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Abstract—The concept of the effective service capacity is an
analytical framework for evaluating QoS-constrained queuing
performance of communication systems. Recently, it has been
applied to the analysis of different wireless systems like point-to-
point systems or multi-user systems. In contrast to previous work,
we consider in this work slot-based systems where a scheduler
determines a packet size to be transmitted at the beginning of
the slot. For this, the scheduler can utilize outdated channel state
information. Based on a threshold error model, we derive the
effective service capacity for different scheduling strategies that
the scheduler might apply. We show that even slightly outdated
channel state information leads to a significant loss in capacity
in comparison to an ideal system with perfect channel state
information available at the transmitter. This loss depends on the
’risk-level’ the scheduler is willing to take which is represented by
an SNR margin. We show that for any QoS target and average
link state there exists an optimal SNR margin improving the
maximum sustainable rate. Typically, this SNR margin is around
3 dB but is sensible to the QoS target and average link quality.
Finally, we can also show that adapting to the instantaneous
channel state only pays off if the correlation between the channel
estimate and the channel state is relatively high (with a coefficient
above 0.9).

I. INTRODUCTION

At the heart of wireless network analysis is the modeling of
the wireless channel and its interaction with the network stack.
Due to the complexity of this interaction, precise theoretical
understanding of wireless network performance is still an
ongoing research issue [1]. While straightforward metrics like
throughput or bit error rate are usually the performance metrics
of choice at the physical layer, higher layer performance
analysis requires queuing-related metrics. However, applying
traditional queuing theory analysis to service processes re-
sulting from representative wireless channel models provides
only the characterization of average system performance. In
contrast, from an application point of view, we are more
interested in distributions especially regarding the delay.

To date, at least two related approaches exist that address
this problem. The first one is based on stochastic network
calculus. Recently, there is interest in formulating (stochastic)
service curve models for wireless systems [2], [3]. While being
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(stochastic) worst-case service characterizations, this approach
yields (probabalistic) delay and backlog bounds for arbitrarily-
shaped arrival processes. A further strength of this approach
is its applicability to multi-hop transmission scenarios [4]. On
the other hand, based on the initial analysis by Wu et al. [5] a
second (related) line of research focuses on determining the so
called effective service capacity of wireless systems [6], [7].
In contrast to stochastic service curves, this approach targets
directly at approximating the steady-state queuing behavior
of a constant-rate source that is served by a wireless system.
More precisely, by analyzing the effective service capacity of
a link one yields the maximum arrival rate that this link can
sustain under given quality-of-service constraints at the link
layer (either delay or buffer occupancy along with a violation
probability for the delay or buffer occupancy). Hence, the
effective service capacity is a metric that can be used directly
for admission control or network dimensioning.

In this work, we contribute to the modeling of wireless
system performance based on the effective service capacity
approach. The focus of our work is on the impact of outdated
channel state information available at the transmitter. Typi-
cally, derivations of the effective service capacity are based on
perfect channel state information at the transmitter. In addition,
it is often assumed that a transmission system can adapt on
a per-symbol base to the changes of the wireless channel.
In contrast, in this paper we develop analytical expressions
under more realistic assumptions. First, we account for the
fact that systems are typically slotted and the transmitter has
to decide prior to the upcoming slot for a certain data amount
to be transmitted. We refer to this decision process in the
following as scheduling. Second, we account for link layer
packet losses. This is closely related to the time-slotted design
of wireless systems as the transmitter most likely does not
know the channel state perfectly during the upcoming slot. As
a consequence, packets might be erroneous if the transmitter
overestimates the channel state during the upcoming slot.
Third, based on a loss model, the scheduling approach at
the transmitter in combination with the quality of available
channel state information becomes crucial for the resulting
performance. Our major contribution is to characterize the
effective service capacity for different scheduling strategies
(optimistic vs. pessimistic) depending on the quality of channel
state information in a time-correlated fading channel. We can
show that scheduling on outdated CSI only pays off if a9781467312981/12/$31.00 c⃝ 2012 IEEE.



significant SNR margin is taken into account. For any given
average channel quality and QoS target there exists an optimal
SNR margin which should be used for scheduling data.

The paper is structured as follows: In Section II we present
the system model, give a precise problem statement, and
summarize the effective service capacity approach. Then,
in Sections III, IV and V we present the analytical work
describing the effective service capacity for a transmitter with
average CSI, perfect CSI and outdated CSI under different
scheduling strategies. In Section VI we validate our analysis
and discuss some insights from numerical evaluation. Finally,
in Section VII we conclude the paper.

II. PRELIMINARIES

In the following we first present the system model and then
the problem statement. Section II-C gives a brief overview of
the effective service capacity framework, while Section II-D
summarizes related work.

A. System Model

We consider a simple scenario with one transmitter/receiver
pair. Time is divided into frames of length Tf . A constant
data flow originates at the transmitter and needs to be trans-
mitted to the receiver. The flow arrival rate equals r bits per
frame duration Tf . The transmission of this data is subject
to quality-of-service requirements {d,Pd} where d stands for
a maximum tolerable delay and Pd denotes the maximum
outage probability, i.e. the probability that the delay target is
not met. Data that can not be transmitted immediately at the
transmitter is put into a FIFO queue (of infinite size) . Finally,
we denote the cumulative arrival process to the link layer at

the transmitter up to frame i by Ai =
i∑
1
ai = i ⋅ r.

Per frame, the transmitting station has one slot of duration
Ts to forward data to the receiver. These slots are spaced
regularly within the frames such that two consecutive slots are
separated in time by a duration of Tf−Ts (during which other
stations are actively transmitting data but are not considered
any further in this paper). Per slot the station transmits N
symbols. These symbols are conveyed with a power of Ptx.
During each slot i1, the transmitter takes �i bits out of
the queue (if it is backlogged) and transmits the data as
a packet over the wireless channel. Denote the cumulative
service process up to (and including) slot i by Si =

∑i
1 si

where si denotes the amount of successfully transmitted bits
during period/slot i. Depending on the channel conditions
and the channel state information available at the transmitter,
the packet transmission per slot either fails or succeeds as
explained in the following.

The wireless channel between transmitter and receiver is
affected by a randomly changing channel gain. This channel
gain is composed of two factors. Transmitter and receiver are
separated by a certain fixed distance which results in a constant

1As each frame contains exactly one transmission slot, we use the index
i in the following interchangeably to denote the frame or the corresponding
transmission slot of the transmitter of interest per frame.

path loss ℎ2
PL. In addition, due to moving objects in the

multi-path environment, the received signal is also attenuated
by time-varying, random fading. Denote by ℎ2

i the random
fading channel gain during frame i. We assume a correlated,
slowly-fading Rayleigh-distributed process with Jakes power
spectrum density. Therefore the fading is constant during the
duration of a transmission slot. Although the fading process
is assumed to be correlated, consecutive transmission slots are
assumed to have independent fading gains due to the large
time duration in between. Thus, the resulting (random) signal-
to-noise ratio(SNR) per slot i is given by:

i =
Ptx ⋅ ℎ2

PL ⋅ ℎ2
i

n2
, (1)

where n2 denotes the power of the noise process.
Depending on the SNR per slot, a different amount of

information can be conveyed from the transmitter to the
receiver. Prior to slot i the transmitter schedules a potentially
varying amount of �i bits for transmssion. Hence, each symbol
of the frame represents then �i/N bits. This scheduling
decision most likely depends on the accuracy of the channel
state information and will be discussed in more detailed in
later sections. Nevertheless, the wireless channel has a certain
transport capacity during slot i which is assumed to be:

ci = N ⋅ log2 (1 + � ⋅ i) , (2)

where 0 < � < 1 is a scaling factor. If the transport capacity ci
is bigger or equal than the size of the scheduled data packet �i,
the transmission is received successfully. Hence, we have si =
�i. Otherwise, the packet is lost completely, i.e. if ci < �i then
si = 0. Thus, we assume a threshold-based error model for our
investigations, which is accurate for larger packet sizes [8]. A
lost packet is indicated by a missing acknowledgment. Then,
the data of the transmitted packet remains in the queue until
the next transmit slot comes up.

B. Problem Statement
In this paper we are interested in the impact of different

degrees of channel knowledge on the quality-of-service (QoS)
provisioning of the considered data flow. Recall that the data
flow is subject to a delay target d and a maximum allowed
outage probability Pd. The question arises if the system can
meet these QoS targets facing the random fluctuations of
the wireless channel gains. This depends essentially on the
accuracy of channel state information at the transmitter and
the corresponding scheduling decisions per transmission slot.
In particular we consider the following three cases :
∙ Average SNR: The transmitter does not know the instan-

taneous channel state information but tracks the average
SNR. Therefore, it schedules during for each slot a packet
with a fixed size depending on the average SNR. As the
transmitter is unaware of the upcoming channel state,
packets will be lost from time to time due to fading and
the resulting insufficient channel capacity.

∙ Perfect Instant. SNR: The transmitter has perfect, in-
stantaneous channel state information prior to the upcom-
ing transmission slot. Hence, the transmitter schedules



packets of varying size per slot. Obviously, no packet
will be lost at the receiver.

∙ Outdated Instant. SNR: The transmitter has outdated
instantaneous channel state information and is aware
of the imperfect channel state information. In this case
the transmitter again schedules packets of varying size.
However, as the channel state information is not perfect,
packets will be lost from time to time. This depends
essentially on two factors: The statistical deviation be-
tween the channel state information at the transmitter and
the real channel state during the upcoming transmission
slot as well as the scheduling strategy at the transmitter.
Assuming the transmitter to be aware of the erroneous
channel state information, it can schedule packets more
carefully to prevent packet losses. Hence, scheduling
strategies can be either optimistic or pessimistic.

In all three cases, we are interested in obtaining analytical
expressions for the maximum arrival rate for which the given
QoS targets can be met. This analysis is based on effective ser-
vice capacity framework. In contrast to related work regarding
the effective service capacity of wireless systems, the novelty
of our work lies in the consideration of:

1) Packet losses at the receiver due to imperfect channel
state information at the transmitter;

2) Scheduling policies that take imperfect channel state in-
formation into account in order to increase the reliability.

Notice that the effective service capacity of a system with
perfect channel state information has already been derived
in [7]. In the following, we give a brief overview of the
effective service capacity framework.

C. Effective Service Capacity

The mathematical framework of the effective service ca-
pacity allows to approximate the distribution of the steady-
state queue length of a stable queuing system. It is therefore
a tool for analysis of arbitrary service processes in a queuing
system. The framework was originally applied to characterize
the queue length for arbitrary arrival processes (source flows)
which are served by a constant rate queuing system. In this
context, deriving the so called effective bandwidth of the ar-
rival process allows to bound the queue length distribution [9].
Interestingly, this analysis technique can also be turned ’up
side down’ such that the effective service capacity of a random
service process has to be derived in order to bound the queue
length distribution assuming constant arrivals. In the following
we give a brief introduction to this analytical framework. The
starting point for the analysis is Reich’s equation which states
that for the considered queuing system the queue length at
time i is given by:

Qi = max
0≤k≤i

((i− k) ⋅ r − (Si − Sk)) . (3)

Let us consider that the arrival and service process are sta-
tionary. Furthermore, assume that the queue is stable as the
average service rate is larger than the average arrival rate.
Hence, the random queue length Qi at time i converges to

the steady-state random queue length Q. We are interested in
characterizing the long-term statistics Pr. {Q} of the queue
length. The framework of effective service capacity gives us
the following upper bound:

Pr. {Q > x} ≤ K ⋅ e−�
∗⋅x , (4)

where K is the probability that the queue is non-empty and
�∗ is the so called quality-of-service exponent. Due to several
mathematical derivation steps [10], for a constant bit rate
source with r bits per time unit arrival rate, the exponent �∗

has to fulfill the following constraint:

r <
Λ (−�∗)
�∗

. (5)

Λ (�) is called the log-moment generating function of the
increments of the cumulative service process Si defined as
(assuming the increments to be stationary as well):

Λ (�) = lim
i→∞

1

i
log E

[
e�⋅(Si−S0)

]
. (6)

Finally, the ratio Λ (−�) /� is called the effective service
capacity, as the exponential decay of the distribution in Equa-
tion (4) is only witnessed if the ratio Λ (−�) /� is bigger than
the constant arrival rate r of the source for some �∗.

So far we have only considered the random queue length.
Denote by Di the random queuing delay of the head-of-line
bit during frame i. This random variable converges in the long-
run to the random steady state queuing delay D of the head-
of-line bit. As the arrival process has a fixed rate, the steady-
state queue length statistics are related to the steady-state delay
statistics of the head-of-line bit. Hence, a queue length of Q =
q is associated with a current delay of the head-of-line bit of
D = q/r. This yields the following approximation for the
steady-state delay distribution which is based on Equation 4:

Pr. {D > d} ≤ K ⋅ e−�
∗⋅r⋅d . (7)

A considerable challenge in determining the effective ser-
vice capacity is the characterization of the log-moment gener-
ating function. If the service process si can be assumed to be
i.i.d., a convenient simplification is to obtain the log-moment
generating function via the law of the large numbers [7].
Hence, the effective service capacity can be obtained by:

Λ(−�)
�

= lim
i→∞

1

i ⋅ �
log E

[
e−�⋅si

]
= E [si]−

�

2
Var [si] . (8)

It is therefore sufficient to determine the average and the
variance of the instantaneous service process si.

The above analysis allows to determine a bound on the
maximum outage probability if the (constant) arrival rate is
given. In contrast, we can also fix the delay and outage target
and derive the maximum arrival rate r∗ that can be supported
by the random service process. From Equation (7) we obtain
the following (upper bounding K by 1):

− ln (Pd) + ln (K)

d
≥ r ⋅ � ⇔ r∗ ⋅ � ≈ − ln (Pd)

d
, (9)



where the approximation results from the fact that upper
bounding K by one can underestimate the maximum sustain-
able rate if especially the delay target is quite low. Next, from
Equation (5) and (8) we obtain in general for �:

� = 2 ⋅ E [si]− r
Var [si]

. (10)

We use this expression and substitute it in Equation (9).
We then obtain the following relationship for the maximum
sustainable rate r∗ which has been first proposed by Soret et
al. [7]:

2 ⋅ E [si] ⋅ r∗ − (r∗)
2 ≈ − ln(Pd)

d ⋅Var [si]⇒
r∗ ≈ 0.5 ⋅ E [si] +

0.5 ⋅
√

(E [si])
2

+ 2⋅ln(Pd)
d ⋅Var [si] . (11)

In the following, we use this equation to determine the maxi-
mum sustainable source rate. The major difficulty that we will
face is obtaining the mean and variance of the instantaneous
service process depending on the scheduling strategy of the
transmitter.

D. Related Work

The notion of the effective service capacity for wireless
communications has been introduced by Wu et al. in [5].
This initial work considered a single wireless fading channel
with perfect channel state information at the transmitter and
the possibility to adapt to the channel state on a per-symbol
base. Difficulties in characterizing the log-moment generating
function for a correlated wireless channel forced the authors
to consider special cases like low-SNR-regime etc. The work
was extended afterwards by numerous further contributions of
Wu et al. considering for example point-to-point communi-
cation over frequency-selective fading channels [11], multi-
user communication over a single flat-fading channel [12], as
well as multi-user communications over parallel, down-link
fading channels [13]. All these works did not take the impact
of outdated channel state information into account. Further
contributions extending the effective service capacity to other
wireless system scenario have been presented in [14] (exten-
sion to point-to-point communication via adaptive resource
allocation in multi-carrier systems) or [7] (extension to point-
to-point communication of variable rate sources over a single,
correlated fading channel).

Closest to our work are two recent contributions. In [15]
the authors study the effective capacity over wireless channels
with fixed-rate transmission where the transmitter has no chan-
nel state information. This work incorporates the impact of
losses but focuses on energy-efficiency instead of considering
the relationship between outdated channel state information
and associated scheduling strategies at the transmitter. In
contrast, Femenias et al. consider in [16] the effective service
capacity of adaptive modulation and coding over a corre-
lated Rayleigh-fading wireless channel. The authors model
the service process by a Markov chain and consider packet
losses. Nevertheless, the work focuses on perfect channel state

information at the transmitter. Again, scheduling strategies for
maximizing the effective service capacity in case of outdated
channel state information is not taken into account.

III. EFFECTIVE SERVICE CAPACITY WITH AVERAGE SNR

In this section we consider the effective service capacity
where the transmitter is only informed about the average
channel state, i.e. the transmitter knows the average SNR of
the link given by ̄ = P̄tx ⋅ ℎ2

PL/n
2. Recall that we assume a

constant fading gain per slot. More specifically, we model the
channel as a Rayleigh-fading wireless channel which implies
that the random SNR i = ̄ ⋅ℎ2

i during slot i is exponentially
distributed. As the transmitter knows only the average channel
state, we restrict our analysis to the case that the transmitter
always schedules a fixed amount of data �i = � ⋅N per slot.
Hence, per symbol the system conveys � bits.

In this case, the service process si takes values of either 0
or � ⋅N depending on the outage probability of the wireless
channel. As we are dealing with a constant packet of size
� ⋅N bits, at least an SNR of Γ� =

(
2� − 1

)
/� is needed to

receive the packet successfully. This allows us to compute the
probability of the service process si to take the value � ⋅ N
which is given by:

Pr. (si = � ⋅N) =

∞∫
Γ�

1

̄
e
−x
̄ dx = e

−2�+1
̄⋅� = p� . (12)

Likewise, the probability for the service rate to be 0 is given
by 1− p�. Hence, the resulting random variable si is a scaled
Bernoulli random variable.

From the Bernoulli characteristic of the service process at
slot i and our general approach to characterize the effective
service capacity given by Equation (8), we therefore obtain
for the mean and variance:

E [si] = ms = p� ⋅ � ⋅N , (13)

Var [si] = p� ⋅�2 ⋅N2 ⋅ (1− p�) = ms ⋅ (� ⋅N −ms) . (14)

Substituting these values in Equation 8, we obtain the effective
service capacity2 depending on the scheduling choice �. Based
on this expression for the effective service capacity, we can
derive the dependency between the QoS service exponent
� and the constant arrival rate r following Equations (10)
and (11). We obtain:

� = 2 ⋅ ms−r
ms⋅(�⋅N−ms) = 2 ⋅ �⋅N ⋅p�−r

�⋅N ⋅p�⋅(�⋅N−p�) . (15)

Combining Equations (15) and (11) yields finally:

r∗ = ms
2 ⋅

(√
2⋅ln(Pd)⋅(�⋅N−ms)

ms⋅d + 1 + 1

)
= ms

2 ⋅
(√

U
p�
− U + 1 + 1

)
, (16)

where U = 2 ln(Pd)/d. Equation (16) gives us an upper bound
on the arrival rate r per time frame. Recall the assumption

2The log-moment generating function of a Bernoulli process can also be
determined directly. Numerically, this makes little difference.



that the transmitter always schedules a fixed data size of � ⋅N
bits to be transmitted. That raises the question how this choice
impacts the maximum sustainable rate. Clearly, this scheduling
decision should depend on the average channel state ̄ as
well as the QoS targets Pd and d. We first establish a search
range for the optimum. The upper bound is obtained from the
argument of the square root in Equation (16) as:

�max = log2

(
1− ̄ ⋅ � ⋅ ln

(
lnP2

d

lnP2
d − d

))
. (17)

From numerical investigations, we conclude that within the
range [0, �max] there is an optimal setting for �. However,
the optimal setting for � is hard to derive mathematically.
Hence, we propose a simple search within the range [0, �max]
to determine a close-to-optimal setting for �.

IV. EFFECTIVE SERVICE CAPACITY WITH PERFECT
(INSTANTANEOUS) SNR

In this section we consider the performance when the trans-
mitter has perfect, instantaneous channel state information.
As a consequence, the transmitter knows exactly the transport
capacity ci of the upcoming transmission slot i and schedules
exactly �i = ci bits for transmission (if that amount of bits
is available in the queue). Clearly, the service process si is
no longer of Bernoulli type. Soret et al. have derived the
corresponding expressions for the effective capacity in this
case [7]. Adjusting to our notation, the mean and second
moment of the service process have been reported to be:

E [si] = N
̄ ⋅
∞∫
0

log2 (1 + � ⋅ x) ⋅ e
−x
̄ dx

= N
ln(2) ⋅ e

1
̄⋅� ⋅ E1

(
1
̄⋅�

)
(18)

E
[
s2
i

]
=
N2

̄
⋅
∞∫

0

(log2 (1 + � ⋅ x))
2 ⋅ e

−x
̄ dx

=
N2e

1
̄�

ln2(2)

[(
C + ln

(
1

̄�

))2

+
�2

6

]

−N
2e

1
̄�

ln2(2)

2

̄�
3F3

(
1, 1, 1; 2, 2, 2;− 1

̄�

)
, (19)

where E1 () is the exponential integral function, C is the Euler
constant and nFm is the generalized hyper-geometric function.
Given these expressions, we can obtain the variance of the
process si and derive the maximum sustainable arrival rate of
the source by Equation (11).

V. EFFECTIVE SERVICE CAPACITY WITH OUTDATED
(INSTANTANEOUS) SNR AND SIMPLE SCHEDULING

POLICIES

We now turn to the case that the transmitter has outdated
instantaneous channel state information regarding the chan-
nel state of the upcoming transmission slot i. Denote this
channel state information by ̂i. In practice any channel state
information is outdated and there are multiple alternatives

how the channel state information might be obtained by the
transmitter (for example, obtaining ̂i from an RTS/CTS hand-
shake, from overhearing previous packet transmissions from
the receiver, obtaining ̂i from the acknowledgment frame,
having an explicit feedback mechanism from the receiver to
the transmitter etc.). We assume in the following that the
channel state information ̂i has been obtained by sampling
the channel To time units prior to the upcoming transmission
slot (where for the frame duration we have Tf >> To).
Therefore, ̂i and the real channel state i are correlated.
Let us denote the correlation coefficient of the two channel
states by �2 where � is the correlation coefficient of either the
inphase or quadrature Gaussian random process which both
constitute the Rayleigh-distributed fading process with Jakes
power spectrum. In general � depends on To as well as the
maximum Doppler frequency in the propagation environment.

Given the channel estimate ̂i the transmitter has to schedule
now a packet size �i for the upcoming transmission slot. In
the following we study simple scheduling policies where the
scheduling decision is a function of the channel estimate,
i.e. �i = N ⋅ log2

(
1 + � ⋅ &2 ⋅ ̂i

)
. Thus, the transmitter

schedules data by including an SNR margin &2 as the resulting
service process yields si = N ⋅ log2

(
1 + � ⋅ &2 ⋅ ̂i

)
if the

SNR i during the upcoming transmission slot i is equal or
above the threshold ̂i ⋅ &2. Therefore, if &2 ≥ 1 we call
the scheduling scheme ’optimistic’ whereas if &2 < 1 we
call the scheduling scheme ’pessimistic’. Note that we only
consider scheduling policies for which the SNR margin is
constant. More sophisticated scheduling schemes that adapt
to the channel estimate or to the average channel state are left
for future work.

In order to obtain the effective service capacity in this case,
we initially consider the success probability for a scheduling
decision �i = N ⋅ log2

(
1 + � ⋅ &2 ⋅ ̂

)
under the condition that

the correlation coefficient of the SNR estimate and the slot
SNR is �2. For a Rayleigh-fading process with Jakes power
spectrum density the conditional probability density function
px∣̂ of the SNR of the upcoming transmission slot is given
by [17]:

px∣̂ =
1

̄ ⋅ (1− �2)
⋅ I0
(

2 ⋅ � ⋅
√
x ⋅ ̂

̄ ⋅ (1− �2)

)
⋅ e
− x+�2⋅̂
̄⋅(1−�2) , (20)

where I0 is the modified Bessel function of the first kind.
Hence, if the current channel estimate is ̂ and the sched-
uled data amount equals N ⋅ log2

(
1 + � ⋅ &2 ⋅ ̂

)
, the success

probability of the transmitted packet is given by:

Pr.
{
si = N ⋅ log2

(
1 + � ⋅ &2 ⋅ ̂

)}
=
∞∫
&2⋅̂

px∣̂ ⋅ dx

=
∞∫
&2⋅̂

1
̄⋅(1−�2) ⋅ I0

(
2⋅�⋅
√
x⋅̂

̄⋅(1−�2)

)
⋅ e
− x+�2⋅̂
̄⋅(1−�2) ⋅ dx =

∞∫
&⋅

√
2⋅̂√

̄⋅(1−�2)

z ⋅ I0
(
z ⋅ � ⋅

√
2⋅̂√

̄⋅(1−�2)

)
⋅ e
− z22 −

�2⋅̂
̄⋅(1−�2) ⋅ dz



=
∞∫
&⋅ẑ

z ⋅ I0 (z ⋅ � ⋅ ẑ) ⋅ e−
z2+(�⋅ẑ )2

2 ⋅ dz

= Q (� ⋅ ẑ , & ⋅ ẑ) , (21)

where we substitute z =
√

2⋅x
̄⋅(1−�2) in the step from the

second to the third line, and set
√

2⋅̂
̄⋅(1−�2) = ẑ in the fourth

and fifth line. Finally, Q (a, b) is the Marcum Q-function.
We now turn to the problem of finding the mean and

variance of the corresponding service process which allows
us to derive the log-moment generating function according to
Equation (8). We start with the derivation of the mean where
we have:

E [si] =
N

̄

∞∫
0

log2

(
1 + �&2x

)
Q (�zx, &zx) e−

x
̄ dx (22)

The derivation of this mean is quite involved due to the
Marcum Q-function. We rely in the following on an upper
bound for the Marcum Q-function Q (a, b) which is based on
a geometric approach [18]. For the case that a < b the bound
is as follows:

Q (a, b) ≤ 1

�

Θ−1∑
i=0

e−
(
√
b2−a2 sin2 �i−a cos �i)

2

2 ⋅ (�i+1 − �i) (23)

in which the set of �i ∈ [0;�] can be chosen arbitrarily
and Θ ∈ ℕ determines the accuracy of the bound. In the
following we set �i = �

Θ ⋅ i. The condition a < b, which
is fulfilled as long as the transmitter chooses & ≥ �, is a
significant restriction for the scheduling policy especially if
the correlation � is high. Hence, for the case that a ≥ b we
use as upper bound [18]:

Q (a, b) ≤ 1−

1
�

∑Θ−1
i=0 e−

(
−
√
b2−a2 sin2 �i+1+a cos �i+1

)2

2 ⋅ (�i+1 − �i)

+ 1
�

∑Θ−1
i=0 e−

(√
b2−a2 sin2 �i+1+a cos �i+1

)2

2 ⋅ (�i+1 − �i)(24)

where in this case we have �i ∈ [0; �max] with �max =
arcsin b

a . Again we choose in the following a regular sampling
of the angle with �i = �max

Θ ⋅ i.
Considering the arguments of the Marcum Q-function in

Equation (22), we obtain for the upper bound in the case that
� < & from Equation (23):

Q (�zx, &zx) ≤
Θ−1∑
i=0

Ki ⋅ e−
x
̄ ⋅a

(1)
i . (25)

Correspondingly, for the case that � ≥ & we obtain from
Equation (24):

Q (�zx, &zx) ≤ 1−
Θ−1∑
i=0

Kie
− x̄ ⋅a

(2)
i +

Θ−1∑
i=0

Kie
− x̄ ⋅a

(3)
i . (26)

In the two equations above we set:

Ki = �i+1−�i
�

a
(1)
i =

(√
&2−�2 sin2 �i−� cos �i

)2

(1−�2)

a
(2)
i =

(
−
√
&2−�2 sin2 �i+1+� cos �i+1

)2

(1−�2)

a
(3)
i =

(√
&2−�2 sin2 �i+1+� cos �i+1

)2

(1−�2)

(27)

Based on these expressions for the Marcum Q-function, we can
now proceed to approximate the mean of the service process
obtained from scheduling based on outdated channel state
information by substituting Equations (25) and (26) for the
Marcum Q-function in Equation (22). Based on Equation (31)
from the Appendix, we obtain therefore for the mean of
Equation (22) if � < &:

E [si] = N
̄ ⋅
∞∫
0

log2

(
1 + �&2x

)
Q1 (�zx, &zx) e−

x
̄ dx

≤ N ⋅
∑Θ−1
i=0

∞∫
0

Ki
̄ log2

(
1 + �&2x

)
⋅ e−

x
̄

(
1+a

(1)
i

)
dx

=
∑Θ−1
i=0

N ⋅Ki
(1+a

(1)
i )⋅ln 2

⋅ e
1+a

(1)
i

�⋅&2⋅̄ ⋅ E1

(
1+a

(1)
i

�⋅&2⋅̄

)
, (28)

In a similar manner we obtain the mean of the service process
in case that � ≥ & .

Finally, we turn to the derivation of the second moment, for
which we obtain for the case of � < & based on Equation (25)
and on Equation (41) from the Appendix:

E
[
s2
i

]
= N2

̄ ⋅
∞∫
0

(
log2

(
1 + �&2x

))2
Q1 (�zx, &zx) e−

x
̄ dx

≤
Θ−1∑
i=0

∞∫
0

KiN
2

̄

(
log2

(
1 + �&2x

))2 ⋅ e− x̄ (1+a
(1)
i

)
dx =

Θ−1∑
i=0

KiN
2

(1+a
(1)
i ) ln2(2)

e
1+a

(1)
i

�&2̄

[(
C + ln

(
1+a

(1)
i

�&2̄

))2

+ �2

6

]
−

Θ−1∑
i=0

2KiN
2

�&2̄ ln2(2)
e

1+a
(1)
i

�&2̄
3F3

(
1, 1, 1; 2, 2, 2;− 1+a

(1)
i

�&2̄

)
. (29)

The case � ≥ & is obtained in a similar manner based
on Equation (26) and Equation (41) from the Appendix.
Finally, to obtain the effective service capacity, we derive
from Equations (28) and (29) the variance Var [si] of the
service process. Then, based on Equation (11), we can obtain
the maximum sustainable arrival rate for the specified QoS
constraints. Note that this rate is a function of & and, hence,
of the degree of ’optimism’ in the scheduling at the transmitter.
Furthermore, depending on the relationship between � and &
the correct formulas need to be chosen.

VI. NUMERICAL EVALUATION

In this section we evaluate our analytical expressions nu-
merically. We pursue two different goals. On the one hand,
we have used several approximations and bounds for deriving
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Figure 1. Comparison of the analytically derived average rate of various
schemes versus simulation results for various average SNR settings (10
symbols slot length, SNR margin for outdated CSI cases set to &2 = 1).

the effective service capacity for the outdated CSI case. Hence,
we are interested in validating the analysis by simulations. On
the other hand, our results allow us to investigate the optimal
SNR margin & if data scheduling is based on outdated CSI.
This is our second goal.

We start with the validation which is done by means of
simulations. The simulation is based on generating sequences
of exponentially distributed SNR values, converting these
values into service units and then simulating (and observing)
the resulting behavior a queue for the various different system
schemes under study. In Figure 1 we initially consider the
average rate of the different system designs over an increas-
ing SNR. The plot contains the results for the perfect CSI
case (including simulation results indicated by the confidence
intervals), the average CSI case (not containing any simulation
results) as well as the results for scheduling with outdated CSI
(for � = 0.2 and � = 0.8 and setting &2 = 1). In the case of
using outdated CSI we also present curves for the correspond-
ing simulations results. Regarding the validation, the results on
the average rate in case of outdated CSI indicate that the used
bound from Equation 23 indeed provides analytical results
which are very close to the real system behavior as obtained
from simulations. Apart from this validation result, the figure
also reveals already some interesting system behavior. First
notice that the average rate for scheduling with outdated CSI
is in both cases worse than the corresponding result from
scheduling with average CSI only. Furthermore, the difference
of these two schemes to the case of scheduling with perfect
CSI is quite large (usually about 50%).

Next, we present in Figure 2 and 3 the maximum sustainable
rate resulting from analysis and simulations for the different
considered system designs. In both cases we consider the
following parameters: 10 dB average SNR, delay target of
10 slots and outage probability of 0.1. In addition, we vary
the SNR margin &2 between 0.01 and 1. First of all, the two
figures demonstrate nicely the correspondence between the
analytical results and simulations for the maximum sustainable
rate. Notice that this validation includes now not only the
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Figure 2. Analytical results of the maximum sustainable rate of various
scheduling schemes for the outdated CSI case (10 symbols slot length, 10 dB
average SNR, target delay of 10 slots, outage probability of 0.1). Results on
scheduling with outdated CSI are compared to the ones of scheduling with
perfect CSI and (fixed) scheduling with average CSI only.
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Figure 3. Simulation results of the maximum sustainable rate from various
scheduling schemes for the outdated CSI case (10 symbols slot length, 10 dB
average SNR, target delay of 10 slots, outage probability of 0.1). Results on
scheduling with outdated CSI are compared to the ones of scheduling with
perfect CSI and (fixed) scheduling with average CSI only.

upper bound for the Marcum Q-function but also the Gaussian
approximation for the derivation of the log-moment generating
function from Soret et al. in Equation 11. In addition to
this important validation aspect, the figures also reveal a
significant performance behavior for the case of scheduling
with outdated CSI. As the SNR margin increases from 0.01
to 1, the maximum rate first increases, reaches an optimum
and decreases afterwards. For all considered cases of the
correlation strength � the optimum SNR margin is close to 0.5
equaling a 3 dB margin (the lower the correlation, the lower
the optimal SNR margin is in tendency). Notice in particular
that even for a strong correlation between the channel estimate
and the slot channel state of 0.95, the maximum sustainable
rate is only slightly bigger than the one obtained by scheduling
based on average CSI only. Furthermore, optimistic scheduling
(with an SNR margin of 1) achieves a significantly lower
maximum sustainable rate than using average CSI only.

Finally, in Figure 4 and 5 we study the behavior of the SNR
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Figure 4. Analytical results of the maximum sustainable rate of various
scheduling schemes for the outdated CSI case (10 symbols slot length, 10 dB
average SNR, target delay of 10 slots, outage probability of 0.01). Results on
scheduling with outdated CSI are compared to the ones of scheduling with
perfect CSI and (fixed) scheduling with average CSI only.
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Figure 5. Analytical results of the maximum sustainable rate of various
scheduling schemes for the outdated CSI case (10 symbols slot length, 20 dB
average SNR, target delay of 10 slots, outage probability of 0.01). Results on
scheduling with outdated CSI are compared to the ones of scheduling with
perfect CSI and (fixed) scheduling with average CSI only.

margin as the QoS requirements become more restrictive as
well as the average SNR increases. In Figure 4 we consider
a target outage probability of 0.01 (instead of 0.1 as in the
previous case). This leads to a lower maximum sustainable
rate in general. For the case of scheduling with outdated CSI
the optimal SNR margins become smaller. Hence, a more
pessimistic data scheduling is beneficial. This tendency is also
present if we increase the average SNR of the channel to
20 dB, as studied in Figure 5. In general, this increases the
maximum sustainable rate for all studied schemes. However,
the optimal SNR margins for scheduling with outdated CSI
are furthermore decreased. Notice in both Figures 4 and 5 that
optimistic scheduling can not support any arrival rate with the
required QoS targets.

VII. CONCLUSIONS

In this paper we have considered the effective service
capacity of scheduling data frames based on outdated CSI

information. In contrast to previous work, we focus on the
dependency between the scheduling approach at the trans-
mitter and resulting loss of the packet transmission due to
overestimating the upcoming channel state. Based on the
mathematical expressions for effective service capacity when
scheduling with outdated CSI, we can show that there exists an
optimal SNR margin that increases the maximum sustainable
rate of a given scenario. This margin is typically around 3
dB. Furthermore, we find that adapting to the channel state
only pays off if the channel estimate is highly correlated to
the channel state (at least a coefficient of 0.9). Otherwise, a
fixed frame size strategy without adapting to the instantaneous
channel state is more advantageous. Finally, we show that the
optimal SNR margin is sensitive to the QoS target as well as to
the average channel state. As the QoS targets become tougher
and/or the average channel state increases the optimal SNR
margin increases, i.e. more pessimistic scheduling is beneficial.

There are plenty of open issues for further study. Among
them are the consideration of interference-limited channels,
more sophisticated scheduling schemes for the outdated CSI
case, including the impact of hybrid ARQ on the here pre-
sented model and the consideration of multi-user scheduling.

APPENDIX

A. First Moment of the Capacity of a Scaled Exponential
Random Variable

In this section we deal with the derivation of the following
integral: ∫ ∞

0

K

c
⋅ log2 (1 + b ⋅ x) ⋅ e− a⋅xc dx . (30)

We obtain based on Table of Integrals [19]:∫∞
0

K
c ⋅ log2 (1 + b ⋅ x) ⋅ e− a⋅xc dx =

− K
a⋅ln 2 ⋅

[
e
a
bc ⋅ E1

(
bxa+a
bc

)
+ e

−ax
c ⋅ ln (bx+ 1)

]∞
0

= K
a⋅ln 2 ⋅ e

a
bc ⋅ E1

(
a
bc

)
, (31)

which is a straight-forward extension of the well known result

for a = 1. Above, E1 (x) =
∞∫
1

e−x⋅t

tn dt is the exponential

integral function.

B. Second Moment of the Capacity of a Scaled Exponential
Random Variable

Next, we consider the computation of the second moment
of the scaled exponential random variable. Formally, we are
interested in:

∞∫
0

K

c
⋅ (log2 (1 + b ⋅ x))

2 ⋅ e− a⋅xc dx . (32)

By simple substitution and manipulation we change Equa-
tion (32) to:

K

bc ln2(2)

∞∫
0

ln2 (1 + z) e−szdz =
K

bc ln(2)
⋅ℒ
{

ln2 (1 + z)
}
,

(33)



where s = a
b⋅c and ℒ{f} denotes the Laplace transform of

f . Initially, based on this interpretation, there is no straight-
forward solution for this transform. However, notice the
following identity for Laplace transforms: ℒ{f(x+ t)} =

es⋅t ⋅
[
ℒ{f(x)} −

∫ t
0
f(x) ⋅ e−sxdx

]
. Furthermore, we have

ℒ
{

ln2(x)− �2

6

}
= (C+ln(s))2

s , where C is the Euler constant.
Applying both results to Equation (33) yields:

Kes

bc ln2(2)

⎡⎣ (C + ln(s))2

s
+

�2

6 ⋅ s
−

1∫
0

ln2(z)e−szdz

⎤⎦ .

(34)
Let us focus on the integrand in Equation (34). We obtain:

1∫
0

ln2(z)e−szdz = 2z 3F3 (1, 1, 1; 2, 2, 2;−sz)− ln(z)

s
⋅

((
e−sz − 1

)
ln(z) + 2 (ln(sz) + C) + 2Γ (0, sz)

)
∣10

= 2 3F3 (1, 1, 1; 2, 2, 2;−s) + lim
z→0

ln(z)

s
⋅((

e−sz − 1
)

ln(z) + 2 (ln(sz) + C) + 2Γ (0, sz)
)
. (35)

Above, Γ () is the incomplete gamma function and 3F3 () is
the generalized hypergeometric function. For the first product
of the limit we obtain by application of l’Hospital’s rule:

lim
z→0

e−sz − 1

ln−2(z)
= lim
z→0

se−sz

2z−1 ln−3(z)
=
s

2
lim
z→0

ln3(z)

z−1

s

2
lim
z→0

3 ln2(z)

−z−1
=
s

2
lim
z→0

6 ln(z)

z−1
=
s

2
lim
z→0

6z = 0 .(36)

Now we consider the limit of the second and third product in
Equation (35). We initially obtain:

2

s
lim
z→0

ln(sz) + C + Γ (0, sz)

ln−1(z)
=

2

s
lim
z→0

1 + C+Γ(0,sz)
ln(sz)

ln−1(sz) ⋅ ln−1(z)
.

(37)
We first focus on the numerator and obtain:

lim
z→0

1+
C + Γ (0, sz)

ln(sz)
= 1+lim

z→0

(−s)e−sz(sz)−1

s(sz)−1
= lim
z→0

1−e−sz .
(38)

Hence, the limit of Equation (37) equals:

lim
z→0

1− e−sz

ln−1(sz) ⋅ ln−1(z)
= 0 , (39)

according to the result of Equation (36).
Therefore, we have:

1∫
0

ln2(z)e−szdz = 2 3F3 (1, 1, 1; 2, 2, 2;−s) , (40)

and this yields finally:
∞∫
0

K
c ⋅ (log2 (1 + b ⋅ x))

2 ⋅ e− a⋅xc dx =

Kes

bc ln2(2)

[
(C+ln(s))2

s + �2

6⋅s − 2 3F3 (1, 1, 1; 2, 2, 2;−s)
]

= Ke
a
bc

a ln2(2)

[(
C + ln

(
a
bc

))2
+ �2

6

]
−

2Ke
a
bc

bc ln2(2) 3F3

(
1, 1, 1; 2, 2, 2;− a

bc

)
. (41)
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