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Abstract 
 
This study investigates the Internet topology characterization on AS level driven from Border 
Gateway Protocol (BGP) tables which are collected from Réseaux IP Européens (RIPE) datasets 
during the seven year period, from 2003.07.30 to 2010.07.30. 
 
The investigation shows that despite of the growth of the Internet with lack of centralized 
control, some properties of the Internet follow certain rules and some properties remain the 
same during years. It demonstrates that the Internet, on AS level, exists in the form of clusters 
of ASs and the connected ASs with higher connectivity become even more connected during 
time. The spectral analysis of adjacency and normalized Laplacian matrix shows that the 
eigenvalues of both matrixes follow power-laws with high correlation coefficient with no 
considerable change in exponent values during years.  
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1. Introduction 
 

1.1 Overview 

 
The Internet, the network of networks [1] with millions of users, which are connected to each 
other by different technologies, is growing every day.  It is of great interest to scientists to 
analyze certain topological behaviors and characteristics [2] [3][4][5][6] of the Internet 
infrastructure despite of all the various applied technologies in conjunction with its rapid growth 
without a central control [6]. Determining and mapping certain characteristics of the Internet 
topology helps us to have a better understanding of the Internet infrastructure therefore it 
makes it possible to model or simulate the Internet for further studies and consequently to 
better solutions for problems and new protocols [2]. Due to the large size of the Internet, it is 
preferred to investigate the research on the representatives of groups of routers which are 
called Autonomous Systems (AS). In order to analyze the Internet topology on AS level it is 
needed to extract the Internet data at AS level with the help of available datasets on the 
Internet. In this study analyzing the Internet data at AS-level will be achieved by generating a 
graph corresponding to connected ASs collected from Border Gateway Protocol (BGP) tables 
since it is possible to extrapolate the topological behavior of a graph from its related matrixes. 
This study shows that despite many factors, dynamics and of all the differences in applied 
technologies of networks, including all changes and rapid growth in the Internet some 
characteristics of the Internet remain the same and that in fact they follow specific rules over 
time. Literature review reveals that the existence of several power-laws in the Internet graph 
has been proved. For instance the presence of power-laws in the following properties has been 
seen:  

 Node degree vs. node rank 

 Node degree frequency vs. degree 

 Number of nodes within a number of hops vs. number of hops  

 eigenvalues of the adjacency and normalized Laplacian matrix vs. the order of the 
eigenvalues [3][4] [6][8] 

 
On the other hand, the spectrum of adjacency and normalized Laplacian matrix reveal more 
topological characteristics of the Internet such as the diameter of the network, presence of 
cohesive clusters, long paths and bottlenecks, connectivity, and the randomness of a graph [2]. 
It is possible to show the clustering properties of ASs by calculating the eigenvector 
corresponding to the largest eigenvalue of Laplacian matrix [4]. The second smallest eigenvalue 
of Laplacian matrix or algebraic connectivity specifies the connectivity characteristic of a graph. 
It is shown that the Internet exists as clusters of connected ASs and over time, the more 
connected ASs become even more connected. 
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Therefore, regardless of how rapidly and uncentralized the Internet grows, the Internet 
infrastructure still follows certain rules and several power-laws have been found in the Internet 
graph topology. 
 

1.2 Goals 
 
This thesis collected information of BGP (Border Gateway Protocol) routing tables on each AS 
from the dataset in RIPE (Réseaux IP Européens, which is French for European IP Networks) 
project over a period of seven years, from 2003.07.30 to 2010.07.30. The Internet graph at AS 
level has been mapped with the data taken from information in BGP routing tables. The 
adjacency and normalized Laplacian matrix of related graphs has been made and consequently 
the spectrum of a graph based on adjacency and normalized Laplacin matrix has been 
calculated. 
 
In this thesis we prove that eigenvalues of adjacency matrix and normalized Laplacian matrix 
follows power-law without considerable change in power-law exponents during a period of 
seven years up to 2010.07.30, this occurs despite of many changes to the Internet in terms of its 
growth.  
 
This thesis also shows that the Internet graph exists as clusters of connected ASs and over 
increasing time the ASs which are already more connected than other ASs actually become 
more connected.  
  
For the purpose of this thesis all the calculations and depicted graphs have been done in 
MATLAB 
 

1.3 Outline 
 

Chapter 2, 3, 4, and 5 explains the required background for this report. In chapter 2 different 
routing protocols are explained. Chapter 3 specifically discuss about the Internet routing 
protocol and introduction to the datasets which is used in this study. Chapter 4 is some basic 
concepts about graph theory and the definition of spectral analysis. Chapter 5 explains the 
required knowledge of power-laws for this study. Chapter 6 and 7 explains the practical part of 
the study. Chapter 6 specifically explains how to collect the real information of BGP tables from 
BGP routers and how to convert it to human readable format. Chapter 7 demonstrates the 
analysis of collected information from BGP tables and finally chapter 8 is the conclusion of the 
study. 
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2. Basic Internet Structure 

Due to the size and scope of the Internet it is not possible for one routing protocol to take care 
of all the updates in routing tables. Therefore, “the Internet is divided into autonomous systems 
(ASs) [7].” “The Autonomous system (AS) is a group of networks and routers under the authority 
of a single administration [7].” The routing protocols are divided into two major groups:  
Intradomain Routing Protocol which is the routing inside the autonomous system and 
Interdommain Routing Protocol which is the routing between the autonomous systems. 

2.1. Internal Routing Protocol (Intradomain Routing Protocol)  

In this subchapter we focus on two important internal routing protocols: Distance Vector 
Routing Protocol and Link State Routing Protocol. 

2.1.1. Distance Vector Routing Protocol  
Distance vector routing protocol applies the Bellman-Ford algorithm for implementation. In this 
case routers do not have information about the whole path to the destination. “The route with 
minimum distance can be considered the least cost route between any two nodes [7].” In each 
router there is a table, wherein lies a list of nodes and the minimum cost to reach them. This 
information will be shared to the neighbors.  
 
In initiation state the routers only have the information cost of their immediate neighbors but 
after a while they will receive more information of farther nodes from the immediate neighbors 
which are acting as intermediate nodes. This sharing of information between the neighbors is 
done whenever there is a change or update in the table, or it can also be done periodically, 
alternatively it can also be called Triggered update and Periodic update. One of the famous 
examples of distance vector routing protocol is Routing Information Protocol (RIP). The metric in 
RIP is on a hop count basis which means that the number of links to final destination is the 
counted distance. RIP has three timers: Periodical Timer, Expiration Timer and Garbage 
Collection Timer. 
 
    Periodical Timer 

 “Every 30 seconds a RIP router will broadcast a lists of networks and the subnets it can reach 
periodically [7]” regardless of whether or not the information has changed. 
 
   Expiration Timer 

 A route can be received to a router from the update information. “After receiving the updates 
regarding the route a time is set to 180 which is an expiration timer [9].” For each single 
received update the expiration timer will be set. If a problem occurs and no update is received 
during expiration time the route is considered expired and the hop count is set to 16 which 
means the destination is unreachable.  
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   Garbage Collection Timer 

If the information of a router is invalid then it will not erase this information immediately from 
the routing table, rather it will keep it in its table for 120 seconds with metric of 16 and after 
this 120 second period it will erase the information. This 120 second is referred to as the 
garbage collection timer. 
 
A router only knows information about its own routing table and its neighbors routing table. 
Every 30 seconds (periodical update) or for each update (triggered update) the router will 
reevaluate its table to check if the update route has less cost, and if this condition is true then it 
will update the routing table otherwise it will not make any changes. Accordingly the routing 
table will be set for all the routers over the time to interconnect and process any changes in the 
routing tables. 
 
 

2.1.2. Link State Routing Protocol is based on Dijkstra algorithm. “In this Protocol each 
node floods the information to all other nodes in the network. Contrary to distance vector 
routing protocol, each node in the domain has the entire topology of the domain like the list of 
nodes, links, how they are connected including the type, cost and the condition of the links (up 
or down) [7].” 
 
The Open Shortest Path First (OSPF) protocol is an intradomain routing protocol based on link 
state routing and its domain is also an AS. The OSPF protocol allows the administrator to assign 
a cost, called the metric, to each route. The metric can be based on a type of service (minimum 
delay, maximum throughput, and so on). As a matter of fact, “a router can have multiple routing 
tables: each based on a different type of service [7].”  
The OSPF Protocol does not impose a hop-count restriction so it is suitable for larger networks. 
The protocol uses small "hello" packets to verify link operation without transferring large tables 
every 10 seconds and if after 40 seconds no “hello” packet is received from a neighbor router it 
is considered as a dead interval. “OSPF uses the “hello” message to create neighborhood 
relationships and to test the reachability of neighbors [7].” Before a router routes a packet it 
processes the information about its neighbors to check if they are reachable or alive. This can be 
done by sending the "hello" packet to the neighbor. OSPF uses the shortest path algorithm 
which uses a tree that contains network topology.  
In the beginning the router sends the "hello" packet to make the routing connection. "Link 
state" is another message used for updating in specified intervals so that all the routers know 
the routing information of the entire network. Then the shortest path can be extracted from 
"shortest path tree".  
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2.2. External Routing Protocols (Interdomain Routing Protocol) 

 
It is not feasible to use intradomain routing protocols between the ASs.  Distance vector routing 
will be instable for a large number of hops. On the other hand link state routing needs a large 
amount of resources to calculate routing tables [1] and also traffic in the network will increase 
dramatically because of flooding. In order to deal with the problem, another protocol is used for 
interdomain routing. Path Vector Routing Protocol is a suitable protocol for external routing. 
The idea is similar to distance vector routing but with some differences. In path vector routing 
there is a concept of speaker node which is a node in autonomous system that acts on behalf of 
the entire autonomous system. In this case speaker nodes talk to each other and create the 
tables and instead of advertising the metric, they advertise the path. Initially, each speaker node 
has the information of its own autonomous system’s nodes but then they start sharing their 
own tables with their neighbors and over time they will update their tables with the possible 
paths to other ASs. There are several metrics to find the optimal path to the destination. It’s not 
just the number of intermediate ASs but also factors of security, reliability and other metrics are 
important in choosing the optimal path. 
 
To be able to send a datagram from a source to destination, two different kinds of routing 
tables are defined. One table for the intradomain routing inside an AS and the other table for 
interdomain routing between the ASs. A datagram can find the route to destination by the help 
of interdomain tables from one AS to another AS. When it reaches the destination AS, it does 
not need to travel from one AS to another AS, instead, it needs to find the destination inside the 
AS. As it was mentioned before intradomain routing protocols are used inside an AS. Therefore, 
after reaching the destination AS, the nodes use the intradomain routing tables in order to find 
the destination.                                                                                 
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3. BGP 
Border Gateway Protocol is one of the famous interdomain routing protocols in TCP/IP 
networks which uses path vector routing. It also uses CIDR (Classless Interadomain Addressing) 
notation for addressing in order to reduce the size of routing tables by grouping the routes 
together. “The exchange of routing information between two routers using BGP takes place in a 
session [7].” “A session is a connection that is established between two BGP routers only for the 
sake of exchanging routing information [7].” BGP sessions are TCP based and they last for a 
longer time until something unusual happens therefore they can also be called as semi- 
permanent connections. There are two types of BGP sessions: internal (I-BGP) and external (E-
BGP). E-BGP is used between the two speaker nodes of different ASs since I-BGP is used 
between the routers inside an autonomous system. BGP routers exchange routing information 
using four types of messages [9]: open, update, keepalive, notification. 
In order to make a TCP connection with a neighbor, the router sends an open message to its 
neighbor and if the neighbor accepts the connection, it will send a keepalive message to the 
router and then the connection between two routers are established. In order to transfer the 
updates to the neighbors update message will be used. When a router wants to close a 
connection or whenever an error occurs, a notification message will be sent.  
 

3.1. Autonomous System 

“The Internet is divided into hierarchical domains called autonomous systems [7].” “A large 
corporation that manages its own network and has full control over it is an autonomous system 
[7].” As an example a local ISP (Internet Service Provider) can be an AS.  There are three types of 
Autonomous Systems: 

 Stub AS 

Stub AS has only one connection to another AS. It means that the traffic will not pass through 
the Stub AS. It can either receive the traffic or it can send the traffic to one AS. “A stub AS is 
either a source or a sink [7].” 

 Multihomed AS 

Multi-homed AS has more connection to other ASs but still it does not transit the traffic through 
itself to another AS. It can also send the traffic to more than one AS and also receive traffic from 
more than one AS but still it is a source or a sink. 
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 Transit AS 

Transit AS has multiple connections to multiple ASs and it can also transit the traffic through 
itself. As an example national and international ISPs (Internet Service Provider) can be a transit 
AS. 

Each AS has a unique number which represents its network uniquely on the Internet. This 
number is called ASN (Autonomous System Number). IANA (Internet Assigned Numbers 
Authority) is the organization responsible for assigning the AS numbers. Initially, IANA defined 
AS numbers by 16 bits but as the Internet is growing rapidly, IANA started to use 32 bits for 
ASNs on December 1st 2006. By using 32 bits they expanded the pool size from 65536 to 
4294967296.  

In 16-bit format each ASN has been represented by 16 bits from a pool of 65536. Out of this 
pool, 1023 numbers are reserved for private use, 3074 numbers are reserved for special use and 
the remaining of 61439 numbers is available for use to support the Internet's public inter-
domain routing system [10]. 

In 32-bit format there is a pool of 4294967296. From this pool 1023 numbers (which are 
common in 16-bit as well) are reserved for private use, 65537 are reserved for special use (just 
in 32-bit, therefore in total there are 65537 + 3074 = 68611 numbers of reserved for special 
used in 32-format) and the remaining pool of 4294897662 numbers are available for use to 
support the Internet's public inter-domain routing system [10].  

The available numbers can be either allocated or unallocated. Not all the available numbers are 
allocated but the allocated ones are managed by Regional Internet Registries (RIRs). There are 
five RIRs around the world:  

 AfriNIC (African Network Information Center) is the RIR for Africa. 

  APNIC (Asia Pacific Network Information Centre) is the RIR for the Asia Pacific region. 

 ARIN (American Registry for Internet Numbers) is the RIR for Canada, many Caribbean and 
North Atlantic islands, and the United States. 

 LACNIC (Latin America and Caribbean Network Information Centre) is the RIR for the Latin 
American and Caribbean regions. 

 RIPE-NCC (The Réseaux IP Européens Network Coordination Centre) is the RIR for Europe, 
the Middle East and parts of Central Asia. 

3.2. BGP Dataset 

BGP datasets collect and store the information of routing tables in MRT format. In this thesis 
project datasets form RIPE (Réseaux IP Européens) project is used. Some terms is explained 
below in order to make a better understanding of the BGP datasets which are used in this study 
and then in chapter 6 it will be discussed in more details. 
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RIR: Regional Internet Registries are the organizations which manage the allocated ASs in their 
own region. As it was mentioned in 3.1 there are five different RIRs for five different regions 
which are AfriNIC, APNIC, ARIN, LACNIC, and RIPE-NCC. 

RIPE NCC: The Réseaux IP Européens Network Coordination Centre is the Regional Internet 
Registry (RIR) for Europe, the Middle East and parts of Central Asia. RIPE NCC manages the 
allocated ASs in the mentioned regions.  The head quarter is in Amsterdam, Netherlands [11]. 
The start point of RIPE NCC was in April 1992.  

RIS: Routing Information Service is a project in RIPE NCC that “collects and stores Internet 
routing data from several locations around the globe. RIS offers tools that bring this data to the 
Internet community [12].”  

RRC: RIPE NCC uses Remote Route Collectors (RRC) in different part of the world to collect the 
Internet routing data. “It is a software router, running on a Linux platform that only collects 
default free BGP routing information [13].” The RRCs collect the routing data from different 
regions. There are 17 RRCs in different geographical place to collect the BGP tables in specific 
times. As it is shown below, most of them are located in Europe: 

 rrc00.ripe.net at RIPE NCC, Amsterdam,  
 rrc01.ripe.net at LINX, London 
 rrc02.ripe.net at SFINX, Paris.  
 rrc03.ripe.net at AMS-IX, Amsterdam.  
 rrc04.ripe.net at CIXP, Geneva.  
 rrc05.ripe.net at VIX, Vienna.  
 rrc06.ripe.net at Otemachi, Japan.  
 rrc07.ripe.net in Stockholm, Sweden.  
 rrc08.ripe.net at San Jose (CA), USA. 
 rrc09.ripe.net at Zurich, Switzerland.  
 rrc10.ripe.net at Milan, Italy 
 rrc11.ripe.net at New York (NY), USA.  
 rrc12.ripe.net at Frankfurt, Germany.  
 rrc13.ripe.net at Moscow, Russia.  
 rrc14.ripe.net at Palo Alto, USA.  
 rrc15.ripe.net at Sao Paulo, Brazil.  
 rrc16.ripe.net at Miami, USA.  

MRT Format: The Internet routing data in each RRC is stored according to the collected dates 
and times in MRT format. “The MRT format was developed to encapsulate, export, and archive 
the information regarding network behavior analysis (by studying routing protocol transactions 
and routing information base snapshots) in a standardized data representation [14].” “MRT 
routing information export format represents an effective way of storing BGP routing 
information in binary dump file [15].” 

http://data.ris.ripe.net/rrc00
http://data.ris.ripe.net/rrc01
http://data.ris.ripe.net/rrc02
http://data.ris.ripe.net/rrc03
http://data.ris.ripe.net/rrc04
http://data.ris.ripe.net/rrc05
http://data.ris.ripe.net/rrc06
http://data.ris.ripe.net/rrc07
http://data.ris.ripe.net/rrc08
http://data.ris.ripe.net/rrc09
http://data.ris.ripe.net/rrc10/
http://data.ris.ripe.net/rrc11/
http://data.ris.ripe.net/rrc12/
http://data.ris.ripe.net/rrc13/
http://data.ris.ripe.net/rrc14/
http://data.ris.ripe.net/rrc15/
http://data.ris.ripe.net/rrc16/
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Route Views: Route Views is a project founded by Advanced Network Technology Center at the 
University of Oregon to allow. The Route Views BGP monitor collects update streams from 25 
BGP speaking neighbors. It collects five to six million updates per day [16]. Like RIPE project, it 
also collects and restores BGP routing table information. Most information is collected from 
North America.   

According to the explanation, RRCs which are located in 17 different part of the world are 
responsible to collect the BGP table information at specific times during a day and store the 
information in MRT format. The MRT files, which are the BGP routing table information, should 
be converted to human readable files in order to understand the information of the routing 
tables and investigate the properties of the extracted data. There are some tools to convert the 
MRT files to ASCI and human readable file. These tools are presented in both RIPE and Rout 
Views project. This project converted the MRT files to human readable files with the tools 
introduced in both RIPE and Rout Views project in order to compare the converted files from 
different introduced tools. The comparison between the converted files shows the same result. 
In this project with the help of the tools in both Ripe and Route views project we could convert 
the MRT files to human readable files.  

Route Views project introduces three tools to convert the binary MRT files to ASCI which are: 

 zebra-dump-parser 

 bgpdump 

 route_btoa 

This study used zebra-dump-parser from Route Views project and pgbdump from RIPE project 
to convert the MRT files to ASCI.  

zebra-dump-parser: is a perl script written by Marco d'Itri. This script is capable of parsing the 
MRT files.  

bgpdump: “bgpdump is in the libbgpdump sources which are maintained by RIPE RIS  [17].” 
Libbgpdump: Libbgpdump is a C library designed to help analyzing dump files which are 
produced by Zebra/Quagga or MRT. 

Below is an example of MRT file syntax after conversion to human readable format:  

TIME: 07/31/04 00:00:00 

TYPE: TABLE_DUMP/INET 

VIEW: 0 

SEQUENCE: 0 
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PREFIX: 3.0.0.0/8 

FROM:195.66.224.99 AS13237 

ORIGINATED: 07/30/04 10:19:38 

ORIGIN: IGP 

ASPATH: 13237 1299 1239 80 

NEXT_HOP: 195.66.224.99 

COMMUNITY: 13237:44049 13237:46021 

STATUS: 0x1 
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4. Internet Topology and Graph Theory 

4.1. Basic Graph Theory 

The Internet can be presented as a huge undirected graph on AS level where routers are 
represented by nodes which are also called vertices and transmission lines represented by 
edges which are the connection between the nodes [2]. Therefore the Internet can be 
presented as G (V, E) where V represents the vertices or nodes and E represents edges or the 
connection between nodes. Like all undirected graphs, the Internet graph can also be presented 
by different kinds of matrixes. Among all representative matrixes, adjacency, diagonal, Laplacian 
and normalized Laplacian matrixes are of more importance.  

 The Internet graph can be represented by an adjacency matrix of size V×V. Two nodes are 
called adjacent if they are connected by an edge together. Therefore an adjacency matrix can be 
created based on adjacent node definition which means that adjacency matrix is a way to show 
which nodes are adjacent to each other. The network can be presented by an adjacency matrix 
as below:  

                              (Formula4. 1) 

                         

In an undirected graph the number of edges from a certain node is called node degree. To 
present the node degree in matrix format a diagonal matrix should be defined. In order to make 
the diagonal matrix out of the adjacency matrix, we should sum up the values in each row of the 
adjacency matrix and set them as the diagonal values of the diagonal matrix, all the other 
elements except the values on diagonal are set to zero. This diagonal shows the degree of each 
corresponding node or router. The mathematical representation can be shown as below: 

D(G)= diag(sum(A(G)))                (Formula4. 2) 

One of the most important matrixes in spectral graph theory is Laplacian matrix which is also 
called admittance matrix or Kirchhoff matrix. Outstanding properties of Laplacian matrix reveal 
the behavior of the graph. Some of the most important properties of graph are extrapolated by 
Laplacian matrix, for instance connectivity and clustering are defined by Laplacian matrix which 
will be explained further more. Laplacian Matrix can be represented as below, where D(G) is the 
corresponding diagonal matrix of the graph and A(G) represents the adjacency matrix: 

L(G)= D(G) − A(G)                         (Formula4. 3) 
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According to definition above this matrix is closely related to adjacency matrix. Another 
representation of Laplacian matrix can be defined as below where is the degree of 

node : 

       (Formula4. 4) 

        
                   

Based on Laplacian matrix L and diagonal matrix D it is possible to define the normalized 
Laplacian matrix:  

NL(G)= D-1/2LD-1/2                         (Formula4. 5) 

Another presentation of normalized Laplacian matrix can be defined as below.   

   

         (Formula4. 6) 

 

All the eigenvalues of normalized Laplacian matrix are real and non-negative [29]. One of the 
useful properties of Normalized laplacian matrix is that the ranges of all the eigenvalues are 
between 0 and 2 so it makes comparing the spectra of two graphs easier [32]. The smallest 
eigenvalue of normalized Laplacian matrix is always 0. “Another motivation for using the 
normalized Laplacian Matrix is to make it more naturally to deal with non-regular graphs since it 
behaves more naturally with non-regular graphs [18]” which means that “in some situations the 
normalized Laplacian is a more natural tool that works better than the adjacency matrix or 
combinatorial Laplacian to analyze the properties of a graph [18].” “The eigenvalues of the 
normalized Laplacian matrix are in a “normalized” form [29][30]” and they relate well to other 
graph invariants for general graphs in a way that the other two matrixes (Adjacency and 
Laplacian) fail to do [30].It is consistent with the eigenvalues in spectral geometry and in 
stochastic processes which is an advantage of normalized Laplacian matrix [30]. 

4.2. Eigenvalues and eigenvectors: 

Eigenvalues and eigenvectors are two important concepts in spectral analysis of a graph. In 
other words spectral analysis of a graph based on eigenvalues and eigenvectors. In order to 
understand eigenvalues and eigenvectors and their specific characteristic which makes them to 
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reveal the important properties of the graphs, we need to know some concepts like: square 
matrix, transpose of a matrix, symmetric matrix,  

Square matrix: every n by n (n × n) dimension matrix is called a square matrix. 

Transpose of a matrix: Consider we make a matrix AT in which all the columns in matrix A are 
the corresponding rows in matrix AT and all the rows in matrix A are the corresponding columns 
in matrix AT. Matrix AT is called a transpose matrix of matrix A. 

Symmetric matrix: If a square matrix equals to its transpose matrix we call it a symmetric 
matrix. In other words A is symmetric if A= AT. 

Eigenvectors are also known as proper vectors, characteristic vectors or latent vectors which are 
set of vectors associated with matrixes [19].The term eigenvector is meaningless without 
eigenvalue. The both definitions rely on each other. For each set of eigenvector there is a 
corresponding eigenvalue.  “Eigen means self in German [20]” and the reason of choosing this 
name relies on eigenvalue and eigenvector concept. If a non-zero vector v multiplied by matrix 
A and the result of the multiplication still remains parallel to the original vector, or in other 
words the result of the multiplication of A by v equals to λv, where λ is an scalar, we call the v 
vector as the eigenvector of matrix A and λ as the eigenvalue of the corresponding eigenvector 
v of the matrix A. It can be represented as below 

Av = λv                 (Formula4. 7) 

Based on the definition of eigenvalues, the spectrum of a matrix is defined. The whole set of 
eigenvalues of a matrix is called the spectrum of a matrix. Therefore spectral analysis of a matrix 
relates to investigation of eigenvalues of a matrix since they reveal some important 
characteristics of a matrix. Some of these characteristics are listed below: 

1- Number of connected components in a graph which is defined as the number of times that 
eigenvalue of a Laplacian matrix becomes zero. It shows the number of disconnected sub-
networks [21] [22]. In other words the multiplicity of 0 as an eigenvalue of L is the number of 
connected components of the graph [30]. 

2- Spectral gap:  The smallest non-zero eigenvalue of the Laplacian matrix is called spectral gap 
which is the difference between two largest eigenvalues. 

3- The second smallest nonzero eigenvalue in Laplacian matrix is called algebraic connectivity or 
Fiedler value [6][23]. If and only if the graph is connected, the algebraic connectivity (second 
smallest eigenvalue of Laplacian matrix) will be greater than zero. The magnitude of the 
algebraic connectivity shows the robustness of the graph or network.  The bigger algebraic 
connectivity values show that the more connected is the graph or network and it is more 
difficult to make the graph into disconnected components. The algebraic connectivity depends 
on both the number of vertices and edges.  



18 

 

4-The eigenvector corresponding to the largest eigenvalues shows the clustering of a graph or 
network [2][3][4][5][6]. In general the eigenvectors corresponding to the largest eigenvalues 
reveal the global attributes like clustering of nodes in a graph or network and the eigenvector 
corresponding to the small eigenvalues reveal the local attributes like connectivity. “Clustering 
means partitioning of a graph, so that the edges between different groups have low similarity 
(low distance) and the edges within a group have high weight (low distance) [31].” In other 
words clustering is the task of grouping the vertices of the graph into clusters [32] in which 
there are many edges within each cluster and few edges between the clusters.  

5- Symmetric normalized Laplacian matrixes are positive semi-definite and have n non-negative 
real-valued eigenvalues 0 = λ1 ≤ . . . ≤ λn. 

6- The multiplicity k of the eigenvalue 0 of symmetric normalized Laplacian matrix equals the 
number of connected components A, . . . , Ak in the graph [31]. 
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5.  Power-laws and The Internet Structure 

A power-law is a mathematical relationship between two quantities. “When the frequency 
of an event varies as a power of some attribute of that event, the frequency is said to follow 
a power law [24].” In other words, “a relationship in which a relative change in one quantity 
gives rise to a proportional relative change in the other quantity, independent of the initial 
size of those quantities [25].” “Power-laws are expressed in the form of y  xa, where y and 

x are the measures of interest and exponent a is a constant [6].” Therefore “the outstanding 
characteristic of power-law is its scale invariance which means that a feature of objects or 
laws that does not change if scales of variables, are multiplied by a common factor [26].”  

Existence of power-laws can be shown by y  xa which means that y is proportional to x to 

the power of a, therefore the presence of power-laws demonstrates a regularity. In order to 
provide a schematical view of power-laws, we need to depict the power-laws equation. 
Converting the power-laws relation (y  xa ) to an equation can be done by  a multiplication 

of a constant 10b: 

y = 10 b × xa   (where b is a constant, therefore 10 b will be a constant) 

 log y = log 10 b + log xa
                                                                                         (Formula5. 1) 

log y = b + a × log x        

y´ = b + ax´ 

According to above y and x has a linear relation in log-log scale. Normally, plotting the 
power-law relations in logarithmic axes gives us a linear relationship therefore any two 
quantities which have a linear relation with each other on logarithmic scale can be stated as 
power-law relation. 

“Power-laws are very important because they reveal an underlying regularity in the 
properties of systems [25].” Often highly complex systems have properties where “the 
changes between phenomena at different scales are independent of which particular scales 
we are looking at [25].” 

In this thesis project shows that power-law relation exists in eigenvalues of adjacency matrix 
and normalized Laplacian matrix versus node index. We are going to prove that this 
equation λi  iε exists if i represents index and λi represents the adjacency or normalized 



20 

 

Laplacian matrix eigenvalue corresponding to the index and ε is the power-law exponent. 
We are also going to show that the exponents do not change significantly during 2003 to 
2010 which indicates the regularity in the Internet graph at AS level despite of growth in the 
internet size. 

In order to prove the existence of power-laws in our depicted graphs where the eigenvalues 
of adjacency or normalized Laplacian matrix are depicted versus index, the need of linear 
regression concept is inevitable. “The attempt to make a mathematical relation between 
observed variables is known as regression. Linear regression attempts to model the 
relationship between two variables by fitting a linear equation to observed data [27].” “One 
variable is considered to be an explanatory variable, and the other is considered to be a 
dependent variable [27].” Linear regression is used to fit a line in a set of two-dimensional 
points [33][34]. This project uses the least square errors method to plot the linear regression 
line for the plotted data. “The validity of approximating is indicated by correlation 
coefficient [33].” A linear regression line has an equation form of Y = b + aX, where X is the 
explanatory variable and Y is the dependent variable. The slope of the line is a, and b is the 
intercept (the value of y when x = 0) [27].  

Below is an example of regression line y = 1,1091x + 10,709 and R2 = 0,7142 for a set of data: 

index 0 1 2 3 4 5 6 7 8 9 
value 9 11 12 14 16 17 16 20 18 19 

Linear Regression Exampley = 1,1091x + 10,709

R2 = 0,7142
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Figure 5. 1: Regression line  

There are two important definitions regarding regression line: correlation coefficient and 
correlation of determination which are used for validity of approximation. They are used as 
a measure of how well one variable can predict the other and determine the precision you 
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can assign to a relationship. The more the values are close to the regression line the more 
precise our prediction will be. 

Correlation of Coefficient 

“Correlation coefficient or cross-correlation coefficient is an important numerical 
measurement which various between 1 and -1 and it shows the strength of the association 
of the observed data for the two variables [27].” If the correlation coefficient is closer to 1 it 
means that the variables are more linear and the variables fit the best to the linear 
regression line. Correlation measures the dependability of the relationship (the goodness of 
fit of the data to that). In mathematic books linear correlation coefficient is shown as r or R. 
It measures the strength and the direction of a linear relationship between two variables. 
This project used formula5.2 to calculate the coefficient correlation which is based on least 

square approximation:                           

 
      (Formula5. 2) 

Where n is the number of pairs of data. For each set of data x and y, a straight line Y = b + aX is 
drawn such that sum of squares of distances from set of data points to the straight line is 
minimum. 
 

 
      (Formula5. 3)

    

 

 
      (Formula5. 4) 

As it was mentioned before r varies between 1 and −1. If r is negative, then we say that x and y 
has a negative correlation and if x and y has strong correlation, then r is closer to −1. If r is 
positive, then we say that x and y has a positive correlation and if x and y has strong correlation, 
then r is closer to +1. If there is no linear correlation between x and y then r = 0. If r =+1 or r =−1 
then a perfect correlation exists. 
          

Correlation of Determination  

 
The correlation of determination is shown by r2 or R2 also represents the percent of the data 
that is the closest to the line of best fit which varies between 0 and 1. It is used for prediction 
which shows the level of certainty in making prediction from a certain graph. If the regression 
line meets all the variables on scatter plot then it can explain 100% of variation or in other 
words r2 =1.  
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In this Project the existence of power-laws has been proved by the help of linear regression line. 
In order to find out that the eigenvalues follow the power-laws a linear regression line has been 
plotted and by the help of correlation coefficient it is proved that the eigenvalues fit the linear 
regression line in log-log scale by a strong correlation coefficient close to −1.
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6. Data mining 

As it was mentioned in chapter 3.2, the BGP routing table information has been taken from RIPE 
project dataset in MRT format. Then MRT format should be converted to human readable 
format. The process of collecting the BGP routing table information is as below: 

Each RRC in different parts of the world collects and stores the BGP routing table information of 
its own region periodically during specific times in a day. Then RIS collects all the collected 
information from each RRC in different parts of the world. Two groups of data is stored in each 
RRC[28]: 

  The files in which the file names started with “bview”. They are generated every eight hours 
and they contain the whole BGP table information. 

 The files in which the file names started with “update”. They are generated every five 
minutes and they contain all of the BGP packets 

This thesis project analyzes the Internet topology on AS level. Therefore, the information about 
ASs and the way they are connected should be investigated. This kind of information is a part of 
BGP table information which can be found in bview files. This project collects the BGP routing 
table information in bview files during the period of 2003.07.30 to 2010.07.30. This project 
collects the bview files with time stamp of July 30th at 23:59 in each year from 2003 to 2010 
from each RRC.  All these files are in MRT format. In order to convert them to ASCI files two 
different tools has been used: zebra_dump_parser in Route Views project and bgpdump from 
RIPE project. As it was mentioned before, two different tools has been used for converting MRT 
files so that it is possible to make a comparison between the outcome of both tools. The 
outcome of the converted files turned out to be the same. Then, all the bview files (which are 
collected from 17 different RRCs during 2003 to 2010) are converted to human readable text 
files. Now it is possible to extract the required information from the text files. The information 
about AS numbers and their immediate neighbors are of our interest since it provides the 
infrastructure information of ASs and how they are connected to each other. After extracting 
the required information separately for each year, then the extracted AS paths of each year 
should be imported to Matlab in order to have an overall view of internet structure at AS level 
in each year. Since the internet is a huge network with thousands of ASs and connections, the 
size of text files are very big. For instance without consideration of reserved AS numbers, the 
largest allocated AS number by the end of 2010.07.30 is 394239. Therefore in order to import 
the data in to Matlab, it is broken to smaller chunks of data to make it possible for Matlab to 
handle it. After importing the chunks in Matlab, then it is possible to make adjacency matrix by 
the help of formula 4.1. Consequently by calculating node degree of adjacency matrix and 
formula 4.6 it is possible to produce the normalized Laplacian matrix. 
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7. Spectral Analysis of The Internet Topology 

To be able to perform the spectral analysis of the Internet topology, the spectrum of the 
Internet graph is needed. In order to extract the spectrum of the Internet structure, the 
corresponding adjacency matrix is needed. This project investigates the spectrum of both 
adjacency and normalized Laplacian matrix. The adjacency and Normalized laplacian matrix 
have been created by the help of formula 4.1 and 4.6 respectively. The next step is to calculate 
the spectrum of the corresponding matrixes. Due to the huge size of the Internet and also to 
ease the analysis 150 largest eigenvalues of adjacency and normalized Laplacian matrix have 
been calculated and depicted which will be described further in chapter 7.2.  

7.1. Cluster of ASs 

This section presents the internet as the cluster of connected ASs during a period of 2003.07.30 
to 2010.07.30. The following graphs are based on the adjacency matrix driven from the 
collected BGP tables in RIPE project during 2003.07.30 to 2010.07.30 where connectivity 
between two ASs is shown by a blue dot and the empty area between the blue dots indicate 
disconnectivity. Disconnectivity between ASs have two reasons. The first reason is that the 
allocated ASs are not connected to each other. The second reason is that, those specific 
disconnected ASs have not been allocated by IANA during the mentioned time (specified in the 
caption of each graph). If node 2 is connected to node 6 consequently node 6 is connected to 2 
since the adjacency matrix of the Internet topology is symmetric which can also be seen in all 
the graphs in chapter 7.1. As it was explained before, due to the growth of internet, the need 
for having more AS numbers eventuated in additional 32-bit format AS numbers. Assigning 32-
bit AS numbers has been started in 2006. According to IANA and also the depicted graph in 
figure 7.1, not considerable 32-bit format AS numbers has been assigned during 2006 to 2010. 
In general the number of assigned 32-bit format AS numbers from 2006 to 2010 are not 
considerable. Figure 7.1 and 7.2 are the same plotted graphs of adjacency matrix in 2008 but 
figure 7.2 excludes the 32-bit format AS numbers. In order to make the analysis easier and more 
comprehensible it is decided to truncate the original graph (which includes both 16-bit and 32-
bit format AS numbers, figure 7.1) to a truncated format (which includes 16-bit format AS 
numbers, figure 7.2). This truncation has no negative impact on the analysis since the number of 
allocated 32-bit format AS numbers are not considerable at all. Adding up 32-bit format AS 
numbers just makes the analysis more complex, since the scale of work will change only 
because of not considerable amount of assigned 32-bit format AS numbers. Depicting all the 16- 
bit and 32-bit format AS numbers reduces the clarity and makes it very difficult to extrapolate 
the results from the graphs.  Therefore all the graphs in chapter 7.1 illustrate the 16-bit format 
AS numbers. So the figures in chapter 7.1 show the growth of the Internet in AS level only in 16-
bit format which had the main growth during 2003 and 2010. 
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Figure 7. 1: The original adjacency matrix pattern including 16-bit and 32-bit format in year 2008 

 

Figure 7. 2: The truncated adjacency matrix pattern including 16-bit format in year 2008 
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As it can be seen in figure 7.1, there are considerably fewer number of 32-bit AS numbers 
participating in the original graph. Besides, using the original matrix (figure 7.1) instead of 
truncated matrix (figure 7.2) makes the comparison of the graphs more difficult consequently it 
makes the extrapolation and observation more complex in growth of AS numbers perspective. 
Therefore for ease sake the truncated versions of matrixes will be shown (from 2006 to 2010).  

 

 

Figure 7. 3: The original adjacency matrix pattern in year 2003 

 

As it can be seen in figure 7.3 the connected ASs are in forms of cluster of ASs. According to 
IANA (Internet Assigned Numbers Authority) the largest assigned autonomous number [10] by 
the end of 2003.07.30 is ASN (Autonomous System Number) 29917 which is assigned to ARIN 
(American Registry for Internet Numbers). It is exactly the same number in our adjacency matrix 
pattern in figure 7.3. AS it is shown in figure 7.3 there are also some connected nodes in area of 
64000 which are the reserved AS numbers for private use. These numbers are also indicated in 
IANA. (64512-65534 are designed for private use and 65535 is a reserved AS number for special 
use) [10]. 
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Figure 7. 4: The original adjacency matrix pattern in year 2004 

 

Figure 7.4 illustrates the adjacency matrix pattern in 2004. As it can be seen the pattern and 
structure of connected ASs are still remained the same as 2003 with clusters of connected ASs. 
According to IANA by the end of 2004.07.30, the largest assigned autonomous number is 34815 
which is assigned to RIPE NCC (The Réseaux IP Européens Network Coordination Centre). It is 
exactly the same number in our illustrated graph on figure 7.4. Comparison of figure 7.3 and 7.4 
illustrates the growth of the Internet in AS level from 29917 to 34815. It can also be seen that 
more reserved ASs have been used in 2004 than 2003.   
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Figure 7. 5: The original adjacency matrix pattern in year 2005 

Figure 7.5 shows the adjacency matrix pattern in 2005 which proves that the trend is the same 
as it was in 2003 and 2004 with clusters of connected ASs. According to information of AS 
numbers in IANA, there largest assigned number by the end of 2005.07.30 is 38911 which is 
assigned to APNIC (Asia Pacific Network Information Centre) and can clearly be seen in figure 
7.5. The growth of assigned ASs in comparison to 2003 and 2004 can be easily seen. As the 
figure shows the growth is not limited to the assigned ASs, it can also be seen in the reserved 
ASs.   
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Figure 7. 6: The truncated adjacency matrix pattern only including 16-bit format in year 2006 

As it was mentioned before, introducing 32-bit format has been started in 2006. Therefore from 
2006 not only 16-bit format was assigned to ASs but also 32-bit format was assigned. Figure 7.6 
is a truncated graph which just shows the 16-bit format growth. Comparison between the 
graphs in 2003, 2004, 2005 and 2006 shows the growth of the Internet in this time period. 
According to IANA the largest assigned AS number in 16-bit format by the end of 2006.07.30 is 
41983 which is assigned to RIPE NCC and it is also illustrated in the extracted graph from the 
real world data in figure 7.6. Despite of the growth in AS level, the trend still remains the same 
as the cluster of ASs. According to the graphs the growth in AS level is not similar to random 
growth; rather it follows a structural growth as the cluster of connected ASs 
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Figure 7. 7: The truncated adjacency matrix pattern only including 16-bit format in year 2007 

The graph shows the growth of the Internet in AS level in comparison with previous years. It 
shows that the older ASs which are more connected and having a higher connectivity are getting 
even more connected in comparison with other ASs in 2007 than previous years. According to 
IANA by the end of 2007.07.30 the largest assigned AS number in 16-bit format is 44031 which 
is assigned to RIPE NCC. Figure 7.7 also shows that 44031 is the largest assigned AS by the end 
of 2007.07.30. The figure also shows more participation of reserved ASs in 2007 than 2003, 
2004, 2005 and 2006. 

 

 

 

 

 



31 

 

 

Figure 7. 8: The truncated adjacency matrix pattern only including 16-bit format in year 2008 

 

The picture shows more connectivity in cluster of ASs. The trend of AS growth follows the same 
structure as the previous years which is the cluster of connected ASs. The older clusters became 
even more connected in comparison with other ASs than previous years. According to IANA the 
largest assigned number by the end of 2008.07.30 is 48127 which is assigned to RIPE NCC. The 
depicted graph from real data also shows that the largest assigned AS number is 48127 by the 
end of 2008.07.30. 
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Figure 7. 9: The truncated adjacency matrix pattern only including 16-bit format in year 2009 

 

Figure 7.9 shows the adjacency matrix pattern in 16-bit format in July 2009. It is obvious that 
the more connected ASs became even more connected but still having the same structural 
trend which is clusters of connected ASs. It also shows the growth of the Internet in AS level in 
comparison with last years. According to IANA by the end of July in 2009 the largest assigned AS 
number is 55295 which is assigned to ARIN and is compatible to the driven graph from real 
world data in RIPE project in figure 7.9. 
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Figure 7. 10: The truncated adjacency matrix pattern only including 16-bit format in year 2010 

The picture shows the same trend of clusters of connected ASs and the growth of the Internet in 
AS level in 16-bit format. More connectivity can be seen in graph 7.10 than all the other graphs 
in previous years. The comparison of figure 7.3 and figure 7.10 shows that the assigned 16-bit 
format ASs increased from 29917 to 56319 from 2003.07.30 to 2010.07.30. According to IANA 
the largest assigned number in 16-bit format by the end of July 2010 is 56319 which is assigned 
to APNIC and it is also can be demonstrated in our depicted graph from real world data in figure 
7.10. 

7.2. Eigenvalues & Power law 

According to [2][3][4][5] various power-laws exist in the Internet topological properties. Power-
laws can be seen in node degree frequency versus node degree, number of nodes within a 
number of hops versus number of hops, eigenvalues of the adjacency matrix and the normalized 
Laplacian matrix versus the order of the eigenvalues, and node degree versus node rank (sorting 
the graph nodes on descending order based on their node degree and indexing a sequence 
number to them, is called node rank [4]). This sub-chapter shows the existence of power-laws in 
eigenvalues of both adjacency matrix and normalized Laplacian matrix versus index. In order to 
observe the existence of power-laws for eigenvalues the 150 largest eigenvalues are plotted in 
descending order versus indices (ascending sequential numbers) in log-log scale both in 
adjacency matrix and normalized Laplacian matrix. In order to prove the existence of power-
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laws a linear regression line is also plotted. As it was mentioned before the correlation 
coefficient indicates how well the plotted graph fits to the linear regression line. According to 
formula5.1 linear regression line indicates the existence of power-laws since it is a linear 
equation in log-log system which fits the plotted data. Therefore, the high correlation 
coefficient in the following graphs indicates the more fit of plotted data to the regression line 
and consequently the existence of power-laws. As it can be seen in the graphs the power-law 
exponents are calculated from the linear regression lines 10b xa in log-log scale where slope b is 
the power-law exponent. 

7.2.1. Eigenvalues of Adjacency Matrix & Power law 

The following graphs show the 150 largest eigenvalues of adjacency matrix form 2003.07.30 to 
2010.07.30 from RIPE project in descending order versus index. It is shown that λAi  iε exists 

where i is an index, λAi is the eigenvalue of the corresponding index therefore ε is the power-law 
exponent.  
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Figure 7. 11: 150 largest eigenvalues of adjacency matrix vs. index in year 2003 

As it is shown in the graph power-law exists in eigenvalues of adjacency matrix and the plotted 
eigenvalues fits the linear regression line with correlation coefficient -0.9989. The power-law 
exponent is -0.5232. 
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Figure 7. 12: 150 largest eigenvalues of adjacency matrix vs. index in year 2004 

 As it is shown in the graph power-law exists in eigenvalues of adjacency matrix and the plotted 
eigenvalues fits the linear regression line with correlation coefficient -0.9991. The power-law 
exponent is -0.5038. As it is illustrated, despite of the growth and changes in the Internet during 
one year the power law exists in eigenvalues of adjacency matrix.  
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Figure 7. 13: 150 largest eigenvalues of adjacency matrix vs. index in year 2005 

 Figure 7.13 shows that power law exists in eigenvalues of adjacency matrix regardless of 
immense changes on the Internet. As it is illustrated there is a high correlation coefficient of 
-0.9982 with the power-law exponent of -0.5088. 
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Figure 7. 14: 150 largest eigenvalues of adjacency matrix vs. index in year 2006 

The 150 largest eigenvalues of adjacency matrix in 2006 are shown in figure 7.14 which 
indicates the presence of power-law in eigenvalues of adjacency matrix in 2006. The existence 
of power-laws can be proven by high correlation coefficient of –0.9980. According to the graph 
the power-law exponent is -0.5002. 
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Figure 7. 15: 150 largest eigenvalues of adjacency matrix vs. index in year 2007 

Figure 7.15 illustrates the presence of power-laws in eigenvalues of adjacency matrix in 2007 by 
a high correlation coefficient of -0.9979 and the power-law exponent of -0.4940. It can also be 
seen, the growth of the Internet results in growth of eigenvalues of adjacency matrix. In 
comparison with previous years the eigenvalues becomes slightly larger since number of 
allocated ASs increased. The growth of eigenvalues during time indicates the growth of the 
Internet size in AS level.  
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Figure 7. 16: 150 largest eigenvalues of adjacency matrix vs. index in year 2008 

The picture proves the existence of power-laws in eigenvalues of adjacency matrix in 2008 by a 
high correlation coefficient of -0.9969 and a power-law exponent of -0.4925. Despite of growth 
and changes of the Internet, the existence of power-laws are per persistent. It also shows that 
by growing of the Internet in AS level perspective, the value of eigenvalues also grows. 
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Figure 7. 17: 150 largest eigenvalues of adjacency matrix vs. index in year 2009 

The graph for year 2009 similar to the previous graphs shows the presence of power-laws by a 
high coefficient correlation of -0.9966 and a power-law exponent of -0.4946. It can also be seen 
that the value of eigenvalues becomes higher in comparison to previous years because of the 
growth of the Internet in AS level. 
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Figure 7. 18: 150 largest eigenvalues of adjacency matrix vs. index in year 2010 

The figure illustrates the existence of power-law in eigenvalues of adjacency matrix in year 2010 
by a high correlation coefficient of -0.9969 and a power-law exponent of -0.4932. It can also be 
seen that the values of eigenvalues of adjacency matrix have the largest values between 2003 
and 2010 because of the growth of the Internet in AS level. 
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7.2.2. Eigenvalues of Normalized Laplacian Matrix & Power law 

The following graphs show the 150 largest eigenvalues of normalized Laplacian matrix form 
2003.07.30 to 2010.07.30 from RIPE project in descending order versus index. We can show that  
λLi

  iL exists  where i is an index, λLi
 is the eigenvalue of the corresponding index, and L is the 

power-law exponent. 

 

Figure 7. 19: 150 largest eigenvalues of normalized Laplacian matrix vs. index in year 2003 

The graph shows the presence of power-laws in Eigenvalues of normalized Laplacian matrix in 
2003. According to the regression line 10(0.3002)x(-0.0205), it has a power-law exponent of -0.0205 
and a correlation coefficient of -0.9640.  
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Figure 7. 20: 150 largest eigenvalues of normalized Laplacian matrix vs. index in year 2004 

The depicted graph illustrated the existence of power-law in eigenvalues of normalized 
Laplacian matrix in 2004. As it can be seen in the picture the plotted graph fits the regression 
line with correlation coefficient of -0.9626 and the power-law exponent of -0.0200 
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Figure 7. 21: 150 largest eigenvalues of normalized Laplacian matrix vs. index in year 2005 

The plotted graph indicates that despite of growth and changes in the Internet, power-laws 
exists constantly in eigenvalues of normalized Laplacian matrix. The presence of power-laws can 
be proven by fitting the plotted data to the regression line 10(0.3036)x(-0.0211) with a high 
correlation coefficient of -0.9709 and the power-law exponent of -0.0211.  
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Figure 7. 22: 150 largest eigenvalues of normalized Laplacian matrix vs. index in year 2006 

Figure 7.22 like the previous figures indicates the presence of power-laws in normalized 
Laplacian matrix driven from real world data by the end of July 2006. The fitting of the plotted 
data with the regression line is visible in the graph. The coefficient correlation is -0.9731 and the 
power-law exponent is -0.0207.  
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Figure 7. 23: 150 largest eigenvalues of normalized Laplacian matrix vs. index in year 2007 

The depicted graph in figure 7.23 shows the existence of power-laws in eigenvalues of 
normalized Laplacian matrix in 2007. As it can be seen power-law constantly can be seen in 
eigenvalues of normalized Laplacian matrix regardless of all changes in the Internet during time. 
The high correlation coefficient of -0.9693 proves the existence of power-laws. The power-law 
exponent as it can be seen is -0.0211. 
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Figure 7. 24: 150 largest eigenvalues of normalized Laplacian matrix vs. index in year 2008 

 

Figure 7.24 shows the existence of power-laws in eigenvalues of normalized Laplacian matrix 
driven from dataset RIPE in 2008.07.30. As it can be seen the plotted data fits the regression line 
with correlation coefficient of -0.9758 and the power-law exponent of -0.0189.  
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Figure 7. 25: 150 largest eigenvalues of normalized Laplacian matrix vs. index in year 2009 

The picture shows that the eigenvalues of normalized Laplacian matrix driven from real data 
from RIPE project in 2009 follows the power-laws with a high correlation coefficient of -0.9815 
and the power-law exponent of -0.0186. The permanent existence of power-laws in eigenvalues 
of normalized Laplacian matrix during times can be seen regardless of all the changes in the 
Internet. 
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Figure 7. 26: 150 largest eigenvalues of normalized Laplacian matrix vs. index in year 2010 

As it was expected from previous graphs, power-law existence can be seen in eigenvalues of 
normalized Laplacian matrix in 2010. The well-fit plotted data to regression line indicates the 
presence of high correlation coefficient which is -0.9810. The power-law exponent of -0.0186 is 
also visible. It can also be seen that during the years 2003 to 2010 power-law exponent values 
have not changed considerably.   
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8. Discussion of Results 
 

The purpose of this project is to discover a sort of regularity in a chaotic environment of the 

Internet. For scientist it is of a great interest to find out how the internet will look like in future. 

This prediction will help them in more accurate modeling and simulation and consequently the 

more precise investigation and further studies. As it was mentioned before, this project shows 

regularities in characteristics of the Internet.  

 

In chapter 7.1 it is shown that the internet grows rapidly during the period of seven years from 

2003.07.30 to 2010.07.30 in AS level both in assigned ASs and reserved ASs. An increase in 

connectivity of ASs can be seen during time. The graphs in chapter 7.1 show that the older ASs 

have more connectivity and they get even more connected during time. It is also shown that the 

internet is presented in the form of clusters of connected ASs despite of all irregularities in 

growth of the Internet size (ex. joining new networks with different protocols of connection) in 

AS level. 

 

Chapter 7.2 shows regularity in the Internet topology by proving the existence of power-laws in 

eigenvalues of both adjacency and normalized Laplacian matrix with high correlation coefficient. 

Power-laws are able to characterize a graph in a single quantity which is the power-law exponent. 

As it was seen, the power-law exponents have not changed during the seven year of study which 

indicates regularity in the Internet graph. As the graphs in chapter 7.2.1 demonstrate, the power-

law exponents in eigenvalues of adjacency matrix during the period of seven years from 2003 to 

2010 did not have a considerable change and remained almost the same with the quantity of 0.5. 

It is also shown that the power-law exponents in eigenvalues of normalized Laplacian matrix did 

not change during the period of seven years and it was a constant of approximately 0.2. It is also 

shown that the eigenvalues became larger during time which is another indication to growth of 

the Internet in AS level since the number of allocated ASs increased during the period of seven 

years. Power-law exponents are used for future prediction so it helps the scientists to investigate 

on different scenarios and find out whether the investigation was correct or not. It proves that the 

new nodes are not just glued to the network rather they trigger a chain of restructuring change 

like a fading wave to the rest of the network [33].  

 

Therefore this study can help the people who have the “what if” questions and they want to know 

how will the Internet look like in the future. It also helps to produce a more accurate and realistic 

graphs similar to the Internet. There are many different factors involving in dynamic network of 

the Internet such as economical, cultural, technological, social, and etc. Therefore it is not easy to 

predict the behaviors of such a network but on the other hand it is possible to characterize the 

Internet topology by a quantified number which is the power-law exponent.  
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9. Conclusion 

In this thesis real data at AS-level from BGP tables has been analyzed. According to both the 
theoretical and practical parts of the thesis, some characteristics of the Internet topology follow 
a certain trend over the time studied.  

It has been proved that the Internet graph can be shown as clusters of connected ASs and as the 
Internet grows in size, it appears the clusters become even more connected. It was shown that 
during the seven year period, from 2003.07.30 to 2010.07.30 the more connected ASs which are 
the old ASs became even more connected over time. In fact the trend of growth remaines the 
same in the form of clusters of connected ASs but the number of connected ASs within a cluster 
actually increases considerably and even new clusters of connected ASs has been added to the 
network which indicates the growth of the Internet in size at AS level. It is also proved that the 
growth in size of the internet is not limited only to the assigned ASs but also the growth goes 
further to more engagement of private and reserved ASs during the period of seven years. 

This thesis has demonstrated that despite of the rapid growth of the Internet without any 
centralized administration, the power-laws constantly can be seen in eigenvalues of adjacency 
and normalized Laplacian matrix during the seven year period, 2003.07.30 to 2010.07.30 with 
high correlation coefficients and there is no considerable change in power-law exponent values 
during the period which indicates a regularity in the Internet. This thesis has conducted an 
investigation into eigenvalues of adjacency matrix shown that, the values of eigenvalues 
become larger over time because the number of allocated ASs are growing at the same time as 
the Internet connectivity.  



53 

 

 

10. Reference  
[1] D. Morley, Charles S. Parker, "Understanding Computers: Today and Tomorrow, Comprehensive", Boston, MA, 

United States, 12th edition, 2009 
[2] J. Chen and Lj. Trajkovi´c, “Analysis of Internet topology data,” in Proc. IEEE International Symposium on Circuits 

and Systems, 2004 
[3] L. Subedi and Lj. Trajkovic, "Spectral analysis of Internet topology graphs," in Proc. IEEE Int. Symp. Circuits and 

Systems, 2010 
[4] M. Najiminaini, L. Subedi, and Lj. Trajkovic, "Analysis of Internet topologies: a historical view," in Proc. IEEE Int. 

Symp. Circuits and Systems, 2009 
[5] Lj. Trajkovic, "Analysis of Internet Topologies," IEEE Circuits and Systems Magazine, 2010 
[6] L. Subedi “Power-laws and Spectral Analysis of the Internet Topology” Master’s thesis in  Simon Fraser 

University2010 
[7] Behrouz A Forouzan “TCP/IP Protocol Suite”, McGraw-Hill Publishing Co. 3rd edition, 
[8] K. Okumura and Lj. Trajkovic, "Spectral analysis and dynamical behavior of complex networks” in Proc. NOLTA 

2010 
[9] RFC 1771 http://www.rfc-editor.org/rfc/rfc1771.txt/, 2012.06.08 
[10] http://www.iana.org/assignments/as-numbers/as-numbers.xml/, 2012.06.08 
[11] http://www.ripe.net/ , 2012.06.08 
[12] http://www.ripe.net/data-tools/stats/ris/routing-information-service/, 2012.06.08 
[13] http://www.ripe.net/data-tools/projects/faqs/faq-ris/what-is-a-remote-route-collector-rrc/, 2012.06.08 
[14] RFC 6396, http://tools.ietf.org/html/draft-ietf-grow-mrt-13/, 2012.06.08 
[15] M.Rossi: "MRT dump file manipulation toolkit (MDFMT) - version 0.2", in CAIA Technical Report 090403A, 2009 
[16] T. G. Griffin, Z. M. Mao, "Interdomain Routing Streams", Workshop on Management and Processing of Data 

Streams, Berkeley, June 2003 
[17] http://www.routeviews.org/tools.html/, 2012.06.08 
[18] M. Scott Cavers, “The Normalized Laplacian Matrix and General Randic Index of Graph”, PhD Thesis, 2010 
[19] M. Marcus, H. Minc, "Introduction to Linear Algebra", New York: Dover, 1988. 
[20]  .  amenst dt, "Small eigenvalues of geometrically finite manifolds", Als Ms. vervielf ltigt, 2003 
[21] D. Easley, J. Kleinberg, "Networks, Crowds, and Markets: Reasoning About a Highly Connected World", 

Cambridge University Press, 2010 
[22] J. Wu, M. Barahona, Y. Tan, & H. Deng, "Robustness of Regular Graphs Based on Natural Connectivity", 

arXiv:0912.2144v1. 
[23] S. Kirkland, Carla S. Oliveira, Claudia M. Justel "On Algebraic Connectivity Augmentation", LINEAR ALGEBRA 

APPL - Linear Algebra and Its Applications, 2011 
[24] M. E. J. Newman, "Power laws, Pareto distributions and Zipf's law", arXiv:cond-mat/0412004v3 2006 
[25] http://www.necsi.edu/guide/concepts/powerlaw.html/ , 2012.06.08 
[26] H.E Stanley, L.A.N Amaral, P Gopikrishnan, P.Ch Ivanov, T.H Keitt, V Plerou, "Scale invariance and universality: 

organizing principles in complex systems", Physica A:Statistical Mechanics and its Applications, Volume 281, 
Issues 1–4, 15 June 2000, Pages 60-68 

[27] http://www.stat.yale.edu/Courses/1997-98/101/linreg.htm/ , 2012.06.08 
[28] http://www.ripe.net/data-tools/stats/ris/ris-raw-data/ , 2012.06.08 
[29] Frank J. Hall, “The Adjacency Matrix, Standard Laplacian, and Normalized Laplacian, and Some Eigenvalue 

Interlacing Results”, Department of Mathematics and Statistics, Georgia State University, Atlanta, 2010 
[30]  Fan R. K. Chung “Spectral Graph Theory”, Conference Board of the Mathematical Sciences, 1997  
[31] B. Auffarth “Spectral Graph Clustering”, course report for T´ecnicas Avanzadas de Aprendizaje 

at Universitat Politecnica de Catalunya, 2007 
[32] satu e. schaeffer “Graph Clustering”, SienceDirect, 2007 
[33] M. Faloutsos, P. Faloutsos, C. Faloutsos“On Power-Law Relationships of the Internet Topology”, ACM New 

York, NY, USA, 1999 



54 

 

[34] William H. Press, Saul A. Teukolsky, William T. Vetterling,  Brian P. Flannery, “Numerical Recipes in C.” 
Cambridge University Press, seconnd edition, 1992. 

 
 
 
 
 

 

 

  

 

 


	titlepage.pdf
	sara-main.pdf

