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Abstract—Due to their increasing pervasiveness, smartphones
and more in general mobile devices are becoming the citizen’s
companions in the daily life activities. Smartphones are today the
repositories of our secrets (photos, email), of our money (online
e-commerce) and of our identities (social networks accounts).
Therefore mobile applications have the responsibility of handling
such sensitive and personal information in a proper, secure way.
This paper present the second phase of the MobiLeak project,
analysing how mobile applications manage users data when these
are loaded in the volatile memory of the device. Scope of this
work is to raise the awareness of the research and development
communities on the poor attention that is generally paid in the
secure development of mobile applications.

Keywords—mobile privacy; security; memory analysis; mobileak
project.

I. INTRODUCTION

Mobile devices continue to spread rapidly and have heavily
modified people’s everyday behavior. A great part of the
success of smartphones is due to the increasing availability
of mobile applications conceived to answer to every possible
need of the user. Many of this ’apps’ are used daily, influencing
and assisting users routines. As they are becoming part of one’s
life, it is of great importance to ensure the user’s security and
privacy when handling personal and sensitive information.

The importance of security is highlighted by OWASP
(Open Web Application Security Project) and ENISA (Euro-
pean Network and Information Security Agency), who have
released secure guidelines practices for developing mobile
applications [1]. Unfortunately, the demanding need for in-
novative mobile applications and the urge of the companies to
be the first to deliver a new product, to win the majority of
the clients, have mostly left security and privacy outside of the
development cycle.

A. The MobiLeak Project

Scope of this paper is to present the results of the second
phase of the MobiLeak research project. The goal of MobiLeak
is to identify and analyse the privacy threats to which end-users
are exposed while using smartphones and mobile applications.

The first phase of MobiLeak [2] was devoted to the privacy
assessment on data found in the “Data at Rest” state. In other
words, during this phase, the data available in the internal
storage of the phone or the SD card were analysed. Data in
this state, to be considered secure, should be encrypted with

a reasonable long key, moreover, the encryption key should
not be available on the same media of storage of the data and
should be difficult to generate through an automated procedure.

The results obtained showed that many of the mobile
applications did not follow the secure coding best practices
[1] [3]. Amongst the well known applications analysed, the
83% revealed personal information such as name of the user,
address, last digits of credit card, etc., 6% revealed activity info
such as log events, people the user interacted with, duration
of sessions etc.; the 25% revealed the password of the login
credentials in clear text, while all the applications revealed
the username. To conclude, half of the analysed applications
revealed in clear text documents that were received during
the applications runtime (e.g. pictures exchanged during a
Skype call, etc.). The results of the Mobileak phase 1 made
evident how the world of mobile applications is far from
being considered secure and for that reason merits further
investigations and tests.

B. Motivation

In this paper are presented the results of the second phase
of the MobiLeak project, dealing with the analysis of the
“Data in Use” state. Data in this state is data found in the
memory of the phone, i.e. data that is currently or has recently
been manipulated. Sensitive information found in the data in
use state can be exploited by malware in various ways. For
example, the most direct exploration would be to impersonate
a user’s identity by finding his/her account’s credentials, i.e.
username and password.

We chose to target Android as the underlying operating
system. The main motivation behind this decision was to
exploit the open nature of Android and have direct access to the
kernel and the source files that were needed for our research.
Moreover, we wanted to target the most used mobile operating
system in order for our research to be applicable for the largest
amount of mobile users and Android is at the moment the most
sold operating system, gaining a 75% market share in the third
quarter of 2012 [4]. Finally, recent numbers show that Android
is increasingly targeted by malware [5], making it even more
important to identify potential misuse of personal and sensitive
information that malware may have access to.

The analysis focused mainly on two different groups of
applications: mobile banking applications and a subgroup of
some of the most popular Android applications. The first
category is a very sensitive one: being able to recover the
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credential for online banking represents a high risk for the
user. Potential leakage of information from a bank transaction
will have a direct economical impact on the user that could
be much higher than having a credit card lost or stolen. The
reasons behind the choice of the second category were mainly
two: on one hand we wanted to give a continuity to the first
phase of MobiLeak [2], testing the same applications analysed
in phase-1 also against Data in Use threats, on the other hand
this group of applications represents some among the most
popular mobile applications, therefore privacy issues affecting
them will automatically affect millions of users.

The rest of this paper is structured as follows: Section II
introduces research works related to this paper while in Section
III are described the basic characteristics of the memory in gen-
eral, and the memory in Android more specifically. In Section
IV we describe the experiment setup and the methodology
we used to implement our tests. In Section V we provide
details about the memory acquisition phase of the tests while in
Section VI the memory analysis phase is described. In Section
VII we present the results of our research and in Section VIII
we draw our conclusions proposing countermeasures as well
as ideas for future works.

II. RELATED WORK

Most of the work related to live memory analysis has been
done in the context of digital forensics that is, as defined at
the first Digital Forensics Research Workshop (DFRWS) in
2001, the use of scientifically derived and proven methods
toward the preservation, collection, validation, identification,
analysis, interpretation, documentation and presentation of
digital evidence derived from digital sources for the purpose
of facilitating or furthering the reconstruction of events found
to be criminal, or helping to anticipate unauthorized actions
shown to be disruptive to planned operations [6]. Forensics
investigations targeting volatile data that can be found in a
systems main memory (RAM) is also known as live forensics
[7] or RAM forensics [8]. In this context, live forensics tries to
express that the focus lies on a systems current state that can be
obtained by freezing the scene at a specific point in time. This
needs to be performed while the system is live and operational.
If that is not the case (e.g. because the main power has been
removed) the volatile data is lost. The main memory contains
the whole state of an operating system, including running and
historical processes, open network connections, management
data, and personal data. Being Android based on Linux, most
of the relevant works for this research have been carried on
both Android and Linux memory analysis areas.

A. Linux Memory Analysis

Traditionally on Linux it was possible to perform memory
captures by accessing the /dev/mem device. Such device
contained a map of the first gigabyte of RAM and allowed
acquisition only of the first 896 MB of physical memory,
without the need to load code into the kernel. However, due
to security concerns the /dev/mem device has recently been
disabled on all major Linux distributions, as it allowed reading
and writing of kernel memory. To overcome these problems,
Kollar created fmem [9], a loadable kernel module that creates
a /dev/fmem device supporting memory capture. However, this
solution appears to be unsuitable for Android, since it makes

use of some kernel functions that are not available on ARM
[10].

In [8], Urrea describes the case of a specific Linux dis-
tribution by outlining kernel structures relevant for memory
management that can be used to retrieve corresponding data.
In his solution he uses the dd tool to read the physical memory
from /proc/mem.

Andrew Case has done an extensive amount of work in
the field of memory forensics, making lots of efforts to extract
forensically relevant information from memory captures [11],
and perform deep analysis of Linux kernel data structures as
well as userland information [12] [13]. Although all these
works have been able to gather numerous objects and data
structures from memory, a shortcoming is their inability to
deal with the vast number of Linux kernel versions and the
large number of widely used Linux distributions.

B. Android Memory Analysis

In [14], Thing, Ng and Chang focus on capturing a specific,
running processes, using the ptrace functionality of the kernel
to dump specific memory regions of a process, instead of
capturing the whole physical memory of Android. The virtual
memory captures are then analysed to discover evidence.
This approach requires, obviously, memory to be extracted
separately for each process of interest.

In [10], Sylve, Case, Marziale and Richard present methods
that obtain complete captures of volatile memory from Android
devices, along with subsequent analysis of that data in both
userland and the kernel. They developed kernel module, DMD,
to perform full dump of the device memory, as well as kernel
analysis support for the Volatility framework [15][16], imple-
menting ARM-specific support. However, this solution doesn’t
solve one common problem all modules have, which is the
security mechanism of the kernel called module verification.
This mechanism is intended to prevent the kernel from loading
incompatible or possibly malicious code into the operating
system. Therefore, since it is not possible to load a module
in a kernel-agnostic way, an alternative solution is to create a
pool of precompiled modules against a specific kernel, which
basically would mean one module for each device and Android
version. This is feasible only for those devices for which the
corresponding vendor releases the kernel source code together
with its build configuration. As explained in more details later,
our acquisition of the memory dump is based on this work.

In [17], Leppert discusses several methods to generate heap
dumps from the first Android version till 2.2 (Froyo), and
from Android 2.3 (Gingerbread) till version 4.0 (Ice Cream
Sandwich). These methods are based on old Android versions
and rely on tools no longer available. Moreover, his solution it
is not applicable to commercial applications bought or down-
loaded from an application market and therefore are not scal-
able. In fact acquiring a heap dump is only possible for appli-
cations prepared for debugging. When developing Android ap-
plications, there is a flag called android:debuggable in the
applications configuration file, the AndroidManifest.xml.
If that option is set to true, it causes the application to open a
debug port that can be used by DDMS [18] to acquire a heap
dump from the application running on a device, which has to
be physically connected to a computer. This usually means that
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the application is still in testing phase, since from the moment
the application is available online the android:debuggable
flag is supposed to be set to false.

In [19], Macht takes Android Live Memory Forensics to
the next level by performing a deep analysis of the Linux
kernel, the Dalvik Virtual Machine and a chosen set of appli-
cations. The result is a set of plugins that extend the Volatility
Framework, to read data such as user names, passwords, chat
messages, and emails chosen from a set of target applications.

III. MEMORY MANAGEMENT IN ANDROID

We can generalize the memory organization as a structure
divided into three main areas, also known as segments: the
text segment, the stack segment, and the heap segment. The
text segment, or code segment, is where the compiled code of
the program itself resides. The stack segment is where local
variables are stored, and it is also used for passing arguments to
functions along with the return address of the instruction which
is going to be executed after the function call is over. When
a new function is called and a new stack frame needs to be
added, the stack grows downward. Finally, the heap segment,
or data segment, is the area of memory that gets allocated at
runtime and therefore contains the variables that are defined
during the program execution and their value. When more
memory needs to be allocated, the heap grows upward.

Android is an open source, Linux-based operating system
primarily designed for mobile devices such as smartphones
and tablets. Previously based on the Linux kernel version
2.6, it uses version 3.x starting from Android 4.0 Ice Cream
Sandwich onwards. Android uses the Dalvik virtual machine
with just-in-time compilation to run Dalvik ‘dex-code’ (Dalvik
Executable), which is usually translated from Java bytecode.
DalvikVM is an interpreter for the Java programming lan-
guage. It is similar to the Java Virtual Machine (JVM), but
it has been specifically designed to operate in embedded
environments.

In Android every application runs within a separate pro-
cess, which has its own instance of the DalvikVM. Being
Android a multi-user Linux system, in which each application
is a different user, the system by default assigns to each
application a unique Linux user ID (the ID is used only by
the system and is unknown to the application). The system sets
permissions for all the files in an application so that only the
user ID assigned to that application can access them. Android
has at its core the “Zygote” process, which starts up at init.
When you start an application, the Zygote is forked, and the
Dalvik heap is preloaded with classes and data by Zygote.
Dalvik, like virtual machines for many other languages, does
garbage collection (GC) on the heap [20]. Garbage collection
is a form of automatic memory management that attempts to
reclaim garbage, or memory occupied by objects that are no
longer in use by the process.

Android memory management involves freeing objects
from memory when they are no longer needed and assigning
memory to processes that require it. As stated in the Android
Developers portal [21], to determine which processes to keep
and which to kill, the system places each process into an “im-
portance hierarchy” based on the components running in the
process and their state. Processes with the lowest importance

are eliminated first, then those with the next lowest importance,
and so on, as necessary to recover system resources. There
are five levels in the importance hierarchy. The following list
presents the different types of processes in order of importance
(the first process is most important and is killed last):

1) Foreground process. A process that is required for
what the user is currently doing. Generally, only a few
foreground processes exist at any given time. They
are killed only as a last resort, if memory is so low
that they cannot all continue to run.

2) Visible process. A process that doesn’t have any
foreground components, but still can affect what the
user sees on screen. A visible process is considered
extremely important and will not be killed unless
doing so is required to keep all foreground processes
running.

3) Service process. This process started some nonactive
services that do not interact directly with the user.

4) Background process. A process holding an activity
that is not currently visible to the user (the activity’s
onStop() method has been called). These processes
have no direct impact on the user experience, and the
system can kill them at any time to reclaim memory
for a foreground, visible, or service process. Usually
there are many background processes running.

5) Empty process. A process that does not hold any ac-
tive application components. The only reason to keep
this kind of process alive is for caching purposes, to
improve startup time the next time a component needs
to run in it.

As one could imagine, the management of the memory plays
a key role under a privacy perspective, as all the user’s data
needed by an application to fulfill its duties will be stored
somewhere in the smartphone memory.

IV. EXPERIMENT SETUP AND METHODOLOGY USED

As already anticipated in Section I, scope of the presented
experimental campaign was to analyse the memory content of
a smartphone (a) while using a certain application and (b) just
after closing the target application. The focus of the analysis
was on two different groups of applications: mobile banking
applications and a subgroup of some of the most popular
Android applications. For each application, two types of tests
have been performed. In the first one we took a dump of the
memory immediately after hitting the “login” button, while the
application was still running. In the second test, the memory
dump was taken right after quitting from the application. While
it might be relatively “normal” to find sensitive data in memory
during the application execution, still being able to retrieve
the same data after the application has been terminated would
highlight a bad memory management procedure either by the
application developer or by the Android team, or both. Table I
summarizes the steps taken for each of the two types of tests.

As testing environment we used the Android emulator
[22] version 21.1.0, which requires Android SDK [23] and
Android NDK [24] to be properly installed and initialized. For
a complete documentation on how to do so, the reader should
refer to the official webpages. We then used the LiME kernel
module cross-compiled against the device kernel to dump the
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Fig. 1. Parameters used to generate Android Virtual Device

memory of the emulated device, and the Volatility Framework
to analyse the dumps. We will explain later what LiME and
Volatility exactly are.

After setting up the environment, in order to create the vir-
tual device we used Android Virtual Device Manager (AVD),
choosing as device to be emulated a Galaxy Nexus (see Fig.
1). As target platform we chose the Google API version 15,
corresponding to Android 4.0.3 Ice Cream Sandwich, because
it’s the most used of the Android versions based on the
new kernel and the second most deployed version on the
market in general [25]. Once the virtual device has been
defined, we need to get the kernel source code from the device
manufacturer website. In our case, since we are using the
virtual device, we can use the Android emulator source code,
code name Goldfish. We picked the kernel version 2.6.29 with
the following steps:

$ git clone https://android.googlesource.com/kernel/
goldfish.git ˜/android-goldfish

$ cd ˜/android-goldfish/
$ git branch -a

* master
remotes/origin/HEAD -> origin/master
remotes/origin/android-goldfish-2.6.29
remotes/origin/android-goldfish-3.4
remotes/origin/linux-goldfish-3.0-wip
remotes/origin/master

$ git checkout -t remotes/origin/android-goldfish-2.6.29
-b goldfish

As last step of this preliminary setup phase, we need to
cross compile the kernel source code for our system, which

TABLE I. STEP-BY-STEP PROCEDURE FOR THE TWO TYPES OF TESTS

Step Test 1 Test 2
1 Reboot phone Reboot phone
2 Launch the app Launch the app
3 Login Login
4 Memory dump App is running
5 Finish Quit app
6 // Memory dump
7 // Finish

runs on an ARM architecture. To do so we first need to set
the following environment variables:

$ export ARCH=arm
$ export SUBARCH=arm
$ export CROSS_COMPILE=arm-eabi-

and then we can complete the compilation with the follow-
ing commands:

$ make goldfish_armv7_defconfig
$ make

If everything went well, we should be able to run the virtual
device created before with the kernel we just compiled

$ cd <path-to-android-sdk>/sdk/tools/
$ ./emulator -avd <virtual device name> -kernel ˜/android-

goldfish/arch/arm/boot/zImage -show-kernel -verbose

It has to be noticed that an original .config file is needed in
case we want to compile the kernel for a real Android device.
In such case we first need to export the config.gz file from
the device, which unfortunately is not always possible, and
then decompress it and place the .config file exported in the
kernel source folder. The config.gz file can be exported using
the following command:

$ adb pull /proc/config.gz

V. MEMORY ACQUISITION

As mentioned in [17], until Android version 2.2 (Froyo)
one of the methods to obtain the heap dump was to send
a SIGUSR1-signal to the process. In the DavlikVM the
SIGUSR1-signal is defined to force the Garbage Collector and
hprof heap dumping. The easiest and most common way to do
that was to send the SIGUSR1-signal to the process using the
kill command:

# kill -10 <PID>

This kill command will trigger the system to force GC and
dump the process heap. Accessing the system log via logcat,
it would show something like the following:

I/dalvikvm(\emph{PID}): SIGUSR1 forcing GC and HPROF dump
I/dalvikvm(\emph{PID}): hprof: dumping VM heap to
"/data/misc/heap-dump-tmYYYYYYYYYY-pidXXX.hprof-hptemp".
I/dalvikvm(\emph{PID}): hprof: dumping heap strings to
"/data/misc/heap-dump-tmYYYYYYYYYY-pidXXX.hprof".

The above described action was possible until Android
version 2.2 [26]. As anticipated in Section II, to acquire the
memory dumps for further analysis we used Linux Memory
Extractor, a.k.a. LiME [27] [28]. As explained by Sylve
in the project’s documentation, LiME (formerly DMD [10],
see Section II) is a Loadable Kernel Module (LKM), which
allows the acquisition of volatile memory from Linux and
Linux-based devices, therefore Android systems too. To our
knowledge, at the time of writing, LiME is the first and
currently only tool that allows full memory captures from
Android devices. Thanks to its nature of Loadable Kernel
Module, LiME also minimizes its interaction between user and
kernel space processes during acquisition. In order to acquire
the physical memory from the operating system, the LiME
module a) parses the kernel structure called iomem resource
to get the physical memory address ranges, b) performs virtual
to physical address translation for each memory area, and c)
reads all pages in each range from RAM. To complete the
LiME module preparation for our dump, we need to point the
makefile variables KDIR and CCPATH to the kernel directory
and android cross-compiler for ARM in the NDK directory
respectively. Once the module has been compiled, we first load
it into the device:
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$ adb push lime.ko /sdcard/lime.ko
$ adb forward tcp:4444 tcp:4444
$ adb shell
$ su
# insmod /sdcard/lime.ko "path=tcp:4444 format=lime"

and then we setup netcat on listening mode in the host
computer:

$ nc localhost 4444 > ram-dump.lime

LiME requires two compulsory parameters that are path,
which takes either a filename to write on the local system (SD
Card) or tcp:<port>, and format, which can have one of the
following values:

• raw, simply concatenates all System RAM ranges;

• padded, pads all non-System RAM ranges with 0s,
starting from physical address 0;

• lime, each range is prepended with a fixed-sized
header which contains address space information.

We chose lime as dump format since Volatility address space
has been developed to support this format, and we will use
Volatility Framework to analyse the dumps later.

VI. MEMORY ANALYSIS

To analyse the memory dumps, we used the Volatility
Framework [15] [16], an open source collection of tools
implemented in Python, for the extraction of digital artifacts
from volatile memory (RAM) samples. The first step in order
to use Volatility, is to create a device profile, as explained in the
project’s webpage documentation. Basically a device profile
is a zip file with information on the kernel’s data structures
and debug symbols, which is used by Volatility in order to
locate and parse critical information. To create kernel’s data
structures (vtypes) we need to compile ‘module.c’, present in
the volatility source code under ‘tools/linux’, against the kernel
we want to analyse. We first customize the Makefile in the
folder related to the ‘module.c’ file:

obj-m += module.o
KDIR := /Volumes/android-fs/android-sources/goldfish/
CCPATH := ˜/android-ndk-r8d/toolchains/arm-linux-

androideabi-4.7/prebuilt/darwin-x86/bin
-include version.mk
all: dwarf
dwarf: module.c

$(MAKE) ARCH=arm CROSS_COMPILE=$(CCPATH)/arm-linux-
androideabi- -C $(KDIR) CONFIG_DEBUG_INFO=y M=$(PWD)
modules /Tools/dwarf-20130207/dwarfdump/dwarfdump -di
module.ko > module.dwarf

Then we run the make command, which will produce the
file module.dwarf :

$ cd volatility/tools/linux
$ make
$ head module.dwarf

.debug_info

<0><0x0+0xb><DW_TAG_compile_unit> DW_AT_producer<GNU C 4.7>
DW_AT_language<DW_LANG_C89> DW_AT_name </volatility/tools/
linux/module.c> DW_AT_comp_dir</Volumes/android-fs/android-
sources/goldfish> DW_AT_stmt_list<0x00000000>
<1><0x1d><DW_TAG_base_type> DW_AT_byte_size<0x00000004>
DW_AT_encoding<DW_ATE_unsigned> DW_AT_name<long unsigned int>
<1><0x24><DW_TAG_pointer_type> DW_AT_byte_size<0x00000004>

DW_AT_type<<0x0000002a>>
...

After that, to get the symbol list we need to grab the
System.map file for the kernel we want to analyse. This
can be found in the main directory of the compiled kernel
source. Regarding this file, while for Linux systems it is
also possible to find the System.map file under the /boot
directory, for mobile device this is kind of equivalent to the
/proc/kallsyms file. However, based on our experience it is
strongly recommended to use the System.map file generated
by compiling the kernel source code, since the /proc/kallsyms
file is actually missing many symbols and may drive Volatility
to raise errors (i.e. ValueError). Only if everything else fails,
/proc/kallsyms should be used. Finally, to create the profile
we need to place both the module.dwarf and the System.map
file into a zip file, and then move this zip file under volatil-
ity/plugins/overlays/linux/ :

$ zip /volatility/volatility-read-only/volatility/plugins/
overlays/linux/Golfish-2.6.29.zip module.dwarf
/Volumes/android-fs/android-sources/goldfish/
System.map

adding: module.dwarf (deflated 90\%)
adding: Volumes/android-fs/android-sources/goldfish/

System.map (deflated 73\%)

Once the correct profile has been created, since Android
is based on Linux we can use most of the Linux com-
mands/plugins to analyse the memory dump. In order to find
the data related to the user inputs information (i.e. usernames,
passwords, etc.) for a specific application, we first need to
identify the process id (PID) of the target application, then we
map the process in the memory, in order to find the offsets of
the heap, which is the area of the memory we are interested
in, and lastly we dump the heap. To do that, we used the
following three Volatility plugins:

• linux pslist, which gathers active tasks by walking the
task struct->task list

• linux proc maps, which gathers process maps for
linux

• linux dump map, which writes selected memory map-
pings to disk

Table II presents the case of the eBay application, as one
example out of the 26 total applications analysed for this
research work. As described above, once we find the PID of
the eBay process we use Volatility to identify the offsets and
then dump the process’ heap and the DalvikVM’s heap. The
reason why we find two heaps is because, as explained in
Section III, when an application is launched it runs in its own
process, which contains its own instance of the DalvikVM.
Therefore one heap is the native heap of the process itself,
and the other is the internal heap of the virtual machine. Since
the application runs inside the DalvikVM, we expect to find
input data inserted by the user (i.e. usernames, passwords, pin
codes, etc.) eventually in the dalvik-heap if not in both.

Memory dumps are binary files, to look into them we used
the command line utility string and an hex-editor. In the
analysis we looked, for the same value, for two different types
of encoding: ASCII and Unicode. For example, if the password
used in the test was my-password we looked for both:

• my-password
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TABLE II. OUTPUT AND STEP-BY-STEP OF THE VOLATILITY COMMANDS USED FOR THE ANALYSIS

$ python vol.py --profile=LinuxGolfish-2_6_29x86 -f ebay.lime linux_pslist
Offset Name Pid Uid Gid DTB Start Time
---------- -------------------- --------------- --------------- ------ ---------- ----------
0xca969400 com.ebay.mobile 379 10067 10067 0x0aec8000 2013-03-29 09:22:08 UTC+0000

$ python vol.py --profile=LinuxGolfish-2_6_29x86 -f ebay.lime linux_proc_maps -p 379 | grep heap
Pid Start End Flags Pgoff Major Minor Inode File Path
-------- ---------- ---------- ------ ---------- ------ ------ ---------- ------------------------------

379 0x0000b000 0x003d1000 rw- 0x0 0 0 0 [heap]
379 0x409b2000 0x42124000 rw- 0x0 0 7 353 /dev/ashmem/dalvik-heap
379 0x42124000 0x449b2000 --- 0x1772000 0 7 353 /dev/ashmem/dalvik-heap
379 0x46e02000 0x46e03000 r-- 0x0 0 7 368 /dev/ashmem/SurfaceFlinger read-only heap

$ python vol.py --profile=LinuxGolfish-2_6_29x86 -f ebay.lime linux_dump_map -s 0x0000b000 --dump-dir ˜/memdump/ebay-heap/
Task VM Start VM End Length Path
---------- ---------- ---------- ---------- ----

379 0x0000b000 0x003d1000 0x3c6000 /memdump/ebay-heap/task.379.0xb000.vma

$ python vol.py --profile=LinuxGolfish-2_6_29x86 -f ebay.lime linux_dump_map -s 0x409b2000 --dump-dir ˜/memdump/ebay-heap/
Task VM Start VM End Length Path
---------- ---------- ---------- ---------- ----

379 0x409b2000 0x42124000 0x1772000 /memdump/ebay-heap/task.379.0x409b2000.vma

• 6D 00 79 00 2D 00 70 00 61 00 73 00 73 00 77 00 6F
00 72 00 64 00, which is the hexadecimal equivalent
of the ASCII value “m.y.-.p.a.s.s.w.o.r.d.” and of the
Unicode value “my-password”

We also looked for the eventual presence of identification
keywords such as “username”, “password”, “pin”, etc., be-
cause the potential danger of the evidence found increases if
preceded by something that uniquely identifies it. In fact, even
if leaving a password in cleartext is wrong, if this password is
randomly placed with other information it may not be easily
identifiable as the password, if at all. Therefore, if a malicious
user/application does not know the password itself, placing
the password value in cleartext that follows its identification
label in a form like ‘password=my-password’ makes it easily
recoverable for anyone who looks for it.

VII. RESULTS

As claimed in Section I we took under consideration for our
test campaign 26 different applications, which means 52 mem-
ory dumps analysed. We looked for user credentials, namely
username, password, pin code for the bank, etc., either in the
process heap and the dalvik-heap. The results confirmed that
the heap of reference is mainly the dalvik-heap, which is the
container where the application is executed in. In the following
we describe the results of the testing campaign for both the
banking applications and general purposes applications sets.

A. Banking Apps Results

Banking applications are a quite sensitive field of analysis
especially considering the direct impact of their vulnerabilities
on the citizen life. For this analysis campaign we considered
15 different mobile banking applications. As the scope of
this work is not to perform dedicated “penetration tests” of
the banking environment but rather to raise the attention of
the security and development communities on the possible
implications of un-careful development of these applications,
we will not disclose here the name of the banking applications
analysed.

Table III summarises the results of our investigation with
regards to the banking applications. More in details, the table
reports our findings in the native heap and in the Dalvik heap
during the application execution and after its termination. In
an average of 75% of the applications we found username and
password following their respective identification label, in both
types of dumps (i.e. during and after the application execution).
In 16% of the applications analysed we found username and
password in clear (ASCII and/or Unicode), but without any
identification that could help identify them. Only in 7% of the
cases we did not find any trace of the user credentials in the
memory.

TABLE III. STATISTICS RELATED TO THE BANK APPLICATIONS GROUP

DUMP TYPE HEAP DALVIK-HEAP
USERNAME PASSWORD USERNAME PASSWORD

during execution
with id 26.7 20.0 80.0 73.3

without id 6.7 6.7 20.0 13.3
nothing found 66.7 73.3 0.0 13.3

after execution
with id 26.7 20.0 73.3 80.0

without id 6.7 6.7 20.0 13.3
nothing found 66.7 73.3 6.7 6.7

B. General Purposes Apps Results

In the second group of applications, where we analysed 11
of the most popular Android applications already studied in the
first research work related to MobiLeak [2] namely Box, Drop-
box, eBay, Evernote, Facebook, Groupon, Linkedin, Monster,
Skype, Tweetdeck and Twitter, the situation reported is slightly
better. Against what expected in the process heap, we found
the username in an average of 73% of the applications, 55%
were following their identification label. On the other hand in
90% of the cases we did not find the password at all while the
application was still running, reaching 100% if we consider
the dumps taken after the application has been terminated.
The improvement compared to the previous group regards the
dalvik-heap. Also here there is a significant difference between
usernames and passwords occurrences found, while in the first
group the situation was a bit more homogeneous. In 90% of
the cases we found the username while the application was
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running, 45% of which following their identification label. In
both types of dumps, while the application was running and
after its execution, only in the 9% of the cases we did not find
any occurrences of username. We found passwords occurrences
in about 80% of the cases while the application was running,
just 20% of which following their identification label. Instead,
from the dumps taken after the application has been terminated
we found passwords occurrences in about 45% of the cases,
0% of them linked to an identification label, and 55% of the
time we did not find any occurrence. Table IV summarises the
described results.

TABLE IV. STATISTICS RELATED TO THE MOBILEAK1 APPLICATIONS
GROUP

DUMP TYPE HEAP DALVIK-HEAP
USERNAME PASSWORD USERNAME PASSWORD

during execution
with id 63.6 9.1 45.5 18.2

without id 18.2 0.0 45.5 63.6
nothing found 18.2 90.9 9.1 18.2

after execution
with id 54.5 0.0 63.6 0.0

without id 18.2 0.0 27.3 45.5
nothing found 27.3 100.0 9.1 54.5

VIII. CONCLUSION AND FUTURE WORK

The results of the presented testing campaign can be
considered in some way unexpected. In fact, the tests clearly
show that a huge amount of personal and critical data are stored
without the due care in the mobile-device memory. This fact is
surprising, considering that the first group of tests were related
to banking applications (i.e. an area where cyber-security is
taken in high consideration) and the second group of tests
were related to companies with huge amount of investments
in cyber-security. From the results of our analysis campaign we
can clearly state that there is an issue concerning both privacy
and security as, in average, applications keep sensitive data in
cleartext in their memory space. However, to evaluate correctly
the impact of our findings and to propose a set of solutions,
it is indeed needed to make a distinction between the results
related to the memory analysis while the application is in use
and the results related to the memory analysis after closing the
application.

While the application is running, the presence of cleartext
data in the memory at a certain point in time is unavoidable. In
this case the first and most immediate thing to do would be to
avoid keeping such data coupled with its clear identification
label. If a malicious user/application is looking for a password
without knowing it, storing a password which follows the
keyword ‘password’ would make the research straightforward.
It is also true that this would not completely solve the issue of
keeping data in cleartext. In some cases a determined attacker
could reverse engineer the data structures allocated in the
memory by the application, being able to locate the password
or other specific data anyway. To mitigate the impact of this
attack-approach, the OS manufacturer should provide APIs
that would help the developer to clear that specific sensitive
data from the memory after it has been used, since after
a successful login there is no need to keep the credentials in
the memory waiting for someone to grab them.

Another “bad practice” we identified is that most of the
applications analysed do not have a ‘quit’ button or they
have it hidden within a series of menus, making it hard to
find. The only way to quit these applications is often by

pushing the phone home button, which leaves the process
still running in the background for a while and with it all
the data allocated in the memory. This also explains why we
found the processes still running after exiting from the
applications for 25 out of 26 applications analysed. Only one
process immediately terminated when quitting the application,
and which had a proper “quit” button implemented. Although
it may be also due to the underlying OS when the process
remains running still for a while after the application has
been terminated, developers should make sure that the quit
button implements procedures to clean the memory before
shutting down the application.

Unfortunately the results of our campaign magnify one
more time how the cyber-security is a matter of secure-
development and secure-design. Cyber-security by design is
a costly approach in term of development time and resources
and the App world is by nature based on a completely different
paradigm (rapid development and low costs). Nevertheless as
mobile applications are becoming the daily companions of
everybody, the App model need to be reviewed as soon as
possible to protect the citizen’s privacy and security. With
regards to our research activity, to raise the attention on these
new cyber-threats, we plan to continue in the development of
the MobiLeak project, concentrating our attention on the third
state in which data can be found on mobile-devices, i.e. data
in transit.
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