same experiment was carried out for a repre-

sentative population of 10 different cells. For small focus off-

sets, it is, due to discretization issues, hard to get reliable

measurements. However, for offsets >1 mm it becomes appa-

rent that a reasonable approximation of the impulse response

in the z-direction is r ’ dz , where dz is the z-offset in mm.

The impulse response in the image plane is more difficult

to approximate quantifiably. Generally, the PSF is smaller in

the x-y dimension relative to the z-dimension, rx;y < rz . By

taking an image depicting a step function, that is, a sharp

edge, and studying the first derivative of that image, it is pos-

sible to obtain an approximation of the PSF that lies close to

reality. The measured PSF can then be compared to Gaussian

kernels with different sigma to find the closest match. Using

this approach, a suitable value for rx,y for the model system

used in this project was found to be 0.9 pixels corresponding

to around 0.22 microns.

Signal Detection and Digitalization

The most commonly used type of imaging sensor within

microscopy is the charged coupled device (CCD) sensor.

These sensors operate using a linear transfer function, that is,

the output signal for each pixel is proportional to the number

of photons it receives. Optical imaging sensors have, as has

been previously stated, certain limitations. The dominant

source of noise in sensors, known as photon noise, is related

to the fact that the number of photons emitted from a con-

stant light source over a finite time interval is stochastic.

Under normal operating conditions, this noise is Poisson dis-

tributed and quite easy to simulate. A second type of sensor

noise significant enough to be added to the simulation is

called readout noise that is a product of phenomena related to

the A/D converter and amplification circuits. This noise

behaves as additive white Gaussian noise (35).

Final Image Formation

The formation of the final simulated image, If, can be

written as
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If ðx; yÞ5gpo 10 Ibðx;yÞ2Ipðx;yÞð Þ � Grx;y

� �
1gg (13)

where gpo and gg constitute the addition of Poisson and Gaussian

noise, respectively, (*) denotes a convolution operation, Grx;y

stands for the approximation of the PSF with a Gaussian kernel

with sigma rx;y , Ibðx; yÞ is the background image generated by

Eq. (10) and Ipðx; yÞ is a phantom image. The phantom image

contains the set of Np phantom objects, P5fp1; p2; . . . ; pNp
g. To

simulate the depth of field, each object, pi, is assigned a z position,

zi, using a median filtered Perlin noise image, scaled to encompass

the desired depth in the image. The generation of the phantom

image can then be written as a sum of phantom objects with

appropriate amounts of out-of-focus blur,

Ip5
XNp

i51

pi � Grzi
(14)

The final step of the synthesis process is to remove some

of the degenerative effects applied to the parts of the image

displaying nucleus texture. Because the nucleus texture is a

product of patch-based texture generation from source mate-

rial, the texture has actually already been subjected to the

degenerative effects of the optics and the sensor system.

Therefore, the final image, If(x, y) is updated according to

I
0

f x; yð Þ5Ip x; yð ÞC0 x; yð Þ1If x; yð Þð12C
0 ðx; yÞÞ (15)

where C
0

is a feathered nucleus mask generated as

C
0
5C � Gr

C5
1; if nucleus

0; otherwise

(
(16)

The feathering, or blurring, of the nucleus mask, C, prevents

the creation of sharp, unnatural edges around the nucleus texture.

EVALUATION

The quality and realism of the synthetic images which are

generated through the described procedure needs to be

Figure 10. (Top) Nucleus at its focus level (Left) and its actual degeneration at a 1.2-mm offset (Middle image), compared to a Gaussian

degeneration with r 5 1.2 (Right image). (Bottom) Plot discerning optimal ratio for r relative to the z-offset (lm) as a function of the z-off-

set for specific offsets.
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evaluated. As we are generating images that can be visually

inspected, a natural approach is to do a visual comparison

between synthetic and real images. This approach also seems

relevant since the most common way of analyzing Pap-test

specimens is through visual inspection. In designing such a

test, it becomes important to have realistic conditions for the

visual inspection. Given unlimited time and the possibility of

zooming and scrolling the images, it is in most cases possible

to find out which image is real and which is synthetic. But,

this is far from the conditions under which this kind of images

normally are scrutinized.

We have, therefore, designed a customized evaluation

test. The experimental design was inspired by a study devised

by Meyer et al. (36). In that study, users were asked to com-

pare a real scene to an identical computer generated one. For

the experiment, the subject was showed a tightly cropped view

of the real and synthetic scene projected through a lightly

frosted glass, to account for limitations of existing display

devices. For our validation study, a simple user interface was

designed. A patch of size 200 3 200 pixels, randomly selected,

was cut out from an image that in turn was randomly selected

from a database of images containing 25 synthetic images cre-

ated with varying settings and 25 real images from different

specimen. Before showing the image to the user, a pixel-wise

Gaussian noise (r 5 0.7 graylevels) was added. This was done

to make the variations in background intensity and smooth-

ness between different real images less visually disturbing,

making it easier to focus on the details in the images. The

patch was shown to the test subject for 2 s, after which a non-

timed prompt for an answer was displayed. In total, 120

patches were displayed to each user. However, the first two

patches were training images used to get the user comfortable

with the validation system and are not counted in the final

result. The outcome of this study is discussed in Results

section.

Another approach to evaluating the quality of the syn-

thetic image generation algorithms, is to compare results from

an automated image cytometry algorithm applied to synthetic

images and real data with expert annotated ground truth (4).

Other validation approaches have included comparing results

for several image cytometry tools when used on synthetic

images (4) or comparing scores for different image descriptive

features from synthetic and real images (12).

Such tests can give valuable evaluations of whether the

feature distributions obtained from the synthetic images are

the same as those obtained from real ones. There are, however,

problems in that many aspects of the synthetic images are gen-

erated from feature distributions extracted from real images.

So, for many simple features such as nuclear size, we can

obtain perfect agreement between normal and synthetic distri-

butions. Another issue is the fact that manually obtaining a

suitable ground truth dataset is, as has previously been dis-

cussed, a far from trivial task paired with many difficulties.

We have as a complement to the visual evaluation made a

comparison of the distribution of one nontrivial feature, the

moments of the nuclear texture distribution. The choice is

motivated by the fact that from a diagnostic perspective, the

key structures in Pap-smear images are the nuclei and their

chromatin structure. Following the approach taken by Svo-

boda et al. (5), a number of central moments as well as an

entropy score was calculated for several real and synthetic

nuclei. The n th central moment is calculated as

ln5
XL21

i50

zi2mð Þnp zið Þ; (17)

where

m5
XL21

i50

zip zið Þ: (18)

Here, zi is a discrete random variable denoting the partic-

ular intensity level present in the image. The sum covers the

range of all the image intensity levels (L). The entropy defines

the amount of uncertainty in the measured data and is calcu-

lated as

H5
XL21

i50

p zið Þlog p zið Þ: (19)

Five central moments, n 52,. . .,6, as well as the entropy

was calculated for a sample of 30 nuclei from real images and

an equal number from synthetic images. From this, individual

quantile-quantile (Q-Q) plots have been generated for each

feature (Fig. 11). A Q-Q plot is a probability plot that com-

pares two distributions by plotting their quantiles against each

other (37). If the compared populations are drawn from simi-

lar distributions, the points should have an approximately lin-

ear relation.

RESULTS

An example of a finished synthetic image compared to a

real image can be seen in Figure 12. The results of the visual

evaluation can be seen in Table 1. Six test subjects have been

used for the evaluation. The first (1) test subject is a cytologist

with over 30 year experience of cervical smear screening. Test

subjects 2–5 are cytometry algorithm developers with several

year experiences from developing methods for automated

Pap-smear analysis. The last test subject (6) is an algorithm

developer with experience in life-science applications. This

person had no experience with cytometry images and was

included as a reference. Also for reference purposes, a random

result subject (x) has been added to the result. For all subjects,

the test was the first time they came into contact with the

image generation method described in this article. All the sub-

jects had prior experience with observing Pap-smear images

in grayscale. For each user the number of true positives (TP),

false positives (FP), true negatives (TN), and false negatives

(FN) were counted. For this evaluation, a real image was

counted as a positive and a synthetic image as a negative.

Based on these values, the sensitivity, TP/(TP1FN), and spec-

ificity, TN/(TN1FP), for each user was also calculated. In this

setting, the sensitivity value relates to the ability to accurately

detect real images as being real and the specificity the ability

to accurately detect synthetic images as synthetic. The
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sensitivity for the six human test subjects is not consistent

with a random result (Mean: 0.7667, 95% confidence interval

[0.671, 0.863]), but it is still low enough to indicate that expe-

rienced individuals had a difficult time separating real images

from synthetic ones under these experimental conditions. The

random assignment, “subject x,” achieved almost as good

results as the actual persons, it deviated somewhat from the

expected 0.50 in sensitivity and specificity as the population

size was rather small. A different experimental design may

have given different results. It is usually possible to tell the dif-

ference if you are given unlimited time and can zoom and

scroll the image arbitrarily. But in routine cytology screening,

the time available for this analysis is extremely limited so our

conclusion is that our synthetic images are visually quite simi-

lar to real ones when studied under realistic conditions.

The Q-Q plot in Figure 11 show a distinct linear relation-

ship between the synthetic and real nuclei for all features,

indicating that, as is expected, the two populations are drawn

from similar distributions. However, the angle of the linear

dependency shows that the real data have a wider distribution

than the synthetic data. This, again, is not surprising as each

synthetic nucleus texture represents a combination of data

from three real nuclei. The choice of using three nuclei as a

sampling base stems from an effort to make the texture of the

synthetic nuclei more general and not a scrambled copy of a

single. This had the side effect of making the variation in the

synthesized textures somewhat smaller than in the real ones.

This effect would be reduced if we used a single real nucleus

as a model for the texture of a synthetic one.

We have generated a small population of synthetic images

and also picked an equal number of real images and cropped

those to the same size as the synthetic ones and supplied these

two image datasets as Supporting Information allowing the

reader to evaluate the similarities and differences between the

images. These images can be found as a Supporting

Information.

DISCUSSION

In this article, we present a synthetic image generation

framework for simulating bright-field microscopy images of

cervical cell populations. The simulation method accurately

models object primitives as well as the characteristics and

behavior of the measurement system. In our evaluation study,

even experienced cytology professionals showed rather poor

performance in deciding whether an image was synthetic or

real when shown the images under realistic screening condi-

tions. A simple test on nuclear texture features indicated that

they came from similar distributions.

The presented framework offers a flexible approach to

image synthesis. Each block of the process is interchangeable

depending on the requirements on the finished results. Fur-

thermore, if needed, additional object types can be added with

minimal effort using the methods and principles described in

Figure 11. Quantile-quantile plot comparison of descriptors computed from real and synthetic cervical cell nuclei. The quantile-quantile

plot illustrate whether the acquired measurements belong to the same distribution. A linear relationship indicates that points belong to the

same probability distribution. When the trend is steeper than 45 degrees, which is the case in the plots above, it is an indication that the

data plotted on the y-axis, which refers to real data in this figure, has a larger dispersion than the x-axis data. The descriptors shown above

are: (Top row, left to right) second central moment, third central moment, and fourth central moment. (Bottom row, left to right) Fifth central

moment, sixth central moment, and entropy. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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this article. As an example, the addition of other common cer-

vical epithelial cell types, for example, parabasal cells or squa-

mous superficial cells, can be achieved by creating small

databases of primitives that can then be used as the basis for

shape and texture generation. To illustrate this, a dataset of

cells, expert classified to exhibit signs conforming to high

grade intraepithelial lesions, were collected and added to the

simulation pipeline. A resulting image can be seen in Figure

13. This flexibility indicates that the synthesis process could

be adapted to mimic other types of cellular material com-

monly analyzed using bright-field microscopy, for example,

lung or oral cavity smears.

For the time being, the method produces one diagnostic

cell type (squamous intermediate) and four levels of debris. In

the future, more cell types and other types of debris should be

added. Also, other common types of distortion such as folding

should be included to the cytoplasm model to add even more

variety in the shapes that are produced. The greatest benefit

with the use of simulated images is the availability of ground

truth. Using simulated images reduces the dependency on

manually generated ground-truth data, which has the draw-

back of being expensive and time consuming to produce.

Well-designed synthetic images make it possible to reserve

that valuable ground truth data for final control validation.

For instance, first the endless supply of synthetic data can be

used to form hypotheses about how varying amount of debris

or inhomogeneous background illumination will affect the

qualitative performance of a segmentation algorithm. Then

brute force parameter tuning, over an arbitrary large parame-

ter space, can point out optimal parameters, a plausible range

of optimal parameters or relations and dependence between

different optimal parameter settings from which the algorithm

designer can gain insight and form hypotheses. Then finally, a

rigorous and more data economical procedure can be used for

fine tuning and cross-validation on expert annotated real data

to estimate the performance of an algorithm on real life data.

It is important to recognize the fact that, while synthetic

images can function as a great development tool, problems

Figure 12. An example of a finished synthetic image (Left) an a real image for comparison (Right).

Table 1. Results of evaluation of the generated synthetic images

SUBJECT TP FP TN FN SENS. SPEC.

1 35 29 37 17 0.67 0.56

2 39 29 29 21 0.65 0.50

3 50 16 38 14 0.78 0.70

4 49 20 36 13 0.79 0.64

5 51 17 39 11 0.82 0.70

6 58 32 21 7 0.89 0.40

x 37 31 24 26 0.54 0.48

Results are shown for the six test subjects (1–6) and a ran-

dom result (x). The results show the number of true positives

(TP), the number of false positives (FP), the number of true nega-

tives (TN), and the number of false negatives (FN). From these

numbers, the sensitivity TP/(TP1FN) and specificity TN/(TN1FP)

have also been calculated.

Figure 13. Example of two simulated cells corresponding to high

grade lesions added to the simulation framework.

Original Article

Cytometry Part A � 87A: 212�226, 2015 225



such as overfitting need to be taken into account. Because syn-

thetic images are the result of their defining parameters, there

exists a limitation in the variation present in the images.

Good design can, to a certain extent, alleviate the problem,

but the fact remains that real data remains a necessity in the

creation of any image processing algorithm aimed at real

world applications. However, one can compare the risk of

overfitting synthetic data with the risks of overfitting when

tuning algorithms with the help of small amounts of real

ground truth data. We can benefit from the great flexibility of

synthetic data, while at the same time guarantee an estimate

on real data if proper cross-validation is performed for the

final parameter tuning using real expert annotated data.

AVAILABILITY

The synthesis framework described in this article is avail-

able on the MATLAB file-exchange, at http://www.mathworks.

com/matlabcentral/fileexchange/48915-synthetic-bright-field-

microscopy-image-generator, as an open-source code package

on publication acceptance.

ACKNOWLEDGMENTS

The authors would like to thank the participants of the

user study. The work was carried out within the framework of

a collaboration with a research project at the Center for

Advanced Computing in Thiruvananthapuram headed by

Rajesh Kumar and the Regional Cancer Center, Kerala, India,

headed by Dr K Sujathan, funded by the Department of Infor-

mation Technology, Government of India. Ethical permit for

using stained Pap smears was obtained from Indian Council

of Medical Research, permit number INDO/FRC/402/2005-

IHD. Funding was also provided by the Swedish Research

Council (2008-2738) and VINNOVA (2008-01712).

LITERATURE CITED

1. W€ahlby C, Kamentsky L, Liu ZH, Riklin-Raviv T, Conery AL, O’Rourke EJ,
Sokolnicki KL, Visvikis O, Ljosa V, Irazoqui JE, Golland P, Ruvkun G, Ausubel FM,
Carpenter AE. An image analysis toolbox for high-throughput C. elegans assays. Nat
Methods 2012;9:714–716.

2. Bengtsson E, Malm P. Screening for cervical cancer using automated analysis of PAP-
smears. Comput Math Methods Med 2014;12.

3. Gonzalez RC, Woods ER. Digital Image Processing, 3rd ed. Upper Saddle River, NJ:
Pearson Education; 2008.

4. Lehmussola A, Ruusuvuori P, Selinummi J, Huttunen H, Yli-Harja O. Computa-
tional framework for simulating fluorescence microscope images with cell popula-
tions. IEEE Trans Med Imaging 2007;26:1010–1016.

5. Svoboda D, Kozubek M, Stejskal S. Generation of digital phantoms of cell nuclei and
simulation of image formation in 3D image cytometry. Cytometry Part A 2009;75A:
494–509.

6. Ellenberger SL. Influence of defocus on measurements in microscope images. CN
Delft, Netherlands: Delft University of Technology; 2000.

7. Webb D, Hamilton MA, Harkin GJ, Lawrence S, Camper AK, Lewandowski Z.
Assessing technician effects when extracting quantities from microscope images.
J Microbiol Methods 2003;53:97–106.

8. Malm P, Brun A, Bengtsson E. PAPSYNTH: Simulated bright-field images of cervical
smears. In: IEEE International Symposium on Biomedical Imaging: From Nano to
Macro. Rotterdam, Netherlands: IEEE xplore; 2010.

9. Ruusuvuori P, Lehmussola A, Selinummi J, Rajala T, Huttunen H, Yli-Harja O.
Benchmark set of synthetic images for validating cell image analysis algorithms. In:

Proceedings of the 16th European Signal Processing Conference, Lausanne, Switzer-
land; 2008.

10. Svoboda D, Kasik M, Maska M, Hubeny J, Stejskal S, Zimmermann M. On simulat-
ing 3D fluorescent microscope images. In: Kropatsch W, Kampel M, Hanbury A, edi-
tors. Computer Analysis of Images and Patterns. Volume 4673 of Lecture Notes in
Computer Science. Springer Berlin Heidelberg; 2007. pp 309–316.

11. Svoboda D, Ulman V. Generation of synthetic image datasets for time-lapse fluores-
cence microscopy. In: Campilho A, Kamel M, editors. Image Analysis and Recogni-
tion. Volume 7325 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg; 2012. pp 473–482.

12. Zhao T, Murphy RF. Automated learning of generative models for subcellular
location: Building blocks for systems biology. Cytometry Part A 2007;71A:978–
990.

13. Grohs HK, Husain OAN, editors. Automated Cervical Cancer Screening. Tokyo:
IGAKU-SHOIN Medical Publishers, Inc.; 1994.

14. Holmquist J, Imasoto Y, Bengtsson E, Olsen B, Stenkvist B. A microspectrophoto-
metric study of Papanicolaou-stained cervical cells as an aid in computerized image
processing. J Histochem Cytochem 1976;24:1218–1224.

15. World Health Organization. Comprehensive cervical cancer control: A guide to
essential practice. Department of Reproductive Health and Research and Depart-
ment of Chronic Diseases and Health Promotion, editor. Geneva: WHO Press; 2006.

16. Luengo Hendriks CL, van Vliet LJ, Rieger B, van Ginkel M. DIPimage: A Scientific
Image Processing Toolbox for MATLAB. Delft, The Netherlands: Quantitative Imag-
ing Group, Delft University of Technology; 1999. Available at http://www.diplib.org/.
Accessed on November 15, 2013.

17. Grigoryan AM, Hostetter G, Kallioniemi O, Dougherty ER. Simulation toolbox for
3D-FISH spot-counting algorithms. Real Time Imaging 2002;8:203–212.

18. Graner F, Glazier JA. Simulation of biological cell sorting using a two-dimensional
extended Potts model. Phys Rev Lett 1992;69:2013–2016.

19. Kozubek M, Matula P. An effcient algorithm for measurement and correction
of chromatic aberrations in fluorescence microscopy. J Microsc 2000;200:206–
217.

20. Lockett SJ, Sudar D, Thompson CT, Pinkel D, Gray JW. Effcient, interactive, and
three-dimensional segmentation of cell nuclei in thick tissue sections. Cytometry
1998;31:275–286.

21. Falc~ao AX, Udupa JK, Samarasekera S, Sharma S, Hirsch BE, Lotufo RA. User-
steered image segmentation paradigms: Live wire and live lane. Graph Models Image
Process 1998;60:233–260.

22. Zhang D, Lu G. A comparative study on shape retrieval using Fourier descriptors
with Different shape signatures. J Vis Commun Image Represent 2003;1:41–60.

23. Efros AA, Freeman WT. Image quilting for texture synthesis and transfer. In: Pro-
ceedings of the 28th Annual Conference on Computer Graphics and Interactive
Techniques. SIGGRAPH ’01. New York, NY: ACM; 2001. pp 341–346.

24. Szeliski R, Shum HY. Creating full view panoramic image mosaics and environment
maps. In: Proceedings of the 24th Annual Conference on Computer Graphics and
Interactive Techniques. SIGGRAPH ’97. New York, NY: ACM Press/Addison-Wesley
Publishing Co.; 1997. pp 251–258.

25. Ng HN, Grimsdale RL. Computer graphics techniques for modeling Cloth. IEEE
Comput Graph Appl 1996;16:28–41.

26. Mosegaard J. Cardiac Surgery Simulation - Graphics Hardware Meets Congenital
Heart Disease. Department of Computer Science. Aarhus, Denmark: University of
Aarhus; 2006.

27. Du Q, Faber V, Gunzburger M. Centroidal Voronoi tessellations: Applications and
algorithms. SIAM Rev 1999;41:637–676.

28. Kolega J. The movement of cell clusters in vitro: morphology and directionality.
J Cell Sci 1981;49:15–32.

29. Svoboda D, Ulman V. Towards a realistic distribution of cells in synthetically gener-
ated 3d cell populations. In: Proceedings of ICIAP. Volume 8157 of Lecture Notes in
ComputerScience. Springer Berlin Heidelberg; 2013. pp 429–438.

30. Wang X. Improving the rejection sampling method in quasi-Monte Carlo methods.
J Comput Appl Math 2000;114:231–246.

31. Pharr M, Humphreys G. Physically Based Rendering: From Theory to Implementa-
tion, 2nd ed. San Francisco: Morgan Kaufmann; 2010.

32. Perlin K. An image synthesizer. In: Proceedings of the 12th Annual Conference on
Computer Graphics and Interactive Techniques. SIGGRAPH ’85, Vol. 19. New York,
NY; 1985. pp 287–296.

33. Cruickshank R. D€oderlein Vaginal Bacillus: A contribution to the study of the Lacto-
Bacilli. J Hyg (London) 1931;31:375–381.

34. Ingle JD, Crouch SR. Spectrochemical Analysis. Upper Saddle River, NJ: Prentice
Hall; 1988.

35. Gavrilovic M. Spectral Image Processing with Applications in Biotechnology and
Pathology. Uppsala, Sweden: Uppsala University, Centre for Image Analysis; 2011.

36. Meyer GW, Rushmeier HE, Cohen MF, Greenberg DP, Torrance KE. An experimental
evaluation of computer graphics imagery. ACM Trans Graph 1986;5:30–50.

37. Wilk MB, Gnanadesikan R. Probability plotting methods for the analysis of data.
Biometrika 1968;55:1–17.

Original Article

226 Simulation of Bright-Field Microscopy Images

http://www.mathworks.com/matlabcentral/fileexchange/48915-synthetic-bright-field-microscopy-image-generator
http://www.mathworks.com/matlabcentral/fileexchange/48915-synthetic-bright-field-microscopy-image-generator
http://www.mathworks.com/matlabcentral/fileexchange/48915-synthetic-bright-field-microscopy-image-generator
http://www.diplib.org/

	l
	l
	l
	l
	l
	l
	l

