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Abstract

It is well known that channel-dependent OFDMA re-
source assignment algorithms provide a significant per-
formance improvement compared to static (i.e. channel-
unaware) approaches. Such dynamic algorithms constantly
adapt resource assignments to current channel states ac-
cording to some objective function. Due to these dynam-
ics, it is difficult to predict the resulting performance for
such schemes given a certain scenario (characterized by
the number of terminals in the cell and their average chan-
nel gains). Hence, previous work on admission control
for OFDMA systems neglects the performance improvement
from channel-dependent resource assignments and bases
analysis on the average channel gains instead. In this
paper we provide for the first time an analytical frame-
work for admission control in OFDMA systems applying
channel-dependent resource assignments. The framework is
based on fundamental transformations of the channel gains
caused by the channel-dependent assignment algorithms.
We provide closed-form expressions for these transforma-
tions and derive from them probability functions for the rate
achieved per terminal and frame. These functions can then
be used for admission control as demonstrated in this paper
for Voice-over-IP streams in IEEE 802.16e systems.

1 Introduction

Over the last decade orthogonal frequency division mul-
tiple access (OFDMA) has become one of the major mul-
tiple access scheme for broadband wireless systems. To-
day, OFDMA is already part of the IEEE 802.16e [4] stan-
dard for metropolitan area networking while it is also going
to be the dominant multiple access technology in 3GPP’s
Long Term Evolution (LTE) systems for cellular network-
ing. Finally, there is some evidence that OFDMA might
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also be implemented in future wireless local area networks
i.e. post IEEE 802.11n systems (standardization activity has
just started in IEEE 802.11’s task group ’ac’).

There are several reasons for this success of OFDMA
as multiple access scheme. First of all, the proliferation of
orthogonal frequency division multiplexing (OFDM) as fa-
vorable transmission scheme for broadband wireless links
has made OFDMA the ”natural” choice for multiple ac-
cess. Almost all broadband wireless systems, either on the
market or under standardization, are based on OFDM due
to its resilience to frequency-selective fading paired with a
relatively low implementation complexity [10]. OFDMA
brings the advantage of allowing fine-grained scheduling of
multiple different terminals which is particularly important
for packet-oriented wireless networks. In addition, mobile
terminals benefit from frequency diversity if uncorrelated
parts of the OFDM bandwidth are scheduled for their data
transmission.

However, over the last decade one of the strongest ar-
guments made by research for OFDMA lies in exploiting
multi-user diversity. OFDM splits the given system band-
width into small parallel communication channels referred
to as subcarriers. Any single link in a broadband OFDM
system experiences a varying channel gain for these numer-
ous subcarriers (stemming from frequency-selectivity). In
addition, if multiple different receivers (i.e. links) are con-
sidered (for example, in the down-link), the different re-
ceivers experience very different gains for any given sub-
carrier (as channel gain is uncorrelated in space over the
distances usually separating multiple terminals). So, phys-
ical layer efficiency can be improved significantly by allo-
cating ”appropriate” subcarriers to terminals in a frequency
division multiplexing fashion. Such channel-dependent
OFDMA resource assignment is now under discussion for
about ten years [16, 1]. Research mainly focuses on assign-
ment algorithms to be applied for the down-link of wire-
less OFDMA cells. Many different algorithms have been
proposed in the past, addressing mainly the trade-off be-
tween complexity (i.e. run time of the algorithm) and phys-
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ical layer efficiency. Apart from that, some contributions
have also investigated the associated overhead (collecting
the channel state information as well as signaling the dy-
namic assignments). IEEE 802.16e as well as 3GPP’s LTE
enable the application of channel-dependent OFDMA re-
source assignments by providing the protocol ”hooks” in
the system.

While channel-dependent OFDMA resource assign-
ments do provide a significant performance gain, these
schemes also cause new problems. One particularly im-
portant issue deals with admission control: Assume that
a certain algorithm at the base station assigns subcarriers
to terminals for each down-link phase in order to improve
some metric (for example, proportional fair throughput or
overall throughput). Based on stochastic simulations, it is
relatively easy to determine the average performance ob-
tained from any such algorithm for some chosen scenario
(number of terminals in the cell, distance of the terminals to
the base station etc.). However, it is much harder to predict
the obtained performance of any assignment algorithm for
some given scenario due to the channel-dependent nature of
these algorithms. Unfortunately, some form of performance
prediction is required for admission control. To see this, as-
sume that a certain number of Voice-over-IP (VoIP) calls
are currently admitted to a wireless OFDMA cell. Next,
five new calls arrive and request admission to the cell. Some
method is clearly required to judge if the channel-dependent
OFDMA resource assignments can still fulfill the quality-
of-service requirements of all the voice streams if the new
ones are admitted to the cell. In a more general setting, we
need a framework to determine if an OFDMA cell can sup-
port a given set of transmission requests (characterized by
quality-of-service demands as well as the average channel
gains between the base station and the requesting terminal)
with a given amount of resources (subcarriers, power, mod-
ulation and coding schemes). Notice that due to the stochas-
tic nature of the wireless channel the framework of interest
is of stochastic nature.

In this paper we present a novel framework for admis-
sion control in OFDMA cells. The framework allows the
prediction of achievable rates given a certain amount of re-
sources and a certain set of requests. In contrast to previ-
ous work [9, 8, 13] (see also Section 6 for a detailed dis-
cussion), our major contribution is that we provide an an-
alytical framework for performance prediction of channel-
dependent OFDMA resource assignments, i.e. a class of
algorithms which freely assigns subsets of subcarriers to
different terminals for each down-link phase in order to im-
prove some performance metric. Our analytical framework
is based on a fundamental insight into such OFDMA re-
source assignment algorithms regarding the way they mod-
ify the fading statistics of assigned subcarriers. We provide
a closed form expression for these resulting fading statis-

tics (which we refer to as OFDMA channel transformations)
and derive from this analytical core a lower performance
bound for one example OFDMA subcarrier assignment op-
timization problem. This lower bound can be used to per-
form admission control with respect to different policies, as
discussed finally in this paper. To the best of our knowledge,
this approach is novel.

The remaining paper is structured as follows. In Sec-
tion 2 we present the basic system model and state the prob-
lem of interest. Then, in Section 3 we discuss the OFDMA
channel transformations, i.e. the basic effect that channel-
dependent OFDMA resource assignment has on the channel
gains of assigned subcarriers. We also present some illus-
trating numerical examples in the same section. Section 4
contains then derivations of the lower bound for a specific
resource assignment problem considered in this paper. This
lower bound is investigated numerically in Section 5. The
same section contains also a discussion on the application
of the framework to admission control. Section 6 discusses
relations of this work to previous one. Finally, we conclude
the paper in Section 7.

2 System Model

A single cell of a wireless system consists of a base sta-
tion serving J terminals. We consider a centrally organized
system, all data transmissions within the cell are controlled
by the base station. Time is split into frames each featur-
ing a down-link and an up-link phase. In the following
we focus on the down-link phase and denote its duration
by Tdl. Via a backbone the base station receives data des-
tined for the terminals in the cell. Upon transmission, this
data is queued separately for each terminal. Prior to each
down-link phase, the base station schedules (some or all of
the) currently queued data for transmission during the next
down-link phase. Denote these scheduled data amounts for
terminal j by σj . Afterwards a resource assignment unit
tries to match system resources with scheduled transmis-
sion requests as good as possible. In the following, we first
describe these system resources in Section 2.1 and focus af-
terwards on the resource assignment. Finally, we state the
problem addressed by this paper in Section 2.3.

2.1 Physical Layer

Data is transmitted via an OFDM system of total band-
width B [Hz] at a center frequency fc [Hz]. A maximum
transmit power of Pmax can be utilized in this frequency
band. The bandwidth is split into N subcarriers on which
information is transmitted in parallel by digital symbols of
length Ts = 1/∆f = B/N . We refer to all N subcar-
rier symbols transmitted simultaneously as an OFDM sym-
bol. In order to mitigate intersymbol interference, a guard



period of length Tg is added to each OFDM symbol. Per
down-link phase, the system features S = bTdl/ (Ts + Tg)c
OFDM symbols for data transmission.

For each subcarrier n and terminal j the gain gj,n varies
over time and frequency, i.e. each subcarrier/terminal gain
depends on a constant component (path loss, denoted by
ρj) and a random, time- and frequency-variant fading com-
ponent. We assume this gain to be exponentially distributed
(with mean ρj). Matrix G groups all subcarrier/terminal
gains. G is assumed to stay constant for the duration of one
down-link phase but varies over longer time spans. Based
on the transmit power pn per subcarrier and the variance
σ2 of the white Gaussian noise process per subcarrier, we
obtain the signal-to-noise ratio (SNR) of subcarrier n and
terminal j per down-link phase by:

γj,n =
pn · gj,n
σ2

. (1)

We assume M different modulation types to be featured by
the transmission system. Modulation type m represents bm
bits per symbol (for example bm = 2 for QPSK). The base
station can adapt the modulation type for each subcarrier
separately (referred to as adaptive modulation). However,
any down-link transmission is constrained by a terminal
specific target bit error rate βj . Hence, a modulation type
m is applied if the current SNR for this terminal is within
the range Γj,m ≤ γ < Γj,m+1. The SNR range delimiters
are determined by modulation specific bit error probabil-
ity functions, as for example presented in [2]. Denote by
Fj (γ) the function returning the amount of bits that can be
transmitted per OFDM symbol to terminal j at an SNR of
γ. Notice that for any SNR below Γj,1 no modulation is ap-
plied, i.e. Fj (γ < Γj,1) = 0. Also, for modulation M the
range has no upper limit.

2.2 Medium Access Control Layer and
Resource Assignment

During each down-link phase frequency division multi-
plexing is applied. Thus, during the resource assignment
step disjoint subsets of subcarriers are assigned to terminals
based on perfect knowledge of subcarrier gains. Subcar-
rier assignments are valid throughout the entire down-link
phase. The assignment of a subcarrier/terminal pair is de-
noted by the binary variable xj,n. In addition to the subcar-
rier/terminal assignments, resource assignment might also
contain a variable transmit power pn per subcarrier.

As the scheduler requests the resource assignment unit
to transmit the data amount σj per terminal during the next
down-link phase, the resource assignment unit first identi-
fies the minimum requested data amount σj? and computes
then for all terminals the proportion factor:

αj = σj/σj? . (2)

Based on these quantities the resource assignment unit
solves the following rate-adaptive optimization prob-
lem [14, 3]:

max ε

s. t.
∑
j

xj,n ≤ 1 ∀ n

S ·
∑
n

Fj

(pn · gj,n
σ2

)
· xj,n ≥ αj · ε ∀ j∑

n

pn ≤ Pmax

(3)

In this maximization of the minimum rate the factor αj as-
sures a proportional scaling of the achieved minimum rate
in case that the scheduler requests different data amounts
per terminals. Note that problem (3) is an NP-hard opti-
mization problem [1]. Different approaches have been sug-
gested how to solve the problem by faster heuristics [3, 6].
We do not consider the specific algorithm further and sim-
ply assume that problem (3) can be solved prior to each
down-link phase optimally or with negligible performance
degradation. Finally, some control channel is needed to
inform the terminals of their assignments (subcarriers and
modulation types). We assume the existence of such a sep-
arate, error-free control channel conveying this information
to the terminals.

2.3 Problem Statement

This paper addresses the problem of admission control
and capacity estimation for OFDMA down-link. When de-
termining the requested data amount per terminal σj the
scheduler requires some estimate of ε. Intuitively, this esti-
mate should depend on the number of terminals J , the two
sets of their respective average channel gains {ρj} and their
target bit error rates {βj} as well as the resources available
for transmission (i.e. the total transmit power Pmax, the to-
tal bandwidth B, the amount of subcarriers N , the length of
the down-link phase Tdl as well as the set of available mod-
ulation types). Notice that such an estimate resembles on
a larger time scale the key component to admission control
for (the down-link of) OFDMA systems. Flows destined
for terminals within the cell request admission and quality-
of-service requirements are specified, given for example by
their average rate requirement, delay tolerance, packet loss
rates etc. In order to decide about admission (with respect
to the already admitted flows and their respective quality-
of-service requirements) the scheduler needs to determine
the impact of admitting the new flow on ε.

Any framework enabling the scheduler to estimate ε is
of probabilistic nature. That is, given a characterization
of the load and the available resources, we can only hope
to derive probabilities that the solution to problem (3) re-
sults in some (required or estimated) ε – unless we restrict



ourselves to an instance of matrix G (in which case we
are rather trying to design a suitable algorithm for assign-
ing resources than dealing with analytical performance es-
timates). Hence, when scheduling data portions σj for each
terminal, these decisions have to be based on some proba-
bility that the resource assignment unit will not be able to
transmit the requested capacity. In the following we refer to
such ”scheduling misses” simply as outages.

3 OFDMA Channel Transformations

Ideally, we could obtain an analytical framework directly
derived from problem (3). However, as this problem is NP-
hard the general (optimal) solution to it depends on exhaus-
tive search and is therefore not analytically tractable. Still,
we are interested in deriving some analytical framework and
take therefore the following approach. We pick a subop-
timal algorithm which can be captured by analysis. This
yields a lower bound on the estimate for ε, in fact we can
even derive rate probability mass functions for each termi-
nal individually. However, instead of focusing directly on
the above described system, we first present the selected
algorithm and derive its impact on the PDF of subcarrier
gains. The substantial research body on channel-dependent
OFDMA resource assignment is based on the fact that any
such assignment algorithm modifies the stochastic nature
of the respective subcarrier gains per terminal. Thus, for
our framework we first derive how our chosen algorithm
transforms exponentially distributed channel gains. Note
that this analytical core can be applied to further questions
and approaches regarding OFDMA resource assignments
apart from the ones we consider in the context of assign-
ment problem (3).

3.1 Assignment Algorithm

The underlying algorithm used for analysis takes the
channel state information matrix G as input and works as
the following. Initially, each terminal considered for the
next down-link phase is allocated a certain number of sub-
carriers lj . Note that this only fixes the amount of subcar-
riers obtained by each terminal, the assignments are still
open. Given the allocation of subcarriers, the algorithm
starts with some ”privileged” terminal j∗ and assigns it the
corresponding lj∗ best subcarriers out of the set of N to-
tal subcarriers. A subcarrier is said to be better if its gain
is higher. Next, the assigned subcarriers are removed from
the list of available ones. Afterwards the algorithm switches
to some next terminal and assigns it the lj best subcarriers
from the remaining set. The algorithm continues until all
terminals are assigned their share of lj subcarriers. A more
formal description of the algorithm is presented below as
Algorithm 1.

Given: Set of gains {gj,n} and allocations {lj}
Initialize: ∀j ∈ J : Xj = ∅; N = {1, · · · , N}
for (j ∈ J) do

while (lj > |Xj |) do
ñ = argmaxn∈N {gj,n}
Xj = Xj ∪ ñ
N = N \ ñ

end
return Xj

end

Algorithm 1: Scheme of the approximation algorithm.

3.2 Basic Analysis

Two sets of variables determine the resulting perfor-
mance obtained per terminal: the set of allocated subcar-
riers, i.e. {lj} and the order with which the terminals are
served. In the following let us assume that both are fixed.
Let us consider terminal j. Recall that we assume the sub-
carrier gain of an arbitrarily selected subcarrier for terminal
j to be exponentially distributed with mean ρj . Denote the
random channel gain of an arbitrarily selected subcarrier for
terminal j by gj , then the density function for this random
variable is given by:

fgj (x) =
1
ρj
· e

−x
ρj (4)

with the corresponding distribution function:

P [gj ≤ x] = Fgj (x) = 1− e
−x
ρj . (5)

However, the lj subcarriers assigned by the algorithm men-
tioned above are not arbitrarily chosen. Instead, they are the
lj best subcarriers (with respect to their channel gains) out
of a (most likely) larger set of subcarriers. Denote by θj the
set of terminals which get their subcarriers assigned prior to
terminal j. Then, at the time the algorithm serves terminal
j there are

Aj = N −
∑
i∈θj

li (6)

subcarriers left. Denote by g̃j,(1), . . . , g̃j,(lj) the random
channel gains of the lj best subcarriers chosen out of the
remaining set of subcarriers. We can characterize their den-
sity function and distribution function by applying results
from order statistics [15].

Let X1, X2, . . . , XN be N independent and identically
distributed random variables. Denote by X̃(k/N) the k-
th smallest of these N random variables. Then from or-
der statistics it is well known that the density function of



X̃(k/N) is given by:

fX̃(k/N)
(x) = k ·

(
N

k

)
P (X ≤ x)k−1

·P (X > x)N−k · fX (x) (7)

and correspondingly we have for the distribution function:

P
(
X̃(k/N) ≤ x

)
=

N∑
i=k

(
N

i

)
P (X ≤ x)i·P (X > x)N−i .

(8)
Based on Equations (4), (5) and (7), we obtain the density
function of the k-th best subcarrier1 selected for terminal j
out of the set of Aj remaining ones by:

fg̃j,(k) (x) =
Aj − k + 1

ρj
·
(

Aj
Aj − k + 1

)
·
(

1− e
−x
ρj

)Aj−k
·
(
e
−x
ρj

)k
. (9)

Correspondingly, we obtain for the distribution function
from Equations 4, 5 and 8:

Fg̃j,(k) (x) =
Aj∑

i=Aj−k+1

·
(
Aj
i

)
·
(

1− e
−x
ρj

)i
·
(
e
−x
ρj

)Aj−i
.

(10)
Note that these equations are based on the assumption of
independence and identical distribution of the subcarrier
gains. While the property of identical distribution is likely
to exist, independence strongly depends on the spacing be-
tween subcarriers and the coherence frequency of the envi-
ronment. We restrict our analysis to cases where indepen-
dence can be assumed due to a coherence bandwidth which
equals roughly the bandwidth of a subcarrier.

Equations (9) and (10) can be used for any probabilistic
bound, for example on the rate or the power consumption.
It is clear that regarding any such objective function, there
exist more and less suitable choices for the set of alloca-
tions {lj} and the selection order (which determines for any
terminal the remaining amount of Aj subcarriers to choose
from). However, the fact that we have analytical expres-
sions for the stochastic behavior of the channel gains allows
us to study some insights of channel-dependent OFDMA re-
source assignments before continuing the specific analysis
with respect to optimization problem (3).

3.3 Example Numerical Results

Let us consider the following scenario: We deal with a
total of N = 48 subcarriers and J = 6 terminals. Sub-
carrier allocation is kept simple, each terminal is allocated

1Notice that Equation (7) and Equation (8) are stated for the k-th worst
random variable. In contrast, we derive here the PDF and distribution func-
tion for the k-th best subcarrier which is obtained by substituting k by
K − k + 1 in Equation (7) and Equation (8).

Figure 1. Density functions of the first (i.e.
best) subcarrier selected for each terminal
(48 subcarriers, 6 terminals considered).

lj = 8 subcarriers. All terminals have an average channel
gain of ρj = 1 (no path loss as well as assuming them to
be positioned along a circle around the base station). For
each down-link phase subcarriers are assigned according to
the approximation algorithm. From Equation (9) we derive
the density functions for the best and worst selected sub-
carrier for each terminal and plot them in Figure 1 and 2
(also showing for each plot the exponential PDF of the un-
derlying subcarrier gains). Clearly, for the first four termi-
nals the resulting PDF for the best and worst subcarriers
of their selected ones provide a better stochastic character-
istic (meaning that more often the resulting gain is above
1) than the exponential PDF. Even the best subcarrier of the
last terminal features such a better behavior (while the worst
subcarrier of the last terminal clearly does not).

4 Probabilistic Rate Guarantees

Given the analytical framework for the subcarrier gains
by Equation (9) and (10) we develop in this section proba-
bilistic expressions for the rate per terminal. First, we de-
velop these expressions for an arbitrary setting of the allo-
cations {lj} and a respective selection order {Aj}.

4.1 Derivation

In the following we assume that the transmission power
is equally distributed over all subcarriers, i.e. pn =
Pmax/N = Ptx. At the end of this section, we comment
on more general cases. Recall from Section 2.1 that there



Figure 2. Density functions of the last (i.e.
worst) subcarrier selected for terminal (each
out of a set of 48 down to 8 subcarriers (48
subcarriers, 6 terminals considered).

exist M different modulation types in the system and for
each terminal j there exists a target bit error rate βj , re-
sulting in SNR thresholds Γj,m. Based on the continuous
distribution function for the subcarrier gains, we can derive
(approximately) discrete probability mass functions for the
(random) amount of data that can be transmitted on an as-
signed subcarrier per down-link phase. Denote by zj,(k) the
random amount of bits that can be transmitted during the
down-link phase on the k-th best subcarrier to terminal j.
We can characterize its probability mass function by:

P
[
zj,(k) = S · bm

]
= Fg̃j,(k)

(
Γj,m+1 · σ2

Ptx

)
−Fg̃j,(k)

(
Γj,m · σ2

Ptx

)
(11)

In this equation essentially the probability is calculated that
the k-th best subcarrier regarding terminal j can be em-
ployed by modulation type m (where bm is the amount of
bits that can be transmitted per symbol by this modulation
type). Due to the required bit error probability, this modu-
lation type can only be applied for an SNR larger Γj,m and
lower than Γj,m. As the transmit power is fixed and noise
power is assumed to be on average of strength σ2, the cor-
responding channel gains for these lower and upper bounds
are equal to the expressions in the brackets of the distribu-
tion function in Equation 11. From Equation (11) we obtain
a PMF for zj,(k):

p
(
zj,(k)

)
=
[
P
(
zj,(k) = S · b0

)
, . . . , P

(
zj,(k) = S · bM

)]
(12)

As terminal j receives a total of lj (best) subcarriers, we
proceed with considering the random amount of data that
can be transmitted over all these subcarriers, denoted by Zj .
It is given by the sum of the single subcarrier rate random
variables zj,(i).

Zj =
lj∑
i=1

zj,(i) (13)

Under the assumption of independent random variables
zj,(i) we obtain the PMF for Zj by the convolution of the
PMFs for all zj,(i) - denoting the convolution operator by⊙

. Note that in fact the random variables zj,(i) are not in-
dependent as they are obtained from a selection order which
imposes a dependency. However, we still treat the random
variables zj,(i) to be independent at the cost of obtaining
only an approximation for the probability mass function
of the overall amount of data transmitted in one down-link
phase per terminal:

p (Zj) =
lj⊙
i=1

p
(
zj,(i)

)
(14)

Recall the assumption of a fixed transmit power for all sub-
carriers. In order to obtain a result for Equation (11) we
require some transmit power setting. Clearly, it does not
have to be the same for all subcarriers, but for the analysis
it needs to be fixed for the k-th best subcarrier of terminal
j. As the channel gain distribution function is at hand from
Equation (10), we could apply a statistical power loading
to improve the PMF in Equation (12). We consider these
extensions to be out of scope of this paper.

Finally, we remark that the same framework (i.e. Equa-
tions (13) and (14)) can also be used to determine the rate
PMF in case that no time-varying subcarrier assignments
are performed (i.e. a static or channel-independent subcar-
rier assignment where we still adapt the modulation type).
To see this, let us again assume a certain set of subcarrier
allocations {lj}. As channel-dependent subcarrier assign-
ment is not performed, subcarrier allocations are either done
contiguously or interleaved. In either case, we can obtain a
PMF for the data amount that can be transmitted on a sin-
gle subcarrier from the fact that the channel gains are ex-
ponentially distributed (ignoring in the contiguous case the
correlation in frequency). Thus, we obtain the rate PMF
per subcarrier from Equation (11) but using the exponential
distribution function Fgj from Equation (5).

4.2 Allocation Setting

Let us come back to the estimation of the minimum
amount of data ε as obtained from the optimal solution to
problem (3). Given a certain allocation set {lj} we yield
by the above framework a set {E[Zj ]} of expected data



amounts that we can transmit during a down-link phase to
each terminal. The smallest rate E[Zj? ] among this set is
the estimate for ε. Clearly, there is some relationship be-
tween the allocation set and the resulting estimate for ε.

It is not the goal of this paper to develop an optimal al-
location. Instead, we simply discuss here an iterative allo-
cation strategy which we will use in the numerical part to
evaluate the framework with respect to estimating ε. The it-
erative approach works as follows: Given a set of requested
transmission data amounts σj , a certain outage probability
π̂ is set for all terminals. Then, we start allocating subcarri-
ers to some initially chosen terminal j∗ until we have:

P [Zj∗ ≤ σj∗ ] =
σj∗−1∑
i=0

P [Zj∗ = i] ≤ π̂ (15)

Assume that an amount of âj subcarriers provides a suffi-
cient outage probability. We then switch to the next termi-
nal and redo the initial step until the outage probability is
sufficiently low. As we do this for all terminals, we either
run out of subcarriers (without having allocated for every
terminals a sufficient amount of subcarriers) or some sub-
carriers are left over. In the first case the system actually
can not handle the requested load and we therefore have to
increase the outage probability π by ∆+π in order to redo
the allocation. In the second case, we either keep the al-
location (if only very few subcarriers are left over) or we
decrease the outage probability π by ∆−π and redo the al-
location if a significant amount of subcarriers (≥ J) is left
over. Hence, the algorithm terminates2 once we have de-
termined an allocation set which can support the requested
data amounts with a homogeneous outage probability π. A
more formal representation of the algorithm is given below
as Algorithm 2.

5 Numerical Evaluation

In this section we initially investigate the quality of our
lower bound in comparison to the optimal solution of prob-
lem (3). After performing this evaluation (including a val-
idation of the framework by simulations), we draw our at-
tention to the problem of admission control in the down-
link of an OFDMA (WiMAX-like) system. We consider
here the specific case of Voice-over-IP streams for which we
are interested in the maximum number of streams that can
be served due to several different quality-of-service con-
straints.

2There is some issue regarding oscillations in this algorithm depending
on the setting of ∆−π and ∆+π. In practice this is controlled by track-
ing the outcome and aborting the algorithm as soon as it starts repeating
allocations.

Given: Set of requested rates {σj |∀j ∈ J}
Initialize: π = π̂
repeat

Initialize Allocations: ∀j ∈ J : lj = 0
for (j∗ ∈ J) do

while P [Zj∗ ≤ σj∗ ] ≥ π do
if N == 0 then

π = π + ∆+π;
break (the for loop);

else
lj∗ = lj∗ + 1;
N = N − 1;
Recompute P [Zj∗ ];

end
end

end
if N ≥ J then

π = π −∆−π;
end

until (∀j ∈ J : P [Zj ≤ σj ] ≤ π) & (N < J) ;
return lj ;

Algorithm 2: Schema of the allocation algorithm.

5.1 Basic Evaluation Scenario

We pick data transmission in 802.16e-2005 [4] systems
as basic scenario. This standard defines a set of OFDMA
systems with multiple “allocation modes”. We consider
here a total system bandwidth of B = 10 MHz. Each sub-
carrier has a bandwidth of 11.16 kHz. Hence, the system
bandwidth is split into N = 865 net subcarriers (the to-
tal number equals 1024 but 159 of them are used as guard
bands) out of which 96 are used as pilots. The symbol time
results to Ts = 89.6 µs while the considered setting for the
guard time equals Tg = 11.2 µs, yielding a total length of
an OFDM symbol of 100.8 µs. We focus explicitly on the
AMC (adaptive modulation and coding) transmission mode,
therefore the net subcarriers are divided into bands of 36
subcarriers each which are again subdivided into bins of 9
sub-carriers (one pilot and 8 data subcarriers). There are
24 bands and 96 bins. A bin is the smallest share of band-
width that can be allocated separately. In the following we
assume that a bin is assigned to a certain terminal through-
out the whole down-link phase (in fact, the standard allows
for time sharing of bins, where the bin can be reassigned
after 6 OFDM symbols). Furthermore, we assume a frame
length of 5 ms out of which Tdl = 2.5 ms are available for
the down-link transmission (assuming TDD). This results
to S = 24 symbols available per bin per down-link phase.
From these 24 symbols we assume 20 to be available for
data transmission (the remaining ones reserved for control



signaling). The adaptive modulation system of 802.16e fea-
tures BPSK, QPSK, 16-QAM and 64-QAM.

Terminals in the cell are located with an equal distance
to the base station. Hence, for all considered scenarios we
have the same basic channel gain ρj for all terminals (for
different scenarios we vary this basic channel gain which
equals different distances between base station and termi-
nals). Fading components are generated due to an exponen-
tial distribution. We do not consider correlation in time or
in frequency of the channel gains. Also, terminals are as-
sumed to be stationary.

As traffic we assume the transmission of Voice-over-
IP flows encoded according to the G.711 standard. Such
streams generate a packet every d = 20 ms of size 80 Bytes
(resulting in an application layer rate of 32 kBit/s). Adding
to this RTP, UDP and IP packet overheads yields a final size
of σ = 120 Bytes. We assume them to be encoded accord-
ing to a rate 3/4 convolutional encoder. Finally, 802.16e
adds a MAC overhead ofO = 10 Byte (6 Byte header plus a
CRC32), which yields a total MAC packet size of 170 Byte
(which equals a required physical layer rate of 68 kBit/s).
Packet transmissions are subject to a packet error rate of
pErr
j = 0.01. Due to the usage of a 3/4 convolutional code

this yields a target bit error rate of βj = 0.0052 (following
the derivations in [12] and assuming hard-decision Viterbi
decoding with independent errors).

5.2 Methodology

Initially, we are interested how our lower bound per-
forms in comparison to the optimal solution of problem (3).
This is also interesting because of the approximation step
taken in order to derive Equation 14. As metric we consider
the average minimum rate per down-link phase of all termi-
nals (i.e. we consider ε). Apart from that we also consider
the outage probability of a VoIP packet (of size 170 Byte)
as metric. The following schemes are compared with each
other regarding these two metrics.

• The optimal solution to problem (3), setting αj = 1 for
all terminals j. In order to determine it, we generate
channel gains for a large number of down-link phases,
calculate from them the SNR values and the respective
adaptive modulation states, and essentially formulate
the corresponding integer programming problem. This
is then passed to the IP solver CPLEX [5]. The result-
ing optimal assignments are then further processed for
statistical purposes by a script. Hence, the optimal so-
lution to problem (3) is determined by stochastic simu-
lations. From these simulations we obtain the average
down-link rate as well as the outage probability per ter-
minal. We refer to this in the following as the ”IP Op-
timum”. Notice that very close performance to the IP

optimum can be achieved for example by applying lin-
ear relaxation techniques to simplify the problem [3].

• The analytical lower bound for channel-dependent
OFDMA assignment as derived in Section 4.1. The
evaluation is done by Matlab. Notice that we consider
the allocations according to the algorithm discussed in
Section 4.2. Hence, for the bound we obtain average
down-link rate and outage probability by analysis. We
refer to this as the ”Lower Bound” in the following.

• In order to verify the analysis leading to the lower
bound, we also provide simulated performance results.
We have programmed the allocation and assignment
algorithm presented in Section 3.1 and 4.2 and applied
it to the same set of channel gains used for the stochas-
tic simulation of the IP optimum. We refer to this
scheme as ”Simulated Bound”. Notice that the differ-
ence between this simulated bound and the analytical
lower bound reveals the error stemming from the as-
sumption of independent rate PMFs in the derivation
of Equation 14.

• Finally, the above framework can also be used to pre-
dict the performance if no channel-dependent subcar-
rier assignments are performed. Notice that we still
assume the usage of adaptive modulation as channel-
dependent means. But terminals receive a certain
block of subcarriers and reuse them throughout all
down-link phases. Hence, the performance metrics of
this scheme are evaluated by analysis. We refer to this
scheme as ”Static Bound”. The static approach essen-
tially resembles what has been suggested for admis-
sion control in previous work [9, 8, 13].

5.3 Bound Evaluation

Regarding the above metrics we have evaluated the four
different schemes in a setting where the number of termi-
nals in the cell increases from initially 10 terminals up to
32 terminals. In Figure 3 we present the resulting minimum
average rate ε per down-link phase while Figure 4 presents
the corresponding outage probability. From Figure 3 we
see that the lower bound approximates the performance of
the IP optimum with a gap equal to about 15% of the opti-
mal performance. While from a mathematical point of view
this bound is not tight, we have to keep in mind that the IP
optimum is based on exhaustive search. Hence, it often ap-
plies assignments which cannot be captured by any analyti-
cal framework. Also, the only alternative to using the bound
from the channel-dependent OFDMA resource assignment
is to base the analysis on average channel gains which leads
to the estimate of ε represented by the static approach. Tak-
ing these two arguments into account, the proposed lower
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Figure 3. Minimum average rate per frame per
terminal for an increasing number of termi-
nals (average SNR of 10 dB).

bound for channel-dependent OFDMA resource assignment
is a significant improvement. Finally, from Figure 3 we also
observe that the lower bound is valid, as the curve of the
simulated bound almost exactly matches the derived curve
(notice that confidence intervals are below 1% of the total
performance for each point and are not shown in Figure 3).
Hence, regarding the average minimum rate per terminal
in the cell the approximation applied for Equation 14 does
not have a strong impact. Correspondingly, in Figure 4 we
observe the outage probability of the four schemes. Essen-
tially, the same statements can be made about this graph.
The lower bound provides a much better estimate of the out-
age probability than what is provided by the static approach
(not taking adaptive subcarrier assignments into account).
However, there remains some gap between the lower bound
and the IP optimum. Finally, note from Figure 4 that there
is some difference between the simulated and analytical re-
sults for the lower bound (around 22 terminals in the cell)
which stems from the (essentially wrong) assumption of sta-
tistical independent of the variables in deriving Equation 14.
So, regarding the outage statistics this assumption leads to
some better result than what the scheme provides in real-
ity. However, the bound is still significantly below the IP
optimum and that is our main goal in this work.

5.4 Application to Admission Control

We now come to the application of the analytical frame-
work to admission control. We illustrate this by considering
the down-link transmission of VoIP streams (parameters as
described in Section 5.1). Each VoIP stream has a (con-
stant) bit rate requirement on the physical layer (including
all packet overheads) of 68 kBit/s. However, the stream is
divided into packets with an (average) interarrival time of
20 ms. We assume in the following that packets should be
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Figure 4. Maximum outage probability per
frame for a packet of size 170 Byte over an in-
creasing number of terminals (average SNR
of 10 dB).

transmitted in one piece during a single down-link phase.
Hence, the question comes up how many such packets can
be transmitted (each one to a different terminal) in a single
down-link frame. Once we have determined this number,
the total VoIP capacity of the system is simply this number
times four, as we consider a frame time of 5 ms (and packet
interarrival time is 20 ms). Notice that there exist other
”scheduling” variants where for example the transmission
of a packet might be split over several down-link phases
(causing a higher control overhead). We do not investigate
this any further.

As quality-of-service requirement we consider two dif-
ferent regimes. In the first case we simply assume that every
stream requires its packets to be transmitted successfully on
average. That is, we can admit as many VoIP streams to a
single down-link phase as we have for all admitted flows:

E [Zj ] ≥ 170 Byte (16)

We refer to this admission control scheme as ”average rate
QoS criteria”. In this case we do not care about outage prob-
abilities. In contrast, the second admission control scheme
requires for each VoIP packet transmission a maximum out-
age probability of 0.05, i.e. we admit as many streams to
each down-link phase of the system as for each of them we
have:

P [Zj ≤ 170 Byte] ≤ 0.05 (17)

In Figure 5 we show the corresponding VoIP capacity when
considering the average rate QoS criteria. The figure shows
the maximum number of VoIP streams that can be admitted
for a single down-link phase versus an increasing average
SNR of all terminals. We show the resulting admission ca-
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Figure 5. Maximum number of VoIP calls that
can be supported in a single WiMAX frame
according to an average rate QoS criteria
over an increasing average SNR per terminal.

pacity of the static approach, the lower bound and the (sim-
ulated) optimal capacity of the system. Clearly, the static
approach is limited by the fact that it ”ignores” multi-user
diversity. Compared to the IP optimum, admission control
by such a scheme misses capacity by about 50 to 75%. In
contrast, the lower bound achieves a much better capacity
estimate still with some gap in comparison to the optimum
(which is basically the same gap as observed in Figure 3.)
Finally, consider the resulting VoIP capacity if the outage
admission regime is considered. Here the full strength of
the analytical framework can be observed as outage behav-
ior has rarely been investigated in the literature. But due to
channel transformations core it can be easily analyzed. Fig-
ure 6 shows the corresponding VoIP capacity in this case
again for an increasing average SNR per terminal. In con-
trast to Figure 5 we observe that the lower bound provides
now a better estimate of the IP optimum than in case of the
average QoS criteria. Notice that this is due to the approx-
imation error, which is substantial in case of considering
outage probabilities (as also observed in Figure 4). Still,
the analytical bound is strictly below the IP optimum.

6 Related Work

The issue of channel-dependent OFDMA resource as-
signment (in the down-link) is well investigated where typi-
cal studies [3, 7, 16] focus on suboptimal algorithms for ei-
ther minimizing the transmit power or maximizing the rate
per terminal. Numerical evaluation, based on the simula-
tion of numerous down-link phases, show that on average
channel-dependent schemes outperform static ones signif-
icantly. Neither do these contributions address the prob-
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Figure 6. Maximum number of VoIP calls that
can be supported by a single WiMAX frame
according to an outage-based QoS criteria
over an increasing average SNR per termi-
nal (maximum outage probability of 0.05 is as-
sumed).

lem of admission control nor do they provide an analytical
framework for expected performance of the proposed algo-
rithms.

Admission control for OFDMA networks is addressed
by [9, 8, 13]. In [9] the authors investigate Poisson ar-
rivals to a base station with finite buffers. Based on a queu-
ing model, blocking probabilities are derived which an ad-
mission control scheme can base its operation on. How-
ever, the authors lack an analytical framework for the ex-
pected rate obtained from channel-dependent OFDMA re-
source assignments. Instead, they base their proposed ad-
mission control scheme on the average channel gain, i.e.
average subcarrier rate. This clearly underestimates the
true system capacity as shown above. This shortcoming
applies also to [8, 13] where different admission control
strategies are studied for two distinct systems and scenar-
ios, still the achievable rate per subcarrier/subchannel is
always derived from the average channel gain, underesti-
mating the system’s capacity significantly. In [13] the au-
thors investigate admission control schemes for OFDMA
cells under the power minimization regime. Per call,
the required resources are planned according to the aver-
age channel gain, not taking multi-user diversity into ac-
count. Instead, the authors focus on the effect of hand-
off multimedia traffic streams for which some system re-
sources have to be reserved. In contrast to these three
investigations, [11] studies a queuing analysis framework
for static and channel-dependent OFDMA resource assign-
ments based on weighted fair queuing. While the provided
queuing-theoretic framework is quite deep in general, the



authors do not determine analytical expressions for the in-
stantaneous terminal rate obtained from channel-dependent
OFDMA resource assignments. In order to still perform
a queuing-theoretic analysis, they obtain average terminal
rates (under channel-dependent OFDMA resource assign-
ments) from simulations. While for the specific consid-
ered case this serves very well, it is certainly not practical
to simulate each and every possible situation in a wireless
OFDMA cell that might have impact on the average termi-
nal rates. Furthermore, no outage based admission control
can be performed from this approach which is another sig-
nificant disadvantage.

Finally, we comment on some application constraints for
this approach. Primarily, the question arrises how com-
plex the approach is to apply it in real time. Note that
the real time constraints are related to admission control,
which is less time critical (than for example packet deliv-
ery of admitted flows). We have implemented the scheme
in C and execution time is in the range of milliseconds (de-
pending on the parameterization of the wireless cell) which
is acceptable for admission control. One further crucial as-
sumption in the framework is the model of the fading chan-
nel. The exponentially distributed fading gain model (i.e.
Rayleigh fading) is one of the most ”‘pessimistic”’ models
matching measured data. Often, real channels behave bet-
ter which essentially makes the system capacity better and
does not harm the lower bound. Extending the approach to
other models can result in severe analytical difficulties in
the calculcation of the distribution functions of the ”‘trans-
formed”’ channel gains in Equation 10. If these derivations
can be done, the framework can also be applied to a mix-
ture of different fading models. However, in practise it is
quite difficult to identify appropriate fading models of the
currently active terminals.

7 Conclusions

In this paper we have derived an analytical framework
for performance prediction of channel-dependent OFDMA
resource assignment algorithms. The framework is based
on closed-form expressions for the impact of such algo-
rithms on the stochastic characteristics of subcarrier gains.
This core is then applied to find a lower performance
bound for the well-known rate-adaptive optimization prob-
lem in OFDMA systems. We demonstrate the utility of
the bound in the context of admission control for Voice-
over IP streams where the analytical approach allows to pre-
dict down-link OFDMA performance with respect to differ-
ent quality-of-service constraints. While the bound is not
a precise prediction of the optimal performance (which is
very difficult due to the NP-hard nature of the optimization
problem), it is a significant improvement of state-of-the-
art admission control schemes (which neglect the perfor-

mance improvement due to exploiting multi-user diversity
in OFDMA systems).
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