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Verification of Directed Acyclic Ad Hoc
Networks

Parosh Aziz Abdulla, Mohamed Faouzi Atig, and Othmane Rezine

Uppsala University

Abstract. We study decision problems for parameterized verification of
a formal model of ad hoc networks. We consider a model in which the net-
work is composed of a set of processes connected to each other through
a directed acyclic graph. Vertices of the graph represent states of indi-
vidual processes. Adjacent vertices represent single-hop neighbors. The
processes are finite-state machines with local and synchronized broad-
cast transitions. Reception of a broadcast is restricted to the immedi-
ate neighbors of the sender process. The underlying connectivity graph
constrains communication pattern to only one direction. This allows to
model typical communication patterns where data is propagated from a
set of central nodes to the rest of the network, or alternatively collected
in the other direction. For this model, we consider decidability of the con-
trol state reachability (coverability) problem, defined over two classes of
architectures, namely the class of all acyclic networks (for which we show
undecidability) and that of acyclic networks with a bounded depth (for
which we show decidability). The decision problems are parameterized
both by the size and by the topology of the underlying network.

1 Introduction

The analysis and verification of models for wireless ad hoc networks have at-
tracted much interest in recent years [4, 11, 2, 3, 9, 8, 12, 13, 10]. Such networks
usually consist of arbitrary numbers of nodes that communicate wirelessly in
arbitrarily configured networks. Several features in their behaviors make them
both attractive and difficult from the point of view of verification. First, the net-
work infrastructure can be static or dynamic but is usually not a priori defined.
Also, the communication between nodes occurs via broadcast over the shared
radio channel medium. Messages broadcasted by a given node are only received
by nodes in its proximity, in contrast to classical broadcast communication in
which all processes of the system are able to receive the sent messages. Further-
more, since the systems may contain unbounded numbers of processes, and since
the protocols are supposed to work independently from specific configurations
of the network, we need to perform parameterized verification where we prove
correctness of the system regardless of the number of nodes or the topology of
the network.

Using a model similar to that proposed in [2], we view the network as a graph
of nodes, where each node runs an instance of a given finite-state process. The
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graph defines the underlying connectivity of the network, while a process models
the code of a given fixed protocol that runs on the node. For such networks,
the behavior of a node can in general be specified in terms of a sequence of
states with transitions corresponding to local or to broadcast operations. Local
transitions are internal to a node and do not affect the states of the other nodes
in the network. Broadcast transitions on the other hand may have an impact
on other nodes in the network. More precisely, we consider selective broadcast
transitions that involve a sender (the broadcasting node), together with a set
of receivers composed of the nodes that are in the topological vicinity of the
sender, and that are willing to receive the broadcasted message. The vicinity
of a node is defined by the underlying communication graph of the network.
The broadcasting and the reception of the message happens synchronously for
all involved nodes, i.e., the sender and all potential receivers in its vicinity. The
interleaving semantics of our formalism does not take into account problems that
could arise at the physical and link layer, such us message collision for example.
We are here more interested in network and application layer protocols where
these type of problems are abstracted away.

As argued in [2, 3], the control state reachability problem or the coverability
problem seems to be adequate for capturing several interesting properties that
arise in parameterized verification of ad hoc networks. The problem consists in
checking whether the system can start from a given initial configuration and
evolve to reach a configuration in which at least one of the processes is in a
given state. Since we are performing parameterized verification, the number of
nodes that has to be handled in the analysis is not a priori bounded. In other
words, we are dealing with the verification of an infinite-state system. Indeed, it
is shown in [2] that the coverability problem is undecidable in the general case.
Therefore, an important line of work has been done to identify classes of network
topologies for which algorithmic verification is at least theoretically possible [3].
This paper proposes one such a class of topologies where the underlying graph is
acyclic, and hence the communication from a node to another goes only through
one direction. Such patterns arise, for instance, in the context of Wireless Sensor
Networks (Wsn), where small wireless devices are distributed over an area in
order to perform different types of measurements (temperature, humidity, etc.).
In Wsn, it is common that the topology is static over time. Furthermore, it
is also common in Wsn that communication follows a specific direction; for
instance this is the case for flooding protocols at the network layer [7], and for
the optimized directed diffusion protocol [6].

From the verification point of view, we show that the coverability problem is
undecidable even in the case where the network topology is acyclic (section 5).
We show the undecidability result through a reduction from an undecidable
problem for finite-state transducers (section 4). Then, we consider a restricted
version of the problem where we assume that the depth of the acyclic graph
is bounded by a given natural number k. In fact, we are still dealing with an
infinite state-system since we may have an unbounded number of nodes, and an
unbounded in- and out-degrees for the nodes of the graph. For this case we show
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decidability of the coverability problem. The proof is carried out in several steps.
First we reduce the problem from the case of general acyclic graphs to that of
inverted forests (forests with all edges reversed) and then to the case of inverted
trees (section 6). For the case of inverted trees, we propose a novel symbolic
representation of infinite sets of configurations. This symbolic representation
amounts to having “higher-order multisets” in which a multiset of a certain order
contains multisets of lower orders (section 7). We show that this allows to define
a symbolic backward reachability analysis based on a non-trivial instantiation
of the the framework of well quasi-ordered transition systems [1].

2 Preliminaries

In this section, we introduce some basic definitions and notations that we will
use in the rest of the paper.

We use N and Ną0 to denote the sets of natural numbers and positive natural
numbers, respectively. Given a finite set A, we use |A| to denote the number of
elements in A. We use Ab to denote the set of finite multisets over A; and use A˚

to denote the set of finite words over A. For words w1, w2 P A
˚ we use w1 ¨w2 to

denote the concatenation of w1 and w2. Sometimes, we write multisets as lists,
e.g., ra, a, b, b, bs is a multiset with two occurrences of a and three occurrences of
b. A quasi-ordering (ordering for short) Ď on a set A is a reflexive and transitive
binary relation over A (i.e. ĎĎ A ˆ A, a Ď a and a Ď b, b Ď c ñ a Ď c for any
a, b, c P A). We extend the ordering Ď on A to an ordering Ďb on the set Ab

of multisets over A such that ra1, . . . , amsĎ
brb1, . . . , bns if there is an injection

h : t1, . . . ,mu ÞÑ t1, . . . , nu with ai Ď bhpiq for all i : 1 ď i ď m. Given a function
f : A ÞÑ N, we define maxpfq :“ maxtf peq|e P Au to be the largest value taken
by f over A. For a function f : A ÞÑ B, we use f raÐ bs to denote the function
f 1 such that f 1paq “ b and f 1pa1q “ fpa1q if a1 ‰ a.

A (directed) graph is a pair G “ xV,Ey where V is a finite set of vertices
and E Ď V ˆ V is the set of edges. Two graphs G1 “ xV1, E1y and G2 “

xV2, E2y are said to be disjoint iff V1 X V2 “ H. For vertices u, v P V , we use

u ;G v to denote that xu, vy P E, use
˚
;G to denote the reflexive transitive

closure of ;G, and use
`
;G to denote the transitive closure of ;G. A path

in G is a finite sequence π “ v1v2 ¨ ¨ ¨ vk where vi ;G vi`1 for all i : 1 ď

i ă k. We define first pπq :“ v1 and last pπq :“ vk. Notice that u
˚
;G v iff

there is a finite path in G with first pπq “ u and last pπq “ v. For a vertex
v P V , we define succG pvq :“ tu| v ;G uu to be its set of successor vertices, and
define predG pvq :“ tu| u;G vu to be its set of predecessor vertices. For a graph
G “ xV,Ey, we define its transpose GTransp :“

@

V,ETransp
D

, where ETransp :“
txv, uy| xu, vy P Eu. In other words GTransp is G with all edges reversed. We say
that G is a Dag if there are no cycles in G, i.e., there are no vertices v P V with

v
`
;G v. Fix a Dag G “ xV,Ey. We define #G :“ | tv P V | |succG pvq | ą 1u |.

In other words, it is the number of vertices in the graph whose set of successors
contains more than one element. For a vertex v P V , we define heightG pvq :“
0 if succG pvq “ H, and define heightG pvq :“ 1 ` maxuPsuccGpvqpheightG puqq
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otherwise. We define height pGq :“ maxvPV heightG pvq, i.e., it is the length of
a longest path in G. We define depthG pvq :“ 0 if predG pvq “ H, and define
depthG pvq :“ 1 `maxuPpredGpvq

pdepthG puqq otherwise. We define depth pGq :“
maxvPV depthG pvq. A leaf ofG is a vertex v P V with height zero, i.e., succG pvq “
H. We use leaves pGq to denote the set of leaves of G. A forest is a Dag such
that for all distinct pairs of vertices v, u P V we have succG pvqX succG puq “ H.
A tree is a forest such that | tv| predG pvq “ Hu | “ 1. We say that G is an
inverted forest/tree if GTransp is a forest/tree. The root of an inverted tree G is
the unique vertex v with succG pvq “ H. Notice that a Dag G is an inverted
forest iff #G “ 0, i.e., it does not contain any vertices with multiple successors.

3 Directed Acyclic Ad-Hoc Networks

A Directed Acyclic Ad-Hoc Network (Daahn) contains a finite (but arbitrary)
number of nodes that are organized in a Dag. The vertices of the Dag repre-
sent individual processes, while the Dag models the topology of the network.
The processes are modeled as finite-state automata that can perform both lo-
cal and synchronized broadcast transitions. The successors of a vertex are the
set of processes that are able to “hear” broadcast messages issued by the ver-
tex. Depending on its local state, a successor may participate in the broadcast
transition or not. Below, we describe the syntax and the operational semantics
of a Daahn, and then define two decision problems for the model related to
reachability properties.

Syntax. An Ad-Hoc Network (Ahn) consists of a pair N “ xP,Gy where
P is a finite-state automaton describing the behavior of each process, and
G “ xV,Ey is the communication graph between the processes. A pro-
cess P is a tuple xQ,Σ,∆, qinity where Q is a finite set of states, Σ is
a finite message alphabet, qinit P Q is the initial state, and ∆ Ď Q ˆ

ptτu Y tb pmq| m P Σu Y tr pmq| m P Σuq ˆ Q is the transition relation. Intu-
itively, τ represents a local (internal) transition of the process. The operation
b pmq corresponds to broadcasting a message m, while r pmq corresponds to re-
ceiving the message m. We say that N is a Daahn if G is a Dag.

Operational Semantics. We give the operational semantics by defining the tran-
sition system induced by N . A configuration c of N is a function c : V ÞÑ Q that
defines, for each vertex v P V (i.e., a process position), a state q P Q. We use
q P c to denote that there exists a vertex v P V such that cpvq “ q. We use C to
denote the set of configurations of N , and define the initial configuration cinit

such that cinitpvq “ qinit for all v P V . We define a transition relation Ñ́N on

the set C by Ñ́N :“
Ť

tP∆
t
Ñ́, where

t
Ñ́ describes the effect of performing the

transition t. Given two configurations c, c1 P C, we have c t
Ñ́N c

1 if one of the
following conditions holds:
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– Local transition. There is a v P V such that t “ xcpvq, τ, c1pvqy P ∆ and for
every v1 P V z tvu, we have that c1pv1q “ cpv1q. A local transition modifies
only the state of the involved process.

– Broadcast. There are v P V and m P Σ such that t “ xcpvq, b pmq , c1pvqy P ∆,
and for every v1 P V ztvu one of the following conditions holds:

‚ v ;G v1 and xcpv1q, r pmq , c1pv1qy P ∆.
‚ v ;G v1, xcpv1q, r pmq , qy R ∆ for any q P Q, and c1pv1q “ cpv1q.
‚ v ­;G v1 and c1pv1q “ cpv1q.

In a broadcast transition, any successor of the sender process that can receive
the message m is obliged to participate in the transition.

For both types of transitions, the topology of the system is not affected. We
use ˚

Ñ́N to denote the reflexive transitive closure of Ñ́N . A (finite) run ρ of
N is a sequence c0c1 . . . cn of configurations such that c0 “ cinit and ci Ñ́N ci`1

for i : 0 ď i ă n. We use last pρq to denote cn. A configuration c is said to be
reachable in N if there is a run ρ of N such that last pρq “ c (notice that this is

equivalent to cinit
˚
Ñ́N c). A state q P Q is said to be reachable in N if q P c for

some reachable configuration c.

Decision Problems. The state reachability problem or coverability problem
Cover is defined by a process P “ xQ,Σ,∆, qinity and a state target P Q. The
task is to check whether there is a Dag G such that target is reachable in the
Daahn N “ xP,Gy. The bounded state reachability problem Bounded-Cover
is defined by a process P “ xQ,Σ,∆, qinity, a state target P Q, and a natural
number k P N. The task is to check whether there is a Dag G with height pGq ď k
such that target is reachable in the Daahn N “ xP,Gy.

4 Transducers

We recall the standard definition of transducers and an undecidable problem
for them. A (finite-state) automaton is a tuple A “ xQ,Σ,∆, qinit , Qfinaly where
Q is a finite set of states, Σ is a finite alphabet, qinit P Q is the initial state,
Qfinal Ď Q is the set of final states, and ∆ Ď Q ˆ Σ ˆ Q is the transition
relation. We define the language L pAq of A as usual. A (finite-state) transducer
T “ xQ,Σ,∆, qinit , Qfinaly is of the same form as a finite-state automaton except
that ∆ Ď Q ˆ Σ ˆ Σ ˆQ. Thus, a member of L pT q is a word of pairs over Σ,

i.e., a member of
`

Σ2
˘˚

. A transducer T induces a binary relation R pT q on the
set Σ˚ such that xa1 ¨ ¨ ¨ an, b1 ¨ ¨ ¨ bny P R pT q if xa1, b1y ¨ ¨ ¨ xan, bny P L pT q. For
a word w P Σ˚, we define T pwq :“ tv| xw, vy P R pT qu. For a set W of words,
we define T pW q :“ YwPWT pwq. Given an automaton A and a transducer T
(with identical alphabets Σ) we define T pAq :“ T pL pAqq. For a natural number
i P N and a word w P Σ˚, we define T ipwq inductively by T 0pwq :“ twu and
T i`1pwq :“ T pT ipwqq. In other words, it is the result of i applications of the
relation induced by T on w. We extend the definition of T i to sets of words in
the expected manner. For an automaton A, we define T ipAq :“ T ipL pAqq.
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An instance of the problem Transd consists of two automata A and B, and
a transducer T , all with identical alphabets Σ. The task is to check whether
there is an i P N such that T ipAq X L pBq ‰ H. It is straightforward to show
undecidability of Transd through a reduction from a certain non-trivial problem
for Turing machines, namely whether a given Turing machine M will eventually
print a given symbol a on its tape. More precisely, we use L pAq to describe an
appropriate encoding of (i) an empty tape of M , and (ii) the initial position
of its head on the tape. The transducer T encodes one move of M , by non-
deterministically guessing the position of the head, and then (i) moving the head,
(ii) changing one symbol on the tape, and (iii) changing its state, according to
the transition relation of M . Finally, the automaton B accepts all words that
contains the symbol a.

5 Undecidability of Cover

In this section, we prove the following theorem.

Theorem 1. Cover is undecidable.

We show undecidability through a reduction from Transd to
Cover. Consider an instance of Transd defined by automata

A “

A

QA, ΣA, ∆
A, qAinit , Q

A
final

E

and B “

A

QB , ΣB , ∆
B , qBinit , Q

B
final

E

, and

transducer T “
A

QT , ΣT , ∆
T , qTinit , Q

T
final

E

(with ΣA “ ΣB “ ΣT ). We define

a process P “ xQ,Σ,∆, qinity and a state qaccept P Q such that there is a
Dag G with qaccept reachable in the Daahn N “ xP,Gy iff there is an i P N
such that T ipAq X L pBq ‰ H. The manner in which we define process P
(see below) will allow it to simulate both automata A and B and transducer
T . The set Q of states of P is defined to be the union of four disjoint sets
Q :“ tqinit , qerror , qacceptu Y SA Y SB Y ST described below. The idea of the
simulation is that a group of processes in N tries to build a “chain” (of some
size, say i), where the root of the chain simulates A, the pi´ 2q processes in the
middle of the chain simulate T , and the last process simulates B. We will refer
to such a chain as transduction chain below.

Simulating A. The states in SA are used by P to simulate the automaton A.
Each state q P QA in A has a copy rqsA in SA. At state qinit , the process P may
decide to simulate the automaton A (Figure 1), thus becoming the first ver-
tex in a potential transduction chain. It does this by performing the transition
@

qinit , b pAstartq ,
“

qAinit

‰

A

D

P ∆ in which it moves to (the copy of) of the initial
state of A. At the same time, it issues a broadcast message b pAstartq to notify
its successor processes in G that it has started the simulation of A. For each
transition xq1, a, q2y P ∆

A in A there is a transition xrq1sA , b paq , rq2sAy P ∆
in which P simulates changing of states in A and broadcasts the symbol a
to its successors. Finally, for each final state q P QAfinal , there is a transition
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@

rqsA , b pmendq , q
A
end

D

P ∆ in which P declares that it has ended the simula-
tion of A (by broadcasting the message mend), after which P stops (there are
no outgoing transition from qAend). Thus, in this mode, the process P broad-
casts a sequence of messages corresponding to a word in L pAq followed by the
end-marker mend .

qinit qtmp

”

qTinit

ı

T

”

qAinit

ı

A

”

qBinit

ı

B

. . .

. . .

. . .

b pAstart q

r pAstart q ,

r pTstart q

r pAstart q ,

r pTstart q

b pTstart q

SA

ST

SB

Fig. 1. Process P : initial choices

A :

T :

B :

Original: Encoding:

q1 q2
a

rq1sA rq2sA qAend

b paq b pmend q

q1 q2
a

rq1sB rq2sB qaccept

r paq r pmend q

q1 q2
t :

a1{a2
rq1sT rq1s

t
T

rq2sT

rq2s
end
TqTend

r pa1q b pa2q

r pmend q

b pmend q

Fig. 2. Transition and accepting state encoding

Simulating T . The states in ST are used by P to simulate the transducer T .
Each state q P QT in T has several corresponding states in ST . More pre-
cisely, it has one copy rqsT (as in the case of A above); together with one

temporary state rqs
t
T for each transition t “ xq, a1, a2, q

1y P ∆T , i.e., for each
transition whose source state is q. At state qinit , if the process P receives a
message Astart or Tstart from one of its predecessors, then it may decide to
simulate the transducer T (Figure 1). It does so by (i) first performing one
of the transitions xqinit , r pAstartq , qtmpy P ∆ and xqinit , r pTstartq , qtmpy P ∆,
where qtmp P ST is a temporary state, followed by (ii) performing the transi-
tion

@

qtmp , b pTstartq ,
“

qTinit

‰

T

D

P ∆ in which it moves to the first copy of the
initial state of T . At the same time, it issues a broadcast message b pTstartq

to its successors declaring that it has started the simulation of T . Intuitively,
if P has received Astart , it will be the second process in a transduction chain
(its predecessor will be the first since it simulates A), while if it has received
Tstart , it will be the pk ` 1q-th process in the chain (its predecessor will be
the k-th process and the predecessor also simulates T ). For each transition

t “ xq1, a1, a2, q2y P ∆
T in T there are two transitions

A

rq1sT , r pa1q , rq1s
t
T

E

P ∆

and
A

rq1s
t
T , b pa2q , rq2sT

E

P ∆. Here, P receives the message a1 from its prede-

cessor (in the chain), and sends a2 to its successors. Although, a node may have
several predecessors, only one of them is allowed to act as the predecessor of the
current node in the chain. This is ensured by transitions xq, r pAstartq , qerror y P ∆
and xq, r pTstartq , qerror y P ∆ for each q P ST . In other words, if the current pro-
cess has already received a message from one predecessor (and thus moved to a
state in ST ) then it moves to the state qerror if it later receives messages from
any of its other predecessors. The process P then immediately suspends the sim-
ulation (there are no outgoing transition from qerror ). Also, the process is not
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allowed to be “disturbed” by its predecessor while it is in the temporary state
qtmp or in one of the temporary states of the form rqs

t
T . This is due to the fact

that the process in such a temporary state has not yet had time to perform the
next broadcast, and therefore it is not yet ready to receive the next message
form the predecessor (if this is not done, such a message will be lost in the
simulation). To encode this, we add extra transitions xq, r paq , qerror y for each
temporary state q and each message a. Also, in order to discard any sequence of
received messages that do not correspond to a valid T input word, we add in ∆
the transition xrqsT , r paq , qerror y for every state q of QT and for every message
a P ΣT such that there is no q1 P QT such that xq, a, q1y P ∆T . Finally, for each

final state q P QTfinal , there is a transition
A

rqsT , r pmendq , rqs
end
T

E

P ∆; and a

transition
A

rqs
end
T , b pmendq , q

T
end

E

P ∆ (where rqs
end
T is a temporary state). If

the process happens to be in a final state, and it receives the end-marker from
its predecessor in the chain, then it ends its simulation by notifying its successor
and moving to the state qTend . Thus, in this mode, the process P receives a word
w from its predecessor and sends a word in T pwq to its successor.

Simulating B. The states in SB are used by P to simulate the automatonB. Each
state q P QB in B has a copy rqsB in SB . At state qinit , if the process P receives a
message Astart or Tstart from one of its predecessors, then it may decide to simu-
late the automaton B (Figure 1). It does so by performing one of the transitions
@

qinit , r pAstartq ,
“

qBinit

‰

B

D

P ∆ and
@

qinit , r pTstartq ,
“

qBinit

‰

B

D

P ∆. In either case,

it moves to the (copy of) the initial state of B. For each transition xq1, a, q2y P ∆
B

in B there is a transition xrq1sB , r paq , rq2sBy in which P simulates the chang-
ing of states in B and receives the symbol a from its predecessor. In a similar
manner to the case of T , we also add transitions xq, r pAstartq , qerror y P ∆ and
xq, r pTstartq , qerror y P ∆ for each q P SB , and xrqsB , r paq , qerror y P ∆ for every
state q of B and for every message a P ΣB such that there is no q1 P QB such
that xq, a, q1y P ∆B . Finally, for each final state q P QBfinal , there is a transition
xrqsB , r pmendq , qaccepty P ∆ in which P ends the simulation of B. Thus, in this
mode, the process P receives a sequence of messages corresponding to a word
in L pBq followed by the end-marker mend . In such a case, the process moves to
the state qaccept which means that the given instance of Cover has a positive
solution.

Correctness. We show correctness of our reduction. Suppose that the given in-
stance of Transd has a positive answer, i.e., there is an i P N and a word
w P L pAq such that T ipwq P L pBq. We show that there is a Dag G such that
qaccept is reachable in the Daahn N “ xG,P y, where P is defined as described
above. We define G :“ xtv1, v2, . . . , vi`2u , Ey, where vj ;G vk iff 1 ď j ď i` 1
and k “ j ` 1. In other words, the graph forms a chain with i ` 2 nodes. The
process at node 1 starts simulating A eventually broadcasting the word w fol-
lowed by mend . The process at node 2 starts simulating T receiving the word
w symbol by symbol, and eventually broadcasting the word T pwq followed by
mend . In general, the process at node j for j : 2 ď j ď i` 1 starts simulating T
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receiving the word T j´2pwq symbol by symbol, and eventually broadcasting the
word T j´1pwq followed by mend . Finally, the process at node i` 2 starts simu-
lating B receiving the word T ipwq symbol by symbol, and eventually moving to
the state qaccept .

Suppose that the given instance of Cover has a positive answer, i.e., there
is a Dag G such that qaccept is reachable in the Daahn N “ xG,P y. We show
that there is an i P N and a word w P L pAq such that T ipwq P L pBq. We do
this by extracting a transduction chain. We extract the chain vertex by vertex
starting by identifying the process that simulates B, then identifying the ones
that simulate T , and finally identifying the one that simulates A. Recall that
qaccept can only be reached in a process that is simulating B. Recall also that
such a process can reach qaccept if it receives the end-marker from a predecessor
process. On the other hand, it cannot receive start messages from two different
predecessors before it reaches qaccept since this would mean that it would move
to the error state qerror from which it cannot reach qaccept . This implies that
the current process has a unique predecessor. Recall that the predecessor, a
sending process, must be either a process simulating A or T . If the predecessor
is simulating A then we can close the chain, otherwise we have found the next
transducer. In the latter case, we repeat the reasoning and find the predecessor
again. Let j be the length of the chain obtained in this manner (j ě 2 since it
contains at least two vertices simulating A resp. B). Define i in the instance of
Transd to be j ´ 2.

6 Forest Bounded Coverability

In this section, we show that the bounded coverability problem can be reduced
from the general case of Dags to the case where we assume the Dag to be an
inverted tree. We do that in two steps, namely by first reducing the problem to
the case of inverted forests and then to trees.

Forests. A Daahn N is said to be an inverted forest if the underlying graph is
an inverted forest. We consider a restricted version of Bounded-Cover, which
we call Forest-Bounded-Cover. In Forest-Bounded-Cover, we require
that the given Daahn is an inverted forest. We show the following theorem.

Theorem 2. Bounded-Cover is reducible to Forest-Bounded-Cover.

In order to prove this theorem, we first introduce a split operator over Dags.

0

1 2

3

0

01

013 012

0123

02

023

Consider a Dag G “ xV,Ey. The
split operator splits the nodes of G,
transforming it into an inverted forest.
We define an inverted forest G‚ :“
xV ‚, E‚y as follows. Each vertex v P V
induces a set v‚ in V ‚. A member of
v‚ is an inverted path π in G with
first pπq P leaves pGq and last pπq “ v.
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The set v‚ is defined using induction on the height of v as follows. If heightG pvq “
0 (i.e., v is a leaf) then v‚ :“ tvu. Otherwise, v‚ :“ tπ ¨ v| Du. v ;G u^ π P u‚u.
In other words, we split v into a number of copies, each corresponding to
a path starting from a successor of v and ending in a leaf in G. We define
E‚ :“ txπ1, π2y| π1 “ π2 ¨ vu. Notice that heightG‚ puq “ heightG pvq for every
v P V and u P v‚. Therefore, height pG‚q “ height pGq. Furthermore, by defini-
tion, any vertex in G‚ has at most one successor (no successors if it is of the
form v P V , or the unique successor π if is of the form π ¨ v). This means that
G‚ is an inverted forest.

Consider an instance of Bounded-Cover defined by P “ xQ,Σ,∆, qinity,
a state target P Q, and a natural number k P N. We claim that the instance
of Forest-Bounded-Cover defined by P “ xQ,Σ,∆, qinity, target , and k is
equivalent. For a configuration c in N “ xP,Gy, we define c‚ to be the configu-
ration of N‚ “ xP,G‚y such that c‚pπ ¨ vq “ cpvq. The following lemma shows
that reachability is preserved by splitting.

Lemma 3. If c1 Ñ́N c2 then c‚1
˚
Ñ́N‚ c

‚
2.

From Lemma 3 and the fact that cinit
‚pπ ¨ vq “ cinitpvq “ qinit , we conclude the

following:

Lemma 4. If c is reachable in N then c‚ is reachable in N‚.

Now, we are ready to prove Theorem 2. If the given instance of
Forest-Bounded-Cover has a positive answer, then the instance of
Bounded-Cover has trivially a positive answer (each inverted forest
is a Daahn). For the opposite direction, suppose that the instance of
Bounded-Cover has a positive answer, i.e., there is a Dag G with height pGq ď
k such that target is reachable in the Daahn N “ xP,Gy. By Lemma 4, we know
that target is reachable in xP,G‚y. The result then follows since G‚ is an inverted
forest and since height pG‚q “ height pGq ď k.

Trees. We consider a yet more restricted version of Bounded-Cover, which we
call Tree-Bounded-Cover. In Tree-Bounded-Cover, we require that the
given Daahn is an inverted tree.

Theorem 5. Forest-Bounded-Cover is reducible to Tree-Bounded-
Cover.

The proof of Theorem 5 is straightforward. Since the nodes inside the tree of
a forest do not affect transitions of the nodes inside the other trees, we can
solve Tree-Bounded-Cover for each tree separately. The given instance of
Forest-Bounded-Cover has a positive answer iff Tree-Bounded-Cover
has a positive answer for any of the component trees.

7 Tree Bounded Coverability

In this section, we prove the following theorem.
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Theorem 6. Tree-Bounded-Cover is decidable.

We devote the section to the proof of Theorem 6. To do that, we instantiate the
framework of well quasi-ordered transition systems introduced in [1]. The main
ingredient of this framework is to show that the transition relation induced by
the system is monotonic wrt. a well quasi-ordering (wqo) on the set of configu-
rations. We define an ordering that we denote by Ď on configurations that are
inverted trees and show monotonicity of the system behavior wrt. this ordering.
Unfortunately, it is not possible to apply existing frameworks (such as the one
in [1]) to directly prove the wqo of Ď on inverted trees. Therefore, we introduce
a new ordering that we denote by Ď2 on a set of “higher-order multisets”. We
show that the ordering on higher-order multisets Ď2 is indeed a wqo and that
it is equivalent to the original ordering Ď on inverted trees, which proves that
Ď is itself a wqo. Then, we recall the basic concepts of the framework of well
quasi-ordered systems, and show how the framework can be instantiated to prove
Theorem 6.

7.1 Ordering

Assume a process P “ xQ,Σ,∆, qinity. An extended configuration is a pair e “
xG, cy where G is an inverted tree, and c is a configuration of the Daahn xG,P y.
We use E to denote the set of extended configurations, and, for k ě 1, we use
Ek to denote the set of extended configurations xG, cy where the inverted tree G
is of height at most k. We define an ordering on E as follows. Consider extended
configurations e “ xG, cy with G “ xV,Ey and e1 “ xG1, c1y with G1 “ xV 1, E1y.
For an injection α : V ÞÑ V 1, we use e Ďα e1 to denote that the following
two conditions hold for all v P V : (i) cpvq “ c1pαpvqq, and (ii) If u ;G v then
αpuq;G1 αpvq. We write e1 Ď e2 if e Ďα e1 for some α. Intuitively, we can view
an extended configuration as an inverted tree that is unranked (a node may have
any number of predecessors) and unordered (the order in which the predecessors
occur is not relevant). The ordering e1 Ď e2 then means that the inverted tree
corresponding to e1 has a copy (an image) inside the inverted tree corresponding
to e2. In Figure 3, three extended configurations are depicted as inverted trees
e1, e2, e3. Here e1 Ď e2 Ď e3.

7.2 Monotonicity

Given a process P , we define a transition relation ÝÑ on E where xG, cy ÝÑ
xG1, c1y if G1 “ G, N “ xP,Gy, and c Ñ́N c

1. The following lemma shows mono-
tonicity of ÝÑ wrt. Ď. Assume that e1, e2, e3 are extended configurations.

Lemma 7. If e1 ÝÑ e2 and e1 Ď e3 then there is an e4 such that e3 ÝÑ e4 and
e2 Ď e4.
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7.3 Higher-Order Multisets

For a finite set A and k ě 0, we define the set Abk inductively as fol-

lows: (i) Ab0 :“ A; and (ii) Abk`1 :“ Abk Y
´

Aˆ
`

Abk
˘b

¯

. In other

words, a higher-order multiset of order 0 is an element in A, while a mul-
tiset of order k ` 1 is either a multiset of order k, or a pair consist-
ing of an element in A together with a multiset of multisets of order k.

a

b c

e1

a

b d c

a

e2 d

da

c d b

a

e3
Ě

Ě1

Ď

Ď2

Fig. 3. The extended configurations e1, e2, and
e3 correspond to the higher order multisets B1 “

xa, rb, csy, B2 “ xa, rxb, rasy , d, csy, and B3 “

xd, rxa, rxb, rasy , d, csy , dsy respectively.

Intuitively, a higher-order
multiset defines an inverted
tree (corresponding to an ex-
tended configuration). More
precisely, a higher-order mul-
tiset of the form a represents
an inverted tree consisting
of a single node (labeled by
a), while the higher-order
multiset xa, rB1, . . . , Bksy
represents an inverted tree
with a root labeled a, and
where predecessors of the
root are themselves the roots
of the inverted subtrees represented by B1, . . . , Bk respectively (see Figure 3).
We define an ordering Ď2 on Abk in two steps. First, we define an ordering Ď1

on Abk such that

– a Ď1 a
1 if a “ a1; and a Ď1 xa

1, By if a “ a1.
– xa, rB1, . . . , Bksy Ď1 xa

1, rB11, . . . , B
1
`sy if a “ a1 and there is an injection

h : t1, . . . , ku ÞÑ t1, . . . , `u with Bi Ď1 B
1
hpiq for all i : 1 ď i ď k. Notice that

the second condition is equivalent to rB1, . . . , BksĎ
b
1 rB

1
1, . . . , B

1
`s.

Intuitively, B1 Ď1 B2 means that a copy of the inverted tree corresponding
to B1 occurs in the inverted tree corresponding to B2 starting from the root.
For instance, consider B1, B2, B3 in Figure 3. According to the definition of
Ď1, we have B1 Ď1 B2 while B1 ­Ď1 B3. This is reflected in the inverted trees
corresponding to the extended configurations e1, e2, e3. Although copies of e1
occurs both in e2 and e3, the copy of e1 does not start from the root of e3. Now,
we define Ď2 as follows.

– a Ď2 a
1 if a “ a1; and a Ď2 xa

1, By if a “ a1 or a Ď2 B.
– xa, rB1, . . . , Bksy Ď2 xa

1, rB11, . . . , B
1
`sy if one of the following two cases is

satisfied:
‚ a “ a1 and there is an injection h : t1, . . . , ku ÞÑ t1, . . . , `u with Bi Ď1

B1hpiq for all i : 1 ď i ď k.

‚ xa, rB1, . . . , Bksy Ď2 B
1
i for some i : 1 ď i ď `.

Notice that Ď1ĎĎ2. Intuitively, B1 Ď2 B2 means that a copy of the inverted
tree corresponding to e1 occur somewhere in the inverted tree corresponding to
B2 (not necessarily starting from the root). In Figure 3, B1 Ď2 B3 (and a copy
of e1 occurs in e3).
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7.4 Encoding

We define an encoding function # that translates each extended configuration
to a higher-order multiset. Formally, consider an extended configuration xG, cy
with G “ xV,Ey. First, we define # pv, cq, for v P V , by induction on depthG pvq
as follows:

– If depthG pvq “ 0 then # pv, cq :“ cpvq. In this case, the encoding is of order
0 (given by the state of the vertex).

– If depthG pvq ą 0 then let predG pvq “ tv1, . . . , vnu. Then, # pv, cq :“
xcpvq, r# pv1, cq , . . . ,# pvn, cqsy. The encoding is of the same order as the
depth of the vertex; it consists of the state of the vertex itself together with
the multiset of the encodings of its predecessors.

We define #e :“ # pv, cq where v is the root of G. Notice that the order of #e
is identical to the height of the inverted tree G. As an example, in Figure 3,
if we view an inverted tree ei, i “ 1, 2, 3, as an extended configuration then
its encoding is given by Bi. The following lemma shows that the orderings on
extended configurations and higher-order multisets coincide. Let e1 and e2 be
two extended configurations.

Lemma 8. e1 Ď e2 iff #e1 Ď2 #e2.

7.5 Well Quasi-Orderings

Let A be a set and let Ď be a quasi-ordering on A. We say that Ď is well quasi-
ordering (wqo) if it satisfies the following property: for any infinite sequence
a0, a1, a2, . . . of elements in A, there are i ă j with ai Ď aj . We will use the
following variant of Higman’s Lemma [5] for our purposes:

Lemma 9. If Ď is wqo on A then Ďb is a wqo on Ab.

Now, we show that the ordering Ď2 is a wqo on Abk for any given k ě 0. To show
Ď2 is a wqo, we first show that Ď1 is a wqo on Abk for any given k ě 0. We use in-
duction on k. The base case is trivial since it amounts to equality being a wqo on
a finite alphabet. Consider an infinite sequence xa0, D0y , xa1, D1y , xa2, D2y , . . .

of elements in Abk`1 (notice that Di P
`

Abk
˘b

). Since a0, a1, a2, . . . all belong
to the finite set A, there is an a P A and an infinite sequence i0 ă i1 ă ¨ ¨ ¨

such that aij “ a for all j ě 0. Since Ď1 is a wqo on Abk by the induction

hypothesis, it follows by Lemma 9 that Ď
b
1 is a wqo on

`

Abk
˘b

. By definition
of wqo, there are im ă in with DimĎ

b
1 Din . By definition of Ď1 we have that

xaim , Dimy Ď1 xain , Diny.
We are now ready to show that Ď2 is a wqo. Consider an infinite sequence

as the one above. Since xaim , Dimy Ď1 xain , Diny and Ď1ĎĎ2 it follows that
xaim , Dimy Ď2 xain , Diny which completes the proof for wqo of Ď2.

Lemma 8 implies that, for extended configurations e1, e2, we have that e1 Ď

e2 iff #e1 Ď2 #e2. Also, recall that, for e “ xG, cy the height of G is equal to
the order of #e. From this and the fact that Ď2 is a wqo on Abk for any given
k ě 1, we get the following lemma.

Lemma 10. For any k ě 1, the ordering Ď is a wqo on Ek.
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7.6 Monotonic Transition Systems

A monotonic transition system (MTS) is a tuple xΓ, Γinit ,Ď,ÝÑ, Uy, where

– Γ is a (potentially infinite) set of configurations.
– Γinit Ď Γ is a set of initial configurations.
– Ď is a computable ordering on Γ , i.e., for each γ1, γ2 P Γ , we can check

whether γ1 Ď γ2. Furthermore, Ď is a wqo.
– ÝÑ is a binary transition relation on Γ . Furthermore, ÝÑ is monotonic

with respect to Ď, i.e., given configurations γ1, γ2, γ3 such that γ1 ÝÑ γ2
and γ1 Ď γ3, there is a configuration γ4 such that γ3 ÝÑ γ4 and γ2 Ď γ4.

– U is defined as the upward closure Γ1 Ò of a finite set Γ1 Ď Γ , where Γ1 Ò“

tγ1 P Γ | Dγ P Γ1. γ Ď γ1u.

We use ˚
Ñ́ to denote the reflexive transitive closure of ÝÑ. For sets Γ1, Γ2 Ď Γ ,

we say that Γ2 is reachable from Γ1 if there are γ1 P Γ1 and γ2 P Γ2 such
that γ1

˚
Ñ́ γ2. In the reachability problem MTS-Reach we are given an MTS

xΓ, Γinit ,Ď,ÝÑ, Uy and are asked the question whether U is reachable from
Γinit . The paper [1] gives sufficient conditions for decidability of MTS-Reach
as follows. For Γ1 Ď Γ , we define PrepΓ1q :“ tγ| Dγ1 P Γ1. γ ÝÑ γ1u. For Γ1 Ď Γ ,
we say that M Ď Γ1 is a minor set of Γ1 if

– For each γ1 P Γ1 there is γ2 PM such that γ2 Ď γ1.
– If γ1, γ2 PM and γ1 Ď γ2 then γ1 “ γ2.

Since Ď is a wqo, it follows that each minor set is finite. However, in general,
the same set may have several minor sets. We use min to denote a function
which, given Γ1 Ď Γ , returns an arbitrary (but unique) minor set of Γ1. We use
minprepγq to denote the set minpPreptγuÒqq.

It is shown in [1] that the following conditions are sufficient for decidability
of MTS-Reach.

Theorem 11. MTS-Reach is decidable if for each γ P Γ

– we can check whether γ P Γinit .
– the set minprepγq is finite and computable.

7.7 From Tree-Bounded-Cover to MTS-Reach

For a natural number k ě 1, a process P “ xQ,Σ,∆, qinity, and a state target P

Q, we derive an MTS xΓ, Γinit ,Ď,ÝÑ, Uy such that Γinit
˚
Ñ́U iff there is a Dag

G which is an inverted tree with height pGq ď k such that target is reachable in
the Daahn N “ xP,Gy.

– Γ is the set Ek.
– Γinit is the set of pairs xG, cinity P Ek and cinit is the initial configuration of

the Daahn xG,P y.
– Ď is defined on Ek as described above. The ordering Ď is obviously com-

putable. Well quasi-ordering of Ď on Γ is shown in Lemma 10.
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– The transition relationÝÑ on Ek is defined as described above. Monotonicity
is shown in Lemma 7.

– U is defined as the upward closure of the singleton txG1, c1yu, where G1 “

xtvu ,Hy i.e., G1 contains a single vertex v and no edges, and furthermore
c1pvq “ target . Notice that U characterizes all inverted trees that contain at
least one vertex labeled with target .

It is trivial to check whether a given configuration is initial (check whether all
vertices are labeled with qinit). The following lemma states that the induced
transition system also satisfies the second sufficient condition for decidability
(see Theorem 11).

Lemma 12. Consider the MTS defined above. Then, for each extended config-
uration e we can compute minprepeq as a finite set of extended configurations.

Lemma 12, together with Theorem 11, proves Theorem 6.

8 Related Work

A fixed, generally small, number of processes has been considered when model
checking techniques have been applied to verify ad hoc network protocols [4,
12]. In [11] Saksena et al. define a possibly non-terminating symbolic pro-
cedure based on graph transformations to verify routing protocols for Ad
Hoc Networks. Delzanno et al. showed in [2] that the coverability prob-
lem is undecidable in the general case of unbounded, possibly cyclic and di-
rected graphs. In particular, the same authors considered in [3] the bounded-
depth subclass of Ad Hoc Networks. Using the induced sub-graph relation
on bounded-depth graphs as a symbolic representation within the well quasi-
ordered transition systems framework, they proved the decidability of the
coverability problem. However, this result cannot be used in the context of
directed acyclic ad hoc networks because the induced sub-graph relation is
not a well quasi-order in the case of the bounded depth acyclic graphs.
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4
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0

1

2

3

4

5

6

g3

. . .

In fact, as shown in the figure,
the list of directed acyclic labeled
graphs of depth 2, g1, g2, g3, . . . is
an infinite sequence of extended
configurations of incomparable el-
ements.

9 Conclusions

We have considered parameterized verification of ad hoc networks where the
network topology is defined by an acyclic graph. We have considered the cov-
erability problem which, for a given process definition, asks whether there is a
graph and a reachable configuration where a process is in a given state. The
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coverability problem is used to find violations generated by a fixed set of pro-
cesses independently from the global configuration. The problem turns out to
be undecidable in the general case, but decidable under the restriction that the
graph is of bounded depth (where the depth is bounded by a given k). Among
possible directions for future work is the study of the impact of richer broadcast
mechanisms such as those that allow processes to have local (unbounded) mail-
boxes, and to consider models augmented by timed and probabilistic transitions
in order to allow quantitative reasoning about network behaviors.
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