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Abstract 

This report is a literary study on provably secure pseudo-random generators. In the report we 

explain what provably secure pseudo-random generators are and what they are most 

commonly used for. We also discuss one-way functions which are closely related to our 

subject. Furthermore, two well-known generators are described and compared, one generator 

by Blum and Micali, and one by Blum, Blum and Shub. What we have concluded is that the 

x
2
 mod N generator by Blum, Blum and Shub seems to be the better one concerning speed, 

security and application areas. You will also be able to read about how the Blum-Blum-Shub 

generator can be implemented and why we believe that implementation is suitable. 

 

Sammanfattning 

Den här rapporten är en litteraturstudie om bevisbart säkra pseudo-slumpmässiga generatorer. 

I rapporten förklarar vi vad bevisbart säkra pseudo-slumpmässiga generatorer är och vad de 

vanligtvis används till. Vi tar dessutom upp envägsfunktioner som är starkt kopplat till vårt 

ämne. Vidare beskrivs och jämförs två kända sådana generatorer, en generator av Blum och 

Micali och en generator av Blum, Blum och Shub. Den slutsats som vi kommit fram till är att 

x
2
 mod N generatorn av Blum, Blum och Shub verkar vara den bättre utav dem vad gäller 

hastighet, säkerhet och applikationsområden. Ni kommer även kunna läsa om hur en sådan 

generator kan implementeras och vi förklarar varför den presenterade koden är bra.   
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1.0 Introduction 

 

This report is a literary study on the subject of provably secure pseudo-random generators, a 

tool primarily used in cryptography. The report is comprised of information on what provably 

secure pseudo-random generators are, how they work and what they are used for, and is the 

result of a couple of months research on these topics. 

This report is a Bachelor’s Thesis in Computer Science, written as part of the course 

DD143X. 

1.1 Problem Statement 

 

Our intent with this report was to get a good basic knowledge of provably secure pseudo-

random generators, and also to look at existing algorithms and analyze how they work and 

how they differ from each other. Furthermore, we wanted to find and describe a suitable 

method that could be used to implement a provably secure pseudo random generator. 

1.2 Aim 

 

Because of our previous limited knowledge of provably secure pseudo-random generators, the 

report’s main aim was for us to gain a deeper understanding of the subject. Naturally, sharing 

this newfound knowledge has also been the purpose of this report. 

1.3 Definitions and explanations of technical terms 

 

Term Definition 

Pseudo-random sequence Sequence that appears to be random and 

passes all efficient statistical tests 

True random sequence Actual random sequence 

Plaintext Unencrypted data which one wants to send; 

used as input in an encryption algorithm 

Ciphertext Output from an encryption algorithm; 

encrypted data 
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2.0 Background 

 

2.1 Background on provably secure pseudo-random generators 

 

2.1.1 What are provably secure pseudo-random generators? 

 

A pseudo-random generator is an algorithm commonly used in cryptography. Given a short 

random series of numbers, it calculates and returns a longer sequence of numbers. These 

numbers will appear to be random to any statistical test that compares them to a sequence of 

true random numbers. If the statistical test cannot distinguish these sequences from each 

other, the generated series of numbers is considered to be random. If a pseudo-random 

generator can produce a sequence which no statistical test can distinguish from a series of true 

random numbers, it is said to be a cryptographically secure pseudo-random generator
1
. 

 

To be able to define what a provably secure pseudo-random generator is, we must first define 

what provable security is. Provable security in cryptography means that cracking a certain 

cryptographic algorithm or scheme is equally hard as solving a specific well-known problem 

that is said to be difficult. This definition has faced some criticism because it is rather vague; 

it is for example hard to know if the chosen problem is “difficult” enough
2
. But for a pseudo-

random generator to be provably secure, it must be equally hard to crack the algorithm of the 

generator as it is to solve a well-known and supposedly difficult problem
3
. 

 

Essentially, the term provably secure pseudo-random generator means: An algorithm that is 

equally hard to crack as a well-known, difficult problem and that converts a shorter random 

sequence of numbers into a longer one, which in specific aspects does not differ from a 

sequence of true random numbers
4
. 

 
2.1.2 What are provably secure pseudo-random generators mainly used for?  

 

Provably secure pseudo-random generators can be used for many different things. In this 

section, three of the main applications of provably secure pseudo-random generators are 

described. 

2.1.2.1 Generating keys 

One of the biggest fields of cryptography is the work on encryption. This section will explain 

how encryption works, how to ensure secrecy, and why one could benefit from using 

provably secure pseudo-random generators to assist with that.  

                                                 
1
 Sidorenko, A. p.4 

2
 Lipton, R.J 

3
 Sidorenko, A. p.6 

4
 Sidorenko, A. pp.4 and 6 
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Figure 2.1

5
 

Imagine Alice wanting to send a message, x, to Bob, but an eavesdropper prevents her from 

sending it as plaintext. To prevent the eavesdropper from being able to read the message, 

Alice will need to encrypt it into a ciphertext using an encryption algorithm E, before sending 

it. Bob will then use a decryption algorithm D to decrypt the message. For this to work, 

however, Alice and Bob will need a shared secret, a key, which they will use to encrypt and 

decrypt the message, see Figure 2.1. In conclusion, the algorithms will have the following 

relationship
6
: 

 

  (  ( ))    

 

A difficult task is to ensure that the encryption is secure enough. The goal is to reach perfect 

secrecy, which is attained if absolutely no information on the plaintext can be extracted from 

the ciphertext without the key. One of the few ways to reach perfect secrecy is to use one-time 

pads, an encryption technique that, if used correctly, is impossible to break. There are, 

however, a few, big disadvantages to using one-time pads
5
. 

Firstly, a one-time pad can only be used once, and trying to reuse them can have devastating 

consequences. As a matter of fact, in the 1940s, the KGB reused parts of their one-time pads 

and because of that the U.S. managed to decrypt some of their secret messages
7
. 

Another problem with one-time pads is that they require a key length that is as long as the 

message to be encrypted, which is not very practical as the message gets longer, nor is it 

secure to exchange a key of that size. 

Thus, one must settle for an encryption technique which does not provide perfect secrecy, but 

uses smaller keys and is safe against eavesdroppers that run in polynomial-time
8
. 

 

Using a one-way function, a subject that will be described more in-depth later in this report, 

an encryption scheme which uses a key of length n for a message of length n
c
 (for some 

constant c), can be constructed. By then using a provably secure pseudo-random generator to 

stretch the key into a longer key, the encryption can be used as a one-time pad, not providing 

                                                 
5
 Krishnan, K. 

6
 Arora, S. and Barak, B. p.153 

7
 Mertens, S. and Moore, C. p.542 

8
 Arora, S. and Barak, B. p.154 
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perfect secrecy, but still being safe against eavesdroppers that run in polynomial-time, and 

without the disadvantages of a one-time pad
9
. 

 

2.1.2.2 Stream ciphers 

 

Provably secure pseudo-random generators can be used to generate a “keystream” for a 

stream cipher, and thereby serve as a “keystream generator”. To understand how this works, it 

is necessary to explain how a stream cipher works. 

 

In a stream cipher, a number of bits from a plain text is combined with a number of bits from 

a keystream, a sequence of random or pseudo-random numbers, to encrypt the plain text-

message into a ciphertext. This is usually done by an exclusive-or (⊕) operation between the 

i:th bit of the plain text and the i:th bit in the keystream like this
10

: 

 

Numbers of bits from a plain text: p1, p2,…, pk 

 Numbers of bits from a keystream: k1, k2,…, kk 

Numbers of bits in the ciphertext: c1, c2,…, ck 

 

   ∑(  ⊕   ) 

 

   

 

 

This will require that the keystream has equally many bits as the number of bits in the plain 

text, which can be impractical and it would be easier to be able to use a shorter keystream. 

This is where the provably secure pseudo-random generators come in, because it can be used 

as a keystream generator, as mentioned above. A shorter sequence of numbers can be given to 

the provably secure pseudo-random generator, and it will return the longer keystream required 

for the stream cipher
11

. 

 

2.1.2.3 Symmetric key cryptosystems 

 

Symmetric key cryptosystems are used in encryption, this section will briefly describe how 

they work and how provably secure pseudo-random generators are used for symmetric key 

cryptosystems. 

 

As mentioned above in the section on generating keys, the sender and the receiver require a 

key for the encryption and decryption of the message that the sender wants to send. The 

symmetric key cryptosystems differs from the asymmetric ones, by only requiring one secret 

key which has to be secretly shared between the sender and the receiver of the message in 

                                                 
9
 Arora, S. and Barak, B. pp.155-157 

10
 Robshaw, M.J.B. p.2 

11
 Pott, Kumar, Helleseth, Jungnickel. p.21 
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advance
12

. Asymmetric key systems, on the other hand, require the sender and the receiver to 

have one pair of keys each, one public and one private key
13

. 

 

Provably secure pseudo-random generators are often used in the encryption algorithm of the 

symmetric key cryptosystems. The encryption algorithm can also be based on a stream cipher, 

where provably secure pseudo-random generators can be used for shortening keystreams. This 

is discussed in the section on stream ciphers above
14

. 

 

2.2 One-way functions 

 

The subject of one-way functions is an important one when discussing cryptography, and is 

especially significant to pseudo-random generators, which is why the subject is included in 

this report. This section will explain what one-way functions are and how they relate to 

provably secure pseudo-random generators. 

 

A one-way function is a function that, for every input, can be easily computed, but is hard, or 

even impossible, to invert for any algorithm that runs in polynomial time. Furthermore, the 

function also has to be hard to invert by the average case and not by the worst case, which is 

highly unusual in cryptography
15

. 

However, there is, at this time, no actual proof that one-way functions even exist; their 

existence is in fact one of the famous unsolved problems of computer science. Nevertheless, 

they are widely believed to exist, and if they do, it would imply that a number of other 

assumptions in cryptography are accurate as well, among them the assumption that 

cryptographically secure pseudo-random generators exist
15

. 

 

The existence of one-way functions is also closely related to another big mystery in computer 

science; whether or not the complexity classes P and NP are equal to each other. In the 

complexity class P are all problems that can be solved in polynomial time. Then there are 

those problems that cannot be solved in polynomial time, but given an answer to the problem, 

that answer can be verified in polynomial time; those problems are in the complexity class 

NP
16

. The P versus NP problem is often discussed in the world of computer science, and as 

one might deduce from the facts given above, that the existence of one-way functions would 

imply that P ≠ NP
17

. 

 

There are a few well-known functions that are believed to be one-way functions; that is, no 

one has yet been able to find a polynomial time algorithm that could invert these functions. 

                                                 
12

 Krishnan, K. p.22-24-1 
13

 Roeder, T. 
14

 Buttyán, L. p.4 
15

 Katz, J. and Lindell, Y. p.182 
16

 Kleinberg, J. and Tardos, É. pp.451-452 
17

 Arora, S. and Barak, B. p.155 
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The integer factorization problem is one of them and is based on simple multiplication. The 

function takes two integers, x and y, as input and outputs the multiplication xy. Even with 

large numbers, this is a fairly easy calculation; however, inverting the function would mean 

having to find the prime factors of a large number, a feat no polynomial time algorithm has 

managed to do
18

. 

Another example of a possible one-way function is the discrete logarithm problem
19

, which is 

utilized by the Blum-Micali generator. It will therefore be described more in-depth later in 

this report in the section concerning that generator. 

 

2.2.1 Pseudo-random generator theorem 

 

As mentioned earlier in this report, the existence of one-way functions would imply the 

existence of pseudo-random generators. This has been established through a few different 

proofs that together are called the pseudo-random generator theorem. The actual proofs are 

quite advanced and have therefore been excluded from this report. 

 

2.3 Well-known provably secure pseudo-random generators 

 

There are a few well-known provably secure pseudo-random generators; in this report the 

perhaps most famous ones, Blum-Blum-Shub and Blum-Micali, are described. 

 

2.3.1 Blum-Blum-Shub 

The provably secure pseudo-random generator proposed by Lenore Blum, Manuel Blum and 

Michael Shub is the x
2
 mod N- generator. This section will describe how this generator works 

and also explain why it is provably secure. 

 

The x
2
 mod N-generator works as follows: 

  

Let      , where   and   are two primes. An integer    is then chosen in the range 

     . The integer   , which will be the seed for the generator, has to be chosen so that 

   (    )   . In other words, the greatest common divider of   and   is 1. 

A sequence of numbers is then calculated by the formula        
       , and a sequence 

of bits (b0, b1, …) is calculated by the formula          (  ). In other words,    will be 1 if 

   is an odd number and 0 if    is an even number. It is this sequence of bits that will be the 

output of the provably secure pseudo-random generator x
2
 mod N

20
.  

 

The reason to why this pseudo-random generator is provably secure is that it can be proven to 

be equally hard to crack as the quadratic residuosity problem. This problem is defined in the 

following way: 

                                                 
18

 Katz, J. and Lindell, Y. p.185 
19

 Katz, J. and Lindell, Y. p.186 
20

 Blum, L.,  Blum, M., and Shub, M. p.63 
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Let      , where   and   are two primes. The group (  )  are then defined as the 

group of elements   in the range      , where   has to have the property of 

   (   )   . This subgroup are then divided into two subgroups, (  ) (  ) and 

(  ) (  ). The quadratic residuosity problem consists of deciding whether the element  , 

  (  ) (  ), is a quadratic residue or not. To be a quadratic residue,   has to have the 

property           , for an integer  . To calculate this, an algorithm takes   and   as 

parameters, and returns 1 if   is a quadratic residue or 0 if it is not
21

. 

 

It can essentially be shown that the x
2
 mod N-generator is a provably secure pseudo-random 

generator with the well-known supposedly difficult quadratic residuosity problem in its core. 

The proof of this can be read in the paper by Blum, Blum and Shub, Comparison of two 

pseudo-random number generators
22

. 

 

Because of the way the x
2
 mod N-generator works, it is well suited for public-key encryption, 

where the value of N could serve as the public key and the values of P and Q could serve as 

the private keys of the receiver
23

. 

 

2.3.2 Blum-Micali 

The Blum-Micali generator is a provably secure pseudo-random number generator and was 

created by Manuel Blum, who was also involved in the implementation of the Blum-Blum-

Shub generator, and Silvio Micali. As mentioned earlier in this report, the generator uses a 

possible one-way function called the discrete logarithm problem, and its security is based on 

the difficulty of solving this problem. The discrete logarithm problem and how it is used by 

the Blum-Micali generator is described below. 

 

Let   be a prime, then the set        is a cyclic group, (  ) , under multiplication modulo 

 . Let   be an element of (  ) ,   the generator of the group and let   be any integer, this 

yields the function
24

: 

 

           

 

If   is known then computing a can be done easily, this computation is called discrete 

exponentiation. However, inverting the function, namely, trying to compute   if   is known, 

is a far more difficult task, and this is what is known as the discrete logarithm problem
25

. 

 

 

                                                 
21

 Blum, L., Blum, M. and Shub, M. p.63 
22

 Blum, L., Blum, M. and Shub, M. pp.69-73 
23

 Blum, L., Blum, M. and Shub, M. p.76 
24

 Blum, M. and Micali, S. p.114 
25

 Tang, Q. p.14 
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The Blum-Micali generator is based on the difficulty of computing the discrete logarithm. Let 

   be a seed, the function              will output a sequence (          )
26

, which in 

turn will determine the final pseudo-random sequence in the following way
27

: 

 

   {
     

(   )

 

           
 

 

In the end, a pseudo-random sequence              of   bits will have been generated. 

Even if one knew the previous bits, one would not be able to calculate the next bit, because of 

the difficulty of computing the discrete logarithm. 

 

The Blum-Micali generator can be used in private-key cryptography, where it has the property 

to simulate a one-time pad
28

. 

 

2.4 How to implement a provably secure pseudo-random generator 

This section will give a brief description of what to think about when implementing a 

provably secure pseudo-random generator. It will also give an example of how the Blum-

Blum-Shub generator is implemented. 

 

Generating a sequence of pseudo-random numbers can easily be done. A commonly used 

model based on the linear recurrence is: 

                 

Although a pseudo-random sequence produced by this model would pass many statistical 

tests, it is not cryptographically strong and would not be suited for use in cryptographic 

situations
29

.  

A cryptographically strong pseudo-random sequence must pass all polynomial time statistical 

tests; this means that no polynomial time algorithm should be able to tell the difference 

between the generated pseudo-random sequence and a true random sequence, with high 

probability. It must also pass the next-bit test, which means that even if the first k bits in the 

pseudo-random sequence are known, no polynomial time algorithm should be able to compute 

the next bit in the sequence, also with high probability
30

. To fulfill these requirements the 

generator’s security must be based on the difficulty of computing certain functions, as for 

example the quadratic residuosity problem or the discrete logarithm problem. These have 

been discussed in detail in the sections on the Blum-Blum-Shub generator and Blum-Micali 

generator respectively. A more detailed example on how the Blum-Blum-Shub generator is 

implemented is given below.   

                                                 
26

 Tang, Q. p.15 
27

 Blum, M. and Micali, S. p.115 
28

 Blum, M. and Micali, S p.853 
29

 Blum, M. and Micali, S. p.113 
30

 Tang, Q. p.9 



12 

 

 

 

To implement the x
2
 mod N-generator by Blum, Blum and Shub, the following will be needed 

(in Java code)
31

: 

 

A function, getPrime(), that returns a random prime-number will be needed for calculating the 

value      . This function will create a bigInteger representing the random prime-

number, given an integer for the bit-length and a random object.  

 

A function, generateN(), for generating the value of  , which calls the getPrime() function 

twice to get   and  , and then calculates and returns the value   as      . 

 

Four different constructors. One for specifying the bits, one for generating the prime and seed, 

one for specifying the value of   and one for specifying both the value of   and the seed.  

 

A function, setSeed(), for setting the seed    for the generator.  

 

A function, randomBits(), for calculating the random bits according to the formula specified 

in the section above about well-known provably secure pseudo-random generators. The 

function will take a number of bits as a parameter and return a sequence of random bits as a 

result of bit shifting to check whether the value of        
        is even or odd. 

 

Lastly, the main()-function will be needed to call all the different methods used. 

 

Nick Galbreath’s implementation, in Java code, of the generator described can be viewed in 

Appendix A. 

  

                                                 
31

 Galbreath, N. 
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3.0 Method 

 

This report is a literary study on provably secure pseudo-random generators and because of 

that, our main method for the report has been to gather information on the subject by finding 

approriate sources in the form of scientific articles and books. 

 

Even though the subject of provably secure pseudo-random generators is quite specific and 

narrow, we have been able to find quite a few scientific papers and books with reliable 

authors that have been very helpful in our work.  

 

We believe that our choice of method has suited us very well. Owing to the use of this 

method, we have successfully been able to accomplish our goals and aims of this literary 

study and we are satisfied with the results. 
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4.0 Discussion 

 

4.1 Comparison of two provably secure pseudo-random generators 

 

In this section we will discuss the differences between the two provably secure pseudo-

random generators that have been discussed in this report, the Blum-Micali generator and the 

Blum-Blum-Shub generator. 

 

The main difference between the two generators is that they have two different problems in 

their core, the Blum-Micali generator has the discrete logarithm problem and the Blum-Blum-

Shub generator has the quadratic residuosity problem. This causes the generators to behave a 

little bit differently, and it would therefore be interesting to discuss which of them that is 

better suited when it comes to different aspects; including speed, security and applications. 

4.1.1 Applications 

 

As mentioned earlier in the report, the x
2
 mod N-generator can be used for public-key 

encryption, and the Blum-Micali generator is more suited for private-key encryption, where it 

can be used to simulate one-time pads. We want to discuss witch one of these to that has the 

most advantages when it comes to applications in the field of cryptography. 

 

One-time pads has the big advantage that they offer perfect security, but there are some major 

disadvantages with it that makes it a little bit unattractive when it comes to efficient 

cryptography, and public-key cryptosystems are more used because of that. Because of this, 

our assumption is that the x
2
 mod N-generator by Blum, Blum and Shub has more advantages 

then the Blum-Micali generator when it comes to applications in cryptography. 

 

4.1.2 Speed 

 

The main thing that can be said about the speed of provably secure pseudo-random generators 

is that they are not very fast. This is natural because of how complex they have to be to be 

able to pass all statistical tests that check whether or not the generated sequence of numbers 

are distinguishable from a sequence of truly random numbers, as well as being as hard to 

crack as a known supposedly difficult problem. Another interesting aspect to discuss is which 

of the two provably secure pseudo-random generators that has been presented in this report, 

the Micali-Blum generator and the Blum-Blum-Shub generator, is the fastest. 

 

This can be hard to determine since it depends on the speed of their respective hard problem 

that they are based on, the quadratic residue problem and the discrete logarithm problem. To 

be able to determine whether an element   is a quadratic residue or not, we have to determine 

if it satisfies the formula            for any integer  . Therefore, a basic algorithm would 

require a running time equally long as the size of  , where   is the size of the group (  ) .  
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For the discrete logarithm problem, on the other hand, the problem lies in trying to calculate 

the value of the integer   in the formula           , if   is known. A basic algorithm 

would, in this case, try to calculate the value by iterating over the size of  , which naturally 

would require a running time equal to the size of  , which is the size of the cyclic group 

(  ) .  

 

As mentioned earlier, it is really hard to determine which of the generators that is the fastest, 

and by trying to determine it by analyzing their respective hard problem in their core, we can 

do no better than to say that they are equally fast. 

 

4.1.3 Security 

 

Determining the difference in security between the two provably secure pseudo-random 

generators is difficult as well, since they both contain two difficult problems, and the level of 

difficulty to solve these problems is connected to the speed of the algorithms that solves the 

problems. Thus, based on the analysis of the problems in the previous section on speed, we 

will say that they are equally secure, when it comes to breaking the generators by solving their 

respective problems. 

 

4.2 Reasons to why the proposed Blum-Blum-Shub implementation is good 

 

In the previous section of this report, on how to implement a provably secure pseudo-random 

generator, we presented Nick Galbreath’s implementation of the algorithm for the x
2
 mod N-

generator by Blum, Blum and Shub. The reason to why we think this implementation is good 

is that it is an elegant piece of code, it only requires a few lines of code and it is quite easy to 

understand. Furthermore, the Blum-Blum-Shub generator is in general a good provably secure 

pseudo-random generator that provides good security and can be used for many applications. 

  

4.3 The existence of one-way functions and the P versus NP problem 

 

The very existence of the subject of this report, provably secure pseudo-random generators, is 

entirely dependent on the existence of one-way functions. In turn, the existence of one-way 

functions would imply that the complexity classes P and NP are not equal. This leads us to the 

discussions on whether or not one-way functions do exist and the P versus NP problem.  

 

At this time, one-way functions are widely believed to exist and as a result it is also 

commonly believed that P ≠ NP. On one hand, this seems reasonable since these assumptions 

have been discussed for quite some time and no one has yet been able to disprove them. On 

the other hand, there will always be people with new thoughts and ideas, so there is always 

the possibility that someone will one day be able to disprove them.  
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Presently, there are many applications in cryptography that are based on the assumptions that 

one-way functions exist and that P ≠ NP. As of yet, this has not caused any problems, 

however, it is important to ask oneself what would happen if these assumptions turned out to 

be wrong. 
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5.0 Conclusion 

 

In the discussion we talked about the differences between the Blum-Micali generator and the 

generator proposed by Blum, Blum and Shub. The conclusion that can be drawn from the 

discussion is that the Blum-Blum-Shub generator seems to be the generator that has the most 

applications in cryptography, and that no big differences can be found in the speed and 

security between the two. Therefore, it seems that the best generator when it comes to these 

three aspects is the x2 mod N-generator by Blum, Blum and Shub. 

 

The famous P versus NP problem and whether or not one-way functions exist were also 

discussed. It would be the height of hubris to claim that we know the answer to these much 

discussed questions; however, since many cryptographic applications that are commonly used 

in today’s society are based on the assumptions made concerning these questions one could 

conclude that those applications would certainly suffer if the assumptions turned out to be 

wrong. 
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Appendix A – Java code for the Blum-Blum-Shub generator 
 
/* 

* Copyright 2005, Nick Galbreath -- nickg [at] modp [dot] com 

* All rights reserved. 

* 

* Redistribution and use in source and binary forms, with or without 

* modification, are permitted provided that the following conditions 

are 

* met: 

* 

*   Redistributions of source code must retain the above copyright 

*   notice, this list of conditions and the following disclaimer. 

* 

*   Redistributions in binary form must reproduce the above 

copyright 

*   notice, this list of conditions and the following disclaimer in 

the 

*   documentation and/or other materials provided with the 

distribution. 

* 

*   Neither the name of the modp.com nor the names of its 

*   contributors may be used to endorse or promote products derived 

from 

*   this software without specific prior written permission. 

* 

* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND 

CONTRIBUTORS 

* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 

* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 

FOR 

* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 

COPYRIGHT 

* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 

INCIDENTAL, 

* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 

* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF 

USE, 

* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 

ANY 

* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 

TORT 

* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 

USE 

* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH 

DAMAGE. 

* 

* This is the standard "new" BSD license: 

* http://www.opensource.org/licenses/bsd-license.php 

*/ 

 

package com.modp.random; 

import java.util.Random; 

import java.security.SecureRandom; 

import java.math.BigInteger; 
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/** 

* The Blum-Blum-Shub random number generator. 

* 

* <p> 

* The Blum-Blum-Shub is a "cryptographically secure" random number 

* generator.  It has been proven that predicting the ouput 

* is equivalent to factoring <i>n</i>, a large integer generated 

* from two prime numbers. 

* </p> 

* 

* <p> 

* The Algorithm: 

* </p> 

* <ol> 

* <li> 

*  (setup) generate two secret prime numbers <i>p</i>, <i>q</i> such 

that 

*   <i>p</i> &ne; <i>q</i>, <i>p</i> &equiv; 3 mod 4, <i>q</i> 

&equiv; 3 mod 4. 

* </li> 

* <li> (setup) compute <i>n</i> = <i>pq</i>.  <i>n</i> can be re-

used, but 

*   <i>p</i>, and <i>q</i> are secret and should be disposed 

of.</li> 

* <li> Generate a (secure) random seed <i>s</i> in the range [1, 

<i>n</i> -1] 

*   such that gcd(<i>s</i>, <i>n</i>) = 1. 

* <li> Compute <i>x</i> = <i>s</i><sup>2</sup> mod <i>n</i></li> 

* <li> Compute a single random bit with: 

*   <ol> 

*   <li> <i>x</i> = <i>x</i><sup>2</sup> mod <i>n</i></li> 

*   <li> return Least-Significant-Bit(<i>x</i>) (i.e. <i>x</i> & 

1)</li> 

*   </ol> 

* Repeat as necessary. 

* </li> 

* </ol> 

* 

* <p> 

* The code originally appeared in <a 

href="http://modp.com/cida/"><i>Cryptography for 

* Internet and Database Applications </i>, Chapter 4, pages 174-

177</a> 

* </p> 

* <p> 

* More details are in  the <a 

href="http://www.cacr.math.uwaterloo.ca/hac/"><i>Handbook of Applied 

Cryptography</i></a>, 

* <a 

href="http://www.cacr.math.uwaterloo.ca/hac/about/chap5.pdf">Section 

5.5.2</a> 

* </p> 

* 

* @author Nick Galbreath -- nickg [at] modp [dot] com 

* @version 3 -- 06-Jul-2005 
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* 

*/ 

public class BlumBlumShub implements RandomGenerator { 

 

   // pre-compute a few values 

   private static final BigInteger two = BigInteger.valueOf(2L); 

 

   private static final BigInteger three = BigInteger.valueOf(3L); 

 

   private static final BigInteger four = BigInteger.valueOf(4L); 

 

   /** 

    * main parameter 

    */ 

   private BigInteger n; 

 

   private BigInteger state; 

 

   /** 

    * Generate appropriate prime number for use in Blum-Blum-Shub. 

    * 

    * This generates the appropriate primes (p = 3 mod 4) needed to 

compute the 

    * "n-value" for Blum-Blum-Shub. 

    * 

    * @param bits Number of bits in prime 

    * @param rand A source of randomness 

    */ 

   private static BigInteger getPrime(int bits, Random rand) { 

 BigInteger p; 

 while (true) { 

    p = new BigInteger(bits, 100, rand); 

    if (p.mod(four).equals(three)) 

  break; 

 } 

 return p; 

   } 

 

   /** 

    * This generates the "n value" -- the multiplication of two 

equally sized 

    * random prime numbers -- for use in the Blum-Blum-Shub 

algorithm. 

    * 

    * @param bits 

    *            The number of bits of security 

    * @param rand 

    *            A random instance to aid in generating primes 

    * @return A BigInteger, the <i>n</i>. 

    */ 

   public static BigInteger generateN(int bits, Random rand) { 

 BigInteger p = getPrime(bits/2, rand); 

 BigInteger q = getPrime(bits/2, rand); 

 

 // make sure p != q (almost always true, but just in case, 

check) 
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 while (p.equals(q)) { 

    q = getPrime(bits, rand); 

 } 

 return p.multiply(q); 

   } 

 

   /** 

    * Constructor, specifing bits for <i>n</i> 

    * 

    * @param bits number of bits 

    */ 

   public BlumBlumShub(int bits) { 

 this(bits, new Random()); 

   } 

 

   /** 

    * Constructor, generates prime and seed 

    * 

    * @param bits 

    * @param rand 

    */ 

   public BlumBlumShub(int bits, Random rand) { 

 this(generateN(bits, rand)); 

   } 

 

   /** 

    * A constructor to specify the "n-value" to the Blum-Blum-Shub 

algorithm. 

    * The inital seed is computed using Java's internal "true" 

random number 

    * generator. 

    * 

    * @param n 

    *            The n-value. 

    */ 

   public BlumBlumShub(BigInteger n) { 

 this(n, SecureRandom.getSeed(n.bitLength() / 8)); 

   } 

 

   /** 

    * A constructor to specify both the n-value and the seed to the 

    * Blum-Blum-Shub algorithm. 

    * 

    * @param n 

    *            The n-value using a BigInteger 

    * @param seed 

    *            The seed value using a byte[] array. 

    */ 

   public BlumBlumShub(BigInteger n, byte[] seed) { 

 this.n = n; 

 setSeed(seed); 

   } 

 

   /** 

    * Sets or resets the seed value and internal state 

    * 
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    * @param seedBytes 

    *            The new seed. 

    */ 

   public void setSeed(byte[] seedBytes) { 

 // ADD: use hardwired default for n 

 BigInteger seed = new BigInteger(1, seedBytes); 

 state = seed.mod(n); 

   } 

 

   /** 

    * Returns up to numBit random bits 

    * 

    * @return int 

    */ 

   public int next(int numBits) { 

 // TODO: find out how many LSB one can extract per cycle. 

 //   it is more than one. 

 int result = 0; 

 for (int i = numBits; i != 0; --i) { 

    state = state.modPow(two, n); 

    result = (result << 1) | (state.testBit(0) == true ? 1 

: 0); 

 } 

 return result; 

   } 

 

   /** 

    * A quickie test application for BlumBlumShub. 

    */ 

   public void main(String[] args) { 

 // First use the internal, stock "true" random number 

 // generator to get a "true random seed" 

 SecureRandom r = new SecureRandom(); 

 System.out.println("Generating stock random seed"); 

 r.nextInt(); // need to do something for SR to be 

triggered. 

 

 // Use this seed to generate a n-value for Blum-Blum-Shub 

 // This value can be re-used if desired. 

 System.out.println("Generating N"); 

 int bitsize = 512; 

 BigInteger nval = BlumBlumShub.generateN(bitsize, r); 

 

 // now get a seed 

 byte[] seed = new byte[bitsize/8]; 

 r.nextBytes(seed); 

 

 // now create an instance of BlumBlumShub 

 BlumBlumShub bbs = new BlumBlumShub(nval, seed); 

 

 // and do something 

 System.out.println("Generating 10 bytes"); 

 for (int i = 0; i < 10; ++i) { 

    System.out.println(bbs.next(8)); 

 } 
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 // OR 

 // do everything almost automatically 

 BlumBlumShub bbs2 = new BlumBlumShub(bitsize /*,+ optional 

random instance */); 

 

 // reuse a nval (it's ok to do this) 

 BlumBlumShub bbs3 = new BlumBlumShub(nval); 

   } 

} 


