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Abstract—The monitoring of physical activities under realistic,
everyday life conditions — thus while an individual follows his
regular daily routine — is usually neglected or even completely
ignored. Therefore, this paper investigates the development and
evaluation of robust methods for everyday life scenarios, with
focus on the task of aerobic activity recognition. Two important
aspects of robustness are investigated: dealing with various
(unknown) other activities and subject independency. Methodsto
handle these issues are proposed and compared, a thorough eval-
uation simulates usual everyday scenarios of the usage of activity
recognition applications. Moreover, a new evaluation technique
is introduced (leave-one-other-activity-out) to simulate when an
activity recognition system is used while performing a previously
unknown activity. Through applying the proposed methods it is
possible to design a robust physical activity recognition system
with the desired generalization characteristic.

I. I NTRODUCTION

Many health benefits have been associated with regular
physical activity in the past decades, from maintaining or even
enhancing physical fitness to reducing the risk of different
diseases. The authors in [2] argue that being physically active
is — apart from not smoking — the most powerful lifestyle
choice individuals can make to improve their health. There
exist recommendations —e.g. from the American College
of Sports Medicine and the American Heart Association,cf.
[9] — of how much and what type of (aerobic, muscle-
strengthening, etc.) physical activity individuals should do.
Monitoring these performed activities is important to ensure
the right quality and quantity. However, the non-obtrusiveand
accurate monitoring of physical activity, while an individual
follows his regular daily routine, is a difficult task. Especially
the performance of aerobic activities can be highly integrated
into the daily routine. Therefore, it is essential to investigate
the monitoring of aerobic activities in the realistic conditions of
everyday life. This paper focuses on the task of aerobic activity
recognition, with the goal to develop and evaluate robust
methods for everyday life scenarios. The robustness of the
methods is investigated on two different levels: dealing with
various (unknown) other activities and subject independency,
both explained in more detail in the next subsections.

A. Problem statement: other activities

The recognition of basic aerobic activities (such as walk,
run or cycle) and basic postures (lie, sit, stand) is well
researched, and is possible with just one 3D-accelerometer

[5], [12]. However, since these approaches only consider a
limited set of similar activities, they only apply to specific
scenarios. Therefore, current research in the area of physical
activity recognition focuses amongst others on increasingthe
number of activities to recognize. For example11 different
activities are recognized in [14],16 different activities of
daily living (ADL) in [10], 19 different activities (with focus
on locomotion and sport activities) in [3], and20 different
everyday activities are distinguished in [4], etc. However, there
are countless number of activities (e.g.605 different activities
are listed in [1]), thus it is not feasible to recognize all of
them — not only due to the highly increased complexity of the
classification problem, but also due to the fact that collecting
data from those hundreds of different activities is practically
not possible.

In practice, activity monitoring systems usually focus on
only a few activities of interest. Therefore, the main goal
is to recognize only these few activities, but as part of a
classification problem where all other activities are included
as well. Thus the other activities do not need to be recognized,
but should not be completely ignored either. One possible way
to handle non-interesting other activities is to add a null-class
rejection stage at the end of the activity recognition chain,
thus discard instances of classified activities based on the
confidence of the classification result [19]. Another possibility
is to handle them as sub-activities clustered into the main,basic
activity classes,e.g.ascend/descend stairs considered as walk
[12]. The drawback of this solution is that there still remain
many activities which can not be put into any of the basic
activity classes (e.g.vacuum clean or rope jump). The concept
of a null-class (or so called background activity class) has
been successfully used in the field of activity spottinge.g. in
[13], and applied in [18] for aerobic activity recognition:apart
from the few activities to be recognized, all other activities are
part of this null activity class in the defined problem. It was
shown that the inclusion of the other activities increases the
applicability of the system, but also significantly increases the
complexity of the classification problem.

The above mentioned previous works represent a first
important step towards dealing with various other activities.
However, they only handle a given set of other activities (the
entire set of other activities is known when developing the
system), thus neglect to simulate the — in practice important
— scenario when the user of the system performs an activity
previously unknown to the system. Therefore, it remains
an open question what happens with all the activities not



considered during the monitoring system’s development. To
give a concrete example, assume that an activity monitoring
system has the goal to recognize5 basic physical activities
(walk, run, etc). When developing this system, in addition to
the activities to recognize,10 other activities are considered as
well (vacuum clean, play soccer, etc). The system is specified
so that if a user performs any of these other activities, it is
not recognized as a basic activity but as an other activity
or is rejected. Furthermore, assume that the activity ‘rope
jump’ is neither included in the basic, nor in the set of other
activities. Therefore, it is undefined how the system handles
the situation when a user performs this ‘rope jump’ activity.
By not dealing with this issue, existing work leaves basically
two possibilities: either the user is limited to a scenario where
only the considered activities occur (even if20− 30 different
activities are included in the development of a system, this
still is a significant limitation for the user), or the user is
permitted to perform any kind of physical activity, but it is
not specified how the monitoring system handles an activity
not considered during the system’s development phase (e.g.
whether it is recognized as one of the basic activities). Either
way, by neglecting this issue, the applicability of an activity
monitoring application is significantly limited.

B. Problem statement: subject independency

Another important aspect of robustness is the subject
independency of an activity monitoring system. In [14], a
comparison of subject dependent and independent validation
is shown, and a large difference of classifier performance is
reported between the two validation techniques (1.26− 5.92%
misclassificationvs.12.09− 29.47% misclassification for dif-
ferent classifiers, respectively). Moreover, [18] also compared
subject dependent and independent evaluation, and argues that
— unless the development of personalized approaches is the
explicit goal — subject independent validation techniques
should be preferred. This best simulates the common scenario
that such systems are usually trained on a large number of
subjects and then used by a new subject (similar to the concept
of unknown other activities as discussed above, here the user of
the system is unknown during the development phase), while
subject dependent evaluation leads to highly “optimistic”per-
formance results. However, many research works even recently
still use subject dependent validation techniques (e.g. in [11],
[20]), neglecting that although they present high performance
using their approach, these results might not have as much
practical meaning as if subject independent validation would
have been applied.

C. Overview and main contributions

This paper introduces and analyzes different approaches
to overcome the currently existing limitations in respect of
the two presented issues. A large number of experiments are
carried out, for which Section II defines the necessary tools
and Section III presents and discusses the results. The main
contributions of the paper are the following. a) It introduces
and strengthens a usually neglected point of view in physical
activity recognition: the robustness in everyday life scenarios.
Two important aspects of this issue are investigated: dealing
with (unknown) other activities and subject independency.
Methods to handle these issues are proposed and compared, a

thorough evaluation simulates everyday scenarios of the usage
of activity monitoring systems. b) A new evaluation tech-
nique is introduced: leave-one-other-activity-out (LOOAO).
This simulates one of the most commonly neglected scenarios:
when an activity recognition system is used while performing
a previously unknown other activity. c) Through comparing
various different methods, the experiments show that the ap-
proach of using an other activity class (referred to as ‘bgClass’
throughout this paper) has the best generalization characteristic
for designing a robust activity recognition system.

II. M ETHODS

This section defines the classification problem used within
this work, presents data processing methods and classification
algorithms applied, and defines the performance measures to
quantify results. Moreover,4 different models are proposed
to deal with other activities. Finally, the evaluation methods
used in Section III are presented, including a new evaluation
algorithm to simulate everyday life scenarios for using activity
recognition applications.

A. Defining the classification problem

The experiments performed within this work are all based
on the PAMAP2 dataset, a physical activity monitoring dataset
created and released recently [16], [17], and included in the
UCI machine learning repository [7]. This dataset is used since
it not only includes the basic physical activities (walk, run,
cycle, Nordic walk) and postures (lie, sit, stand), but alsoa
wide range of everyday (ascend and descend stairs, watch TV,
computer work, drive car), household (iron clothes, vacuum
clean, fold laundry, clean house) and fitness activities (rope
jump, play soccer). The dataset was recorded from overall18
physical activities performed by9 subjects, wearing3 inertial
measurement units (IMU) and a heart rate monitor. The IMUs
were placed at3 different positions on the test subjects’ bodies:
on the chest, over the wrist on the dominant arm and on the
dominant side’s ankle. The subjects were aged27.22 ±3.31
years and were having a BMI of25.11 ±2.62 kgm−2. A more
detailed description of the dataset can be found in [16].

The overall goal of this paper is to develop a physical
activity monitoring system which can recognize a few, basic
activities and postures of interest, but is also robust in everyday
situations. In their daily routine, users of activity monitoring
systems perform a large amount of different activities, many
of them are not of interest from the activity recognition point
of view. Therefore, to simulate this common usage of activity
monitoring systems, the activity recognition task is defined
as follows.1 There are6 different basic activity classes to
recognize: lie, sit/stand2, walk, run, cycle and Nordic walk. In
addition,9 different activities are regarded as other/background
activities: iron clothes, vacuum clean, ascend stairs, descend
stairs, rope jump, fold laundry, clean house, play soccer and
drive car. These other activities should not be recognized as
one of the basic activities, but as part of an other activity class

1The defined classification task uses16 different activities from the
PAMAP2 dataset. The remaining2 activities (computer work and watch TV)
are discarded here due to their high resemblance to the basic postures.

2It is a common restriction made in activity recognition (e.g. in [6]) that
the postures sit and stand form one activity class, since an extra IMU on the
thigh would be needed for a reliable differentiation of them.



(a) The ‘allSeparate’ model. (b) The ‘bgClass’ model.

(c) The ‘preReject’ model. (d) The ‘postReject’ model.

Fig. 1. The 4 proposed models for dealing with the other activities.

or should be rejected. The additional activities will be used to
simulate the scenario when users perform other activities than
the few basic ones, and are also used to simulate the scenario
when users perform an activity unknown to the system. This
defined classification problem will be referred to as ‘extended’
activity recognition task throughout this paper. Moreover, for
comparison reasons, the classification problem only including
the 6 basic activity classes will also be used, and will be
referred to as ‘basic’ activity recognition task.

The defined activity recognition task focuses on the mon-
itoring of traditionally recommended aerobic activities (walk,
run, cycle and Nordic walk), and can thus be justified by
various physical activity recommendations — as givene.g. in
[9]. Especially patients with diabetes, obesity or cardiovascular
disease are often required to follow a well defined exercise
routine as part of their treatment. Therefore, the recognition
of these basic physical activities is essential to monitor the
progress of the patients and give feedback to their caregiver.
Moreover, a summary of resting activities (lie, sit and stand
still) gives also a feedback on how much sedentary activity the
patients “performed”. However, in other use cases the focusof
an activity monitoring application could be different, thus the
definition of the classification problem (the definition of the
basic and other activity classes) would differ. Nevertheless,
the methods presented in this work could be applied on those
other classification tasks as well.

B. Data processing and classification

The PAMAP2 dataset provides raw sensory data from the
3 IMUs and the heart rate monitor. A data processing chain is
applied on the raw data including preprocessing, segmentation
and feature extraction steps (these data processing steps are
further described in [16]). In total,137 features are extracted:
133 features from IMU acceleration data (such as mean,

standard deviation, energy, entropy, correlation, etc.) and 4
features from heart rate data (mean and gradient). These
extracted features serve as input for the classification step,
together with the activity class labels provided by the dataset.
Previous work in activity recognition showed that decision
tree based classifiers, especially boosted decision trees,usually
achieve high performance [16]. Moreover, decision tree based
classifiers have the benefit to be fast classification algorithms
with a simple structure, and are thus also easy to implement.
These benefits are especially important for activity recognition
applications since they are usually running on mobile, portable
systems for everyday usage, thus the available computational
power is limited [18]. Therefore, the C4.5 decision tree classi-
fier [15] and the AdaBoost.M1 (using C4.5 decision tree as
weak learner) algorithm [8] are used and compared in the
experiments on the defined classification problem.

C. Modeling other activities

As discussed above, the focus is on the recognition of the
basic activity classes, but all the other activities shouldnot
be completely neglected either. Therefore,4 different models
are proposed for dealing with these other activities. The main
goal of these solutions is the high recognition rate of the basic
activities, but they should also show robust behaviour concern-
ing unknown activities, thus should have good generalization
characteristic. The4 proposed methods are listed below, and
are visualized — by means of the concrete example of the
defined activity recognition task:6 basic activity classes and
9 other activities — in Fig. 1.

The ‘allSeparate’ model: for each of the other (or also
called background) activities a separate activity class isdefined
(‘bg1’ . . . ‘bg9’), and all these classes are regarded as activities
not belonging to the6 basic activity classes (‘1’. . . ‘6’). The
concept of the method is visualized in Fig. 1(a). This model



TABLE I. CONFUSION MATRIX USED FOR THE ADJUSTED DEFINITION

OF THE PERFORMANCE MEASURES.

Annotated
activity

Recognized activity
1 2 . . . C 0

1 P1,1 P1,2 . . . P1,C P1,C+1 S1

2 P2,1 P2,2 . . . P2,C P2,C+1 S2

. . .

C PC,1 PC,2 . . . PC,C PC,C+1 SC

C + 1 PC+1,1 PC+1,2 . . . PC+1,C PC+1,C+1 SC+1

. . .

C + B PC+B,1 PC+B,2 . . . PC+B,C PC+B,C+1 SC+B

R1 R2 . . . RC RC+1

refers to the nowadays common approach of dealing with a
large number of activities: most research work is focused on
increasing the number of recognized activities, thus to have a
high number of separate activity classes.

The ‘bgClass’ model: in addition to the basic activity
classes a background activity class (‘bg’ in Fig. 1(b)) is
defined, containing all the other activities. This approachof
a null-class for physical activity recognition was proposed in
[18] to increase the applicability in everyday life scenarios.

The ‘preReject’ model: it basically inserts a null class
rejection step before the actual classification. The concept of
this two-level model is visualized in Fig. 1(c). On the first level
the basic activities are separated from all the other activities
(‘bg’ class). The second level — only on the ‘basic’ branch
of the first level — distinguishes the6 different basic activity
classes. When constructing a classifier based on this model, all
training samples are used to create the sub-classifier of thefirst
level, while for the second level only training samples from
the basic activity classes are used.

The ‘postReject’ model: similar to the ‘preReject’ model,
this is also a two-level model, as shown in Fig. 1(d). However,
the null class rejection step is applied here after classifying
the basic activities. This solution is similar toe.g.the decision
filtering step applied after activity classification in the activity
recognition chain of [19]. Only samples of the basic activity
classes are used to create the first level of this classifier, while
the second level consists of6 sub-classifiers: each created using
the respective basic activity class and all samples from the
other activities.

D. Performance measures

The common measures are used to describe the classifica-
tion performance of the different approaches: precision, recall,
F-measure and accuracy.3 However, since the focus of this
work is on the recognition of the basic activity classes, these
performance measures are adjusted so that they also focus on
the basic activities. The adjusted definition of the4 measures
uses the following notation (cf. also the confusion matrix in
Table I). Assume that a confusion matrix is given by its entries
Pi,j , where i refers to the rows (annotated activities), andj
to the columns (recognized activities) of the matrix. LetSi be
the sum of all entries in the rowi of the matrix (referring to
the number of samples annotated as activityi), and Rj the
sum of all entries in the columnj of the matrix (referring to

3Recently new error metrics were introduced for continuous activity recog-
nition, e.g. insertion, merge, overfill, etc. [21], [22]. However, contrary to
activity recognition ine.g. home or industrial settings, for physical activity
monitoring the frame by frame metrics are sufficient, as discussed in [16].

the number of samples recognized as activityj). Let N be
the total number of samples in the confusion matrix. Let the
classification problem represented in the confusion matrixhave
C basic activity classes:1, . . . , C andB other activity classes:
1, . . . , B. Let the activity classes ordered so in the confusion
matrix that the background activity classes follow the basic
activity classes (cf. the order of the annotated activity classes
in Table I). Since the classification of the samples belonging
to the other activities is not of interest, this is represented as
a null activity class in the confusion matrix (cf. the column
referred to asPi,C+1 in Table I). Samples classified as one
of the background activity classes (‘allSeparate’ model),or
classified into the other activity class (‘bgClass’ model),or
rejected before or after the classification of the basic activities
(‘preReject’ or ‘postReject’ model, respectively) are counted
into this null class. Using this notation, the performance
measures used in this paper are defined as following (the
correct classification of only the basic activities is of interest
in the definition of the metrics):

precision =
1

C

C∑

i=1

Pi,i

Ri

(1)

recall =
1

C

C∑

i=1

Pi,i

Si

(2)

F -measure = 2 ·
precision · recall

precision+ recall
(3)

accuracy =
1

N −
∑C+B

j=C+1
Pj,C+1

C∑

i=1

Pi,i (4)

Concrete confusion matrices on the defined ‘basic’ and
‘extended’ classification problems are shown as results in
Section III. Moreover, those confusion matrices are used
to understand and compare the results in more detail, thus
e.g. which activity classes are confused more frequently by
different approaches.

E. Evaluation techniques

The goal of the evaluation of the created classifiers is to
estimate their behaviour in everyday life scenarios, thus to
simulate how they would perform in named situations. The
commonly used standardk-fold cross-validation (CV) is not
adequate for this task, since it only estimates the behaviour
on the scenario in which the classifier was trained, thus on a
limited and known set of users and physical activities. Never-
theless, standard 10-fold CV is also applied as an evaluation
technique in the experiments of this work for comparison
reasons. These results will show how “optimistic”k-fold CV
is for validation, how unrealistic the so achieved performance
is in real life scenarios.

The simulation of everyday life scenarios means concretely
to simulate how the created system behaves when used by
a previously (in training time) unknown person, or when a
previously unknown activity is performed. To simulate subject
independency the evaluation technique leave-one-subject-out
(LOSO) CV is applied. Since the used PAMAP2 dataset pro-
vides data from9 subjects, LOSO 9-fold CV is applied in this
paper. This means that data from8 subjects is used for training



Algorithm 1 LOSO LOOAO
Require: S is the set ofS different subjects,s : 1, . . . , S

C is the set ofC different basic activities,c : 1, . . . , C
B is the set ofB different other activities,b : 1, . . . , B
A is the set of all different activities:A = C ∪ B, an arbitrary activity is referred to asa
N is the set of N different samples, where each sample consistsof subject and activity information and a feature vector,

thusn : <s, a, features>
s(n) refers to the subject of the samplen
a(n) refers to the activity of the samplen

1: procedure LOSO LOOAO(S,C,B,A,N)
2: for i← 1, S do
3: Ptrain = {∀n ∈ N |s(n) 6= i}
4: Ptest = {∀n ∈ N |s(n) = i}
5: Ptest basic = {∀n ∈ Ptest|a(n) ∈ C}
6: Train classifier usingPtrain → Fi

7: UseFi on Ptest basic % LOSO on basic activities
8: for j ← 1, B do
9: Ptrain other = {∀n ∈ Ptrain|((a(n) ∈ C ) or ((a(n) ∈ B and (a(n) 6= j)))} % thus the sample does not belong to

the jth other activity
10: Ptest other = {∀n ∈ Ptest|((a(n) ∈ B ) and (a(n) = j))} % thus the sample belongs to the jth other activity

11: Train classifier usingPtrain other → Fi,j

12: UseFi,j on Ptest other % LOOAO on jth other activity
13: end for % LOOAO with allB other activities is finished here

14: end for % The LOSO results with the basic activities and the LOOAO results with the other activities together return the LOSOLOOAO result

15: end procedure

and data from the remaining subject for testing, repeating
this procedure9 times leaving always another subject’s data
for testing. Moreover, to simulate the scenario of performing
unknown other activities a new evaluation technique is intro-
duced: leave-one-other-activity-out (LOOAO). It has a similar
concept to the LOSO technique: if the classification problem
includesB other activities, data fromB − 1 other activities
is used for training and data from the remaining other activity
for testing, repeating this procedureB times leaving always
another activity’s data for testing.

To receive the best possible estimation of the developed
system’s behaviour in everyday life scenarios, the newly
introduced LOOAO evaluation technique is combined with
the LOSO technique. This combined evaluation method will
be referred to as LOSOLOOAO throughout the paper,
the procedure is formally described in Algorithm 1. With
LOSO LOOAO evaluation the following practical scenarios
are evaluated:

• The system is trained with a large amount of subjects
for the ‘extended’ task. Then the system is deployed
to a new subject (thus for this subject no data was
available during the training phase of the system), and
the new subject performs one of the basic activities
(estimated through the LOSO component).

• The system is trained with a large amount of subjects
for the ‘extended’ task. Then the system is deployed to
a new subject, who performs one of the known other
activities (estimated through the LOSO component).
This is the first step in testing the robustness of the
system in situations when the user performs activities
other than the few basic recognized ones.

• The system is trained with a large amount of subjects
for the ‘extended’ task. Then the system is deployed
to a new subject, who performs a previously unknown
activity — thus an activity neither belonging to the

basic activity classes, nor to one of the other activities
available during the training phase (estimated through
the LOOAO component). This scenario simulates basi-
cally the generalization characteristic of the classifier’s
other activity model, estimating how robust the system
is in the usually neglected situation when unknown
activities are performed.

III. R ESULTS AND DISCUSSION

Table II shows the confusion matrix on the ‘basic’ classifi-
cation task using the C4.5 decision tree classifier and standard
CV as evaluation technique (the results are an average of
10 test runs). Almost no misclassifications can be observed,
all performance measures are clearly above99%. Therefore,
this result could indicate that physical activity recognition is
an easily solvable classification problem, even with a simple
classifier such as a decision tree. However, the result of Table II
has two main drawbacks: it is subject dependent (thus does not
tell anything about the performance of the system when used
by a new subject), and only applies to the specific scenario of
these6 basic activity classes. Therefore, an extension of this
result is required to increase the applicability of the system
concerning both limitations. Further results in this section will
show that the performance of activity recognition is much
lower under realistic, everyday life conditions.

A. The ‘basic’ task

The ‘basic’ classification task serves only for comparison,
thus to see the baseline characteristic of physical activity
recognition. Since all activities of the task are to be recognized,
only the subject independency of the system can be simulated
from the aforementioned two issues. The performance mea-
sures are shown in Table III for both standard CV and LOSO



TABLE II. C ONFUSION MATRIX ON THE ‘ BASIC’ TASK USING THE

C4.5DECISION TREE CLASSIFIER AND STANDARDCV EVALUATION

TECHNIQUE. THE TABLE SHOWS HOW DIFFERENT ANNOTATED ACTIVITIES

ARE CLASSIFIED IN [%].

Annotated
activity

Recognized activity
1 2 3 4 5 6

1 lie 100 0 0 0 0 0
2 sit/stand 0 99.87 0 0 0.13 0
3 walk 0 0.05 99.66 0 0.02 0.27
4 run 0 0 0 100 0 0
5 cycle 0 0.29 0.25 0.11 99.29 0.06
6 Nordic walk 0 0 0.60 0 0 99.40

evaluation. Each of the tests is performed10 times, the table
shows the mean and standard deviation of these10 test runs.

The results of Table III show the significant difference
between using standard CV or LOSO as evaluation method, for
both classifiers. An interesting result is that the AdaBoost.M1
classifier only slightly outperforms the C4.5 classifier on the
‘basic’ task (the difference between the two classifiers on the
‘extended’ task is much more significant, as shown in the next
subsection). This can be explained by the fact that the ‘basic’
task is a rather simple classification problem where even
base-level classifiers can reach the highest possible accuracy.
Therefore, it is not necessarily worth using more complex
classification algorithms here. The lower performance when
using LOSO evaluation is due to the difficulty of the gener-
alization in respect of the users, and not due to the difficulty
of the classification task. Although using subject independent
evaluation is the first step towards simulating the conditions of
everyday usage of activity recognition applications, the ‘basic’
task only estimates the system’s behaviour when activitiesof
one of the6 included activity classes are performed, thus
the system’s response is not defined when the user performs
activities such as descend stairs or vacuum clean. This issue
is investigated in the next subsection, by analyzing the results
obtained on the ‘extended’ classification task.

B. The ‘extended’ task

The performance measures on the ‘extended’ task are pre-
sented in Table IV: for each of the4 other activity models, by
using the2 classifiers and the3 different evaluation techniques.
The results are given in form of mean and standard deviation
of the 10 test runs performed for every possible combination
of the models, classifiers and evaluation methods. Overall it
is clear that with the inclusion of the other activities the
classification task becomes significantly more difficult (cf.
the comparison of the results achieved with standard CV
and LOSO to the respective results on the ‘basic’ task).
This can be explained not only by the increased number of
activities in the classification problem, but also by the fact that
the characteristic of some of the introduced other activities
overlap with the characteristic of some of the basic activity
classes. For example, the other activityiron has a similar
characteristic as when talking and gesticulating duringstand,
thus misclassifications appear between these two activities.
Similarly it is nontrivial to distinguish running with a ball
(during the other activityplay soccer) from justrunning. Since
the ‘extended’ task defines a complex classification problem, it
is worth to apply more complex classification algorithms here
— contrary to the ‘basic’ classification task. For example when
considering the ‘allSeparate’ model and LOSO evaluation, the

C4.5 decision tree only achieves an F-measure of83.30%
while with the AdaBoost.M1 classifier92.22% can be reached.

From the results of Table IV it is trivial that the perfor-
mance measures achieved with LOSO evaluation are signifi-
cantly lower than results obtained with standard CV, as already
seen in Table III. If only considering subject independency
the ‘allSeparate’ model performs best, closely followed bythe
models ‘preReject’ and ‘bgClass’. However, on the ‘extended’
task it is also simulated when the user of the system performs
unknown other activities (LOOAO). The results of applying
the evaluation method of Algorithm 1 are shown in Table IV
in the respective rows of LOSOLOOAO. Considering this
combined evaluation technique the ‘bgClass’ model performs
best, followed by the models ‘preReject’ and ‘allSeparate’.
From all the4 other activity models the ‘allSeparate’ model
shows the largest decrease in performance from LOSO eval-
uation to LOSOLOOAO evaluation. Especially the precision
measure decreases largely, thus when the user performs un-
known activities they are more likely recognized as one of
the basic activity classes compared to the results of other
models. This can be explained by the fact that for this model
separate activity classes are created and trained for each of the
known other activities, thus the generalization capability of the
model is rather limited when a previously unknown activity is
performed. On the other hand, the training instances belonging
to the other/background activity class of the ‘bgClass’ model
are scattered in the feature space, resulting in a large class with
good generalization characteristic. Moreover, since muchmore
instances are used for the creation of the background activity
class during training than for the6 basic activity classes, this
class becomes more important, thus resulting in significantly
higher precision than recall result with the ‘bgClass’ model.

The ‘preReject’ model performed second best for both
LOSO and LOSOLOOAO evaluation, justifying the idea
of first recognizing whether a performed activity belongs to
the basic activity classes or not. When analyzing the trained
classifiers for the two levels of this model, it can be noticed
that the classifier of the first level is much more complex:
although representing only a binary decision, the separation
of basic activities from other activities is a difficult task.
The classification problem defined in the second level of the
model is identical to the ‘basic’ classification task defined
in this paper, and thus is — as discussed in the previous
subsection — a rather simple task. Finally, the ‘postReject’
model performed worst with both LOSO and LOSOLOOAO
evaluation, resulting in the lowest F-measure and accuracy
values. Since the basic activities are distinguished on thefirst
level of this model (without any other activities concerned),
this model has the least confusion between the basic activity
classes. The confusion matrices belonging to the evaluation of
this model — not shown in this paper due to the limited space
— confirm this statement: except of some misclassifications of
Nordic walksamples into the normalwalk class, all confusion
is done towards the other activity class. Moreover, due to
the unbalanced classification tasks defined on the second
level of the model (only one basic activity versus all other
activities, thus these tasks are even more unbalanced than
the classification task defined by the ‘bgClass’ model), the
precision values are comparable with those of other models.
Therefore, if the goal of an activity recognition application
is only the precise recognition of activities of interest the



TABLE III. P ERFORMANCE MEASURES ON THE‘ BASIC’ ACTIVITY RECOGNITION TASK

Classifier Evaluation method Precision Recall F-measure Accuracy
C4.5 standard CV 99.71 ± 0.04 99.70 ± 0.02 99.71 ± 0.03 99.71 ± 0.03

LOSO 96.05 ± 1.06 94.96 ± 1.40 95.50 ± 1.20 95.14 ± 1.10

AdaBoost.M1 standard CV 99.97 ± 0.02 99.97 ± 0.02 99.97 ± 0.02 99.97 ± 0.02

LOSO 95.91 ± 1.45 95.47 ± 1.45 95.69 ± 1.40 95.43 ± 1.54

TABLE IV. PERFORMANCE MEASURES ON THE‘ EXTENDED’ ACTIVITY RECOGNITION TASK

Model Classifier Evaluation method Precision Recall F-measure Accuracy
’allSeparate’ C4.5 standard CV 98.17 ± 0.23 98.00 ± 0.09 98.09 ± 0.14 95.80 ± 0.25

LOSO 89.77 ± 1.89 77.75 ± 3.08 83.30 ± 2.10 73.81 ± 2.21

LOSO LOOAO 81.84 ± 1.77 78.59 ± 3.43 80.16 ± 2.44 67.06 ± 2.71

AdaBoost.M1 standard CV 99.94 ± 0.01 99.93 ± 0.04 99.93 ± 0.02 99.83 ± 0.05

LOSO 95.42 ± 0.98 89.23 ± 2.00 92.22 ± 1.40 86.60 ± 2.09

LOSO LOOAO 86.80 ± 0.99 88.72 ± 1.28 87.75 ± 1.07 78.83 ± 1.29

’bgClass’ C4.5 standard CV 98.68 ± 0.17 98.66 ± 0.11 98.67 ± 0.12 96.85 ± 0.21

LOSO 89.85 ± 1.35 85.83 ± 3.11 87.78 ± 2.11 80.63 ± 1.81

LOSO LOOAO 83.64 ± 2.46 85.56 ± 2.67 84.58 ± 2.39 73.76 ± 2.10

AdaBoost.M1 standard CV 99.96 ± 0.02 99.88 ± 0.03 99.92 ± 0.02 99.77 ± 0.05

LOSO 96.07 ± 0.99 85.76 ± 2.45 90.61 ± 1.72 84.14 ± 2.35

LOSO LOOAO 91.81 ± 0.82 86.82 ± 1.71 89.24 ± 1.17 80.97 ± 1.20

’preReject’ C4.5 standard CV 98.28 ± 0.14 97.83 ± 0.12 98.05 ± 0.07 95.46 ± 0.14

LOSO 88.58 ± 1.40 78.66 ± 2.51 83.30 ± 1.36 71.78 ± 1.76

LOSO LOOAO 83.07 ± 1.68 78.83 ± 3.63 80.87 ± 2.53 67.32 ± 2.74

AdaBoost.M1 standard CV 99.95 ± 0.04 99.89 ± 0.04 99.92 ± 0.04 99.82 ± 0.06

LOSO 93.85 ± 1.57 88.46 ± 2.26 91.07 ± 1.83 85.20 ± 2.07

LOSO LOOAO 87.99 ± 1.47 87.98 ± 1.80 87.98 ± 1.58 79.11 ± 1.60

’postReject’ C4.5 standard CV 99.08 ± 0.09 98.21 ± 0.15 98.64 ± 0.10 96.89 ± 0.20

LOSO 92.93 ± 0.93 77.65 ± 3.05 84.59 ± 2.11 74.89 ± 1.80

LOSO LOOAO 89.02 ± 0.62 78.96 ± 2.05 83.67 ± 1.23 71.59 ± 1.66

AdaBoost.M1 standard CV 99.93 ± 0.04 99.82 ± 0.02 99.87 ± 0.03 99.75 ± 0.05

LOSO 95.76 ± 1.38 81.18 ± 2.57 87.86 ± 1.87 80.92 ± 2.50

LOSO LOOAO 92.01 ± 1.80 80.65 ± 3.02 85.94 ± 2.40 77.78 ± 2.52

‘postReject’ model can also be considered, but otherwise one
of the three other models should be used.

From the results of Table IV the performance measures
obtained with LOSOLOOAO evaluation should be regarded
as most important, since this evaluation technique simulates the
widest range of practical scenarios. The approach achieving
the best performance results with LOSOLOOAO can thus
be regarded as the approach which is the most robust in
everyday life situations. Therefore, overall the ‘bgClass’ model
can be regarded as the model with the best generalization
characteristic: the approach using the ‘bgClass’ model and
the AdaBoost.M1 classifier achieves an average F-measure of
89.24% and an average accuracy of80.97%. The confusion
matrix obtained with this approach is shown in Table V (the
results represent the average from the10 test runs). It is
obvious that most of the misclassifications occur due to the
other activities: either a sample belonging to a basic activity
class is classified into the background class, or a sample from
an other activity is confused with one of the basic activities.
For example,drive car and iron are in high percentage
confused with the basic classsit/stand. This is due to the
overlapping characteristic of some basic and other activities,
as already discussed above. The strength of the ‘bgClass’
model is especially pointed out by the results obtained with
other activities such asascend stairs, descend stairs, vacuum
clean or rope jump: although previously unknown to the
system, these activities were basically not misclassified as a
basic activity. Therefore, it can be expected that the proposed

approach shows such robustness with most of other unknown
activities as well. Only unknown activities similar to the target
activities might be problematic for the ‘bgClass’ approach, as
seen withdrive car or iron, or is expected with activities such
as computer workor watch TV. However, it is difficult to set
the defining boundaries of some of the basic activity classes
— e.g. if computer workshould be regarded assitting or as
a separate other class. Deciding this question might highly
depend on the actual application.

IV. CONCLUSION

This paper created the means for simulating everyday life
scenarios and thus to evaluate the robustness of activity recog-
nition — a usually neglected point of view in the development
of physical activity monitoring systems. Experiments were
carried out on a classification problem defined on the recently
released PAMAP2 dataset, including6 basic activity classes
and 9 different other activities. The goal of the classification
task was the accurate recognition and separation of the basic
activities, while samples of the other activities should berec-
ognized as part of an other activity class or should be rejected.
Common data processing and classification methods were used
to achieve this, comparing two — in previous work success-
fully applied — classification algorithms: the C4.5 decision
tree classifier and the AdaBoost.M1 algorithm. Moreover, to
deal with other activities,4 different models are proposed:
‘allSeparate’, ‘bgClass’, ‘preReject’ and ‘postReject’.Finally,
the evaluation of the proposed methods was performed with



TABLE V. CONFUSION MATRIX ON THE ‘ EXTENDED’ CLASSIFICATION

TASK USING THE ‘ BGCLASS’ MODEL, ADABOOST.M1 CLASSIFIER AND

LOSO LOOAO EVALUATION TECHNIQUE. THE TABLE SHOWS HOW

DIFFERENT ANNOTATED ACTIVITIES ARE CLASSIFIED IN[%].

Annotated
activity

Recognized activity
1 2 3 4 5 6 0

1 lie 96.66 2.62 0 0 0 0 0.72
2 sit/stand 0.15 90.05 0 0 0 0 9.80
3 walk 0 0 85.87 0 0 0.13 14.00
4 run 0 0 0.16 76.24 0 0.30 23.31
5 cycle 0 0 0.01 0 92.43 0.03 7.53
6 Nordic walk 0 0 8.71 0 0 79.69 11.60
7 drive car 0 39.10 0 0 0.06 0 60.84
8 asc. stairs 0 0 0.53 0 0 0.01 99.46
9 desc. stairs 0.08 0 1.97 0.02 0.84 0.06 97.04

10 vacuum clean 0 0 0 0 0.42 0 99.58
11 iron 0 20.02 0 0 0.01 0 79.97
12 fold laundry 0 3.70 0.01 0 0 0 96.29
13 clean house 0.26 7.10 0 0 0.06 0 92.58
14 play soccer 0 0 3.34 32.08 0 0.13 64.46
15 rope jump 0 0 0.11 0.11 0 0 99.78

different techniques, including standard CV, LOSO and the
newly introduced LOOAO. Standard 10-fold CV was only
included for comparison reasons: to underline how unrealistic
the so achieved performance is in everyday life scenarios.
The LOSO technique serves to simulate subject independency,
while LOOAO simulates the scenario of performing unknown
other activities. The results of the thorough evaluation process
revealed that the ‘bgClass’ model has the best generalization
characteristic, while the generalization capability of the widely
used ‘allSeparate’ approach is rather limited in respect of
performing previously unknown activities.

Developing physical activity monitoring systems while
also takinge.g. subject independency or unknown activities
into account has two important benefits compared to when
standard CV evaluation is used only. First of all it is estimated
how the developed system behaves in various everyday life
scenarios, while this behaviour would be otherwise undefined.
Moreover, the best performing models and algorithms can
be selected when applying LOSO and LOOAO evaluation
during the development phase of the system, hence creating
the best possible system from the robustness point of view
for everyday life. In future work it is planned to apply the
proposed models and evaluation techniques also with other
classification problems. It should be also investigated howwell
the developed approaches generalize with user groups (e.g.
elderly) significantly differing from the subjects (all young,
healthy adults) included in the PAMAP2 dataset. Moreover, it
is also planned to investigate the effect of increasing the num-
ber of known (thus in the training included) other activities,
with the goal to increase even more the robustness towards
unknown other activities while keeping the high performance
regarding the basic activity classes.
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