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ABSTRACT 

Today many cell biological techniques study large cell populations where an average estimate 

of individual cells’ behavior is observed. On the other hand, single cell analysis is required for 

studying functional heterogeneities between cells within populations. This thesis presents work 

that combines the use of microfluidic devices, optical microscopy and automated image 

analysis to design various cell biological assays with single cell resolution including cell 

proliferation, clonal expansion, cell migration, cell-cell interaction and cell viability tracking. In 

fact, automated high throughput single cell techniques enable new studies in cell biology which 

are not possible with conventional techniques. 

In order to automatically track dynamic behavior of single cells, we developed a microwell 

based device as well as a droplet microfluidic platform. These high throughput microfluidic 

assays allow automated time-lapse imaging of encapsulated single cells in micro droplets or 

confined cells inside microwells. Algorithms for automatic quantification of cells in individual 

microwells and micro droplets are developed and used for the analysis of cell viability and 

clonal expansion. The automatic counting protocols include several image analysis steps, e.g. 

segmentation, feature extraction and classification. The automatic quantification results were 

evaluated by comparing with manual counting and revealed a high success rate. In combination 

these automatic cell counting protocols and our microfluidic platforms can provide statistical 

information to better understand behavior of cells at the individual level under various 

conditions or treatments in vitro exemplified by the analysis of function and regulation of 

immune cells. Thus, together these tools can be used for developing new cellular imaging 

assays with resolution at the single cell level.  

To automatically characterize transient migration behavior of natural killer (NK) cells 

compartmentalized in microwells, we developed a method for single cell tracking. Time-lapse 

imaging showed that the NK cells often exhibited periods of high motility, interrupted with 

periods of slow migration or complete arrest. These transient migration arrest periods (TMAPs) 

often overlapped with periods of conjugations between NK cells and target cells. Such 

conjugation periods sometimes led to cell-mediated killing of target cells. Analysis of cytotoxic 

response of NK cells revealed that a small sub-class of NK cells called serial killers was able to 

kill several target cells. In order to determine a starting time point for cell-cell interaction, a 

novel technique based on ultrasound was developed to aggregate NK and target cells into the 

center of the microwells. Therefore, these assays can be used to automatically and rapidly 

assess functional and migration behavior of cells to detect differences between health and 

disease or the influence of drugs.  
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The work presented in this thesis gives good examples of how microfluidic devices combined 

with automated imaging and image analysis can be helpful to address cell biological questions 

where single cell resolution is necessary.  

Keywords: Single cell analysis, time-lapse fluorescence imaging, automated image analysis, 

microwell, droplet microfluidics, NK cells, single cell tracking, migration behavior analysis, cell-

cell interaction. 
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1 INTRODUCTION   

The cell is the smallest unit of life which is alive. Since, cells are fundamental and basic 

biological unit of all living organisms, we need to understand them at fundamental level. Today 

many biological techniques analyze large populations of cells where the average response of 

individual cells is observed. However, to study heterogeneity within a cell population, single cell 

analysis is required. To this end compartmentalization is needed to isolate the cells from one 

another. Here, some micro compartments for single cell analysis including microwells and 

droplets are presented. These microfluidic devices combined with optical microscopy and 

digital image processing were used for various cell biological assays e.g. behavior analysis of 

immune cells. 

1.1 SINGLE CELL ANALYSIS 

Cellular analysis is used in different fields of life science, pharmaceutical and biotechnology 

industries [1]. Substantial evidences suggest that considerable heterogeneity can exist even 

within isogenic cell populations [2]. Genetic drift or cell cycle status can increase the 

heterogeneity in a cell population. This heterogeneity can also occur due to cellular processes 

e.g. cell development or cell proliferation. The cellular heterogeneity can have an effect on the 

genetic patterns and protein expression of the cells. Hence, the functionality and behavior of 

one cell can differ from other cells within the same population [3]. However, the cellular 

heterogeneity can be masked by average response of the cells. The bulk response of the cells is 

often interpreted as response of all cells within the same cell type. Single cell analysis is an 

appropriate approach to analyze cells behavior at individual level. Approaches in this area 

include the analysis of RNA and protein from single cells, studying rare cell populations as well 

as analyzing heterogeneity in drug response. Numerous single cell analysis methods have been 

developed for cellular analysis e.g. cell culture, clonal expression, proliferation, differentiation, 

gene expression, cytotoxicity and antibody secretion. 

A number of techniques for studying individual cells including conventional methods and 

microfluidic devices have been presented during the last decades [4-9]. These analytical single 

cell technologies are aimed to be biocompatible, transparent for imaging, robust and stable for 

cell tracking as well as to allow cell manipulation. It is of importance that these techniques be 

high throughput and mimicking in vivo conditions. Microfluidic devices have also emerged as a 

promising tool to study cellular systems at the single cell level [10]. In this thesis, more 

conventional methods as well as a number of microfluidic devices including microwells, droplet 

based structures, patterns and traps are described for specific single cell assays.  

 



Live Single Cell Imaging and Analysis Using Microfluidic Devices 

 

2 
 

1.1.1 Conventional single cell methods  

Conventional cell based assays are used to simultaneously analyze a large number of single 

cells. The average response of a cell population is measured and assumed to be representative 

for all cells within the sample. However, this assumption can result in misleading and erroneous 

conclusions as subpopulations deviating substantially from the average response may exist. 

Therefore, the importance of determining the whole range of responses of individual cells and 

the cell heterogeneity has been highlighted [11, 12] and a number of conventional single cell 

techniques e.g. microscopy, flow cytometry have been used to study heterogeneity in cell 

populations. 

Microscopy is the most obvious method for a wide range of cellular applications as well as time 

lapse imaging. This method is suitable for the study of intracellular communication and cell 

morphology as well as measuring gene and protein expression. Live cell imaging allows the 

monitoring of individual cell behavior over time. Normally, cells are seeded in microtiter plates 

or fixed on the microscope cover glass. Then, several hundreds of images of cells are 

automatically acquired and saved for further image analysis to extract cellular and intracellular 

data [13, 14]. The size of the wells in 96 well microtiter plates (6.86 mm in diameter and 360 µL) 

is enormous larger compared to the size of a single cell (~10 µm in diameter and ~1 pL in 

volume). Thus, 96 well plates together with automatic microscopy are often applied to study 

average response of the cells due to uncontrolled seeding pattern and undetermined cell 

boundaries.  

Standard microscopy for single cell analysis is a low throughput tool.  Flow cytometry (FC) is the 

most commonly used high throughput method for studying behavior of individual cells. Several 

thousands of single cells per second can be analyzed based on their size and fluorescence 

property by FC [15]. FC can be applied for different single cell analyses applications e.g. protein 

and gene expression, cell surveillance and protein localization [16, 17]. Related to FC, 

fluorescence activated cell sorting (FACS) is a well know and high throughput conventional tool 

which can sort and collect cells with desired properties from a mixed sample based on a 

fluorescent signal. FACS allows the sampling of cells from a population at different time points 

of an experiment for time scale analysis [18], but it is not possible to track individual cells over 

time [19]. In addition, FC and FACS require cells to be labeled and in suspension and it cannot 

be used for fluorescence localization and dynamic monitoring of single cells behavior.  

Another conventional tool for single cell analysis is the patch-clamp technique which is very 

sensitive in measuring the changes electric potential across cell membranes e.g. allowing the 

study of ion channels [20]. Patch-camp is low throughput tool for single cell analysis and has 

limited applications. Other examples of low throughput single cell analysis technologies are 

laser scanning cytometry (LSC) [21], capillary electrophoresis (CE) [22] and laser capture 
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microdissection (LCM) [23]. The main limitation of these methods is their specific and limited 

applications. There are many single cell analysis applications including cell-cell interaction, cell 

manipulation and single cell tracking which require microstructures and isolating devices.  

Microfluidic devices have channels and structures with dimension of microns which can enable 

single cell isolation and manipulation. Therefore, microfluidics and lab on a chip technologies 

are promising high throughput tools for analyzing the large number of single cells required to 

capture rare subpopulations.   

1.1.2 Microwell arrays 

In order to study single cell behavior, individual cells can be separated by the physical 

boundaries of microwells. Compared to 96 well microtiter plates, analysis time for single cells in 

microwells is significantly decreased due to smaller sizes and volumes. In addition, a large 

number of parallel biological experiments can be performed in the multitude wells on a 

microwell array chip. It is possible to study multiple biological samples in parallel and also 

analyze thousands of single cells individually on a microchip. Microwell chips are designed with 

different well shapes, sizes, materials and numbers depending on the biological applications for 

which they are intended e.g. stem cells [24], protein study [25] and genetic analysis [26]. Large 

wells are often used for long term experiments or the study of small isolated populations of 

cells; while small wells designed mostly for fast experiments because of small volume for cell 

culture or behavioral analysis of isolated single cells. Depending on the application, different 

material can be used in fabricating the microwell chips. For instance, transparent materials with 

good optical properties e.g. polydimethylsiloxane (PDMS) or glass are used for imaging 

applications. Biocompatibility of the well material is another important factor to be considered 

for live cell and biological experiments. The different microwell chips which are used in this 

thesis for different biological assays are explained in detail in the present investigation section.    

1.1.3 Droplet microfluidics 

Droplet based microfluidics provides a high throughput and low volume platform for single cell 

analysis. Droplet microfluidics uses a two phase system to enclose single cells in aqueous 

microdroplets with volumes of pico to nano liters in a surrounding continuous oil phase. The 

compartmentalization of chemical reactions in microdroplets can be applied for a wide range of 

experiments at molecular and cellular levels. Since droplets are, to a large extent, physically and 

chemically isolated from each other, the risk of cross-contamination is decreased. The small 

volume of the droplets reduce the time required for screening of single cells and enable the 

detection of molecules released from single cells [27, 28]. The large surface to volume ratio of 

the droplets can increase speed and efficiency of regents mixing inside droplets due to induced 

inertial flows by shear interactions in dedicated mixing structures [29]. Droplet formation and 
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manipulation in the kilohertz range enables the screening of a large number of samples up to 

108 in one day. In this thesis a selection of, different steps for droplet manipulation 

functionalities include cell encapsulation, droplet fusion, droplet mixing, droplet sorting, 

droplet trapping and on chip incubation are briefly described. 

Droplet microfluidic devices are typically glass- PDMS channels which are fabricated by soft 

lithography [30]. The surfaces of PDMS-glass chips are most often modified by fluorophilic 

coating agents e.g. Aquapel (PPG Industries) [31]. The PDMS polymer is permeable to oxygen 

and CO2 and optically transparent for imaging. One major drawback of the porous structure of 

the PDMS is the adsorption of in particular small molecules [32].  

Droplet generation and cell encapsulation 

Picoliter monodisperse droplets can be generated at kilo hertz frequencies by pressure driven 

flow in a continuous oil phase. The flow of the liquids (water and oil) is often controlled by 

volume using syringe pumps. T-junctions [33, 34] or flow-focusing devices [35] are two common 

structures used for the production of monodisperse droplets at high frequency (up to 10 kHz). A 

flow-focusing nozzle for forming monodisperse droplets is shown in Figure 1.1A. Uniform 

droplets are generated by controlling the injected flow rates of the continuous phase (oil) and 

the disperse phase (water). The disperse phase is periodically broken into droplets at the 

generator nozzle. Changes in the flow rate and channel dimension affect the droplet size, 

generation frequency and composition (in the case of two aqueous phase injection channels). 

Depending on the application, the channels of the droplet generator device are designed and 

fabricated in different dimensions.  

In order to prevent unwanted coalescence of the generated droplets in microfluidic device 

during droplet manipulation a surfactant is added to the continuous phase. Droplets coalesce 

more rapidly when stabilizing agents are not added. Surfactants added to the oil phase act to 

decrease the interfacial energy at the oil water interface to stabilize the emulsion droplets.  In 

addition, surfactants must be compatible with cells and biological molecules. Surfactants with 

long fluorocarbon tails of e.g. perfluorinated polyethers (PFPE) are suitable for stabilization of 

the droplets for a long term [36, 37], whereas surfactants with short fluorocarbon tails such as 

polyethylene glycol (PEG) are biocompatible [38]. Hence, using PFPE-PEG block-copolymer 

surfactant maintains droplets both stable and biocompatible [39] (Figure 1.1B).   

Different types of mammalian cells and bacteria have been encapsulated in microdroplets by 

mainly using flow-focusing device (Figure 1.1A). The number of loaded cells in individual 

droplets is often not uniform due to the stochastic limitations of single cell loading. The 

distribution of cells per droplets follows Poisson distribution [40]. One solution to overcome 

this limitation to deliver the cells to the nozzle evenly space in the microchannel [41].  
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Figure 1.1. Encapsulating of single cells in microdroplets. (A) Schematic and bright field image of flow-

focusing nozzle for generating monodisperse droplets and encapsulating single cells. (B) Schematic of a 

water-in-oil droplet containing a single cell. The droplet is stabilized by an interfacial surfactant layer to 

prevent coalescence of the droplet and adsorption of biomolecules to the interface. Surfactant has a 

polar head (PEG) and a hydrophobic tail (PFPE) to keep droplets biocompatible and stable. 

Fluorinated oil efficiently transports oxygen and CO2 to encapsulated cells for long term 

culturing [42]. Encapsulated cells can be maintained viable up to four days but no cell 

proliferation was observed after 24 hours, presumably due to lack of nutrients or rise of toxic 

factor [43]. 

Droplet manipulation 

Droplet generation is the first step in droplet based microfluidics. For different biological 

applications, it is important that the uniformly sized droplets can be manipulated after 

generation. Here, a few commonly used techniques for droplet manipulation are briefly 

described. Droplet fusion is a fundamental operation for manipulating the droplets to combine 

different reagents at a well-defined time point and precise locations [44]. Droplets need to be 

temporally and spatially synchronized in order to merge. Several different techniques are 

developed for synchronizing the droplets before active or passive fusion. Passive fusion devices 

merge droplets based on the channel properties e.g. size, geometry and surface wettability. 

Inequalities in surface tension cause coalescence of the droplets [45]. For instance, the first 

droplet slows down when entering a wider channel and then merges with the second droplet in 

the sequence [46]. Incorporating pillars within the channel is another way for passive fusion. 

Droplets are trapped in the pillars and merge with second droplet entered the pillar region [47]. 

Fusion of the droplets can be controlled by using active fusion device to switch on or off the 
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merging process [48]. Active fusion methods need an external trigger to induce coalescence e.g. 

electric field [49] (Figure 1.2A) or localized heating by laser [50]. In addition, external forces 

such as electricity and heat in active fusion modules may effect on viability of biological 

molecules and cells inside the droplets. However, passive fusion methods have low throughput 

compare to active fusion techniques. Depending on the application, a suitable method must be 

chosen for droplet fusion.   

For some droplet processing steps it is important to divide droplets into smaller volume 

droplets for incubation or screening purposes. Smaller compartments provide faster mixing of 

reagents inside the droplets and can reduce the reaction time in the droplets [51, 52]. Droplet 

splitting is also used to increase throughput of droplet production. Similarly to droplet fusion, 

both passive [33] and active [53] droplet splitting systems are designed for fragmenting the 

droplets to smaller volumes. The splitting of droplets can be mediated by geometries like T-

junctions (Figure 1.2B) [33, 54].  In order to evenly split the droplets two downstream channels 

at T-junction must have the same dimensions and geometries to provide the same fluidic 

resistance. Changing length of only one daughter channel effects on the fluidic resistance and 

split the droplets unevenly. 

In many droplet microfluidic applications, droplets contain different biological or chemical 

reagents. Mixing the contents of a droplet is very fast due to the short diffusion distance. To 

achieve even more rapid mixing of liquids inside confined droplets microfluidic tools may be 

used to mix droplet contents in order to observe reactions with millisecond resolution [55]. 

When the droplet diameter is larger than the microfluidic channel width, mixing inside the 

elongated droplet (formed plug) is increased due to the friction between the flowing plug and 

the solid wall of the channel. The contact induces a double recirculating flow pattern inside the 

plug. This flow pattern enhances the mixing rate because of advection [56]. Since recirculating 

flow does not rapidly mix the contents across the center plane of the droplet, winding channels 

have been implemented to overcome this limitation (Figure 1.2 C) [57]. When a droplet passes 

in a winding channel e.g. zigzag structure, the shear forces on either side of the droplets 

become uneven and the droplet contents will experience stretching and folding to rapidly mix 

the liquid across droplet center plane [58]. Another method to mix contents of the droplets is 

to employ active mixing e.g. by using a local temperature variation induced by laser [59].  

The isolation of small subpopulations of cells for further analysis is essential for certain 

applications e.g. circulating tumor cells and drug screening. Droplet sorting is a critical module 

for separating a specific subset of droplets from the remainder of the droplets. The simplest 

droplet sorting relies on creative geometry of channels to passively separate the droplets by 

size. Deterministic lateral displacement (DLD) employs channel structures and hydrodynamics  
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Figure 1.2. Schematics of selected functional modules for droplet manipulation. (A) An active fusion 

module where droplet fusion is induced by an electric field merging red dye droplets with cell containing 

droplets. (B) Droplet splitting at T-junction with symmetric daughter channels. Droplets divide to equally 

sized droplets of lower volume. (C) Droplet mixing using a zigzag channel. Mixing of chemical or 

biological contents inside the droplet is increased in a winding channel due to decreasing diffusion 

distances within the droplet by folding the layers of fluid inside the droplet. (D) Active droplet sorting 

based on the fluorescent contents of the droplet. A detected fluorescent signal induces electric field to 

selectively sort the droplets. Arrows indicate flow direction in the channels. 

to isolate droplets based on their size [60]. Generated droplets can be actively sorted in an 

electric field [61] or by dielectrophoresis [62]. Alternatively, surface acoustic wave devices can 

deflect droplets by locally compressing fluids [63]. In addition, manipulation of droplets loaded 

with magnetic particles by magnetic fields introduces another way to sort droplets [64]. For 

precise manipulation of droplet, a laser light can be applied to a Y-junction channel (Figure 

1.2D) [65, 66]. Then, droplets can be selectively sorted based on their fluorescent content 

detected by photon multiplier tube. The fluorescence signal triggers an electric field in which 

the fluorescent droplet moves towards the output channel with high fluidic resistance, while 

other non-fluorescent droplets passively follow low fluidic resistance branch of the Y-junction. 
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Droplet trapping and incubation 

Incubation of cells with chemical or biological agents plays an important role in many biological 

applications. The typical time for incubation of droplets on the chip ranges from seconds to 

minutes which are suitable for some chemical reactions or biological experiments e.g. enzyme 

reactions. For incubation of the droplets for few seconds, droplets can be stored in a single line 

to control exact timing of the droplets with milliseconds resolution [67]. A simple method to 

increase the incubation time is prolonging length of the channel. However, long channels 

increase the back-pressure in the incubation channel. This problem can be solved by increasing 

depth and width of the storage channel [43] or trapping the droplets is a multilayer device [68].  

The wide channels can store up to 106 droplets on the chip. In order to avoid droplet collision, a 

V-shaped entrance was designed to gradually slow down the droplets in the storage chamber 

[69]. The main drawback of the deep and wide storage channel is difficulty to control location 

of droplets over incubation time, whereas multilayer device enables localization of droplets and 

controlling the droplet volume over time.  Alternatively a droplet array can be used to trap and 

incubate thousands of microdroplets for hours [70]. Droplets are squeezed in a shallow channel 

and are trapped in cylindrical chambers where they can relax to their lowest energy shape 

(spherical shape). These PDMS-based microfluidics devices are permeable to water and 

experience slow evaporation of aqueous droplets during incubation time [71]. For longer 

incubation time up to few days, droplets are collected in glass syringes. The droplets must be 

very stable in order to be stored in syringes for such long periods of time.  

1.1.4 Other micro structure device for single cell study 

For the analysis of individual cells other micro compartments than wells and droplets can be 

used. Micro patterning and trapping are two frequently used techniques for spatially separating 

and analyzing single cells.  

Patterns 

Micro patterns most often refer to spots or well-shaped structures on a surface. Micro spots 

are typically used for cell adhesion and cell growth on the surface [72, 73], while arrays of micro 

well-shaped structures spatially isolate single cells for analysis regardless of whether they 

attach [74]. Patterns are frequently made by soft lithography and surfaces are coated with 

various chemistries depending on the application. Micro patterns often contain regions 

modified to provide biocompatible and cell friendly regions, whereas other regions are coated 

with e.g. PEG with less cell friendly properties. In order to preserve cell viability during the 

experiments, potential biological effects of the coated surface should be considered and even 

more importantly, the difference between this in vitro system and in vivo system should be 

understood. In order to individually position and track single cells during an experiment, 
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adherent cells can be attached to specific micro spots and nutrition supplied to the cells by the 

passing fluid. The main drawbacks of this technique include the positioning of the cells in the 

flow for a long time which exposes the cell to sheer stress. 

Micro patterns have been used to study size, morphology and growth of cells. Recently, 

asymmetric micro patterning techniques have been used to study cell migration and division 

[75, 76]. The cell-substrate interface can dynamically change by external stimuli e.g. heat, light 

and electricity. These dynamic surface effects can directly affect cell adhesion and response 

[77]. For instance, decreasing the cell-surface area can affect the cell behavior and result in 

apoptosis [73].  

Traps 

Trapping of single cells at fixed locations for long term experiments and analyses is comparable 

to the microwell approach. It is possible to trap cells in contact with a surface as well as those 

which are not [78].  Trapping techniques are often combined with microfluidic devices to supply 

nutrition and regents to the cells. Cells can be mechanically trapped using U-shaped structures 

to trap the cells [79]. These U-shaped traps are compatible with standard microscopy but they 

are not suitable for long term imaging because of cell losses to the passing flow. Capturing 

immunomagnetically labeled cells with magnetic fluxes at particular positions is another 

trapping technique [80]. Magnetic traps allow the selection of specific sub-group of cells based 

on e.g. cell surface markers. However, biological effects of coupling cells with magnetic beads 

and particles must be considered when using this technique.  

Optical traps [81, 82] and dielectrophoretic traps [83] are other approaches to manipulate and 

spatially isolate single cells. Optical tweezers move cells towards the focal point of a focused 

laser by optical forces and reposition the trapped cells by changing the focus. The drawback of 

this technique is the heating of the cells which occur in the laser beam. Dielectrophoretic (DEP) 

traps move the cells in an electric field based on the difference in conductivity between the 

cells and the surrounding medium. Another method used to trap cells employ an acoustic trap. 

A benefit of acoustic trapping is that it is a non-contact technique. Ultrasonic standing waves 

generate pressure gradients in the liquid and forces on cells to move them towards a particular 

location (i.e. node of the standing wave) [84]. It is also possible to trap individual cells using 

ultrasonic waves for a specific period of time [85]. One disadvantage of this technique is lack of 

demonstration of cell viability for extended periods of time. 

1.2 THE IMMUNE SYSTEM  

The immune system is a collection of cells, tissues, and molecules that mediate resistance to 

disease, particularly to infectious disease. The largest organ of the immune system is the skin 
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which protects the body against all kinds of infections on a regular basis. Other organs including 

thymus, bone marrow and lymphoid tissues protect the body from foreign substances and 

pathogenic organisms by generating immune responses (the coordinated reaction of immune 

cells and molecules against infectious substances and pathogens is called immune response). In 

addition, the immune system can also be stimulated to respond to cellular transformation to 

avoid generation of cancer. However, abnormal immune responses can cause several 

inflammatory diseases, some with a high mortality rate. In summary, the immune response is 

vital for fighting disease but could also lead to complications.  

1.2.1 Innate and adaptive immunity 

The immune system consists of innate immunity, which provides the initial protection against 

infections, and adaptive immunity which develops more slowly and mediates the later and 

more effective response against infections. The epithelial barriers are the first line of defense 

against infectious foreign agents. If pathogens pass the epithelia and enter the tissue or 

circulatory systems, they will be attacked by phagocytes or specialized lymphocytes such as 

natural killer (NK) cells. In addition to providing an early defense against infections, the innate 

immune response triggers and enhances the adaptive immune response against infectious 

agents e.g. by producing cytokines. However, some pathogens have evolved to resist and evade 

the innate immunity; defense against these infectious agents is the task of the adaptive 

immune system. 

The adaptive immune response is specialized to combat different types of infections. For 

example, antibodies which are the products of B lymphocytes block infections and eliminate 

infectious agents in extracellular fluids, while T lymphocytes eradicate intracellular pathogens. 

In addition, the adaptive immune system functions to increase the anti-pathogenic mechanisms 

of the innate immunity. For instance, antibodies bind to pathogens and these coated pathogens 

activate phagocytes to ingest and destroy the pathogens. The main feature of the adaptive 

immune system and one that only rarely has been observed in the innate immune system is to 

generate and maintain an immunological memory.  After activation of adaptive immune cells 

and clearing the infection, some adaptive immune cells turn into specific memory cells. In 

interaction with a previously encountered antigen, the appropriate memory cells activate and 

react more rapidly on a subsequent exposure to that particular antigen. Thus, the adaptive 

immune system slowly develops during life as new pathogens are encountered. 

1.2.2 Natural killer cells 

NK cells have been classified as being part of the innate immune system; however, recent 

studies show that NK cells may also display immunological memory [86-88].  NK cells are 

immune cells that can provide their effector functions without prior exposure to an antigen. 
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Activated NK cells release the proteins contained in cytoplasmic granules toward infected cells. 

These proteins include molecules that enter the infected cells and activate enzymes that induce 

apoptosis. Therefore, NK cells have a significant role to provide early protection of the body 

against viral infection [89]. NK cells that encounter infected and stressed cells can also respond 

by secreting cytokines like IFN-γ that for example activates macrophages to ingest apoptotic or 

infected cells.  

The activation of NK cells is determined by a balance between engagement of activating and 

inhibitory receptors (Figure 1.3A-B) [90, 91]. The activating receptors recognize molecules  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3. Natural killer responses are defined by signals from inhibitory and activation receptors. (A) 

An inhibitory receptor on NK cell recognizes self MHC-I on target cell and restrains NK cell activation. (B) 

Missing self MHC class I on target cell deactivate inhibitory receptor on NK cell. Thus, activation receptor 

stimulate NK cell to produce cytokine and release granule towards target cell. 
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which are often expressed on the surfaces of stressed cells. One of the activating receptors of 

NK cells is NKG2D which recognizes molecules that structurally resemble class I major 

histocompatibility complex (MHC) proteins. The inhibitory receptors of NK cells are specific for 

self-class I MHC molecules, which are expressed on all healthy cells and function to block 

signaling of activating receptors (Figure 1.3A). However, when cells lose expression of MHC 

class I during viral infection or neoplastic transformations, they can become NK cell targets 

(Figure 1.3B). This is known as missing self-recognition and has also been observed after 

allogeneic stem cell transplantations [92-94].  

The killer cell immunoglobulin-like receptors (KIRs) and NKG2A receptors are two main NK cell 

inhibitory receptors. Associations between the genes and alleles of KIRs and the development 

of autoimmune diseases suggest a role for NK cells in many different diseases and fundamental 

biological processes [95, 96].  

Upon contact between NK cells and target cells, receptors and transmembrane proteins can 

translocate to form supramolecular activation clusters (SMACs) at the intercellular contact [91, 

97, 98]. This is known as the immune synapse and is believed to function as an area for 

signaling and secretion of proteins [99]. Therefore, studying the formation of conjugates and 

immune synapses between NK cells and target cells is of interest to understand NK cell 

behavior. Another factor that is important for how NK cells find and survey target cells is their 

migration behavior. It is possible that the migration behavior displayed by individual NK cells 

reflect their ability to form conjugates and kill target cells.   

1.3 OPTICAL MICROSCOPY 

Optical microscopy, also referred to as light microscopy, allows visible light to pass through (or 

scatter and reflect) from a sample by using an optical system containing multiple lenses to 

magnify images of small samples [100]. Two main basic functions of an optical microscope are 

illuminating the specimen and creating a magnified image of it. An illumination optical system 

efficiently collects the light emitted from a light source and transmits the light to the specimen. 

An observation optical system projects a magnified image of the sample through optical lenses 

to either an eyepiece or a light-sensitive camera such as a charge coupled device (CCD) 

[101]. Optical microscopes are designed in different ways according to their intended 

applications. An upright microscope is used to observe a sample from above whereas an 

inverted microscope is used to observe a specimen from beneath.  

1.3.1 Fluorescence microscopy 

Fluorescence microscopy is a type of light microscope where the light source is used to excite a 

fluorescent sample. After excitation, the fluorescent sample emits light with longer wavelength 
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that is collected to make a magnified image [102]. Many fluorescence microscopes use a xenon 

or mercury arc-discharge lamp or LEDs as light source. The principle of laser scanning confocal 

microscopy (LSCM) is shown in Figure 1.4A. The illumination light is absorbed by the 

fluorophore attached to the sample. After a short time delay (normally in the nanosecond 

range) the fluorophore emits light of longer wavelengths that can be collected by a 

photomultiplier tube after passing a pinhole. The pinhole ensures that only in-focus 

fluorescence emission is collected.   

 

 

 

 
 

Figure 1.4. The principles behind fluorescence microscopy. (A) A simplified schematic of laser scanning 

confocal microscopy. A laser beam is reflected by a dichroic mirror to illuminate a fluorescent specimen. 

The fluorescent emission light is detected by a photomultiplier after passing a detector pinhole 

aperture.  The unfocused lights (dashed red lines) are blocked from reaching the detector.  (B) 

Schematic energy level diagram of a fluorophore. First, a photon is absorbed by the molecule, 

transforming the molecule to an excited state. When the molecule returns to the lower energy ground 

state, a photon may be emitted.   

A simple molecular energy level diagram is shown in Figure 1.4B. An incident photon can be 

absorbed by the molecule and raise the molecule from the lowest electronic ground state S0 to 

an excited state, e.g. S2. Higher excitation levels, e.g. S3 and S4, can be reached by the molecule 

if the excitation photons have high enough energy. After excitation, the molecule transfers 

from the higher electronic state (e.g. S2) to the lowest electronic state S1 by internal conversion 
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(IC). The molecule may return to ground state S0 from the level S1 by emitting a photon or by 

converting the energy into heat. The emitted photon (fluorescent light) has a longer 

wavelength compared to the excitation photon. Hence, the fluorescent light emitted from the 

sample can be separated from the excitation light by the use of optical filters. By filtering out 

the excitation and unfocused lights, only the fluorescent objects are observed [103].  

1.3.2 Bright field microscopy 

The simplest technique in optical microscopy is bright field microscopy where light either 

passes through or is reflected scattered or absorbed from a specimen. The contrast in the 

sample is provided by absorption of light in some regions of the sample. However, bright field 

microscopy has a low contrast in most transparent biological samples. Therefore, it is of 

interest to improve the image contrast of highly transparent biological samples without staining 

the samples with chemical substances. Labeling biological samples can be expensive, time 

consuming and is sometimes toxic for living samples. Therefore, phase imaging techniques can 

be used to visualize certain biological structures using interference to convert optical path 

length differences to intensity differences. The two most common techniques used in optical 

microscopy are phase contrast and differential interference contrast (DIC). A phase contrast 

microscope has a special objective and condenser lenses with a phase shifting ring to make 

visible the small differences in refractive index as intensity differences in the image. The small 

changes in optical path length occur as light passes through different mediums, such as water 

and cellular components, with variable refractive index. These optical path length variations are 

translated to corresponding changes in light intensity and cause an observable image contrast 

[104, 105]. DIC microscopy is based on the gradient of optical path length where the steep 

gradients make a high contrast in the image. In other words, the light intensity differences in 

the image results from measuring the derivative as a rate of changes in optical path length 

across the sample [106, 107].  

1.3.3 Two photon microscopy 

Two photon microscopy is a fluorescence imaging technique that can provide high definition 

images of living cells deep in tissue such as brain, lymph nodes and skin [108].  Two-photon 

microscopy is based on the effect of simultaneous absorption of two photons by a 

fluorophore. Since the energy of a photon is inversely proportional to its wavelength, the two 

photons have a wavelength twice that required for a single excitation photon. Thus, the 

fluorophore can be excited with a longer wavelength which increases the penetration depth in 

the tissue. Therefore, two-photon microscopy can be a superior alternative to confocal 

microscopy for three dimensional imaging of thick tissues. Another advantage of two photon 

microscopy is the localization of excitation. Excitation only occurs in the tiny focal point where 
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there is high enough photon density [109, 110].  Since two-photon excitation only produces 

fluorescence at the focal point and no background fluorescence is created, a pinhole is not 

needed. Then, the emitted photons are collected by highly sensitive detectors such as 

photomultiplier tubes.  

1.4 DIGITAL IMAGE PROCESSING  

The use of computer algorithms to process digital images is called digital image processing. To 

reduce imperfections in the images generated during acquisition, e.g. noise caused by the 

imaging hardware, a pre-processing step is often necessary.  Pre-processing includes methods 

such as sharpening to increase edge information, smoothing to reduce noise, filtering to 

decrease intensity non-uniformities, background subtraction and image registration to align the 

images [111]. After pre-processing, images are prepared for the following image processing 

steps. Segmentation is an imaging processing method to divide an image into objects and 

background. A simple but widely used method for image segmentation is thresholding which is 

based on the relative intensities in the image. This technique is simple and typically separates 

objects from background. Another method for segmentation is edge detection. Different 

techniques can be applied for detecting the edges in images such as Sobel edge detection and 

Laplacian methods, while Canny edge detection is used as a powerful method to most 

applications [112].  

If all objects are brighter than the background of the image, thresholding can separate all 

objects from background. However, clustered objects cannot be segmented from each other by 

applying a threshold to the intensity profile of the image. If cells have high intensity in the 

middle and less intensity at the borders towards other cells in the cluster, then all individual 

cells can be thought as mountains separated by valleys in the intensity landscape. Then a 

segmentation algorithm called Watershed can be used to find mountains in the landscape. The 

Watershed algorithm was first suggested by Lantuejoul and Digabel, and then it was extended 

by Lantuejoul and Beucher [113]. If the clustered objects are not separated by lower intensity at 

their borders, then other methods can be applied to separate objects, for example a Watershed 

algorithm based on the shape of the objects. Shaped-based Watershed algorithms use some 

features of the objects like roundness and are suitable for some applications e.g. to separate 

cell nuclei. This Watershed segmentation transforms the threshold (binary) image of objects 

into a distance transformed image [114]. In a distance transformed image, the pixel intensity of 

each object corresponds to the distance to the nearest background pixel, so pixels in the center 

of objects have higher intensity values than pixels in the object’s borders [115, 116].  

Detecting the simple shapes like straight lines or circles is an arising problem in automated 

image analysis. An edge detector is often used as a pre-processing method to detect the edge 
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points or pixels on a desire curve in the image. However, there may be some missing or disjoint 

points on the curve due to imperfections in the edge detector or image data. Hence, a method 

called Hough transform was developed to group the extracted points to an appropriate set of a 

lines, circles or other parametric curves [117, 118]. Hough transform can detect and segment 

lines, circles and any structure that has known parametric equation from background. After 

separating the objects from each other and from the image background, algorithms such as 

feature extraction, classification and automatic tracking can be applied to the segmented 

objects.   
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2 PRESENT INVESTIGATION 

Here, first some methods developed for automatic counting and morphology analysis of single 

cells in individual microwells (Papers I and III) or droplets (Paper V) are presented. Then, image 

analysis techniques are described for tracking and migration analysis of single cells confined in 

microwells (Papers II and IV). Finally, the experimental results of the developed methods 

including the study of clonal expansion and viability of single cells (Papers I and V), analysis of 

transient migration and functional behavior of NK cells (Papers II, III and IV), aggregation of cells 

by ultrasound (Paper IV) and monitoring dynamic behavior of single cells (Paper V) are 

presented.  

2.1 METHODS 

First, the design and application of microwell chips and droplet microfluidic devices for specific 

biological applications are described. Subsequently, the techniques developed for automatic 

image analysis and tracking are presented. 

2.1.1. Microwell-based biological assays 

In this thesis, different microwell chips were used for high content screening of single cells or 

time lapse imaging of small populations of cells. All microwell assays were based on the same 

general microchip platform. This platform was designed to meet the requirements of long-term 

imaging of live cells with standard optical microscopy.  All microchips were made from silicon 

wafers with a thickness of 300 μm which was bonded to glass with thickness of 170 µm to allow 

high resolution imaging with inverted microscopes. The fabrication process of the chips is 

sketched and explained in Figure 2 of Paper 1. The depth of all wells was designed to be deep 

enough (300 μm) to prevent cells moving between individual wells. The outer dimensions of all 

microchips were the same (22 mm × 22 mm) to fit in a common holder. A simple schematic of 

the microchip and the three piece holder with a circular base plate is shown in Figure 2.1A. To 

be able to add material such as culture medium or drugs to the cells inside the wells, a 20 mm 

×20 mm hole was created in the center of the top lid of the holder. A lid of a 30 mm petri dish 

was used on top of the holder to protect the cell medium from evaporation and contamination. 

The number of wells, well size and distribution pattern were optimized depending on the 

specific biological application (see Figure 1 and Table 1 of Paper 1).  In this thesis, microwell 

chips were used for three different biological assays that are explained in the following 

sections.   
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Figure 2.1. Schematic of the microwell chips used in the different biological assays. (A) Assembly of the 

microchip and holder. The three piece holder consists of a bottom made of titanium or polyether ether 

ketone (PEEK), a transparent material poly-methyl methacrylate (PMMA) top a polydimethyl siloxane 

(PDMS) gasket and magnets to hold all components together. (B) Fluorescent (green circles) and non-

fluorescent (white circles) 221 B cells were seeded in the silicon (Si) wells with width of 50 µm for 

studying surveillance and proliferation of cells. (C) Small numbers of NK cells (orange circles) and 293T 

target cells (green circles) were confined inside 650x650 µm2 wells for analyzing migration behavior and 

interaction between cells. (D) NK cells (orange circles) and 293T target cells (green circles) were 

aggregated in the center of a 300 µm well by ultrasound. Ultrasonic forces are schematically shown by 

black arrows towards the cells. 

Clonal expression and proliferation of cells 

To study the proliferation and functional behavior of single or low numbers of cells, a microwell 

chip with a large number of small wells (50×50 µm2) was designed and fabricated. These       

microwell chips were designed for imaging with a 10x objective and contained 32400 individual 

wells which were divided into 20 rows of columns of 20 arrays, each contacting 9x9 wells. It was 

shown in previous studies that screening a large number of 50×50 µm2 wells containing a 

mixture of natural killer (NK) cells and target cells allowed the detection of different killing 

behaviors of NK cells (slow and fast killing) and also to study accumulation of class I MHC 

protein at inhibiting NK cell immune synapses [119]. In this thesis, these screening chips were 

used to study the proliferation and clonal expansion of 221 human B cells (Figure 2.1B).             

A B 

C  D 



Ali Khorshidi 

19 
 

Cell migration and cell-cell interactions 

For applications where the migration behavior and interaction between different cell 

populations were of interest, larger wells were used to provide sufficient space for cell 

migration. In Paper 2 , small populations of human peripheral blood NK cells (50-100 cells) and 

293T tumor target cells (100-200 cells) were seeded in 650x650 µm2 microwells [120], where 

these wells were used for studying NK cell migration and interaction with tumor target cells 

(Figure 2.1C). In another study, 450x450 µm2 microwells were used for analyzing morphmetric 

parameters of human embryonic kidney (HEK) 293A cells over the time (3 hours).  

Aggregation of cells with ultrasound 

It was previously shown that ultrasound can be used to control and aggregate cells in the center 

of individual wells in a multi-well chip [121]. In this thesis, similar chips containing 100 

individual wells, with width of 300 µm separated by 100 µm walls, were applied for aggregating 

primary human NK cells and HEK 293T cells in the center of each individual well by ultrasound 

to study how effectively the ultrasound could keep cells focused at the center of each well 

(Figure 2.1D).  

2.1.2 Droplet-based cell analysis 

In this thesis, a flow-focusing droplet generator was used to encapsulate single cells in 

monodisperse droplets (see Figure 1.1A) for subsequent trapping. To improve cell 

encapsulation a magnetic stirrer was used to prevent sedimentation of adherent mammalian 

cells in the aqueous solution before injection of the cells into the microchip. The generated 

droplets were trapped and stored in a trapping chamber for a specific period of time, 11 hours 

(Figure 2.2A-B). The master mold from which the chamber was fabricated had two depth layers 

and contained 6000 wells for trapping droplets. 

Droplets were squeezed and entered the chamber with depth of 25 µm. Then, droplets were 

trapped in arrays of cylindrical wells in the roof of the chamber to minimize surface tension 

forces around the droplets.  Droplets are allowed to assume a more spherical (minimum energy 

shape) inside the wells (Figure2.2A) forming an effective energy barrier to escape. Finally, 

continuous phase (oil) washed away un-trapped droplets from the chamber. In order to avoid 

evaporation of droplets during incubation time, chip was saturated with and covered in water. 

2.1.3 Image acquisition  

Image acquisition by bright field and fluorescence microscopy was performed to image cells 

confined in microwells or encapsulated in droplets.  Inverted microscopes were used to observe 

the biological samples in microwell chips; whereas upright microscope was applied to image the 
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Figure 2.2. Trapping of microdroplets on the chip. (A) Schematic of a trapping chamber to confine 

droplets containing live (green) and dead (red) cells in circular wells. Droplets have lowest energy shape 

(sphere) inside the wells. (B) Overlaid bright field and fluorescent image of live and dead HEK293T cells 

encapsulated in droplets trapped in circular wells. The wells are 35 µm deep with 35 µm in diameter. 

Live and dead cells are fluorescently stained by green and red dyes, respectively. Scale bar is 50 µm. 

droplet microfluidic device. The microscopes were equipped with a motorized stage to allow 

automatically scan the entire chip. Both bright field and fluorescent images were acquired and 

saved for further processing. Bright field images were used for identifying droplets as well as 

morphology analysis of cells in vitro. In image acquisition, images with saturated intensity of the 

cells were avoided insofar as possible, because it could make cell segmentation more 

complicated in the image analysis step. However, in order to detect fluorescence from all 

labeled cells increasing the sensitivity of the imaging system proved necessary which resulted in 

images where fluorescence from the brightest cells was saturated. How to deal with objects 

with saturated intensity in the image is discussed in the image analysis section. In this thesis, a 

two-photon microscope was used for imaging NK cells and target cells inside mouse lymph 

nodes (Paper 2).  

2.1.4 Image analysis  

In order to analyze digital images, a number of image analysis steps are generally performed. 

The sequence of steps and methodology is fairly similar for several applications.  The first step 

after acquiring the image is pre-processing, e.g. compensating for any unwanted image 
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rotation, subtracting background intensity and eliminating the non-uniformities of image 

intensity which could not be avoided during the image acquisition. The next step is image 

segmentation to find the objects which are important for further analysis followed by 

extraction of features of the segmented objects and classification into different groups. Below, 

the methods used in this thesis are described in more detail. 

Preprocessing 

It is not easy to achieve a uniform illumination of the specimen in the microscope, so the non-

uniformities of intensity need to be reduced in the acquired image. An averaging or smoothing 

filter can be used to reduce noise and prepare the images for further processing such as 

segmentation. Here, a Gaussian kernel filter was applied for smoothing the fluorescence 

images. Subtracting the undesirable background of the image is another important pre-

processing step before the segmentation step. For example in this thesis, undesirable auto-

fluorescence area from the silicon microchip was simply removed by multiplying the image with 

a binary mask corresponding to the walls of the wells. In similar way, unwanted regions of the 

droplet images were removed by using a binary mask of droplet trapping wells. Furthermore, 

identification of the individual wells of the microchip or trapped droplets in droplet device was 

also performed before segmentation of the cells inside the wells or the droplets.  

Segmentation 

In recent years, many techniques have been developed to segment objects from the image 

background. Below, some segmentation algorithms which have been tried or used in the 

projects are explained.  

Thresholding 

There are different methods for thresholding digital images [122]. In this thesis, Otsu’s method 

was used to separate objects (cells) from background in fluorescent images (Figure 2.3A-C). This 

method is fast because it operates directly on the gray level histogram of the image. It is 

searching for an optimum threshold to separate two classes of pixels (foreground and 

background) which minimizes the weighted within-class variance and maximizes the between-

class variance [123]. The main drawback of thresholding is that it cannot separate clustered 

objects from each other.   

Edge detection 

An edge in an image is a curve that follows a path of rapid change in image intensity. Edges are 

often associated with the boundaries of objects. Edge detection is used to identify the edges in  
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Figure 2.3. Segmenting cells from background by applying different segmentation methods: 

thresholding, edge detection and watershed segmentation. (A) A gray scale image of fluorescent stained 

cells in 300 µm wells. (B) Intensity profile along the red horizontal line in image A. (C) Binary image of 

cells after thresholding using I=50 as threshold (red line in B), where the clustered cells were not 

separated. (D) Image after segmentation using Canny edge detection followed by a dilation operation 

applied to find objects and close the object boundaries. (E) By applying the watershed segmentation 

based on extended h maxima transform, all cells were separated from each other and background. Small 

objects were removed as noise while applying the h maxima transform. 

the image by looking for the regions where first derivative of the intensity is larger in 

magnitude than some threshold, or the second derivative of the intensity has a zero crossing. 

In this thesis, the Canny edge detection technique has been used to find the cell boundaries in 

bright field images. The edges found by the Canny method were often not connected, so 

further operations like dilation followed by erosion were needed for closing boundaries of the 

objects (Figure 2.3D). 

Watershed segmentation 

Here, a watershed segmentation algorithm based on the extended h maxima transform was 

used to segment objects from each other and background [124]. All intensity-based maxima are 
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compared to their local neighborhood and only those maxima greater than a given threshold h 

are kept.  First the image was complemented so that the peaks became valleys, because the 

watershed transform identifies low points and not high points. Then, the image was modified 

so that the background pixels and the extended maxima pixels were forced to be the only local 

minima in the image. Extended h maxima transform was applied as the watershed algorithm to 

separate cells in clusters (Figure 2.3E). The drawbacks of the algorithm are over seeding (low h) 

and under seeding (high h). An under seeding example is shown in Figure 1.9B where the cells 

in a cluster could not be separated from each other because no local maxima was found due to 

intensity saturation in the cluster.  

Hough transform 

In this thesis, in order to detect droplets in bright field image the circular Hough transform was 

used [125, 126]. Circular Hough transform relies on the circle equations. A circle equation 

                   with radius r and center coordinates (a, b) can be written with 

parametric equations as 

            

            

where R can be chosen from a range of circle radii, rmin ≤ R ≤ rmax, by user and angel   sweeps 

through whole 360 degree. Output of the Hough transform is a gray scale image with higher 

intensity level for detected circles. Thus, true circles can be detected from background noise by 

defining an intensity threshold to the image. Finally, trapped droplets were determined by 

positioning the detected droplets to hexagonal grid of the wells array (Figure 2.4A-B). 

Feature extraction 

Some expressive features based on the actual pixel values and their spatial arrangements 

within the object can be extracted after segmenting the objects from background. Some 

morphometric features and densitometric features can be calculated from single objects [127]. 

Morphometric features are based on shape of the objects such as area, perimeter, 

compactness and convex area. The area can be obtained from the number of pixels 

corresponding to the object, and the perimeter can be calculated by summing the edge pixels 

of the object. The compactness can be defined as 

            
          

       
 

and convex area is defined as the number of the pixels in convex hull of the object (convex hull  
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Figure 2.4. Identified droplet trapping wells using circular Hough transform and hexagonal grid. (A) 

droplets are detected by circular Hough transform in bright field image. Droplet trapping wells (green 

circles) were identified at positions of hexagional grid of wells from untrapped droplets. (B) Binary image 

of droplet trapping wells. Scale bar is 50 µm.  

is the set of pixels within the object that can make a convex shape) [128]. Some intensity-based 

features such as mean, minimum and maximum intensity of objects can be defined as 

densitometric features. In this study, three morphometric features have been calculated to 

discriminate single cells from clusters: area, perimeter and compactness (Figure 2.5A-B). Here, 

no densitometric features were selected in the feature space because of high intensity variation 

in fluorescence image of the stained cells.   

Classification 

Once features have been extracted from the different objects, each object can be represented 

by its n expressive features as a vector   in the n-dimensional feature space,   . Then, a 

discriminate rule can be used to divide the feature space    into C separate regions   ,…,    

(where ⋃      and i=1,…,C).  It is assumed that data come from C classes, where each class 

   has a probability density function in the n dimensional feature space. The discriminate rule 

devotes each test point    to    if   є    . By knowing the distribution of each class   , a 

maximum likelihood distribution rule allocates each sample point    to class    (j=1, … ,C) when 

      =max       .        is the likelihood function for Gaussian distribution associated with 

class    and it can be shown as 
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Figure 2.5.  Extracting some morphometric features of stained cells in a fluorescent image. (A) 

Boundaries of objects are identified by red lines after Canny edge detection. (B) Three morphometric 

features of the cells are calculated after watershed segmentation based on h maxima transform. These 

features are 1) perimeter showed by white lines around the cells, 2) area indicated by colored regions 

inside the cells and 3) compactness showed by yellow numbers beside the cells. Compactness can vary 

between 0 and 1. For perfectly circular objects, compactness is equal to 1. Note that the cell cluster with 

compactness 0.68 could not be separated to single cells after segmentation because no local maxima 

exists for the individual cells within the cluster. 

       |    |
 

    
 

 
       

   
          

where    and    are the covariance and mean for class   , respectively.  

In the application for automatic counting of cells (Paper 1), a three dimensional feature space 

(n=3) was generated from three morphometric features (area, perimeter and compactness). 

There were two classes of data (single cells and clusters, C=2). Visual assessment and manual 

counting indicated that number of single cells was much larger than the number of clusters 

(about 90% of objects were single cells). Thus, the single cell class was the larger class of objects 

and chosen to be the data base which has a Gaussian distribution with a covariance matrix    

and a mean value  . The likelihood function       can be maximized when the negative of 

exponent is minimized. Therefore, maximizing       corresponds to minimizing the 

Mahalanobis distance [129, 130] 

∆=                  
 

  . 
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Then, unbiased estimates of   and   can be computed from the training data set of the data 

base as sample covariance matrix S and sample mean  ̅, respectively. Therefore, the estimated 

Mahalanobis distance of each test point    from sample mean of training data set  ̅  obtained 

as 

  =      ̅          ̅  
 

  . 

Measuring the    for all test points, together with a predefined threshold, can be used to 

classify the objects as either inside or outside the base class (single cells). If the presented 

distance of    is greater than the threshold, the test point would be considered outside the 

base class and it would classify as a cluster, otherwise it is assigned to the single cell class.  

Leave-one-out method was used for validation of the classifier performance. Therefore, for 

testing each sample, one data point (the one left out) in the base space was used to calculate 

the distance in the base space group. In Figure 6 of Paper 1, validation of the Mahalanobis 

distance is compared to the Euclidean distance which has a covariance matrix equal to the 

identity matrix ( =I). Evaluation of the supervised classifier based on Mahalanobis distance 

showed about 99% accuracy (explained in detail in the supporting information of Paper 1). 

2.1.5 Analysis of migration behavior 

To compare migration behavior of NK cells under different conditions, e.g. inflammatory and 

non-inflammatory situations, some key properties were defined to characterize NK cell 

migration from time-lapse imaging data. In accordance with previous studies the migration data 

showed that individual NK cells display a characteristic stop-and-go behavior [131, 132]. In this 

thesis, a method was developed to allow analysis of transient migration behavior of individual 

cells. Apart from migration also some other properties of NK cells, e.g. cell proliferation, killing, 

conjugation with tumor target cells were also assessed.  

Single cell tracking 

As described previously human primary NK cells and 293T tumor target cells were seeded in a 

650×650 µm2 microwell chip (Figure 2.6A).  All NK cells were manually tracked through the 

whole experiment using the Volocity software (Figure 2.6B). An automatic tracking routine was 

tested but not used for this data set because it was found to return false and erroneous 

tracking of some NK cells. This was probably caused by the relatively high number of motile NK 

cells that sometimes crossed paths or even interacted with each other. However, a simple 

automatic tracking algorithm was developed for the ultrasound assay. Ultrasound-induced cell 

clusters were automatically tracked inside 300×300 µm2 wells throughout long time-lapse 

experiments. This algorithm was based on the nearest neighbor object, where center of gravity  



Ali Khorshidi 

27 
 

 

     

Figure 2.6. Single cell tracking of NK cells in vitro. (A) A fluorescence image of NK cells (orange) and 

tumor target cells (green) inside a 650×650 µm2 well (edges of the microwell are shown in orange). (B) 

NK cell trajectories throughout the experiment (>12 h). Reproduced from Ref. 133 with permission from 

The Royal Society of Chemistry. 

of each object was detected and positioned based on binary images formed at each time point 

of an image sequence. 

Transient migration behavior analysis 

After tracking the individual NK cells, the mean squared displacement (MSD) was calculated for 

all individual trajectories by: 

       
 

   
∑          

           
  

   

   

 

 

where xi and yi are 2-dimensional positions of the NK cells, and the total number of NK cell 

positions is written as N. The time for the MSD evaluation t is equal to n∆t, where n is an 

integer number and ∆t is the time between two consecutive image frames. Analysis of the MSD 

for a randomly migrating cell shows that the MSD increases linearly over the time and the slope 

of the MSD curve is directly proportional to the migration coefficient M (SlopeMSD = 4M, for 2-

dimensional data).  
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To detect transient behavior, the MSD of the trajectories was calculated using a sliding window 

analysis, where only a small part of the trajectory was evaluated at a time and the sliding 

window was moved step-by-step along the trajectory [132]. The size of the window W was 

constant during the analysis and it divides each trajectory into small sections of W consecutive 

points (Figure 2.7A). Here, the value of W was set to 25 since that gave an acceptable level of  

 

 

           

Figure 2.7. TMAP detection using the sliding window approach. (A) Schematic view of the sliding 

window approach. The NK cell trajectories were divided into small segments (here W=4) which were 

analyzed separately by measuring the slope of the MSD. (B) Migration coefficient M was calculated 

along a NK cell trajectory and plotted as a function of time. TMAPs are defined by periods where M 

values are below the threshold (M=4.2 µm2/min). Reproduced from Ref. 133 with permission from The 

Royal Society of Chemistry. 

noise for reliable evaluation of the MSD parameters (migration coefficient and MSD curvature, 

see below). All trajectories with shorter lengths than the sliding window were excluded from 

the analysis. After extracting the MSD parameters, a rolling average filter with the same size as 

the sliding window was applied to the MSD parameter profiles. Thus, each point of the MSD 

parameter profiles was smoothed by 

   
 

 
∑   

     

   

 

where 1 ≤ i ≤ N and N is the size of the smoothed parameter profile. To apply the rolling 

average filter to the MSD parameters at the start and end points of each trajectory, W-1 points 

Treshold = Brownian 

motion of cell-sized 

particle 

A

                       

B
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were padded to the beginning and end of each trajectory by using the same values of the start 

and end point, respectively. Thus, the size of the trajectory would be increased to N+2(W-1) 

points, but the final profile length would be N+W-1. For characterizing transient migration 

behavior of NK cells, three modes of migration were defined: 1) transient migration arrest 

periods (TMAPs); 2) directed migration and 3) random movement. Detection of the three 

different migration modes is explained in the following sections.  

Transient migration arrest periods 

Periods where the migration coefficients were below a set threshold were defined as TMAPs. 

The threshold was defined based on the estimated diffusion coefficient of a spherical object 

with the same size as a typical NK cell 

     
  

    
 

where k is the Boltzmann’s constant,  is the viscosity (here the viscosity of pure water was 

used), d is the mean diameter of human NK cells (d=8.3 μm) and T is the absolute temperature 

(T=310 K). For assessing the slopes of the MSD curves, only the first 6 points of the curves was 

considered. This approach is similar to previous work measuring the diffusion coefficients of 

single vesicles [134, 135]. Then, M was calculated from the MSD slope along NK cell trajectories 

using the sliding window and rolling average filter approach to detect TMAPs (Figure 2.7B).  

Directed migration 

MSD curvature was used as a parameter to detect directed movement of migrating NK cells. 

The MSD can be written as       , where α is assessing the MSD curvature. For a perfectly 

random motion α is equal to 1, while for directed migration α >1 [136, 137]. The exponent α 

was calculated from the first 6 points of a linear fit of log MSD versus log t, using the sliding 

window and rolling average filter analysis, to evaluate the MSD curvature over time.  

To simulate Brownian motion, one thousand 2-dimensional trajectories were generated. In 

theory, for a purely Brownian motion α=1 but there are some fluctuations around 1 also for a 

randomly walking cell. These variations were found to be smaller in amplitude and duration 

compared to real periods of directed movement. To avoid erroneous detection of directed 

migration a threshold of     =1.5 was chosen so that the simulated random walking 

trajectories exhibit only 2.2% periods of directed movement (Figure 2.8A). The MSD curvature 

parameter was calculated as a function of time after excluding the TMAPs from each trajectory. 

All periods with α >1.5 for at least 10 consecutive points were classified as directed movement 

(Figure 2.8B).   
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Figure 2.8. Detection of directed movement by calculating the MSD curvature parameter (α). (A) 

Fraction of false directed movement detected in simulated trajectories of purely Brownian motion. 

These trajectories spent less than 2.2% of their time in directed movement for α > 1.5. (B) The MSD 

curvature parameter (α) of a trajectory was calculated using a sliding window and plotted over time. The 

gaps correspond to TMAPs that had been removed from the trajectory before the analysis. Values of α 

>1.5 showed a considerable upward curvature of the MSD which indicated directed migration. 

Reproduced from Ref. 133 with permission from The Royal Society of Chemistry.  

Random movement 

The parameters M and α were used to measure deviations from Brownian motion. The 

remaining parts of the trajectories which did not display TMAPs or directed movement were 

classified as random movement. Thus, each trajectory could be segmented into TMAPs, 

directed migration or random motion periods (Figure 2.9A-C).        

Detection of conjugation periods and NK mediated killing 

In the in vitro movies, conjugate formation between NK cells and target cells was determined 

by assessing the proximity between NK and target cells using both the bright field and 

fluorescence images. Target cells that were dying could be detected by release of the cytoplasm 

dye. Most tumor target cells released fluorescent dye gradually over the time, while some 

tumor target cells immediately released dye when they were killed by NK cells [119].  
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Figure 2.9. Analysis of transient migration behavior of NK cells (A) The trajectories of NK cells were 

classified into three modes of migration: 1) TMAPs (red lines); 2) directed migration (green lines) and 3) 

random movement (blue lines). (B, C) Two TMAPs of the NK cell trajectory in A (indicated with black 

arrows) are demonstrated in higher magnification for clarification. Reproduced from Ref. 133 with 

permission from The Royal Society of Chemistry. 

2.1.6 Scoring viability of single cells 

In this thesis, a time series analysis method was developed to verify viability and dynamic 

behavior of single cells in micro droplet. First, encapsulated single cells in the droplets were 

imaged by fluorescent and bright field microscopy throughout the experiment. Then, viability of 

individual cells was assessed by detecting live (green) or dead (red) signals from fluorescently 

labeled cells. Live cells retained live staining dye (green) during the experiment while dead cells 

released the green dye and turned red in color. Thus, the red stained cells were detected as 

dead cells over experiment time. Differently stained cells were automatically scored and 

viability of cells was determined over experiment time.  
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2.2 RESULTS 

In the following sections a summary of the results of the Papers, including automatic 

quantification of cells, cell morphology analysis, cell aggregation by ultrasound, migration and 

functional analysis of NK cells and tracking viability of cells, are presented.  

2.2.1 Automatic quantification of cells (Paper I and V) 

In Paper 1, human B cells were labeled with Calcein-AM or Far Red DDAO-SM and seeded into 

two different microwell chips (well size 50×50 µm2). After screening the chips, the number of 

cells within individual wells was scored both automatically and manually (Figure 7 of Paper 1 

shows a representative image of automatic counting of labeled cells inside the microwells). For 

evaluating the accuracy of the developed method, the results from automatic counting were 

compared with manual counting (the latter was assumed to represent 100% accuracy). The 

success rate for automatic counting of the total number of cells was 99.7% for Calcein green 

labeled cells and 97.4% for Far Red labeled cells. Automatic counting of the number of cells in 

individual wells showed an accuracy around 99% for low numbers of cells (1 or 2 cells per well) 

and almost 95% for higher numbers of cells (3 or 4 cells per well). The more homogeneous 

staining achieved with Calcein led to a slightly higher accuracy in the automatic counting 

compared to the cells stained with Far Red dye (see Table 2 of Paper 1).  

In Paper 5, a population of HEK293T cells were stained with Calcein-AM and encapsulated in 22 

pL droplets with dead staining dye (Ethidium homodimer). Then, generated droplets were 

incubated in trapping chamber of the microfluidic device for 11 hours. Trapped droplets were 

continuously imaged by fluorescence microscopy during the entire incubation time. Acquired 

bright field images were used to automatically detect the trapped droplets using the circular 

Hough transform method. Individual cells inside the droplets were segmented from background 

in fluorescent images. Number of cells in each droplet was estimated based on the average 

area of a single cell (Figure 4 in Paper 5). Automatic quantification was performed by applying 

the developed algorithm which is described in Figure S1 of supporting information of Paper 5. 

Comparing automatic counting of cells in individual droplets with manual quantification 

showed a success rate of 98.4% for automatic counting. Thus, this automatic quantification is a 

time effective tool for counting a large number of cells encapsulated in droplets. 

2.2.2 Analysis of cell morphology (Paper III) 

Small populations of HEK 293A cells were embedded into collagen gel (simulating extracellular 

matrix) inside 450×450 µm2 microwells. Then, cells were imaged by bright field microscopy 

every minute for 3 hours. After segmenting the cells, some morphometric parameters of the 

cells such as perimeter, area and compactness were calculated over time (Figure 2.10A-E).  
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Figure 2.10. Analysis of some morphometric parameters of HEK 293A cells embedded in collagen and 

imaged over time. (A) Mean compactness of stationary and migrating cells over time. The compactness 

of stationary cells was close to 1 but migrating cells’ compactness changed and fluctuated around 0.3 

over time. (B) Bright field image of a stationary cell indicating the cell boundary (red line). (C) Area (blue 

region inside the cell), perimeter (black outline) and compactness (number inside the cells) are shown 

for the stationary cell in image B. (D) Bright field image of a migrating cell indicating the cell boundary. 

(E) Area, perimeter and roundness are shown for the migrating cell in image D. 

Analysis of the data showed that there was a significant difference of the cell morphology 

between migrating and stationary cells (Table 2.1). Cells were more elongated while migrating 

compared to when stationary. Also the area and perimeter of the cells were larger when they 

moved.  

This method was later applied to analyze morphometric parameters of different NK cells 

imaged inside the 650×650 µm2 micro wells. The area of individual NK cells was calculated by 

applying a 45×45 µm2 cropping window around the trajectory coordinate at each consecutive 

0 20 40 60 80 100 120 140 160 180
0

0.2

0.4

0.6

0.8

1
M

e
a

n
 C

o
m

p
a
c
tn

e
s
s

Time (min)

 

 

Migrating Cells

Stationary Cells

5 10 15 20 25

10

15

20

25

30

35

40

0.96

5 10 15 20 25

10

15

20

25

30

35

40

10 20 30 40

15

20

25

30

35

40

45

50

55

0.44

10 20 30 40

15

20

25

30

35

40

45

50

55

A                                    

B C D E 



Live Single Cell Imaging and Analysis Using Microfluidic Devices 

 

34 
 

Table 2.1. Morphometric parameters of HEK 293A cells in stationary and migrating modes (N=10). 

Results are shown as mean value ± standard deviation. 

 Area (µm2) Perimeter (µm) Compactness   

Stationary 180.2±22.0 47.1±3.3 0.97±0.02   

Migrating 321.3±150.8 127.6±48.6 0.31±.017   

 
time point during the experiment. The results showed that NK cells are rounder and have 

smaller areas when they are inside TMAPs (data not shown). Assessing functional behavior and 

morphology of NK cells revealed that NK cells which were able to kill several target cells (serial 

killers) were larger in area or more elongated than other NK cells (non-serial killers), see Figure 

7F in Paper 3. 

2.2.3 Aggregation of cells using ultrasound (Paper IV) 

To study the interactions between primary human NK cells and tumor cells (HEK 293T), a 

mixture of cells were aggregated in microwell chips using ultrasound. After staining and seeding 

the cells into the microchips, ultrasound was applied to induce aggregation. Subsequently the 

cell clusters were imaged every 373 seconds for >16 hours and the cell clusters tracked. In one 

set of experiments the ultrasound was applied throughout acquisition of the image series and 

in another set of experiments the ultrasound was turned off after the initial aggregation. The 

Euclidean distance of the cluster from the center of the well was calculated for all consecutive 

time points throughout the experiment. Analysis of the data showed that as long as the 

ultrasound was being applied, all clusters aggregated close to the center of each well. However, 

when the ultrasound was turned off clusters started to migrate and diverge from the center of 

the well. Figure 2.11A shows the average Euclidean distance of clusters from the well center 

calculated for 100 individual wells over time. Trajectories of the cell clusters when the 

ultrasound was turned on and when it was turned off are shown in Figure 2.11B-C.  

In order to investigate effect of actuation voltage on aggregating the cells into center of the 

well, adherent HEK 293T cells and non-adherent human 221 B cells were seeded into the wells. 

Then, ultrasonic actuation voltage was gradually increased. It was shown that non-adherent 

cells are more efficiently trapped in center of the well compared to adherent cells when 

ultrasound was applied; see Figure S1 in supporting information of Paper 4.   

2.2.4 Migration analysis of NK cells in vitro and in situ (Paper II) 

In Paper 2, in order to analyze transient migration behavior of NK cells, small populations of 
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Figure 2.11. Aggregating HEK 293T cells and NK cells close to the center of individual wells using 

ultrasound. (A) Mean Euclidean distance of clustered cells from the center of each well over time for 

two conditions: ultrasound turned on (red line) and ultrasound turned off (blue line). When the 

ultrasound was turned off the cell clusters started to diverge from the center of the wells. By contrast, 

cell clusters stayed close to the center of wells when the ultrasound was on. Reproduced from Ref. 138 

with permission from The Royal Society of Chemistry. (B) Trajectory of a cluster over time when the 

ultrasound was turned on. (C) Trajectory of a cluster over time when the ultrasound was off. Both 

trajectories correspond to 16 hours movies. 
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fluorescently labeled NK cells and 293T tumor target cells were confined in 650×650 µm2 wells 

and imaged every 2 minutes for >12 hours by fluorescence microscopy. Then, all individual NK 

cells were manually tracked. Analysis of the acquired images showed that NK cells migrated and 

formed conjugates with 293T tumor target cells which sometimes led to killing of the target 

cells. Analysis of the trajectories in detail revealed that there were transient variations in the 

migration of individual NK cells. Three modes of migration were defined (TMAPs, directed 

migration and random movement) for NK cells which were assessed by calculating the MSD 

over time.  

Transient migration analysis showed that NK cells continuously shifted between different 

modes of migration which could cause the heterogeneity in mean speed observed between 

individual NK cells. The mean speed decreased with increased fraction of time that the NK cells 

spent in TMAPs (see Figure 3 of Paper 2).  In Paper 2, some properties of TMAPs such as size 

and duration were calculated (see Figure 4 of Paper 2). TMAPs mostly had similar radii as target 

cells (10-20 m) which could be correlated with forming conjugations with target cells [119].  

Interestingly, the mean fraction of time that NK cells spent in TMAPs increased from 34% in 

absence of target cells to 70% in presence of target cells, showing that interaction with target 

cells could increase number and duration of TMAPs.   

In presence of target cells, NK cells spent 55% of their time in conjugation with target cells. To 

find the degree of correlation between conjugation periods and TMAPs, the overlap between 

periods of the target cell conjugation and TMAPs was studied. It was revealed that a large 

number of TMAPs formed independently of conjugation, while there was a considerable 

population of TMAPs which coincided 100% with conjugation periods (see Figure 5 of Paper 2). 

On average, NK cells spent 61% of the time in TMAPs overlapping with conjugation periods. On 

the other hand, 74% of the conjugation periods completely overlapped with TMAP; whereas, 

there were a few conjugates that did not lead to any TMAPs. Amongst the TMAPs that 

overlapped with conjugation periods, some contacts that led to target cell lysis were detected. 

The first time point of cell death was marked by an initial drop of Calcein fluorescence signal. 

TMAP analysis showed that 35% of the TMAPs did not overlap with conjugate formation. 

TMAPs could also be formed for other reasons such as spontaneous stops, cell division or cell 

death (see Figure 6 in Paper 2).    

2.2.5 Analysis of functional behavior of NK cells (Paper III) 

To study functional behavior and killing efficiency of single NK cells, small populations of NK 

cells (40-100) and 293T tumor cells (200-300) were seeded inside 650×650 µm2 wells. 

Fluorescence imaging and tracking of individual NK cells revealed migration and interaction of 

NK cells with tumor target cells throughout the experiment which spanned more than 12 hours. 
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All conjugations of individual NK cells with target cells and killing events were recorded 

throughout the image sequence acquisition. Generally, migration and interaction of NK cells 

with target cells were determined in three phases: migration, conjugation and attachment (see 

Figure 2 in Paper 3). In migration mode, NK cells moved freely without any contact with target 

cells.  In conjugation phase, NK cells formed an intercellular contact with target cells and 

sometimes delivered a lytic hit to the target cells. These lytic hits were detected by observing 

sudden Calcein florescence decrease in target cells and morphological changes in target cells 

e.g. cell explosion or blebbing (membrane swelling). After conjugation period, NK cells often 

remained attached to the target cells (attachment phase) or detached from the target cells to 

continue free migration or forming new conjugations with other target cells.   

The Investigation of NK-target conjugation times showed that lytic interactions on average 

were shorter than non-lytic contacts. Thus, NK cells active in killing target cells had shorter 

interaction periods. An analysis of the time between lytic hit and first morphological signs of 

cell death indicated that lytic hits were often (76%) delivered quickly after forming the 

conjugations (< 20 minutes) and signs of target cell death were observed for 79% of killing 

events within 20 minutes after the lytic hit. Hence, cell death was detected within 60 minutes 

after lytic hits for majority of killing events (93%). Analysis of multiple distinct Calcein 

fluorescence drops revealed the delivery of several lytic hits against a single target cell. In most 

of the killing events, a single lytic hit was observed whereas between 2 and 4 hits were 

recorded for 22% of the events. This observation showed that NK cells can deliver cytotoxic 

granules to the target cell at different times during the conjugation period.  

Tracking functional behavior of individual NK cells over the time of the experiment showed that 

around half of the NK cell population (49%) did not kill any target cells, while a small number of 

NK cells were responsible for the majority of killings. NK cells were categorized into five groups 

based on their conjugation and killing behavior: 1) NK cell that did not have any physical contact 

with any target cell 2) NK cells that interact with target cells but did not kill any target cell 3) NK 

cells that killed all encountered target cells 4) NK cells that killed until being exhausted 5) NK 

cells that behaved randomly in killing and not killing target cells (see Figure 6 in Paper 3). These 

differently behaved NK cells in killing target cells showed heterogeneity within the NK cell 

population. A small percentage of NK cells (6%) were able to kill more than four target cells. 

Around 26% of the target cells were killed by these serial killers. Comparing killing behavior of 

serial killers with other cytolytic NK cells showed that serial killers induced faster and stronger 

lytic response than other killers (see Figure 7 in Paper 3). 

2.2.6 Tracking viability of cells in droplets (Paper V) 

In Paper 5, the viability of HEK 293T cells in micro droplets was studied over time. Fluorescently 

labeled cells with Calcein AM (live staining dye) were encapsulated in 22 picoliter droplets in 
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presence of Ethidium homodimer (dead staining dye). Then, the droplets were incubated inside 

cylindrical wells in the trapping chamber of the microfluidic device and imaged by florescence 

microscopy every 17 minutes for 11 hours. The distribution of cells in each droplet followed the 

Poisson distribution                  . Here   is probability obtaining a particular number 

of cells in a droplet and   is mean value of number of cells   per droplet [40, 139, 140]. The 

percentage of empty droplets was about 77%, and only 16% of the droplets contained single 

cells (see supporting Figure S2 in Paper 5). All droplets containing cells were monitored 

throughout the incubation time. The viability of single cells was scored by detecting green (live) 

and red (dead) signals from fluorescent images throughout the experiment (see Figure 5 in 

Paper 5). Live cells remained green while dead cells turned red in color over time during the 

incubation. 

Analysis of the data showed that more than 97% of the cells survived during 11 hours 

incubation on the chip. This high cell survival rate indicates biocompatibility of the microfluidic 

device; whereas no cell proliferation was observed during the experiment perhaps due to the 

small volume of the droplets. Tracking cells survival over time revealed that only a small 

number of encapsulated cells died at different times during the experiment (see Figure 6 in 

Paper 5). The developed droplet microfluidic assay along with the automated image analysis 

method allowed tracking of viability of encapsulated single cells in micro droplets during the 

experiment.    

2.3 DISCUSSION  

In this thesis, algorithms for automatic counting of cells in individual microwells and droplets 

have been presented. Methods for morphology analysis of individual cells as well as tracking of 

single cells aggregated in center of microwells by ultrasound have also been described. In 

addition, migration and functional behavior of NK cells confined in microwells have been 

analyzed over time. Furthermore, a droplet microfluidic platform has been developed to 

monitor viability of encapsulated single cells in micro droplets over experiment time.   

Microwell chips have been used for different biological assays, e.g. cell proliferation, cell 

aggregation and cell migration. In Paper 1, a microchip with well width of 50 µm was used for 

high content imaging of single or a few cells per well. Since manual counting of cells has the 

inherent bias of subjective observer as well as being time consuming, an algorithm was 

developed to automatically count the number of cells within individual wells. It was shown that 

automatic counting could considerably reduce the analysis time and eliminate the subjectivity 

in counting. The algorithm for automatic counting of cells was implemented in several steps. 

After image acquisition, pre-processing steps including the identification of individual wells, 

background subtraction and decreasing the non-uniformities in intensity were applied to the 
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images. To separate individual cells from one another and the background, segmentation 

methods such as thresholding, edge detection and watershed segmentation were tested. 

Thresholding as well as edge detection methods were deemed suitable for segmenting the 

objects from background, but they failed to separate the individual cells in cell clusters. Thus, 

watershed segmentation methods based on the intensity and shape of the objects were 

implemented to separate individual cells in clusters from one another. However, over seeding 

and under seeding in cell segmentation caused a non-satisfactory success rate in automatic 

counting. Hence, thresholding and edge detection methods were used as segmentation 

methods to detect the objects in the florescence images and the bright field images, 

respectively. Then, a 3-dimensional feature space was created based on three morphometric 

parameters of the objects (area, perimeter and compactness). After classifying single cells and 

clusters in two distinct groups using Mahalanobis distance, the number of cells in each cluster 

was estimated based on the average area of single cells. Although the developed algorithm 

could efficiently discriminate single cells from clusters, estimating number of cells in each 

cluster remains challenging. Although automatic counting of cells showed an acceptable 

success rate, extracting additional morphometric features such as convex hull, length and width 

of objects for the classifier or using an unsupervised classifier can efficiently increase speed and 

accuracy of the automatic counting. It was evident in Paper 1 that the accuracy of counting was 

also related to fluorescent labeling of the cells, where more homogeneously stained cells 

yielded more accurate results. Thus, all steps (cell labeling, imaging and counting) are important 

to develop functional assays. Although some challenges remain, these studies clearly show that 

the combination of the microchip and the automatic counting tools can help us study different 

cellular processes at the single cell level.  

In Paper 2, it was observed that NK cells confined in 650×650 µm2 wells exhibited a stop-and-go 

migration behavior. To better describe this transient behavior, a method was developed to 

detect different modes of migration. Several methods have previously been developed to 

characterize transient behavior in vesicular movement [141] or for detection of molecules 

arrested in transient confinement zones [142, 143]. Here, a simple approach was presented to 

analyze and classify the transient migration behavior of NK cells into three different modes: 

TMAPs, directed migration and random movement. Some properties such as the mean speed 

and the fraction of time that the cells spent in different modes of migration as well as the size, 

duration and location of TMAPs were extracted from the image sequences to characterize the 

cell migration. Analysis of the NK cell trajectories showed that TMAPs frequently coincided with 

conjugation periods and that only small numbers of TMAPs were caused by cell division, cell 

death or spontaneous stops. Indeed, forming conjugates with target cells seemed to be the 

main reason for NK cells to enter a TMAP. Around 40% of the TMAPs that overlapped with 

conjugation led to cell-mediated killing of the target cells. Further manual analysis of the 

microchip data has shown that there is an important heterogeneity within the NK cell 
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populations. A small fraction of NK cells that could kill several targets cells were detected. 

These cells were termed serial killers [144], while there existed another population of NK cells 

which did not kill any target cells at all (Paper 3). These results show that the microchip-based 

migration assay can provide information about immune cells to a level of detail beyond what 

had previously been reported. The automatic analysis of migration makes it possible to 

efficiently study variations between cells as well as variation in transient behavior for individual 

cells. However, some short transient behaviors of NK cells such as rapidly delivering lethal hits 

to target cells can be missed due to the use of sliding window and rolling average approaches in 

migration analysis. Perhaps it is also possible to correlate migration behavior with functional 

behavior such as killing potential of individual NK cells. This assay can also be used to evaluate 

how drugs or genotypes can affect migration behavior and functionality of the cells. The 

migration analysis method could also be used to further characterize the motility of 

lymphocytes or other cells in vivo, e.g. in lymph nodes. 

Analysis of data from NK cell mediated killing of tumor cells in Paper3 showed that small 

numbers of NK cells were responsible for the majority of the target cell killings. The detailed 

information about NK cell mediated cytotoxicity was observed by imaging the cells 

compartmentalized in 650×650 µm2 wells over time (Paper 2). The NK-target contacts were 

recorded throughout the experiment and NK cells were classified in five different groups based 

on their conjugation and cytotoxic response: no interaction with target cells, interaction with 

target cells without killing, interaction with target cells with killing, exhausted after killing a 

number of target cells and stochastic behavior in killing target cells. In addition, the target cells 

were killed with different speeds. Most of the target cell deaths (65%) were slow and coupled 

with apoptotic blebbing, while 35% of killing events were fast (necrosis). This variation in killing 

speed can be correlated with amount of released pore-forming molecules by NK cells. Analysis 

of killing efficiency of NK cells showed that serial killers (6% of the NK cell population) were 

responsible for 26% of killings. In addition, serial killers had faster and stronger cytotoxic 

responses compared to other killers. This strength of killing response can be correlated with 

high quantity of mobilized granules. In another experiment, morphology analysis of HEK 293A 

cells embedded in collagen gel inside 450×450 µm2 wells revealed that migrating cells have 

different morphometric parameters compared to stationary cells.  It was shown in Paper 3 that 

NK cells were more elongated (bigger in area) inside TMAPs compared to when they freely 

migrated. NK cells were smaller when they formed symmetrical round conjugations with target 

cells. Analysis of morphometric parameters indicated that serial killers are bigger than other NK 

cells. Possibly this cell morphology analysis can be applied on different cell types such as T cells 

and tumor cells to automatically find specific sub-groups of the cells. Therefore, serial killers 

showed differences in size, response and efficiency compared to another cytotoxic NK cells. 

Analysis of NK-target contacts showed that the average time for lytic conjugations was smaller 

than non-lytic interactions. However, the mechanisms of NK-target cell contact and killing are 
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not well characterized [145]. Previous studies showed that majority of NK cells formed dynamic 

and short contacts with target cells [146], whereas a large number of non-lytic contacts had 

long conjugation times. This long term interactions can be due to different regulation 

thresholds for killing. NK cells received sufficient activation signals to form and retain the 

conjugations but not enough to trigger degranulation. It was also observed that NK cells with 

faster and stronger cytotoxic response had shorter conjugation times than other killers. In this 

study, heterogeneity in cytotoxic response within NK cell populations was observed. However, 

the correlation between different NK cell classes and phenotype remained questionable. In 

addition, the mechanisms of multiple lytic hits and how speed of killing is linked to strength of 

the cytotoxic response is not yet well understood.  

It is difficult to acquire high resolution images from NK-target interactions due to cell migration 

and fluid drift in microwells. Paper 4 describes how ultrasound can be used to induce cell 

aggregation in several wells in parallel, and that the cell aggregates remain stationary over 

time. This is an improvement over the techniques used in Papers 1-3 since it allows time-lapse 

imaging with high resolution at multiple locations in well, if a microscope equipped with a 

moving stage is used.  This ultrasonic platform was used for induction of NK-target contacts. 

Aggregation of NK cells and target cells at the center of the wells by ultrasonic standing waves 

determine a starting time for conjugation. A significant heterogeneity was observed within NK 

cells killing response when forming conjugations between IL-2 activated NK cells and tumor 

target cells by ultrasonic forces. It was shown that a fraction of NK cells were able to kill the 

target cells during the course of the experiment, 4 hours, and a small number of NK cells (serial 

killers) killed several target cells. Interestingly, individual NK cells which encountered several 

target cells were more efficient in killing the target cells. This could be because of heterogeneity 

within the target cells where presence of several target cells provide higher probability that one 

of the target cells is sensitive to NK cell response, or receiving simultaneously several responses 

from target cells can increase cytotoxic response of the NK cell. Although, understanding the 

causes of the difference between the average response and individual response of NK cells is 

still unknown. The presented assay can be of use in the study of large numbers of NK-target 

interactions at the single cell level. This method should also be applicable to other biological 

questions where the study of cell-cell interactions is important.  

Time series analysis of functional behavior of single cells e.g. cell-cell interaction can be 

performed inside microwells along with automated imaging and image analysis methods.  The 

assays developed in this thesis can significantly decrease the analysis time for studying dynamic 

behavior of a large number of cells at the individual cell level.  However, microwell based single 

cell analysis methods are restricted in scale and only allow limited preprocessing, manipulation 

and post processing of single cells. It is also difficult to separate specific cells in microwells and 

recover isolated cells for further analysis. In Paper 5, a droplet microfluidic device was 
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developed to encapsulate single cells in micrometer scale droplets and incubate them in a 

trapping chamber to image for a specific period of time. Automated fluorescence imaging of 

the encapsulated cells was performed throughout the incubation time. Then, the acquired 

images were subjected to an automated image analysis. In order to discriminate circular objects 

(droplets) from other structures in the bright field images and segment the detected droplets 

from background of the image a circular Hough transform method was used. Then, the 

background outside the cylindrical wells was subtracted using a binary mask overlapping with 

the hexagonal grid. In order to detect fluorescent signals from all single cells at different levels 

in depth of the image, we increased the sensitivity of the imaging system which resulted in 

intensity saturation in some parts of the acquired images. Then, the cells were segmented from 

background of fluorescent images by applying a thresholding method based on fluorescence 

intensity saturation. Since the encapsulated cells are three dimensional objects and the 

acquired images only represent two dimensions, a sliding window approach was applied to the 

area profile of the cells to estimate number of cells in each droplet at each time point. The 

developed method can be a useful platform for automatically and rapidly counting large 

numbers of differently stained cells in individual droplets. It is possible to scale up the method 

for analysis of thousands of cells. In addition, the viability of the encapsulated single cells was 

scored by detecting dead (red) signals and live (green) signals during the experiment. In earlier 

publications, the viability of cells encapsulated in micro droplets was determined to be highly 

dependent on cells contact with surrounding surfaces and surfactant-oil system [139, 140]. A 

high survival rate of encapsulated cells (>97%) thus indicate the biocompatibility of our 

materials and micro device. No cell division was observed throughout the incubation time, 

presumably due to the high density of cells or nutrient limitations. However, it could be 

possible to enhance cell proliferation rate inside the droplets by increasing the droplet size 

[139]. Since positions of thousands of trapped droplets can be precisely identified during the 

incubation time, the droplet microfluidic platform can be used to track viability and dynamic 

behavior of single cells in individual droplets. Adding some pre-processing or post-processing 

modules e.g. droplet sorting to the presented microfluidic platform can extend its biological 

applications. The developed droplet microfluidic assay can be used as a tool for several in vitro 

single cell analysis applications to study drug sensitivity, cell-cell interaction, cell viability, cell 

treatment, protein analysis and cell heterogeneity.  
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3 CONCLUSION AND FUTURE WORK 

In conclusion, this thesis shows that the combination of image analysis and microfluidic devices 

enables the design of new biological assays where functional properties of individual cells can 

be investigated for large numbers of cells. Automated high throughput single analysis 

techniques allow us to study previously inaccessible numbers of cells simultaneously. Accurate 

counting or determination of morphological parameters of cells can be essential for assays 

where small fractions of specific cells are of interest. Characterization of cell migration behavior 

could be a way to investigate functions of, e.g. the immune system in health and disease or the 

influence of modern selective drugs like antibodies or siRNA. Furthermore, automated single 

cell tracking, migration analysis and morphological classification are likely to become 

increasingly important as imaging methods develop rapidly to allow time-lapse studies with 

resolution at the single cell level in situ, e.g. in lymph nodes, the thymus or in solid tumors.  

In this thesis, algorithms for automatic counting of cells in individual microwells and micro 

droplets were presented. Since some biological assays may require a very high accuracy in the 

automatic counting, it is necessary to further optimize all steps in the procedure including cell 

labeling, imaging and the algorithms for cell segmentation and classification. Furthermore, 

using unsupervised classifiers could significantly decrease complexity and computation time in 

the classification step.  

A method to analyze migration behavior of NK cells in two-dimensional imaging data was also 

presented in this thesis. In the future, it should be possible to easily extend the migration 

analysis to cells tracked in three-dimensions. This is important if this tool is going to be used for 

characterization of cells imaged in gel matrices or in situ. Although, this may involve 

overcoming some experimental challenges. I believe that it will also be possible to develop 

more accurate algorithms for automatic cell tracking, which would significantly reduce the 

analysis time compared to manual tracking. Additionally, automated detection of conjugation 

periods between NK cells and target cells and finding cell-mediated killing events could 

decrease the analysis time.  

A droplet based microfluidic device along with automated imaging and image analysis was 

presented as a useful tool to track viability and dynamic behavior of single cells during the 

experiment. The use of this microfluidic platform could be extended to include a large range of 

in vitro single cell analysis applications by the addition of some pre-processing or post-

processing modules such as droplet fusion and sorting.   

In summary, it was shown that the microfluidic devices together with automated imaging and 

analysis can be applied as a useful tool to address a wide range of pressing biological questions 
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in order to understand and study cells behavior at individual level. The presented assays can 

also be used to automatically and rapidly analyze a large number of single cells under different 

conditions or treatments. These high throughput single cell analysis techniques can be used to 

study the cell heterogeneity as well as isolate specific sub-groups of the cells within a cell 

population. 
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