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Abstract

Computing infrastructures offer remote access to computing power that can be em-
ployed, e.g., to solve complex mathematical problems or to host computational ser-
vices that need to be online and accessible at all times. From the perspective of the
infrastructure provider, large amounts of distributed and often heterogeneous com-
puter resources need to be united into a coherent platform that is then made accessi-
ble to and usable by potential users. Grid computing and cloud computing are two
paradigms that can be used to form such unified computational infrastructures.

Resources from several independent infrastructure providers can be joined to form
large-scale decentralized infrastructures. The primary advantage of doing this is that
it increases the scale of the available resources, making it possible to address more
complex problems or to run a greater number of services on the infrastructures. In ad-
dition, there are advantages in terms of factors such as fault-tolerance and geograph-
ical dispersion. Such multi-domain infrastructures require sophisticated management
processes to mitigate the complications of executing computations and services across
resources from different administrative domains.

This thesis contributes to the development of management processes for distributed
infrastructures that are designed to support multi-domain environments. It describes
investigations into how fundamental management processes such as scheduling and
accounting are affected by the barriers imposed by multi-domain deployments, which
include technical heterogeneity, decentralized and (domain-wise) self-centric decision
making, and a lack of information on the state and availability of remote resources.

Four enabling technologies or approaches are explored and developed within this
work: (I) The use of explicit definitions of cloud service structure as inputs for place-
ment and management processes to ensure that the resulting placements respect the in-
ternal relationships between different service components and any relevant constraints.
(II) Technology for the runtime adaptation of Virtual Machines to enable the auto-
matic adaptation of cloud service contexts in response to changes in their environment
caused by, e.g., service migration across domains. (III) Systems for managing meta-
data relating to resource usage in multi-domain grid computing and cloud computing
infrastructures. (IV) A global fairshare prioritization mechanism that enables compu-
tational jobs to be consistently prioritized across a federation of several decentralized
grid installations.

Each of these technologies will facilitate the emergence of decentralized com-
putational infrastructures capable of utilizing resources from diverse infrastructure
providers in an automatic and seamless manner.
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Popularvetenskaplig
Sammanfattning

Den hir avhandlingen handlar om tva olika typer av system for att fa ett stort antal
datorer att kommunicera och samarbeta, grid computing och cloud computing.

Grid computing dr en teknik for att koppla ihop ett stort antal datorer, servrar, for
att kunna utféra beridkningsjobb som kriver mycket datorkraft. Exempel pa sadana
berdkningsjobb #r att analysera experimentdata fran forskningsomraden som kemi,
fysik eller biologi. Varje jobb skickas in till grid-systemet av respektive forskare
(anvindare), och far ta en viss mingd tid och datorkraft. Hur mycket varje anvindare
far anvinda grid-systemet bestims normalt av en kommitté, som dr utsedd att dis-
tribuera berikningstimmarna for grid-systemet.

Namnet grid computing kommer fran det engelska ordet power grid (elnitet), och
det langsiktiga malet med grid-system ir att anvindaren ska fa tillgang till datorkraft
fran olika datorcenter utan att behdva bry sig om exakt varifran datorkraften kommer.
Servrarna pa varje datorcenter kan se olika ut, exempelvis med olika sorters proces-
sorer, olika mycket minne, eller olika operativsystem (Windows, Linux, Mac OSX).
Utmaningen med grid computing &r att overbrygga de tekniska skillnaderna, och fa
tusentals olika datorer att samarbeta.

Cloud computing 4r en annan teknik for att forena datorresurser. Istéllet for be-
rikningsjobb som tar ett antal timmar sa anvinds cloud computing till datortjanster
som inte #r tidsbegridnsade och som alltid forvintas finnas tillgidngliga. Exempel pa
sadana tjdnster dr sokmotorer, sociala nétverk eller nyhetswebsidor. Till skillnad fran
grid computing sa dr cloud-system 6ppna for alla att anvidnda, och man betalar for den
datorkraft som man forbrukar.

Namnet cloud computing kommer fran en tradition av att anvinda en bild av
ett moln nédr man beskriver Internet utan att bry sig om de specifika datorerna som
ar inblandade. Precis som for grid-systemen sa dr malet med cloud computing att
anvindaren inte ska behdva veta eller bry sig om var datorresurserna finns, vilken
sorts servrar som anvinds eller ens vilket féretag som dger dem. Skillnaderna mellan
grid- och cloud computing bottnar i de olika tillimpningarna (berdkningsjobb mot da-
tortjanster), de ekonomiska modellerna (tilldelning av tid mot en 6ppen marknad for
alla), samt underliggande tekniska skillnader i hur systemen &r designade och byggda.

I avhandligen presenteras tva nya tekniker som underlittar anvéndadet av grid-
system. Den forsta tekniken forbéttrar prioriteringen av berdkningsjobb och far grid-
systemet att bli mer réttvist, dd anvindare som anvént en mindre del av sin tilldelade
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berikningstid far en hdgre prioritet in de som anvint stora delar av sin berdkningstid.
Det gor att anvindningen av grid-systemet balanseras automatiskt. Den andra tekniken
underlittar insamlandet av information fran varje datorcenter om vilka jobb som har
korts, av vem och hur lidngre. Informationen anvidnds exempelvis som underlag for
kommitén for kommande tilldelningar av berdkningstid.

Forutom teknikerna for grid-system sa presenterar den hir avhandligen tva nya
tekniker for att underlitta distribuerad cloud computing. Den forsta nya cloud-tekniken
gor det mojligt for anvidndaren att grovt kunna specificera hur och var en datortjéanst
ska kora. Exempelvis kan anvéndaren bestimma att tjansten maste koras i ett visst
land eller i en viss vérldsdel. Tekniken gor det mojligt for anvidndaren att uttrycka
krav eller 6nskemal, utan att kunna eller behdva specificera pa precis vilken server
som tjansten ska koras. Den andra cloud-tekniken gor det mojligt for en datortjénst
att automatiskt ta del av instdllningar som é&r specifika for det datorcenter dér tjénsten
kor, och pa sa sitt forbittra samarbetet mellan tjédnst och datorcenter.

Sammantaget sa underlittar de hir fyra utvecklade teknikerna anvidndningen av
sammankopplade stora datorsystem, bade for berdikningsjobb och for datortjénster.
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Chapter 1

Introduction

The goal of making computing capacity available in the same way as utilities like
water or electricity was arguably first put forward in the early sixties by John
McCarty [86, 88]. Several paradigms based on this vision were introduced in
the fifty years that followed, all of which were intended to increase the viability
of supplying computing power as a utility. In most cases, the new paradigms
do not overlap perfectly in scope with their predecessors, leaving niches that
enable several paradigm generations to coexist.

Two of the most recently developed paradigms for computing as a utility are
grid computing and cloud computing. In general, one can refer to systems based
on these paradigms as grids and clouds, respectively, and use the terms site
or provider to describe a single infrastructure supplier. Fundamentally, grids
and clouds are both ways to group existing (heterogeneous) computer resources
into an abstract pool of computing capacity, and to then make those resources
available to users in the form of a coherent virtual infrastructure. Although
the two paradigms were initially developed to fulfill similar functions, grids
have evolved into reliable, high performance platforms that are mostly used for
large-scale scientific computing jobs, while clouds are largely used as remote
hosting and execution tools for various software packages that are often referred
to as services. Chapter 2 describes grids and clouds in more detail.

Individual grids and clouds can be joined to form even larger resource
pools through collaborations. These multi-domain environments pose additional
challenges in terms of resource management, stemming from their technical
heterogeneity, the need for decentralized decision making given that each domain
may have different objectives, and the potential lack of information regarding
the state and availability of remotely hosted resources. There are several
different collaboration models (discussed in Section 2.2.3), each with their own
set of challenges [74, 80]. The increasing scale and complexity of grids and
clouds is creating a need for sophisticated management processes with minimal
requirements in terms of human governance.

The contributions of this thesis relate to management processes for grids



and clouds, and to the challenges of adapting and developing these processes to
work in multi-domain environments. Paper I [137] and Paper II [77] describe
the use of explicit service structuring to relate different components in a cloud
service. Decisions related to management and placement (mapping service
components to physical machines) can be based on the internal structure of
the service to optimize execution during run-time. Paper III [15] and Paper
IV [76] describe and discuss an emerging technology for run-time adaptation of
cloud service components to a particular infrastructure where it is being hosted,
allowing generically designed services to be automatically customized to suit
their execution environments during run-time. Paper V [65] and Paper VI [69]
present work on accounting and monitoring data management in multi-domain
infrastructures. The development and evolution of a decentralized system
for job prioritization in multi-domain grids (first introduced by Elmroth and
Gardfjéll [66]) are presented in Paper VII [168] and Paper VIII [78].

1.1 Aims

Existing distributed computational infrastructures are commonly surrounded
by technical, administrative, and political boundaries that complicate resource
exchanges between different infrastructures. The aim of the work presented in
this thesis is to explore, design, and develop new technologies for managing jobs
and services in distributed computational infrastructures that will enable and
facilitate the use of resources and infrastructures from multiple administrative
domains.



Chapter 2

Distributed Computing
Infrastructures

There is a significant demand for large-scale computational resources at all levels
of modern society, ranging from the globe-spanning internet services used by
multi-national companies and large scientific projects to the advanced simulation
systems used in the design industry. These resources are traditionally hosted
in-house, either in the form of computational clusters consisting of regular
servers connected via high-speed network connections or as super computers,
complex server infrastructures built using customized hardware.

Distributed computing offers an alternative to the in-house hosting and
management of computer systems by offering access to a remote computational
infrastructure. The remote infrastructure may either be hosted at a single
location, or may be a virtual infrastructure composed of resources from several
different physical locations and administrative domains. A multi-domain infras-
tructure can potentially incorporate more resources than would be feasible in a
single location, and can offer benefits in terms of capacity, fault tolerance, and
geographical dispersion. The main drawback of multi-domain infrastructure
is the added complexity associated with hosting a system that spans regional,
administrative, and often technological boundaries.

The distinction between grids and clouds is not perfectly defined, and the
flexible definitions of both terms create considerable potential overlap. Moreover,
the two technologies can be combined in some cases. For example, a deployment
of the Sun Grid Engine (SGE) [94] on a cloud infrastructure is one of the use
cases of the RESERVOIR project [185]. Other examples include the work of
Keahey et al. [124], in which an abstract computing infrastructure is hosted
across resources from several cloud providers.

However, despite the blurred boundaries between them, grids and clouds
have become two separate paradigms with differing areas of focus:



e Grids are designed to support the sharing of pooled resources (normally
high performance parallel computers) owned and administered by differ-
ent organizations, primarily targeting users whose requirements exceed
the capabilities of commodity hardware and may involve thousands of
processor cores or hundreds of terabytes of storage.

e The development of cloud technologies is driven by economies of scale [198],
since increasing the utilization of existing (often commodity) hardware re-
sources reduces the operating expenses incurred by infrastructure providers,
enabling them to offer hardware leasing at prices comparable to in-house
hosting.

The different scopes of the two paradigms mean that they also differ in terms
of their associated business models, architectures, and resource management
needs. In the context of this thesis, the most important difference between them
relates to the lifecycles of grid jobs and cloud services. In general, grid jobs
are computational tasks executed on infrastructures with very high (combined)
performance that give the user exclusive access to (a subset of) the available
resources for a job until it is completed and then assign the resources to the
next job in the queue. Cloud services, on the other hand, are expected to start
almost immediately after they are submitted and to run until the service is
explicitly canceled. The service runs on its assigned share of resources, which
may increase or decrease during service execution. Conceptually, the difference
between the ways in which the two resource types are managed is analogous to
that between batch-processing (grids) and time-sharing [180] (clouds).

The following two sections provide a general overview of the two paradigms.
For more in-depth comparisons of grids and clouds, see the work of Foster et
al. [88], Sadashiv and Kumar [189], and Zhang et al. [242].

2.1 Grid Computing

Grid computing [86] is based on the interconnection of distributed and decen-
tralized computational resources to form a cohesive infrastructure for large-scale
computation. From its initial conception as a tool for offering general-purpose
computational capacity as a utility, grid computing has evolved into a group
of enabling technologies for large-scale scientific endeavors such as the LHC,
the World-wide Telescope [210], and the Biomedical Informatics Research
Network [100]. In many cases, grids serve both as tools for sharing raw compu-
tational resources and as mechanisms for sharing data from important scientific
instruments.

As a concept, grid computing has grown to encompass many different tools
for a variety of tasks, and can be seen as a group of related technologies
rather than a single utility. Together with the fact that there is no absolute
distinction between grids and other distributed environments, this has created
some confusion regarding what should be regarded as a grid. While many



definitions have been proposed [34, 206], the most widely used is that put
forward by Foster [84]. Foster’s definition takes the form of a three point
checklist and states that a grid is a system that ”coordinates resources that are
not subject to centralized control ...” | "using standard, open, general-purpose
protocols and interfaces ...”, ”to deliver nontrivial qualities of service”.

Foster’s definition is widely accepted but has not been standardized, and
there are major grid efforts such as the grid supporting the Large Hadron
Collider (LHC) [2] in which resources are under centralized control while still
being referred to as a grid. The work presented in this thesis is based on a view
that is very similar to Foster’s definition, with a particular emphasis on the
decentralized control of resources and the autonomy of participating sites.

The overall purpose of grid computing is to interconnect and unify resources
that may be owned by different actors in different countries, have different
physical characteristics (CPU frequency, CPU architecture, network bandwidth,
disk space, etc.), and run different operating systems and software stacks. These
resources are consumed by users, who are commonly organized into collaborating
scientific communities that are known as Virtual Organizations [87].

A variety of middlewares [11, 19, 64, 85, 131, 207, 213, 222] are used as
intermediate software layers for job submission and job management in grids.
However, the vast set of different middlewares has created interoperability
problems between the middlewares themselves [74], giving rise to an additional
niche for software to ease the burden of working with systems that span multiple
different middlewares [7, 41, 68, 97, 188].

Grid jobs can normally be seen as a self-contained bundle of computational
jobs and input data that can be executed independently across different nodes to
generate a set of output data. The jobs are batch-oriented and normally no user
interaction with the job is required or even possible during their execution time,
which limits the scope of applications suitable for execution on grids. The Job
Submission Description Language (JSDL) [12] is a widely accepted standard for
specifying job configuration properties such as hardware requirements, execution
deadlines, and the sets of input and output files that are required or generated
by the computations.

Grid resources are primarily used by specific research communities. This
is due to a range of factors including their project-oriented business models,
technical problems (which are often related to software dependencies), and
interoperability issues [17, 88]. Despite their drawbacks, grids have enabled
these communities to address problems that could would be intractable with
other computational resources or scientific tools. A comprehensive overview of
grid computing and its implications and uses in several fields (bioinformatics,
medicine, astronomy, etc.) has been written by Foster and Kesselman [86].
Although this book was first published in 2004, the conceptual aspects of grids
have not changed appreciably since.

In early 2013, there was a breakthrough in the search for the Higgs boson [1]
that led to the successful identification of a key missing component from
the Standard Model of physics [95]. The Worldwide LHC Computing Grid



(WLCG) [181, 235], which consists of more than 150 facilities spread over around
40 countries, was essential in analyzing and managing the vast quantities of
data generated by the particle collision experiments, and grid computing is
acknowledged to have been one of the key enabling technologies in the search
for the Higgs boson. The WLCG is not a single, dedicated infrastructure but a
federation of grids from all across the globe.

2.1.1 Federations of Grids

In a federation of grids [32, 89, 140, 173], the resources of several stand-alone
grid infrastructures are made available for global use. Apart from the technical
benefits of a united infrastructure, the formation of federations may be motivated
by political objectives such as the consolidation of resources and the promotion of
collaboration. Two notable initiatives that are aiming to unify Europe’s national
grids are EGEE [138, 139] and the European Grid Initiative [132]. Conway’s
adage [48] that the design of a computer system reflects the communication
structure of the organization that produced it is applicable also to federated
grids — unifying efforts in politics and governance often form the basis for
unifying technological efforts.

The relationship between clusters, grids, and a federated grid is illustrated
in Figure 1. Computational resources are joined together into clusters, and
resources from one or more clusters can be united to form a grid. Resources
from several grids in turn form a federation of grids. Individual resources are
controlled by local resource management software at the cluster level. Local
resource management systems manage grid-wide job admission and authenti-
cation, accounting of finished jobs, and the higher-level scheduling [72, 113] of
grid jobs to resource sites. Grid systems also manage the inherent heterogeneity
caused by uniting computational resources from several clusters. In a federation
of grids, the autonomicity of each grid site is retained and all collaborating
grids retain the functionality required to process and manage incoming grid
jobs. The jobs executed as a part of the federation are normally submitted on
the same premises as those of regular grid users.

As discussed by Field et al. [81], there are a number of challenges that arise
from collaborations such as federated grids. Many of these challenges relate
to interoperability and the heterogeneity that arises from the use of different
grid middleware systems. Parts of this thesis concern meta-data management
in federated grid infrastructures. This meta-data includes the usage records
associated with jobs processed by the infrastructure, which are commonly used
to monitor user resource consumption and schedule future jobs. When managing
a federated grid, it is necessary to gather data from each collaborating site in
order to establish a coherent picture of the flow of data within the federation.
Paper V relates to the management of federated meta-data for accounting
purposes, while Papers VII and VIII deal with the challenge of decentralizing
the scheduling of incoming jobs across a multi-domain grid based on global
usage quotas and previous usage.



Federated Grid

Grid

Grid
= 5

Cluster

Cluster

Figure 1: Overview of clusters, grids, and federated grids. Clusters span
computational resources; grids span resources from one or more clusters and
can be joined to form federated grids. Illustration from Ostberg [167].

2.2 Cloud Computing

Cloud computing has emerged as a broad concept for the remote hosting and
management of applications, platforms, or server infrastructure. The term cloud
computing originates from the custom of representing computer networks with
a drawing of a cloud and thereby concealing the resources’ exact locations as
well as the nature of the connections between them [192]. The same analogy
applies to compute clouds; the location and other underlying details of the
remote resources are abstracted and hidden from the users, who interact with
resources running somewhere “in the cloud”.

There are many different opinions on what constitutes a cloud and what
distinguishes a cloud from a grid. During the last few years, the National
Institute of Standards and Technology (NIST) [154] in the United States has
attempted to progressly establish a unified definition of cloud computing to
facilitate its characterization, and has actively solicited feedback on the draft
definition from academics and various industrial organizations. The NIST
definition has since become a de-facto standard, but it is important to recognize
that it was established in a progressive fashion and builds on previous work.
Notable early work on defining cloud computing was undertaken by a wide range
of authors, including Weiss [229], Geelan [93], Vaquero et al. [224], Gruman and
Knorr [102], Haaff [53], and McFedries [153]. The final NIST document [154]
defines cloud computing as:
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. a model for enabling ubiquitous, convenient, on-demand network
access to a shared pool of configurable computing resources (networks,
servers, storage, applications, and services) that can be rapidly



provisioned and released with minimal management effort or service
provider interaction.”

This definition is general enough to encompass practically all cloud ap-
proaches. The model is further subdivided into a set of essential characteristics,
service models, and deployment models, all of which are discussed below.

2.2.1 Cloud Characteristics

The essential characteristics of cloud computing as defined by the NIST [154]
are reprinted verbatim below:

On-demand self-service. A consumer can unilaterally provision computing
capabilities, such as server time and network storage, as needed automati-
cally without requiring human interaction with each service provider.

Broad network access. Capabilities are available over the network and ac-
cessed through standard mechanisms that promote use by heterogeneous
thin or thick client platforms (e.g., mobile phones, tablets, laptops, and
workstations).

Resource pooling. The provider’s computing resources are pooled to serve
multiple consumers using a multi-tenant model, with different physical
and virtual resources dynamically assigned and reassigned according to
consumer demand. There is a sense of location independence in that the
customer generally has no control or knowledge over the exact location
of the provided resources but may be able to specify location at a higher
level of abstraction (e.g., country, state, or data center). Examples of
resources include storage, processing, memory, and network bandwidth.

Rapid elasticity. Capabilities can be elastically provisioned and released, in
some cases automatically, to scale rapidly outward and inward commen-
surate with demand. To the consumer, the capabilities available for
provisioning often appear to be unlimited and can be appropriated in any
quantity at any time.

Measured service. Cloud systems automatically control and optimize re-
source use by leveraging a metering capability! at some level of abstraction
appropriate to the type of service (e.g., storage, processing, bandwidth,
and active user accounts). Resource usage can be monitored, controlled,
and reported, providing transparency for both the provider and consumer
of the utilized service.

Together, these characteristics establish the cloud as a self-service provision-
ing infrastructure whose managerial processes are automated and optimized
without human intervention. All of the work presented in this thesis (whether

ITypically this is done on a pay-per-use or charge-per-use basis.



related to grid- or cloud computing) focuses on automization of managerial
processes.

Early cloud definitions such as that proposed by Vaquero et al. [224] also
considered the ability to guarantee capacity to consumers through Service Level
Agreements (SLAs) to be a fundamental property of clouds. This requirement
is not represented in the NIST definition, but there are implicit assumptions
that the capabilities obtained from the provider correspond to the resources
being provisioned. In the context of this work, SLAs or similar agreements
are fundamental inputs for the automated scheduling processes that function
as constraints and are used to differentiate between favorable and unfavorable
system states. Scheduling and other management processes for distributed
infrastructures relating to the characteristics listed above are discussed in
Chapter 3.

2.2.2 Service Models

The automated provisioning of resources and services in a way that satisfies the
essential cloud criteria can be done at several different layers of the software
stack. Cloud computing offerings are commonly subdivided into three different
service models:

Infrastructure as a Service (IaaS)

In TaaS solutions, hardware computing resources are made available to
consumers as if they were running on dedicated, local machines. The im-
pression of dedicated hardware is commonly achieved by utilizing hardware
virtualization techniques, making it possible to host several virtualized
systems on a single physical machine. Some notable IaaS providers are the
Amazon Elastic Compute Cloud (EC2) [9], Rackspace [177], and Windows
Azure [159].

Platform as a Service (PaaS)

Instead of offering access to (virtualized) hardware resources, PaaS sys-
tems offer deployments of applications or systems designed for a specific
platform, such as a programming language or a custom software envi-
ronment. PaaS systems include Google App Engine [98] and Saleforce’s
Force.com environment [230]. Ongoing projects such as 4Caast [91] and
CumuloNimbo [118, 172] are developing new PaaS platforms aimed at
simplifying the hosting of multi-tier applications and increasing the con-
sistency and scalability of de-centralized service hosting, respectively.

Software as a Service (SaaS)
Web-based applications and services such as Microsoft Office Live [157],
Google Apps [99] (not to be confused with App Engine), and the gaming
platform OnLive [163] are available to online consumers without requiring
them to install and manage the software locally. The software is instead
hosted and managed on remote machines, making it possible to run



10

programs (including graphically intensive computer games) on remote
servers instead of the local machine.

A common misconception is the assumption of an intrinsic relationship
between different service models. For example, a PaaS system may be hosted
on top of an TaaS infrastructure, but is not required to be so. This distinction
is important because it enables us to reason about SaaS and PaaS systems
without assuming underlying layers of cloud based infrastructures.

The cloud-related work presented in this thesis focuses on the management
of clouds at the IaaS level. The work on service structure and contextualization
(see Sections 4.1 and 4.2) may also be applicable at the Paa$S level, and this
area will be investigated more extensively in forthcoming studies.

2.2.2.1 TIaaS Clouds

In this work, we identify three main actors who are relevant to cloud infrastruc-
tures (as shown in Figure 2): an Infrastructure Provider (IP), a Service Provider
(SP), and the End Users. The IP owns and manages the physical resources and
any supporting software that is required for infrastructure management. An SP
provides a software service that is hosted by provisioning resources from one
or more IPs. End Users are consumers of the service offered by the SP. Note
that this separation is not present in the NIST definition, in which providers of
both types are referred to as service providers. The separation between IPs and
SPs is only directly relevant for TaaS clouds, but the distinction is important
when discussing deployment models where the actors have different roles and
perspectives.

End Users

f

Service Provider (SP)

Infrastructure Provider (IP)

Figure 2: Three main actors for cloud laaS: Infrastructure Providers make
resources available to Service Providers, who in turn offer a software service to
End Users.

Even though the actors are conceptually separate, a single organization or
entity can fulfill more than one role at a time. For example, Amazon EC2 [9] is



an IP that is used to host many different SPs. As of 2010, one of the services it

hosts is the main Amazon bookstore website, for which Amazon is also the SP.

There is normally a many-to-one relationship between SPs and IPs: a single
IP often hosts services from more than one SP at a time in a multi-tenant
manner. Hardware virtualization techniques (see Section 2.2.5) are commonly
used to isolate services and minimize interference. In some scenarios, a single SP
may employ resources from more than one IP. Differences in the relationships
between SPs and IPs create different cloud deployment models, as outlined in
Section 2.2.3.

Security and privacy concerns are commonly seen as the main weaknesses
of clouds [13, 88, 119]. Compared to grids, where access is usually preceded
by face-to-face identity validations and certificate generation, clouds have a
relaxed security model that is reminiscent of regular Web sites. It is common
for clouds to use Web-based forms for sign up and management, and e-mails
for password retrieval [88]. This relaxed security is very beneficial in terms of
usability, but limits the trust of major companies considering using clouds for
business-sensitive applications. While there is ongoing work on improving cloud
security in general (see e.g. Christodorescu et al. [45] or Kandukuri et al. [119]),
the use of privately hosted and managed clouds is one option for dealing with
sensitive data while still gaining some of the benefits of conventional cloud
systems.

Privacy concerns are often related to the physical location at which the data
is stored. When using cloud-based storage platforms such as Dropbox [59], the

underlying file data is stored on resources belonging to international IPs [58].

Some legislative bodies have prohibited the use of cloud-based storage solutions
for governmental or other sensitive data, because the storage of such information
at a remote location means that its confidentiality cannot be guaranteed. The
work on structured services presented in this thesis (Papers I and IT) provides a
way of addressing this issue by using geographical placement constraints, which
ensure that sensitive data is stored within a specified geographical region.

2.2.3 Deployment Models

There are several different deployment models for clouds, representing different
relationships between an SP and one or more IPs. The NIST definition discusses
three deployment models involving a single SP and a single IP, and classifies all
more complex multi-participant deployment scenarios as hybrid clouds. In the
context of this thesis, the distinction between different hybrid cloud models is
important; a more detailed discussion of multi-participant deployment scenarios
based on the work done in the RESERVOIR [183] and OPTIMIS [80] projects
is provided in the later parts of this section.

The three scenarios involving a single SP and a single IP identified in the
NIST definition are public clouds, private clouds, and community clouds. A
public cloud (illustrated in Figure 3) is the baseline model for clouds, where
one or more SPs share a publically available cloud infrastructure in a metered
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Service Provider (SP)

Infrastructure Provider (IP)

Figure 3: Public cloud deployment. The SP is one of many tenants on a
publically available and remotely hosted infrastructure (the IP).

Private Cloud

Service Provider (SP)

Infrastructure Provider (IP)

Figure 4: Private cloud deployment. The SP is assigned exclusive access to
(parts of) a cloud infrastructure. The resources can either be hosted locally or
as a designated part of a shared infrastructure.

and rapidly provisioned manner.

The NIST definition distinguishes community clouds from public clouds.
Community clouds are clouds in which the infrastructure is dedicated to a
specific community rather than being offered to the public for revenue reasons.
Community clouds can be hosted either internally or externally. Briscoe and
Marinos [39] discuss community clouds from a distributed perspective, whereby
resources are provided by participants using a peer-to-peer [21] model rather
than being centralized.

Private clouds, as shown in Figure 4, are cloud deployments hosted within
the domain of an organization or at dedicated resources that are not made
available for use by the general public [13]. Such deployments circumvent many
of the security concerns related to hosting services in public clouds by keeping
the data and computations within an isolated security domain. Virtual private
clouds that rely on VPNs and cryptography have also been proposed [233].

Similarly to grids, the resources available to community- and private clouds
need to be shared among the users in a fair manner rather than in the economical
fashion of public clouds. This creates a different set of challenges in resource
management — whereas public clouds can focus on maximizing utilization, private
and community clouds ideally need to maximize utilization while retaining



fairness. Public clouds sometimes employ different service levels where less
prioritized services (such as Amazon Spot Instances [8]) can be dynamically
neglected in favor of more highly prioritized ones, mitigating the problem of
running low on resources. Another alternative for coping with a short supply of
computational resources that can be used in private clouds involves offloading
some of the workload to a remote IP by collaborating with external cloud
providers under one of the hybrid cloud models.

2.2.4 Hybrid Deployment Models

The economical model of clouds is a key enabler for hybrid models; the rapid,
self-serving provisioning of resources is conceptually identical regardless of
whether the consumer is a regular SP or a remote IP. Therefore, hybrid clouds
can be formed without the need for prior resource exchange agreements. In
formal collaborations, however, the use of resources between IP sites may be
governed by separate SLAs or framework agreements [38] that stipulate the
terms of resource exchange between IPs. In hybrid cloud models, the IP site
with whom the SP communicates is referred to as the primary site. Any other
collaborating sites are referred to as remote sites. The control of the service
and the responsibility towards the SP remain associated with the primary
site regardless of where the service is executed, and the primary site is also
responsible for ensuring that SLAs are maintained or compensated for.

Hybrids that incorporate elements from multiple deployment scenarios can
be used to overcome the limitations that may be encountered in single provider
usage scenarios. For example, to avoid the problem of finite resources in private
clouds, such clouds may temporarily employ the resources of external public
cloud providers. These bursted private clouds [203] combine the security and
control advantages of private clouds and the seemingly endless scalability of
public clouds. However, such deployments require very sophisticated placement
policies to guarantee the integrity of the system, ensuring that only insensitive
parts of the service are hosted on the public infrastructure. A bursted private
cloud is illustrated in Figure 5.

Sotomayor et al. [203] outlined the general concept of a bursted private
cloud and have provided an overview of the different cloud technologies and the
extent of their support for this model. They have developed an open source
software stack for cloud infrastructures known as OpenNebula [202], which can
be used to create hybrid cloud solutions based on a private infrastructure and
a set of cloud drivers that are used to burst specific tasks to various external
providers such as Amazon EC2 [9] or ElasticHosts [63].

As is the case with grid computing, the use of multiple clouds introduces

heterogeneity problems that can only be resolved through standardization.

Native (hardware) virtualization is a vital first step towards standardization
at the lowest hardware level. In addition, efforts have been made to create
standardized and general formats for specifying virtual machines and virtual hard
drives [55, 158] as well as general cloud Application Programming Interfaces
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Private Cloud

Service Provider (SP)

Infrastructure Provider (IP) Infrastructure Provider (IP)

Figure 5: If needed, private clouds may outsource the execution of less sensitive
tasks to a public cloud, creating a hybrid cloud system that is commonly referred
to as a bursted private cloud.

(APIs) [54, 164, 165], but none of these standards has yet received general
acceptance. Recent work on cross-infrastructure abstraction layers [26, 82, 232]
has produced unifying software layers that hide the specifics of the underlying
cloud infrastructures to enable cloud services to be designed and built in a
unified way. However, these technologies have also not been widely taken up
and further standardization efforts will probably be required to establish a
consensus in terms of which abstraction layer technology will be adopted.

Compatibility issues aside, there are a number of operational challenges
imposed by the use of hybrid clouds. Since each site retains complete autonomy,
including over things such as policies and objectives, the internal workings of
each site are largely obscured to the other sites that are participating in the
collaboration. This means that each site only has detailed knowledge of its
own local resources with at best incomplete information regarding the state of
the other sites. Service management decisions across clouds must therefore be
based on probabilities and statistics rather than complete information. Another
challenge that is not encountered with public or private clouds is that sites
participating in collaborations may experience external events that affect the
state of their services and the availability of infrastructural resources. For
example, a remote site may trigger the withdrawal of services running on the
remote infrastructure, forcing the primary site to re-plan the distribution of
tasks across the remaining available infrastructure.

2.2.4.1 Federated Clouds

Federations of clouds (Figure 6) are formed at the IP level, making it possible
for infrastructure providers to make use of remote resources without involving or
notifying the SP that owns the service. Gaining access to more resources is not
the only potential benefit of placing VMs in a remote cloud. Other motivations
include fault tolerance, economical incentives, and potentially the ability to
satisfy technical or non-technical criteria (such as those relating to geographical
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Figure 6: Federated cloud deployment. The SP interacts with the primary IP,
which in turn may offload parts of the workload to one or more remote IPs.

location) [182], which might not be possible using local infrastructure.

The provisioning of remote resources through federations can be done con-
currently across several remote sites, using factors such as cost, energy efficiency,
and previous experience to decide which resources to use [80]. In some cases, a
service may be passed along from a remote site for execution at a third party
site, creating a chain of federations. As each participant in the chain is only
aware of the closest collaborating sites, special care has to be taken with VM
management and information flow in such scenarios [71].

The RESERVOIR project [182, 183, 184, 238] focuses on creating and
validating the concept of cloud federations across several infrastructure providers.
One of the contributions of this thesis is early work on cloud accounting for multi-
site collaborations such as federations (Paper IV). This work was conducted
as part of the RESERVOIR project, and a more detailed description of the
contribution can be found in Section 5.2. Other results from this project include
the design and creation of Virtual Application Networks (VANs) [105]. These
overlay networks extend the ideas of authors such as Tsugawa and Fortes [220]
and offer one way of enabling VMs that form a part of an internal private network
to be migrated to another site within a federation without being disconnected.
These VANs can be used to manage monitoring information for services that
span several cloud sites, as discussed in Section 3.2.

2.2.4.2 Split Cloud Deployment

In a split cloud deployment the SP interacts directly with several different
IP infrastructures. In this case, which is illustrated in Figure 7, the SP is
responsible for planning, initiating, and monitoring the execution of services
running on different IPs. Any interoperability issues must be detected and
managed by the SP, which may limit the range of sites that can be used in a
multi-cloud deployment. This is sometimes also referred to as a Multi-cloud
scenario [80].

The automatic selection and management of different alternatives using
brokers is a well known approach for distributed infrastructures such as grid
computing [75, 126]. As shown by Ferrer et al. [80] and Tordsson et al. [219],
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Service Provider (SP)

Infrastructure Provider (IP) Infrastructure Provider (IP)

Figure 7: In a split cloud deployment, the SP itself may control and decide the
deployment of a service using several different IPs.

Service Provider (SP)

Broker

Infrastructure Provider (IP) Infrastructure Provider (IP)

Figure 8: A dedicated broker component is used by the SP to simplify the
deployment and management process across several infrastructures.

brokers can also be used as intermediate components when an SP interacts
with several cloud IPs. In this case, illustrated in Figure 8, the broker is placed
between the SP and the IPs. In fact, the broker may act as an SP to the IP
and as an IP to the SP, transferring the complexity of dealing with multiple
simultaneous cloud deployments to the broker itself [80]. Tordsson et al. [219]
provide an overview of the process and discuss their own practical experiences
of cloud brokering, including the quantitative performance gains that have been
achieved by brokering resources belonging to different cloud providers.

The aim of the OPTIMIS [80] project is to create a toolkit of components that
is sufficiently flexible to support any deployment scenario, including federated
and split cloud deployments. In a scenario such as a brokered split deployment,
the TP that will be used is not selected until the service is deployed, and
subsequent optimization procedures initiated by the broker may even change
the IP used for hosting during run-time. This requires the services to be
designed and constructed in a general way to ensure maximum compatibility
with most IPs. The work on cloud service contextualization presented in this
thesis (Papers III and IV) was conducted as part of the OPTIMIS project and
resulted in the development of a technique that allows parts of cloud services
to be dynamically adapted to their current execution environment. For more



information on service contextualization, see Section 2.2.6. The contributions
to service contextualization presented in this thesis are discussed in Section 4.2.

2.2.5 Virtualization

Hardware virtualization techniques [20, 175] provide tools for dynamically
segmenting physical hardware, making it possible to run several different Virtual
Machines (VMs) [194] on a single unit of physical hardware simultaneously.
Each VM is a self-contained unit, including an operating system, and booting a
VM is very similar to powering on a normal desktop computer. The physical
resources are subdivided, managed, and made available to the VMs through a
Hypervisor (also known as a VM Monitor [175]).

The concept of virtualization dates back to the late 1960s but remained
largely unused for quite some time until it became the subject of renewed interest
in the late 1990s. The oft-cited reason for this delay is that the widespread x86
processor technology that dominated the market during the intervening period
was cumbersome and less well suited to virtualization than its predecessors.
Another important factor is that processors became cheap enough to warrant
increasing the number of computers when additional machines were required
rather than focusing on virtualization [128]. Efficient methods for software-
based virtualization on x86 platforms were developed in the late 1990s, and
processors with hardware support for virtualization became available in the mid
2000s [3, 35].

Virtualization is the underlying packaging and abstraction technology for
most IaaS clouds, and there are several initiatives aimed at enabling the use of
virtualization in HPC and grid computing. For example, Keahey et al. [122]
recommend the use of VMs in grids as a way of more fully satisfying quality
of service requirements and facilitating portability between execution environ-
ments. Haizea [201] is a scheduling framework that uses VMs as a tool to
maximize utilization while still supporting advance reservations by suspending
and resuming VMs. In this way, gaps in the execution schedule between jobs
can be utilized by resuming a previously suspended VM and executing that VM
for a short period of time. In their analysis and comparison of virtualization
technologies for HPC, Walters et al. [227] identify four different categories of
virtualization:

Full Virtualization Uses a hypervisor to fully emulate system hardware, mak-
ing it possible to run unmodified guest operating systems at the expense
of performance. Well known implementations include VirtualBox [228],
Parallels Desktop [171], and Microsoft Virtual PC [110].

Native Virtualization Native virtualization makes use of hardware support
in processors to make the costly translations of instructions from full vir-
tualization in hardware instead of software. Known technologies includes
KVM [128], Xen [20], and VMware [225].
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Paravirtualization In Paravirtualization [231], the operating system in the
VM is modified to make use of an API provided by the hypervisor to achieve
better performance than full virtualization. Xen [20] and VMware [225]
are two well established technologies that support Paravirtualization.

Operating System-level Virtualization Unix-based virtualization systems
such as OpenVZ [166] can provide operating system-level virtualization
without hypervisors by running several user instances sharing a single
kernel.

Virtualization techniques in different categories are generally incompatible,
and for paravirtualization there may be interoperability issues even between
different versions of the same hypervisor technology. For TaaS clouds, the most
common virtualization techniques are native virtualization and paravirtualiza-
tion. Hardware support allows native virtualization to perform at almost the
same level as paravirtualization, keeping the losses imposed by virtualization
down to a couple of percent [3, 20].

As discussed by Rosenblum [186] there are several benefits of using virtual-
ization in system management, but the most important property of VMs in the
context of this thesis is that a VM can be migrated (moved from one physical
host to another) either by pausing it and resuming it on another host or by
moving it without suspension using live migration [36, 46, 209]. This is a key
enabler for run-time VM management as it allows the re-optimization of VM
placement across physical resources without significantly affecting the running
services.

In essence, virtualization offers a means to break some of the basic assump-
tions related to traditional server hosting. With virtualization, the assumption
that the physical location where a server system is hosted remains constant
throughout the run of the system no longer holds since the VM may be migrated
during run-time. Similarly, the amount of resources assigned to a (virtual) ma-
chine is not constant, and can change dynamically during run-time using elastic
service provisioning, a property that is commonly referred to as elasticity (see
Section 3.3).

2.2.5.1 VM Instantiation

In most IaaS clouds, VMs form the basic computational units to be executed on
the infrastructure. Some providers have a set of predefined VM sizes that can be
used on the infrastructure, while other providers allow their consumers to specify
the desired size of their VM more freely [96]. To assign more resources to a cloud
service, more VMs belonging to that service can be started on the infrastructure.
Normally, each VM instance is based on a corresponding VM template (or
type)?. Each template contains a pre-installed operating system along with the
applications needed to fulfill a specific role in the service, and the number of

2These terms are not to be confused with what Amazon EC2 [9] defines as ”Instance
Types®, which are predefined hardware configurations of VMs.



running instances of each template can vary over time. In theory, the number
of resources assigned to each service component can be varied independently
by adjusting the number of running instances of the corresponding template.
In practice, however, the load on one type of service component is likely to be
correlated to the load on other related types of service components.

Compared to preparing a unique VM for each instance, the approach based
on instantiating from a template has a number of advantages:

e The number of potential instances is not limited by the number of prepared
VM images.

e Updates to the operating system and applications running inside the VM
can be applied at a single place.

e Storage and network loads are reduced because only a single template
corresponding to each service component needs to be managed.

The work presented in Paper I and Paper II relates to how the relationships
between different service components (such as a worker node and a load balancer)
can be modeled and expressed explicitly. The resulting model supports rela-
tionships both between VM templates (types) and between individual instances
based on the same template, and can be used as a source of input for placement
decisions in infrastructures that span multiple domains. Section 3.1 provides
more background information on service placement, while the contributions
presented in this thesis are discussed in Section 4.1.

2.2.6 Cloud Service Lifecyle

The lifecycle of a cloud service can conceptually be subdivided into a set of
phases as shown in Table 2.1. In the Definition phase, which is performed
offline by developers, the cloud service is developed and packaged, e.g. into
VM templates. A service manifest [90] containing all of the meta data required
for the service is created at this stage. This is followed by the Deployment
phase, during which the manifest and templates are submitted for execution to
a suitable service provider. As a part of the deployment, a predefined number
of VM instances spawned from the templates are initiated. Finally, the service
is monitored and managed by the infrastructure in the Operations phase, during
which the infrastructure may alter the deployment and constitution of the
service according to predefined rules.

The separation between the phases in this model is not strict, and different
parts of the service may be in different phases at any given time. For example,
data from running VM instances are gathered during the operations phase,
and as a result the number of resources assigned to the service may be varied
using elastic service provisioning by instantiating new VM instances. The new
instances pass through the deployment phase individually and independently of
each other and any already running components.
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Table 2.1: Life-cycle phases of a cloud service.

Definition Phase ‘ Deployment Phase ‘ Operations Phase

Develop Select Provider Monitor / Optimize
Compose Deploy Execute
Configure Contextualize Recontextualize

VM instances that are started from the same template are identical, but
some settings typically need to be dynamically configured for each instance. The
process of configuring each instance automatically is called contextualization.

2.2.6.1 Contextualization

Contextualization [14, 122, 123, 221] is a process that allows newly started VM
instances to be adapted and dynamically configured on a per-instance basis.
The configuration can involve assigning a unique network address to a VM, or
providing applications running within the VM with data that was unknown
when the template was constructed. For example, it may be necessary to supply
a worker node with the IP-address where a load balancing component is running,
which will not be known until the load balancer component is actually deployed.
In multi-domain clouds, the provider selection process that is performed during
the deployment phase can be done on a per-instance basis (although it may
be limited by placement constraints), and this may result in VM instances of
the same service (originating from the same VM template) running on different
infrastructures. Contextualization makes it possible to adjust the VM to suit
any specific conditions required by any given service provider.

Contextualization is usually performed during the boot process of a VM
instance. As a result of service (or infrastructure) optimization during the
operations phase, some instances may be migrated from one physical host to
another, which may invalidate the configuration and adaptation work done
during the boot-time contextualization stage. Since the migration of VMs does
not cause the VM to reboot, a new round of contextualization is not triggered.

Papers III and IV outline the concept of recontextualization, a technology for
performing perform run-time reconfiguration and adaptation of VM instances.
Recontextualization enables individual VM instances to be updated during the
Operations phase, at any point chosen by the VM hypervisor. This allows
the network configuration of a VM that has been migrated to a new physical
environment to be updated automatically post-migration. Recontextualization
can also be used to provide context-aware applications running inside the
service with context-based events, making it a potentially key supporting
technology for future context-aware cloud services. The contributions relating
to VM recontextualization that are contained within this thesis are discussed in
Section 4.2.



Chapter 3

Management in Distributed
Infrastructures

3.1 Scheduling and Placement

The assignment of incoming workloads to physical resources is a fundamental
management task for any computational infrastructure, and the correctness and

capability of the algorithms used can greatly affect system resource utilization.

The process of assigning incoming jobs or services to available resources is
usually referred to as Scheduling (for grids) or Placement (for clouds).

3.1.1 Grid Scheduling

Grid computing jobs are typically self-contained applications that operate on
a specific set of input data. Each job is assigned a maximum execution time
upon job submission, and this expected duration is used to plan the execution
of subsequent jobs on the same resource. A conceptual illustration of grid
scheduling, inspired by the work of Klusacek and Rudova [130], is shown in
Figure 9. A large set of input data can often be subdivided into smaller parts,
allowing many thousands of independent grid jobs to be started in parallel. Jobs
that are easily subdivided into independent tasks that can easily run in parallel
are usually described as being embarrassingly parallel [101] and are particularly
suitable for execution on a grid. More complex workflows involving jobs with
internal dependencies can also be submitted but require more advanced workload
control processes [25, 70, 141, 212, 223] and scheduling heuristics [191].

The first step towards grid job execution is to select which of the available
infrastructures should be used. This can either be done manually by the
user or with the support of a resource broker [42, 73, 133]. Once a suitable
resource has been selected, the job is submitted to the local scheduler of that
resource for execution. Common technologies for local resource scheduling
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Figure 9: Conceptual view of grid scheduling.

include Maui [115] and SLURM [239]. In contrast to the local scheduler, the
broker does not have full control over the resources and must rely on best-effort
scheduling of jobs [193].

The lack of user interaction makes it possible for a grid to schedule (and
re-schedule) jobs, as there are normally no strict restrictions on when the job
should run. Advance reservations allow users to reserve specific execution times
if required, typically at the expense of overall resource utilization due to the
creation of unusable gaps prior to the start-time of the reserved jobs [199].
Backfilling techniques [160, 205] are commonly used to increase resource uti-
lization, and may also be used to mitigate the loss of utilization caused by
reservations [200]. There are many different strategies for grid job scheduling
with different emphases: some focus on scheduling for the benefit of a single
application [28] while others aim to optimize the job wait time [104] or the total
system throughput [111], to avoid starvation®, or to offer advance reservations.
An overview and performance comparison of various grid scheduling techniques
can be found in [106].

Scheduling is a significant challenge in federations of grids [32, 52, 75],
especially when dealing with non-trivial jobs because the correct execution of a
parallel job often means that the job has to be executed in parallel across different
sites. A common approach for managing independent jobs in a federation is to
first perform grid-level scheduling to assign each job to a grid, and then delegate
resource scheduling decisions to the underlying grid infrastructures [72, 113, 140].
An alternative solution involves a hierarchical grid organization [24, 114]. In
this case, the local grid sees other grids within the federation as very large local
resources with special characteristics, and outsources job execution to those
grids using standard job management interfaces.

Fairshare scheduling [50, 60, 61, 66, 121, 127, 129] is a widely used approach
in which the scheduler tries to distribute computational resources between
users according to predefined usage shares. The scheduler compares each user’s
historical resource consumption to their predefined resource allocation and then
prioritizes their incoming jobs based on the difference between the two. The data

3Starvation occurs when some jobs are constantly neglected in favor or other jobs, starving
them of resources.



used in the fairshare process are typically gathered from usage records, which
are either obtained by querying the underlying accounting system or received
directly from the infrastructure. The accuracy and availability of the usage
records and the delay before the historical usage data is made available to the
fairshare scheduler directly affects the system’s performance and convergence
time.

The work presented in Paper VII and Paper VIII concerns the design and
evaluation of a decentralized approach to fairshare scheduling that is designed
for multi-domain grid deployments, in which global historical usage patterns

and a globally defined usage share are used for prioritization at each local site.

3.1.2 Cloud Placement

In contrast to grid jobs, cloud services are longer running applications that do
not have definite completion times and whose resource requirements may change
over time. A cloud service is expected to run until it is manually canceled,
and the resource consumption of each service component is bounded by the
size of the VM. A conceptual illustration of cloud placement of services with
dynamically changing resources is shown in Figure 10.

Service A

Service B

Resources

Service C

Time

Figure 10: Conceptual view of cloud placement.

Unlike grids, which are primarily composed and managed as collaborative
non-profit infrastructures, most cloud infrastructures are commercial. These
two different environments create different management requirements; whereas
grids tend to focus on user prioritization and fairness, most cloud infrastructures
have objectives related to revenue maximization.

The revenue derived from a cloud is directly related to resource utilization. In
the basic cloud model, the size of each VM is limited to a set of predefined (and
compatible) values. These in turn determine the amount of CPU, memory, and
storage assigned to each VM. In addition, the size of each VM remains constant
throughout its lifespan. This makes it easy to achieve high and non-fluctuating
levels of utilization.

Dynamic VM sizing approaches [96, 169, 178] have been introduced with the
aim of relaxing the limitations on VM constitution in cloud environments and
enabling the allocation of each resource type (i.e. CPU, memory, and storage
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space) to be specified independently of the others. It is not straightforward to
maximize utilization while executing VMs with non-standard resource usage
patterns, especially if their resource requirements change dynamically. Such
systems therefore require more sophisticated management processes. As an alter-
native way of addressing this problem, the overbooking strategies used in other
application areas [31, 103, 187, 208] are being adapted for use in cloud place-
ment [156, 218]. These approaches tend to rely on the assumption that it is very
unlikely for all of the available resources to be requested simultaneously [103].

The operating costs (and environmental impact) of cloud infrastructures
can be minimized by reducing the number of physical machines that are used
to host the current workload by consolidating running VMs onto a smaller
set of physical resources, allowing parts of the physical infrastructure to be
shut down [49, 161, 170]. However, services running on shared infrastructure
may experience performance degradation, and the level of interference between
services that will occur in such cases is not always easy to predict [49, 214].

SLAs specify the terms of resource provisioning on clouds. These agreements
stipulate a minimal quantity of resources that must be assigned to each service,
and may dictate how the SP is to be compensated if the agreement is not
upheld by the IP. This presents an important challenge in cloud placement: it is
necessary to achieve high resource utilization (to maximize revenue) across a set
of active physical resources and to ensure that one allocates enough resources to
run all of the desired services in a way that minimizes overall resource allocation
(to minimize operational costs) while upholding all SLAs that have been signed
in order to avoid having to pay compensation and potentially suffering a loss of
reputation or business [151].

Multi-site cloud deployments (as described in Section 2.2.4) allow a cloud IP
to also utilize resources from other infrastructures. Although remote resources
are likely to have higher operating costs than local ones, the extra flexibility
provided by this approach can make it possible to accept more services on the
local infrastructure, with bursting used to transfer part of the load to a remote
cloud if resources start running low in order to avoid breaking SLAs.

To enable VM consolidation and bursting, individual VMs can be moved
from one physical host to another by means of VM migration. However,
the relationships between the different VMs that comprise a given service
are generally not known to the IP, and the performance of the service may
be degraded significantly if a fundamental service component (such as the
database back-end of a multi-tier application) is migrated to a remotely hosted
physical machine [197]. Some of the work presented in this thesis relates to
the development of a method for the explicit structuring of cloud services that
expresses the internal relationships between service components in a way that
can be understood by cloud placement processes when performing VM placement
or migration. Some preliminary work on scheduling heuristics incorporating
these constraints has also been conducted. This work is presented in Paper I
and Paper II, and is further discussed in Section 4.1.



3.2 Monitoring

Monitoring is the process of gathering information about the infrastructure
and/or hosted services during run time. In grid systems, monitoring is usu-
ally done to ensure the health, performance, and status of the infrastructure
resources [226, 241]. This information is subsequently used for fault detection
and recovery, to predict resource performance, and to tune the system for
better performance [215]. While grid monitoring has some bearing on run-time
management processes, it is beyond the scope of this thesis.

In cloud computing, monitoring of running services is a fundamental task
because monitoring data is the primary input used for decision making in
other management processes. Consequently, the lack of compatible monitoring
systems is one of the main sources of incompatibility in cross-site clouds [13, 137].
A complicating factor to consider in multi-domain cloud scenarios is that more
than one site might be interested in the monitoring data produced for a given
service, and the set of interested domains may change dynamically during
run-time in parallel with the dynamic changes in the set of IPs that contribute
resources to the service’s hosting.

Three different kinds of monitoring data are used in clouds:

e Infrastructure specific measurements showing the health and utilization
of physical resources. The need to monitor the state of infrastructural
resources is not unique to cloud computing, and the tools that are used
for general purpose system monitoring (such as Nagios [23], Ganglia [150],
or collectd [83]) can be used also in cloud contexts.

e VM resource consumption data. Measurements of resource consumption
for individual VMs running on the hardware can be obtained by communi-
cating with the VM hypervisor, or by using tools (such as the libvirt [33]
API) that are capable of operating across several different hypervisors.
The VM information is commonly used to assess the fulfillment of SLAs
or as an input for elasticity and service profiling.

e Monitoring values specific to the service in question. These Key Perfor-
mance Indicators (KPIs) [185] are normally only available from inside the
service software itself, and might constitute values such as the current
number of active sessions to a Web based application or the number of
concurrent transactions in a database system. These values can be used
to perform automatic elasticity and service performance optimization on
metrics central to the service designer.

The measurement and management of KPI data from inside the service
itself presents a number of interesting problems that have not yet been well
studied [120]. Some cloud solutions (such as RESERVOIR [183]) have a strong
separation between service management and the VM itself, in the sense that
the VM is unaware of the exact location of the management components, and
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the management components at the higher levels of the stack are unaware of
the location of the VM. This location unawareness [65, 71, 105] is a gray-box
approach [16] to service management and will determine which techniques can
be used to make service-specific data available to the cloud infrastructure from
inside the VMs.

The Lattice framework [47] provides a solution for service level monitoring
that uses customized virtual networks (VANs [105]) to pass measurements from
inside the VMs to the infrastructure without external network access. In this
solution, the functionality of the network broadcast directive is overridden and
used for monitoring purposes. This solution would not be viable in the absence
of customized virtual networks, so its applicability is limited.

An alternative based on the File System in User Space (FUSE) concept [211]
has been outlined by Elmroth and Larsson [71]. In this solution, FUSE is
used to create a small application that simulates a hard drive partition. File
system calls to the partition (such as writes) result in a method call inside the
application, where the complexity of externalizing the data from the VM to the
infrastructure can be managed. However, this does not address the problem of
actually externalizing the data in cases where the locations of some management
components are unknown.

The management of KPI monitoring data in multi-domain clouds is one of
the use cases for the work on contextualization and recontextualization presented
in Paper IIT and Paper IV. The suggested approach (which is also partially
based on FUSE) allows the infrastructure provider to dynamically configure and
reconfigure the target endpoint for KPI monitoring information both during
deployment and during run-time. One of the system’s usage goals was to allow
the infrastructure to automatically redirect the data flow to a local monitoring
endpoint in response to a VM being migrated in from another infrastructure.
This redirection ensures that the data passes through the site-local monitoring
process while also relaying the information back to any interested collaborating
sites.

3.3 Elasticity

The ability to quickly request or release resources in response to variations in
the load associated with a given service is one of the most prominent features
of cloud computing. Elasticity [5, 10, 13, 145, 155] is the process of automating
these capacity adjustments and transferring the decision making responsibility
from human administrators to processes that are run by either the SP or the
IP. By specifying a set of Elasticity Rules [185] and including these rules in the
service manifest [90], the rules for scaling a service are made into an integral
part of the service itself. These rules can be used to specify things such as the
maximum number of users that may be served by each VM instance, which
can in turn be used together with reactive or predictive models to calculate the
number of required instances [6].



There are two types of elasticity, horizontal elasticity and vertical elasticity.

Horizontal elasticity is the capacity to increase or decrease the number of VM
instances of a certain type in response to changes in the current load [6]. Vertical
elasticity is the capacity to dynamically increase or decrease the hardware
resources (such as the amount of RAM or number of CPUs) assigned to one or
more VM(s) [237]. Horizontal elasticity puts additional strain on the application
running inside the VMs because the system itself must synchronize incoming
tasks between different instances by load balancing. Vertical elasticity, on
the other hand, requires the operating system and the application(s) running
inside the VM to be capable efficiently using a dynamically changing resource
allocation, which may include a variable quantity of RAM or number of processor
cores.

Automatic scaling based on elasticity imposes certain requirements on other
management processes. For example, elasticity is often based on KPI data
gathered from inside the applications that comprise the service. The underlying
monitoring system must therefore support the collection and management of
KPI data. In multi-domain clouds, meta-data relevant to the service must also
be collected from all infrastructures on which service components are being
hosted. This requires the ability to exchange monitoring data between all of
the relevant infrastructure domains in a mutually compatible format. Such
exchanges must be prompt and comprehensive because losses of monitoring

data or delays in its transmission can significantly reduce the system’s elasticity.

3.4 Accounting and Billing

Accounting systems are responsible for metering and managing records of
resource consumption by users in grids or clouds. In grids, a usage record [148]
for a job is created once the job has finished executing. The usage record contains
general meta-data about the job such as start and finishing time stamps, and may
also contain a summary of the job’s combined resource consumption in terms of,
e.g., the amount of data transferred within the network. In federations of grids,
the accounting data generated upon job completion is usually important both
for the originating grid site, the executing grid site, and possibly any consortium
or organization that is involved in linking these resources together. Managing
usage records in such environments is the subject of Paper V.

Grid deployments are commonly based on collaborative sharing models where
the usage data are converted into abstract currencies [22, 92, 174]. Abstract
credits are awarded to users through an out-of-band application procedure, in
which, e.g., a steering committee allocates credits to different projects based on
scientific merit. These credits can then be exchanged for computing time on the
infrastructure. There are numerous other approaches, economical models, and
architectures that can be used in grid management. These are commonly based
on auctions or other market-based schemes and have been discussed at length
in the literature [18, 40, 43, 67, 135, 240]. However, they are beyond the scope
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of this thesis. Nakai and Van Der Wijngaart [162] have presented an in-depth
economical analysis of the viability and expectations of market-based systems
for grid scheduling, showing that they are not generally applicable and may not
afford the desired outcomes.

Cloud systems normally rely on run time monitoring of service resource
consumption as a basis for accounting. For multi-domain cloud scenarios, the
aggregation of data from different sites is usually managed by the underlying
monitoring system because accounting is not the only internal cloud process
that depends on the aggregation of raw monitoring data.

In public clouds, users are free to request as many resources as they require
in the short term, paying only for the resources they are currently requesting.
In such systems, the accounting data (which are derived from monitoring data)
are used as inputs in the billing process, which converts the hardware usage
data into a monetary cost based on a given pricing scheme. The two major
payment models used in clouds are prepaid and postpaid, with postpaid being
the most common. Both terms are used in the same manner as in the mobile-
phone industry. Under the prepaid model, credits are purchased in advance and
consumed in accordance with resource consumption. This offers greater control
over the maximum costs but running out of credits may cause the service to
stop executing. Under the postpaid model, the consumer is billed at regular
intervals for their usage in a preceding period of time. This may result in
unexpectedly high levels of resource consumption in some cases (typically due
to poorly configured elasticity) but presents no risk of running out of credits
and hence disturbing service execution. Paper VI presents an accounting system
designed for use in distributed cloud environments that support both prepaid
and postpaid payment models.

Deployment scenarios such as those involving bursted private clouds or cloud
federations offer potentially unlimited amounts of hardware resources because
unknown amounts of resources from collaborating sites can be used during
service execution. In theory, this means that very large quantities of accounting
(and monitoring) data may be generated by the running services. Ensuring that
the local infrastructure can scale to accommodate this potentially unlimited
amount of data is a significant challenge. Accounting data is commonly treated
as financial data, which means that there are strict regulations governing its
storage and management; among other things, it must typically be kept for
long periods of time (at least ten years in some jurisdictions). This creates an
important resource provisioning problem. Fully scalable solutions for such data
have yet to be fully developed, but some preliminary work on this subject has
been presented by Das et al. [51] and Lindner et al. [146].

3.5 Autonomic Computing

Autonomic computing, a discipline originating from IBM’s autonomic computing
initiative [112] in 2001, aims to develop computing systems that are capable of



self-management during run-time. Autonomic computing has been defined as:
“Computing systems that can manage themselves given high-level objectives
from administrators.” [125].

The increasing scale and complexity of distributed infrastructures such as
grids or clouds has created a need for automated management of resources
and services because manual management of large-scale resources is ineffective,
expensive, and error-prone. The vision of autonomic computing includes full
automatization of the application provisioning life-cycle, including automatic
and informed system updates, reconfiguration, post-upgrade regression testing,
and possibly automatic downgrading of the system to enable automatic detection
of failures related to attempted updates [125]. Dobson et al. [56] have reviewed
the progress made during the first decade of autonomic computing. Their
overview clearly shows that although considerable progress has been made in
this area and the need for autonomic management has grown substantially since
2001, there are many key challenges that remain to be addressed.

Autonomic computing can be conceptually subdivided into four main func-
tional areas [125]:

Self-Configuration
Automatic configuration of components during run-time according to
high-level policies.

Self-Healing
Automatic discovery and correction of both software and hardware faults
during run-time.

Self-Optimization
Automatic monitoring and control of resources to ensure optimal perfor-
mance and function with respect to the defined requirements.

Self-Protection
Proactive identification and protection from arbitrary attacks or failures.

The terms self-management or self-* management are commonly used
when discussing autonomic processes in general. Such processes are commonly
modeled using a four step procedure that is referred to as MAPE. In this
model, the system Monitors the managed element, Analyzes the monitored
data, and finally Plans and Executes corrective measures. This is complemented
by a Knowledge Base that stores and manages the information used in each
step [116, 125].

There has been considerable work on the application of self-* concepts to
cloud computing at several levels of the software stack. The most common
approach is to employ self-optimization techniques to modify the placement of
VMs on physical resources to reach higher-level objectives such as high utilization
or SLA enactment. Work in this area has been presented by various authors.
Maurer et al. [152] developed and evaluated designs for the knowledge base
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used in the MAPE loop that rely on both case-based reasoning and policies that
are specified as rules, with the aim of achieving high utilization while adhering
to the terms of the relevant SLAs. Wood et al. [234] presented a similar
approach in which run-time optimization techniques are used to avoid hot spots
in resource utilization by re-sizing VMs and creating new mappings between
VMs and physical resources through migration. Hirofuchi et al. [108, 109]
demonstrated the use of a postcopy migration [107, 134] extension to KVM that
considerably reduces the time required for VM migration, allowing for reaction-
based self-optimization with an expected live-migration time of about one second.
This allows VM instances to share physical machines with very high rates of
overbooking during periods of low activity, while also enabling the system to
rapidly migrate VMs away to dedicated servers as their activity increases in
order to remain compliant with SLA terms. Shrivastava et al. [197] introduced
the concept of application-aware VM migration, whereby the knowledge base
is augmented with information on inter-VM dependencies and the underlying
network topology to minimize network traffic during migration.

The work on service structure and (re)contextualization presented within
this thesis relates to the development of enabling technologies for self-* pro-
cesses. Service structure definitions extend the knowledge base and enable self-*
processes to use service structure data in decision-making. Among other things,
this makes it possible to properly account for service performance dependencies
and thereby substantially improve component placement. (Re)contextualization
in turn offers a mechanism that can be used as a trigger and data transfer tool
for self-* operations that affect software running inside a VM. This topic is
further discussed in Section 4.2.



Chapter 4

Thesis Contributions

The work presented in this thesis includes four enabling technologies and
methods for multi-domain grid and cloud infrastructures:

e The use of explicit definitions of cloud service structure as inputs for place-
ment and management processes, to ensure that the resulting placement
respects internal service relations and constraints.

e Technology for runtime adaptation of Virtual Machines to enable the con-
texts of cloud service to automatically adapt to changes in the environment,
e.g., as a result of service migration across domains.

e Systems for managing meta-data relating to resource usage in multi-
domain grid computing and cloud computing infrastructures.

e A global fairshare prioritization mechanism that enables computational
jobs to be consistently prioritized across federations consisting of several
decentralized grid installations.

4.1 Service Structure

As previously discussed, multi-domain cloud deployments offer advantages in
terms of flexibility, scale of available resources, and economy. Much work on
technical interoperability will be required to facilitate their general use and
development, along with new approaches to service management that can be
applied across multiple administrative and technical domains.

Together with the contributions of Larsson and Elmroth [137] and Hadas et
al. [105], the work presented in Papers I and V of this thesis defined the concept
of location unawareness. It is assumed that a location unaware service is not
aware of and does not track the infrastructure on which is it running. Therefore,
all updates to the operations of the VM that are necessitated by changes in
its placement must be managed by the external cloud management processes
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rather than the VM itself. In multi-domain clouds, location unawareness also
stipulates that a local cloud deployment should not be concerned with the precise
remote location on which a given service component is running and cannot
affect the placement of the service component on the remote infrastructure. In
effect, location unawareness is a way of formalizing the cloud service developer’s
inability to predict the placement of individual service components within the
cloud, and extends this uncertainty to include the relationship between different
IPs.

In Paper I [137], we present a technique for mitigating the uncertainty
associated with location unawareness by allowing the service owner to impose
constraints on how the different parts of the service are deployed. The paper
presents a hierarchical model for expressing the internal structure of a cloud
service, including placement constraints in the form of geographical or intra-
componental affinities [37]. A service-structure aware VM placement algorithm
can use this information to deploy the service to the infrastructure in a way
that accounts for both its internal structural requirements and any explicit
placement constraints that have been selected. When migrating parts of the
service to another host, local or remote, it may be necessary to simultaneously
migrate several VMs in order to remain compliant with these requirements and
constraints. Paper I also describes a placement model that respects the user-
specified constraints, and extends this model with a heuristic for determining
which parts of the service are most suitable for migration by considering which
other parts of the service would be affected by each potential relocation.

Paper II [77] presents an extension of our model for service structure and
placement that formalizes its hierarchical graph structure and demonstrates
how it can be converted into mathematical placement constraints. These
constraints can be interpreted by placement algorithms during service placement.
A formal mathematical model for placement optimization that incorporates the
constraints is presented, and the viability of the approach was demonstrated
by using it in a series of simulation-based experimental evaluations. In the
simulations, 15300 randomly constructed test cases with varying amounts of
background load, affinity constraints, and anti-affinity constraints were analyzed
to determine the number of viable placements that could be identified in each
case and the number of time-outs. The results demonstrate that the placement
optimization model is insensitive to the presence of background load, and that
affinity is the most restrictive factor in this test setup.

4.2 Contextualization

Contextualization is closely related to location unawareness. Because a service
developer cannot know the location at which the service will be executed in
advance, the service must be designed in a generic manner without specific ties
to any IP. Contextualization is normally done as part of the VM boot process,
which makes the migration of contextualized instances from one infrastructure



to another problematic — because the VM is not rebooted, the contextualization
of the VM instance will not be modified to match the new infrastructure.

Paper IIT [15] introduces and defines the concept of recontextualization, a
run-time reconfiguration process for VM instances that does not require restarts
or downtime. To demonstrate the viability of the approach, a mechanism for
recontextualization is presented, implemented, and evaluated. The suggested
mechanism employs virtual media devices rather than network access to pass
information from the hypervisor side to the VM. This enables contextualization
to be used for network configuration management as well as VM migration.
Using KPI monitoring as an example, we demonstrate how the end-point
address used for monitoring can be dynamically updated inside the VM at the
discretion of the hypervisor. Among other things, this allows an infrastructure
to which a VM instance has recently been relocated to pass KPI measurements
through the local monitoring system. In the evaluation process, the overhead
imposed by recontextualization was determined by measuring the time required
to complete specific tasks with and without the feature enabled. Owverall,
recontextualization increased VM migration times by 18% when using the KVM
or Xen hypervisors. For KVM, most of the extra time was spent outside the
bounds of the recontextualization component and the time penalty was likely due
to the extra overhead imposed by preparing for migration with virtual devices
attached. For Xen, the device management functionality available through
libvirt proved insufficient and had to be replaced with sub-process calls at the
system level. This workaround is likely to have increased the time required for
migration. In essence, while there is room for performance improvements, this
work demonstrates the viability of recontextualization as a technology.

A unified approach that integrates contextualization and recontextualization
is presented in Paper IV [76]. By employing a custom file system implemented
using FUSE [211], several different and partially overlapping data sets can be
layered on top of one-another. This makes it possible to construct a hierarchy
of configuration data in which the default settings from the development phase
are dynamically replaced with contextualization settings that are introduced
during VM deployment or recontextualization settings that are made available
by the IP during run-time. The paper describes an application-level use case
featuring a distributed file system that shows how recontextualization can be
used to optimize application performance. The example shows how a file system
client node can be dynamically reconfigured after migration to use the closest
node within a distributed file system server to improve performance.

4.3 Accounting in Multi-domain Infrastructures

The establishment of monitoring and accounting solutions with broad compati-
bility is a key challenge in the development of multi-site infrastructure for both
grids and clouds [13, 81, 137]. Monitoring and accounting data are essential
for grid and cloud management because they are used as inputs in many other

33



34

management processes. For cloud computing, monitoring data must be collected
on a per-service basis from all infrastructures that are involved in hosting the
service of interest. The monitoring data are used as inputs for several internal
management processes, such as elasticity and accounting. In the accounting
case, monitoring data form the basis of accounting and billing between the SP
and the IP, and potentially also between any IPs involved in hosting the service.

Paper V [65] describes studies on accounting and billing in federated cloud
environments. The paper considers cloud-related problems that are not encoun-
tered in traditional grid and cluster environments. These include the problem
of accounting for services with a dynamic number of sub-components where the
precise number of sub-components is not known by the accounting system and
that of accounting for services in which the placement of sub-components in the
federated infrastructure is also dynamic and unknown. A set of requirements for
accounting and billing systems in federated clouds is formulated based on the
studied use cases and general non-functional requirements. Existing accounting
systems for grid and cluster systems are evaluated based on these requirements,
but no existing alternative is found to fully support the set of requirements
imposed by this environment. Consequently, a new architecture for a cloud
focused accounting and billing subsystem is proposed.

The implications of multi-domain grids with regard to accounting data
management are studied in Paper VI [69]. In this paper, a set of different
multi-domain usage scenarios are used as a starting point for the extraction of
a general set of requirements. It is shown that the setup of the multi-domain
grid and the addition of new jobs must be done in a way that is non-intrusive
towards existing grid installations that are already in production. A design for
a light-weight component that controls the flow of usage information between
different parts of the collaboration is then presented and evaluated. This process
is made non-intrusive and optional by reusing existing read and write interfaces
from the data management components, and provides support for different
levels of cardinality (one-to-many, many-to-one, many-to-many) in usage record
sharing within a collaboration. We demonstrate that the component can be used
to realize different usage scenarios by configuring and deploying it in different
ways, without affecting the operation of data management components that are
running in different parts of the collaboration.

4.4 Decentralized Global Fairshare

As discussed in Section 3.1.1, the scheduling of jobs in multi-domain grids is
normally performed in several steps. The first step involves the selection of a
suitable sub-infrastructure for the execution of a job and the submission of the
job to that location for execution. The job is then placed in the job queue of the
local resource management system, at which point another round of scheduling
and prioritization is performed within the sub-infrastructure before the job is
assigned physical resources and executed.



Paper VII [168] presents the design, construction, and functional evaluation
of Aequus, a grid-wide support system for job prioritization based on fairshare
allocation that is based on the work of Elmroth and Gardfjall [66]. The proposed
system is a distributed stand-alone system that can be used by job schedulers to
externalize the fairshare prioritization process. The paper presents a distributed
tree-based policy model for specifying user shares hierarchically, making it
possible for a project to subdivide its own share of usage into specific shares on
a per-user and/or per-sub-project basis without requiring the involvement of
administrators from the executing sites. The paper also describes an algorithm
for prioritizing user jobs based on predefined user shares and historical usage
data, and the decentralized architecture used to realize the system is described
in detail. The overall system behavior and its ability to accurately prioritize
jobs in different scenarios is evaluated in detail, showing that the system is
capable of achieving grid-wide fairshare even in the presence of dynamically
changing policies and run-time site failures.

The work on decentralized fairshare scheduling is extended in Paper VIII [78].

This paper demonstrates how the system can be integrated with existing local
resource management systems (SLURM and Maui) and presents an evaluation
of the system’s performance in a fully integrated environment. Workload
modeling techniques [57, 79, 143, 147] are used to generate input data for
system evaluation. By varying the statistical distribution parameters for the
underlying workload models, the system is evaluated using a range of different
workloads. Some workloads are dominated by periodical usage patterns and
some are dominated by a bursty usage pattern in which a large portion of the
jobs are submitted in a short period of time. The system’s behavior is shown
to be consistent and stable regardless of the type of workload imposed.
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Chapter 5

Future Work

The studies presented in this thesis can be grouped into three main categories:

e The use of service structure data and contextualization as tools for multi-
domain cloud service management.

e Accounting for multi-domain infrastructures.

e Decentralized global fairshare.

This chapter presents potential directions for future investigations in each
of these areas.

5.1 Multi-domain Cloud Service Management

Both service structure and contextualization are enabling technologies for
service deployment in multi-domain clouds. The use of service structure data
enables properties of the service known only by the service designer to be
taken into consideration during placement decisions, and can mitigate increases
in latency that would otherwise be associated with multi-cloud deployments.
Contextualization enables the adaptation of the service to new environments,
and allows for closer interaction between VMs and the hosting infrastructure,
even in cases where the technical particularities of the hosting infrastructure
are not known at deployment time or change during runtime.

A promising future use case for service structure data is to complement
existing VM migration techniques with information on inter-VM relationships
as demonstrated by Shrivastava et al. [197]. These authors use information
on the communication between different components and the derived com-
munication patterns as one of several factors when optimizing performance.
Relying on the known service structure instead of run-time measurements would
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reduce the strain on monitoring within the infrastructure and facilitate the pre-
emptive optimization of service component placement rather than reactionary
adjustment.

The geographical locality of data placement and computational provisioning
in collaborative clouds raises concerns relating to performance, fault-tolerance,
and legislative aspects [37, 117]. Some public clouds offer coarse-grained control
of service placement by allowing the user to chose a region for deployment [142].
These regions are usually very large (for instance, Europe is normally treated
as a single region), and the regional divisions probably reflect the locations
of physical resources and data centres. The ability to express structure and
placement constraints explicitly could make future cloud infrastructures suitable
platforms for the deployment of a new group of services that rely on global
deployment while still retaining some control over how and where the service is
deployed.

An interesting technology for multi-cloud deployments is the ability to dynam-
ically and automatically split a service manifest into several sub-manifests [144].
This enables brokers of cloud resources to manage the deployment of a service
across multiple infrastructure without prior support from the service developer.
A natural extension of this service decomposition would be to incorporate data
on the internal structure of the relevant services in order to provide a heuristic
for service subdivision.

As described in Section 3.5, autonomic computing [116, 125] is a vision of
computing systems that are self-managing given high-level objectives from ad-
ministrators. The work on service structure and (re-)contextualization presented
in this thesis can be regarded as enabling technologies for autonomic computing.
Service structure can be used for self-optimization and self-configuration at the
infrastructure level to fine-tune the deployment of the service. Contextualization
is a fundamental supporting system for self-configuration at the infrastructure
level, allowing VM instances to be migrated to a new infrastructure during
run-time. Such migrations may be triggered by other self-* processes such as
self-optimization. As illustrated by the distributed file system use-case, our
work on recontextualization can convey changes to the service context from the
IP to the applications inside the service. This enables the use of self-* process
even within the service itself.

One vision for future clouds involves a global cloud infrastructure with
no technical and administrative boundaries, allowing cloud services to be dy-
namically relocated to any of the constituent infrastructures without requiring
prior agreements or technical preparation [29, 30, 62]. The development of
such a unified global infrastructure would represent a very significant step
towards fulfilling the vision of computing as a utility and amplify the advan-
tages of multi-domain cloud deployments. For example, the proximity- and
geographically-aware placement of cloud services [4, 176] would make it possible
to offer new kinds of IT services that leverage data that are distributed geograph-
ically around the globe. Placement constraints and awareness of internal service
structure, and the ability to adapt the service to new execution environments



using contextualization, would be extremely useful in such scenarios.

The combination of service structure data and (re)contextualization enables
some interesting possibilities for self-configuration. For example, service struc-
ture data can be used to determine which networks (internal or external) each
VM instance should be connected to. Once this has been done, the required
network settings can be applied inside the VM using (re)contextualization.

5.2 Multi-domain Accounting

The work on cloud accounting presented in Paper V was performed in the early
days of cloud computing, and the outcome is one of the first accounting and
billing systems designed for clouds. Compared to previous systems used in grids,
the accounting systems for clouds have to be more extensively integrated into
the management processes of the cloud infrastructure. For example, if a prepaid
service is running low on credits, the infrastructure may force the service to
scale down, or stop completely until more credits are available.

The increasing size and complexity of cloud infrastructures makes the pro-
cess of multi-domain monitoring very challenging [44], and the management
of monitoring information is likely to be one of the key challenges in the es-
tablishment of a unified cloud infrastructure. Recent developments in cloud
accounting include efforts to create fully decentralized models for accounting
and billing [136, 236], which may help to mitigate the problem of massively
scaled infrastructures. Future work in multi-domain accounting includes further
development of decentralized accounting models.

5.3 Decentralized Global Fairshare

The Aequus system presented in Paper VII and Paper VIII enables the global
enforcement of fairshare policies and also incorporates global logging and man-
agement of (summarized) usage information. The performance and convergence
rates of Aequus are calculated based on the assumption of a short turn-around
time between the completion of a job and the system becoming aware that
the job is complete. The use of speculative job execution times defined by
users to estimate job resource consumption has been shown to have a great
impact on the system’s convergence rate [66] because it greatly reduces the
severity of the fluctuations caused by overcompensation. Tomds et al. [217] have
achieved similar results by integrating Aequus with the SA-Layer scheduling
framework [216], considerably reducing the number of jobs that must be run in
the system before fairshare converges. The incorporation of tools for evaluating
the impact of recently submitted jobs into local resource management systems
such as SLURM and Maui would be an interesting task for future work in this
area.

In recent years, the energy costs associated with running large computational
clusters have become a significant issue, to the point where operational costs rival
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the cost of investment in new hardware [27]. Reducing the energy consumption
of compute clusters is a growing challenge that affects both the economical
and ecological aspects of large-scale computing [13]. Resource control systems
can be designed with different objectives in mind; in the cloud case, this
is sometimes referred to as holistic management [195]. Most local resource
management systems are designed to maximize utilization by allowing free
resources to be utilized by the most highly ranked users, even if said users have
already exceeded their designated allocations. By incorporating the ability to
dynamically start and suspend physical servers [190, 204] (and/or using dynamic
voltage frequency scaling [196]) with fairshare, local resource schedulers can be
extended to work towards economical and environmentally friendly objectives
instead. For example, the amount of running physical resources could be
dynamically adjusted to favor users that are currently running jobs on the
infrastructure, suspending free resources to save energy rather than executing
tasks for users that have already exceeded their allocation. It would perhaps
be interesting to develop the global fairshare system for grid allocation that
is currently offered by Aequus to also account for fairness in terms of energy
savings between resource sites.



Chapter 6

Outlook

The cross-domain utilization of computing resources offers a range of interesting
technical opportunities ranging from increased scales of operation to econom-
ical advantages and the ability to spread services across diverse geographical
locations. It also offers the potential for dramatically increasing the energy
efficiency of (multi-domain) cloud computing, which may be more important
than all of the other advantages combined.

Computing has become a major factor in global energy consumption. The
total resource consumption of the Internet is very hard to define and measure but
is estimated to represent 10% of the worlds total energy consumption [179], with
data centres consuming 1-2% by themselves [149]. However, the servers at data
centres are very energy efficient compared to the (often less modern) in-house
alternatives, so by making existing businesses replace their in-house servers
with more energy efficient hosting in data centres, the energy consumption for
hosting such businesses could be reduced by up to 87% [149)].

By inventing and developing new technologies for the cloud, we may be
able to create new incentives for existing businesses to make the transition to
more energy-efficient hosting. Arguably, one of the major benefits that cloud
hosting could offer is access to servers and resources that are spread all around
the world, enabling even small and medium-sized enterprises to design and
create fully distributed and geographically-aware services, a possibility that is
currently limited to major companies with their own global infrastructure such
as Google or Facebook.

As of 2013, there is no publicly available globe-spanning computing infras-
tructure that can be used for hosting. However, there are several independent
hosting alternatives that, if combined, would be able to cover a significant part
of the globe. By enabling and improving the use of resources across multiple
hosting domains, we will hopefully be able to take the first steps toward a
unified global infrastructure, which could provide great technological benefits
and improvements in energy efficiency.
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