Comparison of Dorsocervical With Abdominal Subcutaneous Adipose Tissue in Patients With and Without Antiretroviral Therapy-Associated Lipodystrophy

Ksenia Sevastianova, Jussi Sutinen, Dario Greco, Meline Sievers, Kaisa Salmenkivi, Julia Perttila, Vesa M. Olkkonen, Dick Wågsäter, Martin E. Lidell, Sven Enerback, Per Eriksson, Ulrich A. Walker, Petri Auvinen, Matti Ristola and Hannele Yki-Järvinen

Linköping University Post Print

N.B.: When citing this work, cite the original article.

Original Publication:
http://dx.doi.org/10.2337/db11-0075
Copyright: American Diabetes Association
http://www.diabetes.org/

Postprint available at: Linköping University Electronic Press
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-100335
Comparison of Dorsocervical With Abdominal Subcutaneous Adipose Tissue in Patients With and Without Antiretroviral Therapy–Associated Lipodystrophy

Ksenia Sevastianova,1,2 Jussi Sutinen,2,3 Dario Greco,4 Meline Sievers,5 Kaisa Salmenkivi,6 Julia Perttilä,1 Vesa M. Olkkonen,1 Dick Wågsäter,7 Martin E. Lidell,8 Sven Enerbäck,8 Per Eriksson,7 Ulrich A. Walker,9 Petri Auvinen,4 Matti Ristola,3 and Hannele Yki-Järvinen2

OBJECTIVE—Combination antiretroviral therapy (cART) is associated with lipodystrophy, i.e., loss of subcutaneous adipose tissue in the abdomen, limbs, and face and its accumulation intra-abdominally. No fat is lost dorsocervically and it can even accumulate in this region (buffalo hump). It is unknown how preserved dorsocervical fat differs from abdominal subcutaneous fat in HIV-1–infected cART-treated patients with (cART+LD+) and without (cART+LD−) lipodystrophy.

RESEARCH DESIGN AND METHODS—We used histology, microarray, PCR, and magnetic resonance imaging to compare dorsocervical and abdominal subcutaneous adipose tissue in cART+LD+ (n = 21) and cART+LD− (n = 11).

RESULTS—Albeit dorsocervical adipose tissue in cART+LD+ seems spared from lipodystrophy, its mitochondrial DNA (mtDNA; copies/cell) content was significantly lower (by 62%) than that of the corresponding tissue in cART+LD−. Expression of CD68 mRNA, a marker of macrophages, and numerous inflammatory genes in microarray were significantly lower in dorsocervical versus abdominal subcutaneous adipose tissue. Genes with the greatest difference in expression between the two depots were those involved in regulation of transcription and regionalization (homeobox genes), irrespective of lipodystrophy status. There was negligible mRNA expression of uncoupling protein 1, a gene characteristic of brown adipose tissue, in either depot.

CONCLUSIONS—Because mtDNA is depleted even in the nonatrophied dorsocervical adipose tissue, it is unlikely that the cause of lipodystrophy is loss of mtDNA. Dorsocervical adipose tissue is less inflamed than lipohypertrophic adipose tissue. It does not resemble brown adipose tissue. The greatest difference in gene expression between dorsocervical and abdominal subcutaneous adipose tissue is in expression of homeobox genes.

Diabetes 60:1894–1900, 2011

Use of combination antiretroviral therapy (cART) is associated with the lipodystrophy syndrome, which is characterized by loss of adipose tissue (lipodystrophy) in face, limbs, and abdominal subcutaneous region and accumulation of adipose tissue (lipohypertrophy) intra-abdominally and subcutaneously in the dorsocervical upper trunk (buffalo hump) (1). Although lipodystrophy has been extensively studied both in vitro and in vivo (2–4), lipohypertrophy is poorly understood. There are no data comparing dorsocervical adipose tissue (hypertrophic depot) to abdominal subcutaneous adipose tissue (lipodystrophic depot) from the same individuals and no existing in vitro models explaining their opposite pathophysiology.

There are some but sparse clinical observational data regarding the buffalo hump. The prevalence of buffalo hump, as determined by physical examination, has been estimated to be 2–13% in all HIV-1–infected cART-treated patients and up to 25% in those with the lipodystrophy syndrome (5). In a large group of lipodystrophic patients (n = 417), the presence as compared with the absence of buffalo hump was associated with higher prevalence of visceral adiposity and features of insulin resistance such as fasting serum insulin, C-peptide, and homeostasis model assessment of insulin resistance (HOMA-IR) (5). In a study comparing 926 HIV-1–positive (lipodystrophy status not specified) with 258 HIV-1–negative subjects, upper trunk subcutaneous adipose tissue (on both chest and neck, measured by magnetic resonance imaging [MRI]) was shown to be associated with insulin resistance as measured by HOMA-IR independent of obesity parameters other than intra-abdominal fat (6). In HIV-1–negative subjects, accumulation of dorsocervical adipose tissue has been associated with general and visceral obesity as well as other features of the metabolic syndrome (7–9). Thus the buffalo hump associated with the lipodystrophy syndrome may provide an interesting model of hypertrophic adipose tissue in humans.

It is unclear why in HIV-1–infected cART-treated patients adipose tissue remains normal or even hypertrophies in some areas (e.g., dorsocervically), whereas it atrophies in others (e.g., abdominal subcutis and limbs). In mice, interscapular adipose tissue is known to be brown adipose tissue (BAT) (10). BAT, as opposed to white adipose tissue, is exceptionally rich in mitochondria (11). BAT mitochondria express exceptionally high amounts of...
uncoupling protein 1 (UCP1) (12), a protein responsive for the main function of BAT: adaptive thermogenesis (13). Identification of UCP1 mRNA in dorsocervical adipose tissue of patients with the lipodystrophy syndrome (14,15) has evoked a hypothesis that buffalo hump might be metabolically active BAT. However, after completion of the current study, positron emission tomography (PET) studies have demonstrated that BAT in healthy humans is localized in supraclavicular rather than dorsocervical region (16–18). PET studies have not found BAT in subjects with the lipodystrophy syndrome (19).

In the current study, we compared characteristics of the dorsocervical and the abdominal subcutaneous adipose tissue from the same individuals in a group of 32 cART-treated patients with and without lipodystrophy using histology, microarray, real-time PCR, and MRI.

RESEARCH DESIGN AND METHODS

Study subjects. After approval of the study protocol by the appropriate Ethics Committee, 32 study subjects were recruited from the HIV outpatient clinic of the Establishment Hospital.HIV-negative normosing control group (cART+) was obtained from 44 women. The cART+LD+ group (cART+LD+; n = 21). Subjects without lipodystrophy (cART+LD–; n = 11) had received cART without developing the aforementioned changes in body fat composition. Pregnancy and signs, symptoms, or biochemical evidence of active diseases other than HIV-1 were exclusion criteria. All subjects were studied after an overnight fast. The study subjects had participated previously in a study comparing expression of selected genes in abdominal subcutaneous adipose tissue between lipotropic and nonlipotropic patients (20). The lipotrophic patients have also participated in a clinical treatment trial with uridine (21). All present data on dorsocervical adipose tissue as well as microarray and histology data from both dorsocervical and abdominal subcutaneous adipose tissue are novel.

Surgical subcutaneous adipose tissue biopsies. After local anesthesia with lidocaine, surgical subcutaneous adipose tissue biopsies were taken from the midline between the iliac crest and the umbilicus as well as from the midline at the base of the neck. Part of the biopsy was immediately snap-frozen in liquid nitrogen, whereas another part was formalin-fixed, paraffin-embedded, and used for subsequent histological analyses.

Analysis of adipose tissue biopsies

Mitochondrial DNA copy numbers. Genomic DNA was extracted from adipose tissue with the QiAamp DNA isolation kit (Qiagen, Hilden, Germany). Mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) copy numbers were determined by quantitative PCR using the ABI 7700 sequence detection system (Applied Biosystems; Foster City, CA). All samples were run in triplicate. Absolute mtDNA and nDNA copy numbers were calculated using serial dilutions of plasmids with known copy numbers. Details on primers and exact PCR methodology have been published previously (20).

Light microscopy. Formalin-fixed, paraffin-embedded subcutaneous adipose tissue samples were sectioned using a standard protocol. The slides were stained with hematoxylin and eosin and examined under a light microscope (Nikon Eclipse 80i; Nikon Corporation, Tokyo, Japan) for the amount of connective tissue; vascularization; lipogranulomata, i.e., lipid-laden macrophages (Nikon). Serum ALT activity was determined as recommended by the European Committee for Clinical Laboratory Standards. Serum C-reactive protein (CRP) was analyzed using a commercial kit (Ultrasonisive CPR Kit; Orion Diagnostica, Espoo, Finland). CD4+ T-cell count was determined by flow-cytometry (FACScnt/FACSAIlor; Becton Dickinson, San Josè, CA). HIV-1 viral load was measured using HPS Coar TaqMan 48 HIV-1 Test (Roche Diagnostics, Branchburg, NJ) with a detection limit of 50 copies/mL. Shynymphomato- metric measurement of brachial pressure was conducted after a minimum of 15 min of acclimatization and before sampling.

Statistics. Demographic and clinical parameters among the study groups were compared using Fisher exact test or χ2 test for categorical variables and unpaired t test or Mann-Whitney test for continuous variables, as appropriate. Distribution was tested for normality using a Kolmogorov-Smirnov test. Wilcoxon matched pair tests was used to compare intradividual data.
Correlations were calculated using Spearman rank correlation coefficient. For statistical analyses GraphPad Prism version 4 (GraphPad Software, San Diego, CA) and Lotus 1-2-3 of Lotus SmartSuite Release 9.5 (Lotus Development Corporation, IBM Corporation, New York, NY) were used. Data are given as mean ± SEM or median (25% percentile–75% percentile), as appropriate. Two-tailed P values < 0.05 were considered statistically significant. Statistical analyses of the microarray data are described in detail above.

RESULTS

Study subjects. Characteristics of the patients are given in Table 2. The cART+LD+ and the cART+LD− groups were comparable with respect to age, sex, and BMI. The cART+LD+ group had significantly higher ratios of dorsocervical to abdominal subcutaneous and intra-abdominal to abdominal subcutaneous adipose tissue than the cART+LD− group. Serum insulin, HOMA-IR, and triglyceride concentrations were significantly higher and HDL cholesterol concentrations lower in the cART+LD+ compared with the cART+LD− group (Table 2).

Analysis of adipose tissue biopsies

mtDNA copy numbers: dorsocervical versus abdominal subcutaneous adipose tissue. The mtDNA copy number was significantly higher in the dorsocervical than in the abdominal subcutaneous adipose tissue in the cART+LD+ group (356 ± 59 vs. 256 ± 44 copies/cell; P = 0.01). A similar trend was found in the cART+LD− group (930 ± 109 vs. 563 ± 161 copies/cell; P = 0.08; Fig. 1).

mtDNA copy numbers: cART+LD+ versus cART+LD−. The mtDNA copy number was 62% lower in the cART+LD+ than in the cART+LD− group in the dorsocervical (P < 0.0001) and 54% lower in the abdominal subcutaneous adipose tissue (P = 0.03; Fig. 1).

Light microscopy: dorsocervical versus abdominal subcutaneous adipose tissue. The dorsocervical adipose tissue in both the cART+LD+ and the cART+LD− group had significantly less adipocytes (55 ± 6 vs. 77 ± 5%, P = 0.01; and 61 ± 5 vs. 89 ± 4%, P < 0.00001, respectively) and more connective tissue (45 ± 6 vs. 23 ± 5%, P = 0.01; and 39 ± 5 vs. 11 ± 4%, P < 0.00001, respectively) than the abdominal subcutaneous adipose tissue (Fig. 2). The two depots were similar with respect to variation in adipocyte size, cell membrane rupture, presence of lipogranulomata, and cells morphologically typical to BAT irrespective of the lipodystrophy status (data not shown).

Light microscopy: cART+LD+ versus cART+LD−. The abdominal subcutaneous adipose tissue from patients in the cART+LD+ group contained significantly more lipogranulomata (P = 0.045) than the corresponding tissue from the cART+LD− group (Fig. 2). Other histological parameters did not differ significantly between the cART+LD+ and the cART+LD− group in either depot.

Microarray: dorsocervical versus abdominal subcutaneous adipose tissue in cART+LD+. Microarray analysis comparing the dorsocervical to the abdominal subcutaneous adipose tissue within the cART+LD+ group identified 27,819 probes for genes of which 99 were differentially expressed. These 99 probes corresponded to 75 unique Entrez gene IDs. Of these 75 genes, 61 were downregulated and 14 upregulated in the dorsocervical compared with the abdominal subcutaneous adipose tissue (Supplementary Table 1; full microarray data are available at Gene Expression Omnibus [GEO], http://www.ncbi.nlm.nih.gov/geo; accession number GSE28073). The differentially expressed genes were involved in regulation of gene transcription; organ development; and regionalization, immune response, and inflammation as well as in composition and organization of extracellular matrix and cytoskeleton. Three of the top six genes downregulated in the dorsocervical adipose tissue were homeobox genes HOXA10, HOXC9, and HOXC8. These genes are known to be transcription factors providing cells with specific positional identities on the anterior-posterior axis. Among genes upregulated in the dorsocervical compared with the abdominal subcutaneous adipose tissue was short stature homeobox 2 (SHOX2), a gene responsible for cranio-facial lateralization of the embryonic cells.

Microarray: dorsocervical versus abdominal subcutaneous adipose tissue in cART+LD−. Microarray analysis comparing the dorsocervical to the abdominal subcutaneous adipose tissue within the cART+LD− group identified 27,900 probes for genes of which 18 were differentially expressed. Of these, 13 corresponded to unique Entrez Gene IDs. Of these 13 genes, 9 were downregulated and 4 upregulated in the dorsocervical compared with the abdominal subcutaneous adipose tissue (Supplementary Table 2; full microarray data are available at GEO, vide supra). The differentially expressed genes were involved in regulation of transcription, organ development, and regionalization. The top three downregulated genes were the same HOXA10, HOXC9, and HOXC8 genes as in the cART+LD+ group. Also alike in the cART+LD+ group, SHOX2 was among the genes most upregulated in the dorsocervical as compared with the abdominal adipose tissue.

Table 2: Unique Entrez gene IDs in dorsocervical and abdominal subcutaneous adipose tissue of HIV-LD patients. These 75 genes were differentially expressed within the cART+LD+ group (P < 0.0001 vs. abdominal subcutaneous adipose tissue). These 99 genes were differentially expressed within the cART+LD− group (P < 0.0001 vs. abdominal subcutaneous adipose tissue)
...genes analyzed were not signiﬁcantly different between the cART+LD+ and the cART+LD− groups (Fig. 3).

Real-time PCR veriﬁcation of the microarray data: expression of UCPI in dorsocervical versus abdominal subcutaneous adipose tissue. UCPI mRNA was detected in similar minute quantities in some dorsocervical and abdominal subcutaneous adipose tissue samples, but expression was approximately 1,000 times lower than that measured by the same laboratory in human BAT (data not shown) (18).

Real-time PCR veriﬁcation of the microarray data: expression of CD68 mRNA. Expression of CD68 mRNA, used as a marker of macrophages and, thus, inﬂammation, was signiﬁcantly lower in the dorsocervical as compared with the abdominal subcutaneous adipose tissue in the cART+LD+ group (0.39 [0.08–0.63] vs. 0.56 [0.19–0.49], P = 0.02). The same was true also in the cART+LD− group (P = 0.04). Expression of CD68 mRNA did not differ between the study groups in either adipose tissue depot (data not shown).

DISCUSSION

Herein we compared in detail the dorsocervical adipose tissue of cART-treated patients with and without lipodystrophy to the abdominal subcutaneous adipose tissue from...
the same individuals. Composition and characteristics of these two depots are of interest since in lipodystrophic patients one atrophies (abdominal depot), whereas the other is spared (dorsocervical depot).

mtDNA. We found that mtDNA copy numbers are significantly lower in the dorsocervical and the abdominal subcutaneous adipose tissue of the cART+LD+ group than in the respective depots in the cART+LD− group. Dorsocervical adipose tissue had significantly more mtDNA than the abdominal subcutaneous adipose tissue in the cART+LD+ group and almost significantly ($P = 0.08$) in the cART+LD− group. These results confirm previous reports on mtDNA depletion in lipoatrophic adipose tissue (14,20,30,31). However, the fact that mtDNA content is highly significantly lower (by 62%) also in the dorsocervical adipose tissue of cART+LD+ compared with the corresponding tissue in cART+LD− while the two depots are phenotypically comparable contradicts the prevailing theory that mtDNA depletion causes lipoatrophy. It also implies that once the lipodystrophy syndrome develops, the derangements observed in the adipose tissue are systemic and not restricted to atrophic abdominal subcutaneous adipose tissue.

Dorsocervical adipose tissue in the lipodystrophy syndrome has been suggested to represent BAT based on its anatomical location (14,32). Hallmarks of BAT include ample mitochondria featuring high metabolic activity and high expression of UCP1 (10–12). Previous studies reported significant amounts of $UCP1$ mRNA in the buffalo hump, but not in healthy or lipoatrophic abdominal subcutaneous adipose tissue (14,15). Protein levels of $UCP1$ were not quantified. In our dorsocervical adipose tissue samples, we did not find increased copy numbers of mtDNA compared with abdominal subcutaneous adipose tissue and found no evidence of biologically significant $UCP1$ expression using the same assay as previously used to verify the presence of $UCP1$ in BAT in human supraclavicular adipose tissue studied by PET (18). Moreover, we did not see typical BAT morphology in our dorsocervical tissue samples, even in those from the clinically most prominent buffalo humps. This is in line with a recent study in subjects with cART-associated lipodystrophy reporting their dorsocervical adipose tissue to lack BAT morphology and not to be activated by cold exposure like true BAT would (19). Thus the present data support the view that dorsocervical adipose tissue in cART-associated lipodystrophy is not BAT.

Histology. Lipoatrophic adipose tissue, as compared with nonlipodystrophic adipose tissue, is known to be characterized by smaller adipocytes, greater cell size variation, disruption of cell membranes, and signs of

![FIG. 1. Number of mtDNA copies per cell in dorsocervical (Dc) and abdominal subcutaneous (Abd. s.c.) adipose tissue of cART+LD+ and cART+LD− patients. Data are given as mean ± SEM.](image)

![FIG. 2. Representative hematoxylin and eosin staining of the dorsocervical (top panels) and the abdominal (bottom panels) subcutaneous adipose tissue from cART+LD+ subjects (left panels) and cART+LD− subjects (right panels). Original magnification ×150. The dorsocervical adipose tissue exhibits less adipocytes surrounded by more prominent connective tissue than the abdominal subcutaneous adipose tissue. Note the regular structure of both the dorsocervical and the abdominal subcutaneous adipose tissue in the cART+LD− subjects—adipocytes are predominantly equal in size with few blood vessels observed between them. The adipose tissue from the cART+LD+ subjects, in contrast, tends to show greater cell size variation and more proliferated vascularization, although these differences do not reach statistical significance in our analyses.](image)

![FIG. 3. Mean fold change in mRNA expression (measured by RT-PCR) in dorsocervical vs. abdominal subcutaneous adipose tissue in cART+LD+ group (black bars) and cART+LD− group (white bars). Positive values on the y-axis indicate upregulation and negative values indicate downregulation of the gene in question in the dorsocervical vs. abdominal subcutaneous adipose tissue. Error bars, SEM.](image)
apoptosis as determined by immunohistochemistry staining compared with nonlipodystrophic adipose tissue (33–35). In our histological analyses, irrespective of the lipodystrophy status, we found less adipocytes and more connective tissue in the dorsocervical than in the abdominal subcutaneous adipose tissue. Thus these characteristics seem to be intrinsic to the dorsocervical location. Hitherto, light microscopy and ultrastructural characterization of adipose tissue from lipohypertrophic areas of HIV-1-infected subjects on cART have only been examined in one small study (n = 4) (35). Although the study did not specify the anatomical location of the lipohypertrophic areas, adipose tissue from these regions was reported to show similar, although milder, changes than those seen in lipoatrophic areas (35). These could not be quantitated because of the small sample size.

The volume fraction of adipocytes and connective tissue was not reported but the finding of lipohypertrophic fat to be more normal is in line with the present data on lower CD68 expression and more preserved mtDNA copy number in the dorsocervical compared with the abdominal subcutaneous adipose tissue (vide infra).

Inflammation. We found expression of CD68 mRNA to be significantly lower in the dorsocervical than in the abdominal subcutaneous adipose tissue in both the cART+LD+ and the cART+LD− groups. Furthermore, microarray data suggested that genes involved in immune and inflammatory processes are downregulated in the dorsocervical as compared with the abdominal subcutaneous adipose tissue in the cART+LD+ group. These findings are in line with those of Guallar et al. (14), who found that inflammation, as judged from mRNA expression of TNF-α and CD68, is more severe in lipoatrophic abdominal subcutaneous adipose tissue than in the dorsocervical region, although in the latter study samples were not from the same subjects.

Homeobox genes. The microarray data suggested that dorsocervical and abdominal subcutaneous adipose tissue are largely similar. Using stringent criteria to avoid false-positive data, of all genes in the genome only less than 100 were differentially expressed. The genes differentially expressed in both the cART+LD+ and the cART+LD− groups are most likely to be those different because of the anatomic location of the tissues. The number of genes differentially expressed in the dorsocervical compared with the abdominal subcutaneous adipose tissue was markedly greater in the cART+LD+ than the cART+LD− group. Genes found to be discrepant between the dorsocervical and the abdominal subcutaneous depot only within the cART+LD+ group seem to represent characteristic features of lipoatrophy (e.g., upregulated inflammatory genes).

The foremost difference between dorsocervical and abdominal subcutaneous adipose tissue was in expression of the homeobox genes. The difference was observed in both the lipodystrophic and the nonlipodystrophic adipose tissue using microarray analysis and confirmed by real-time PCR. Homeobox genes are evolutionary highly conserved genes that serve as transcription factors guiding cells of the embryonal neural tube to migrate to their destined location and determining the distinctive traits inherent to the tissue being formed. There are four homeobox gene clusters in mammals: HOXA, HOXB, HOXC, and HOXD (36). Each cluster has several members numbered in ascending order starting from the anterior boundary of the central nervous system. Thus, the lower the order number of a homeobox gene, the more cranially it is located. Our findings are in line with this, since rostral SHOX2 was overexpressed in dorsocervical compared with abdominal subcutaneous adipose tissue. The reverse was true for the caudal homeobox genes HOXA10, HOXC9, and HOXC8. These data support the validity of the microarray data and are in line with previous reports of depot-specific expression of homeobox genes in human adipose tissue in vivo (37–40) and in human adipose tissue–derived preadipocytes (41) and stromal cells (42). These differences were hypothesized to reflect the differentiation stages and adipogenic potential of adipose tissue depots as also suggested by work in murine models and cell cultures (43). The above human studies, however, evaluated expression of homeobox genes in adipose tissue samples from different locations along the ventrodorsal (subcutaneous–visceral–retroperitoneal) rather than the cranio-caudal (dorsocervical–abdominal subcutaneous) axis that was examined in the current study. Of interest, HOXC4, which was expressed exclusively in BAT (37), was not differentially expressed between the two adipose tissue depots in the present microarray analysis. This fortifies the notion that dorsocervical adipose tissue in cART-associated lipodystrophy is not BAT.

We conclude that mtDNA is highly significantly lower (by 62%) even in the nonlipodystrophic dorsocervical adipose tissue of the cART+LD+ patients when compared with the corresponding depot of the cART+LD−. Therefore, mtDNA depletion does not seem to lead to lipoatrophy. In lipodystrophic patients, the dorsocervical adipose tissue is less inflamed than the lipodystrophic abdominal subcutaneous adipose tissue. It does not resemble BAT. The most marked difference in gene expression between dorsocervical and abdominal subcutaneous adipose tissue, irrespective of the lipodystrophy status, lies in expression of homeobox genes involved in organogenesis and regionalization. Disparate expression of such fundamental regulators of transcription might ultimately contribute to different patterns of differentiation and affect the susceptibility of the adipose tissue depot to CART-induced toxicity, perhaps making the abdominal subcutaneous depot more vulnerable to atrophy.

ACKNOWLEDGMENTS

This study was supported by grants from EVO and Sigrid Juselius Foundations (to H.Y.-J.), Orion Research Foundation (to K.S.), Lilly Foundation (to K.S.), Biomedicum Foundation (to K.S.), Finnish Medical Foundation (to K.S.), Jalmari and Rauha Ahokas Foundation, and Alfred Kordelin Foundation (to K.S.). No other potential conflicts of interest relevant to this article were reported.

K.S. and J.S. researched data, contributed to discussion, and wrote the manuscript. D.G., M.S., K.S., J.P., V.M.O., H.Y.-J., M.E.L., S.E., P.E., U.A.W., P.A., and M.R. researched data, contributed to discussion, and reviewed and edited the final version of the manuscript. H.Y.-J. researched data, contributed to discussion, and wrote the manuscript.

The authors thank Katja Sohlo and Mira Urjansson (Helsinki University Central Hospital, Department of Medicine) as well as Pentti Pölönen (Helsinki University Central Hospital, Department of Radiology) for skilful technical assistance and thank Antti Hakkarainen (Helsinki University Central Hospital, Department of Radiology) for useful discussions.

REFERENCES

