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Abstract—The monitoring of physical activities under realistic, ~ [5], [12]. However, since these approaches only consider a
everyday life conditions — thus while an individual follows his  limited set of similar activities, they only apply to specifi
regular daily routine — is usually neglected or even completely  scenarios. Therefore, current research in the area of galysi
ignored. Therefore, this paper investigates the development and  activity recognition focuses amongst others on increatiieg
evaluation of robust methods for everyday life scenarios, with number of activities to recognize. For example different
focus on the task of aerobic activity recognition. Two important activities are recognized in [14]16 different activities of

aspects of robustness are investigated: dealing with various ST . : L X
(unknown) other activities and subject independency. Methods$o daily living (ADL) in [10], 19 different activities (with focus

handle these issues are proposed and compared, a thorough eval- ON locomotion and sport activities) in [3], anth different
uation simulates usual everyday scenarios of the usage of actyit €veryday activities are distinguished in [4], etc. Howeveere
recognition applications. Moreover, a new evaluation technique are countless number of activities.q§. 605 different activities

is introduced (leave-one-other-activity-out) to simulate whenma  are listed in [1]), thus it is not feasible to recognize all of
activity recognition system is used while performing a previously them — not only due to the highly increased complexity of the
unknown activity. Through applying the proposed methods it is  classification problem, but also due to the fact that cdlbect
possible to design a robust physical activity recognition system gata from those hundreds of different activities is prathc

with the desired generalization characteristic. not possible.
In practice, activity monitoring systems usually focus on
I~ INTRODUCTION only a few activities of interest. Therefore, the main goal

Many health benefits have been associated with reguldf t© recognize only these few activities, but as part of a
physical activity in the past decades, from maintainingvamne classification problem where all other activities are ideld
enhancing physical fitness to reducing the risk of differenl"gs well. Thus the other activities do not.need to be recpgmze
diseases. The authors in [2] argue that being physicaliyeact PUt should not be completely ignored either. One possible wa
is — apart from not smoking — the most powerful lifestyle © handle non-interesting other activities is to add a nlabks

choice individuals can make to improve their health. Therd€i€ction stage at the end of the activity recognition chain
exist recommendations —e.g. from the American College thus discard instances of classified activities based on the

of Sports Medicine and the American Heart Associatich, ~confidence of the classification result [19]. Another patigib
[9] — of how much and what type of (aerobic, muscle- IS O handle them as sub-activities clustered into the nieasic
strengthening, etc.) physical activity individuals stiudo. activity classese.g.ascend/descend stairs considered as walk

Monitoring these performed activities is important to eesu [12]- The drawback of this solution is that there still remai
the right quality and quantity. However, the non-obtrusivel ~ Many activities which can not be put into any of the basic
accurate monitoring of physical activity, while an indiuil ~ activity classesg.g.vacuum clean or rope jump). The concept
follows his regular daily routine, is a difficult task. Esjmly ~ Of @ null-class (or so called background activity class) has
the performance of aerobic activities can be highly integgta De€n successfully used in the field of activity spotteg. in
into the daily routine. Therefore, it is essential to inigate  [13], @nd applied in [18] for aerobic activity recognitioapart
the monitoring of aerobic activities in the realistic cdimhis of ~ 1omM the few activities to be recognized, all other actestiare
everyday life. This paper focuses on the task of aerobigigcti  Part of this null activity class in the defined problem. It was
recognition, with the goal to develop and evaluate robusBhown that the inclusion of the other activities increases t
methods for everyday life scenarios. The robustness of th@PPlicability of the system, but also significantly increashe
methods is investigated on two different levels: dealinghwi COMPlexity of the classification problem.
various (unknown) other activities and subject indepengen The above mentioned previous works represent a first
both explained in more detail in the next subsections. important step towards dealing with various other actegiti
However, they only handle a given set of other activitie® (th
entire set of other activities is known when developing the
system), thus neglect to simulate the — in practice importan
The recognition of basic aerobic activities (such as walk,— scenario when the user of the system performs an activity
run or cycle) and basic postures (lie, sit, stand) is wellpreviously unknown to the system. Therefore, it remains
researched, and is possible with just one 3D-accelerometan open question what happens with all the activities not

A. Problem statement: other activities



considered during the monitoring system’s development. Tdhorough evaluation simulates everyday scenarios of thgaus
give a concrete example, assume that an activity monitoringf activity monitoring systems. b) A new evaluation tech-
system has the goal to recognizebasic physical activities nique is introduced: leave-one-other-activity-out (LOQA
(walk, run, etc). When developing this system, in addition toThis simulates one of the most commonly neglected scenarios
the activities to recognizd) other activities are considered as when an activity recognition system is used while perfognin
well (vacuum clean, play soccer, etc). The system is spdcifiea previously unknown other activity. ¢) Through comparing
so that if a user performs any of these other activities, it isvarious different methods, the experiments show that the ap
not recognized as a basic activity but as an other activityproach of using an other activity class (referred to as ‘bg€l|

or is rejected. Furthermore, assume that the activity ‘ropehroughout this paper) has the best generalization cleisiit
jump’ is neither included in the basic, nor in the set of otherfor designing a robust activity recognition system.

activities. Therefore, it is undefined how the system handle

the situatior_1 Whgn a user perforr_ns. this ‘rope jump’ ac'givity II. METHODS
By not dealing with this issue, existing work leaves basycal
two possibilities: either the user is limited to a scenarieve This section defines the classification problem used within

only the considered activities occur (everRif — 30 different  this work, presents data processing methods and clasiificat
activities are included in the development of a system, thiglgorithms applied, and defines the performance measures to
still is a significant limitation for the user), or the user is quantify results. Moreover} different models are proposed
permitted to perform any kind of physical activity, but it is to deal with other activities. Finally, the evaluation medh

not specified how the monitoring system handles an activityysed in Section Il are presented, including a new evaloatio
not considered during the system’s development phasg ( algorithm to simulate everyday life scenarios for usingvitgt
whether it is recognized as one of the basic activitieshegit recognition applications.

way, by neglecting this issue, the applicability of an attiv

monitoring application is significantly limited. A. Defining the classification problem

] L The experiments performed within this work are all based
B. Problem statement: subject independency on the PAMAP2 dataset, a physical activity monitoring detas

Another important aspect of robustness is the subjecg¢reated and released recently [16], [17], and included & th
independency of an activity monitoring system. In [14], aUCl machine learning repository [7]. This dataset is usedesi
comparison of subject dependent and independent validatiot ot only includes the basic physical activities (walkpyu
is shown, and a large difference of classifier performance i§ycle, Nordic walk) and postures (lie, sit, stand), but aso
reported between the two validation techniquegq— 5.92%  Wwide range of everyday (ascend and descend stairs, watch TV,
misclassificationvs. 12.09 — 29.47% misclassification for dif- computer work, drive car), household (iron clothes, vacuum
ferent classifiers, respectively). Moreover, [18] also paned ~ clean, fold laundry, clean house) and fitness activitiepgro
subject dependent and independent evaluation, and argaies tiump, play soccer). The dataset was recorded from ovégall
— unless the development of personalized approaches is tidysical activities performed by subjects, wearing inertial
explicit goal — subject independent validation techniquesMeasurement units (IMU) and a heart rate monitor. The IMUs
should be preferred. This best simulates the common secenarivere placed a3 different positions on the test subjects’ bodies:
that such systems are usually trained on a large number & the chest, over the wrist on the dominant arm and on the
subjects and then used by a new subject (similar to the conceffominant side’s ankle. The subjects were aged2 +3.31
of unknown other activities as discussed above, here theofise Years and were having a BMI @6.11 £2.62 kgm~>. A more
the system is unknown during the development phase), whiléetailed description of the dataset can be found in [16].
subject dependent evaluation leads to highly “optimisgiet- The overall goal of this paper is to develop a physical
formance results. However, many research works even figcentactivity monitoring system which can recognize a few, basic
still use subject dependent validation techniqueg.(n [11],  activities and postures of interest, but is also robust erylay
[20]), neglecting that although they present high perfaroga  situations. In their daily routine, users of activity mamihg
using their approach, these results might not have as muaystems perform a large amount of different activities, ynan
practical meaning as if subject independent validationldiou of them are not of interest from the activity recognition ngoi
have been applied. of view. Therefore, to simulate this common usage of agtivit
monitoring systems, the activity recognition task is define
as follows! There are6 different basic activity classes to
recognize: lie, sit/starfgdwalk, run, cycle and Nordic walk. In

This paper introduces and analyzes different approachesddition,9 different activities are regarded as other/background
to overcome the currently existing limitations in respe€t o activities: iron clothes, vacuum clean, ascend stairscetes
the two presented issues. A large number of experiments amsgairs, rope jump, fold laundry, clean house, play soccer an
carried out, for which Section Il defines the necessary toolslrive car. These other activities should not be recognized a
and Section Il presents and discusses the results. The maime of the basic activities, but as part of an other actiiags
contributions of the paper are the following. a) It introdac
and strengthens a usually neglected point of view in physica 1The defined classification task usd$ different activities from the
activity recognition: the robustness in everyday life sméss.  PAMAP2 dataset. The remainirjactivities (computer work and watch TV)
Two important aspects of this issue are investigated: wigali a’i discarded here due to their high resemblance to the basiorgs.

. L . . It is @ common restriction made in activity recognitiond. in [6]) that
with (unknown) other activities and subject independencyine postures sit and stand form one activity class, sincedaa 8U on the
Methods to handle these issues are proposed and comparedhigh would be needed for a reliable differentiation of them.

C. Overview and main contributions
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(a) The ‘allSeparate’ model. (b) The ‘bgClass’ model.

basic bg

(c) The ‘preReject’ model. (d) The ‘postReject’ model.

Fig. 1. The 4 proposed models for dealing with the other aivi

or should be rejected. The additional activities will bedus®  standard deviation, energy, entropy, correlation, etod 4
simulate the scenario when users perform other activitiea t features from heart rate data (mean and gradient). These
the few basic ones, and are also used to simulate the scenasstracted features serve as input for the classificatiop, ste
when users perform an activity unknown to the system. Thigogether with the activity class labels provided by the sata
defined classification problem will be referred to as ‘exestid Previous work in activity recognition showed that decision
activity recognition task throughout this paper. Moreger  tree based classifiers, especially boosted decision wsaally
comparison reasons, the classification problem only irietud achieve high performance [16]. Moreover, decision treeetdas
the 6 basic activity classes will also be used, and will beclassifiers have the benefit to be fast classification alyoist
referred to as ‘basic’ activity recognition task. with a simple structure, and are thus also easy to implement.
These benefits are especially important for activity redign

o " X o ‘applications since they are usually running on mobile,ginet
itoring of tradltlonally_ recommended aerobic aCtIV.ItIﬁIS'a.(k, sSsl?tems for everydayyusage, tth: the av%ilable comﬁﬁmion
run, cycle and Nordic walk), and can thus be justified byyoyer is limited [18]. Therefore, the C4.5 decision treessia

various ph_ysical QC“V"Y feco_mmendations_ —as 9“?9@“” fier [15] and the AdaBoost.M1 (using C4.5 decision tree as
[9]. Especially patients with diabetes, obesity or card&pular —\eak |earner) algorithm [8] are used and compared in the
disease are often required to follow a well defined EXercis@,yneriments on the defined classification problem.

routine as part of their treatment. Therefore, the recognit
of these basic physical activities is essential to monitm t
progress of the patients and give feedback to their caregiveC. Modeling other activities
Moreover, a summary of resting activities (lie, sit and dtan
still) gives also a feedback on how much sedentary actitigy t i - Lo
pati)e%ts “performed”. However, in other use casesythe folgjs basic activity classes, but all the other activities shoudtd

an activity monitoring application could be different, thtne ~ °€ completely neglected either. Therefoteifferent models

definition of the classification problem (the definition okth @€ Proposed for dealing with these other activities. Thexma
basic and other activity classes) would differ. Nevertagle goal of these solutions is the high recognition rate of th&ida

the methods presented in this work could be applied on thosgctivities, but they should also show robust behaviour eamc
other classification tasks as well. ing unknown activities, thus should have good generabizati

characteristic. The proposed methods are listed below, and
) o are visualized — by means of the concrete example of the
B. Data processing and classification defined activity recognition taské basic activity classes and
other activities — in Fig. 1.

The defined activity recognition task focuses on the mon

As discussed above, the focus is on the recognition of the

The PAMAP2 dataset provides raw sensory data from thg
3 IMUs and the heart rate monitor. A data processing chain is The ‘allSeparate’ model: for each of the other (or also
applied on the raw data including preprocessing, segnientat called background) activities a separate activity claskefsed
and feature extraction steps (these data processing steps &bgl’ ... ‘bg9’), and all these classes are regarded as activities
further described in [16]). In total,37 features are extracted: not belonging to thé& basic activity classes (‘1'.. ‘6’). The
133 features from IMU acceleration data (such as meanconcept of the method is visualized in Fig. 1(a). This model



TABLE I. CONFUSION MATRIX USED FOR THE ADJUSTED DEFINITION

OF THE PERFORMANCE MEASURES the number of samples recognized as activily Let N be

the total number of samples in the confusion matrix. Let the

Annotated Recognized activity classification problem represented in the confusion matire
Sy o . — < C basic activity classed;, ..., C and B other activity classes:

2 Pi Pz . Pie  Pacii | S 1,...,B. Let the activity classes ordered so in the confusion
matrix that the background activity classes follow the basi
c Poa Poa ... Poec  Poosa Se activity classesdf. the order of the annotated activity classes
¢+1 Potrr Peyiz ... Peyic Potreyr| Somr in Table 1). Since the classification of the samples belagpgin
to the other activities is not of interest, this is represdns
€+58 chf“ chf@ chgc chgfl“ So+5 a null activity class in the confusion matrixf( the column

referred to asP; ¢4+1 in Table ). Samples classified as one

refers to the nowadays common approach of dealing with & the background activity classes (‘allSeparate’ modet),

large number of activities: most research work is focused off/@ssified i?to the otherhactilv ity .?Ias's (‘b?CAaSS’ model),
increasing the number of recognized activities, thus teetay 'ejected before or after the classification of the basioiets

high number of separate activity classes. (preReject’ or ‘postReject’ model, respectively) are nted
‘ , . N ) _into this null class. Using this notation, the performance
The ‘bgClass’ model: in addition to the basic activity measures used in this paper are defined as following (the

classes a background activity class (‘bg’ in Fig. 1(b)) iscorrect classification of only the basic activities is ofeirgst
defined, containing all the other activities. This approath n the definition of the metrics):

a null-class for physical activity recognition was propise

[18] to increase the applicability in everyday life scepari 1 & p. .

The ‘preReject’ model: it basically inserts a null class precsion = Z Ri (1)
rejection step before the actual classification. The canoép =1 "
this two-level model is visualized in Fig. 1(c). On the firstél 1 & P,
the basic activities are separated from all the other dietivi recall = ol = 2)
(‘bg’ class). The second level — only on the ‘basic’ branch i=1 7
of the first level — distinguishes thg different basic activity I3 _ ., precision - recall

; o / -measure = 2 - — 3)

classes. When constructing a classifier based on this mddel, a precision + recall
training samples are used to create the sub-classifier dirghe 1 c
level, while for the second level only training samples from accuracy = P (4

. e C+B ’
the basic activity classes are used. N — Zj:c+1 Pjci1 i

The ‘postReject’ model: similar to the ‘preReject’ model,
this is also a two-level model, as shown in Fig. 1(d). However ~ Concrete confusion matrices on the defined ‘basic’ and
the null class rejection step is applied here after claggjfy ‘€xtended’ classification problems are shown as results in
the basic activities. This solution is similar ¢og.the decision Section Ill. Moreover, those confusion matrices are used
filtering step applied after activity classification in thetigity ~ t0 understand and compare the results in more detail, thus
recognition chain of [19]. Only samples of the basic agivit €-9. Which activity classes are confused more frequently by
classes are used to create the first level of this classifritlew different approaches.
the second level consists ©@6ub-classifiers: each created using
the respective basic activity class and all samples from thg. Evaluation techniques

other activities. ) - )
The goal of the evaluation of the created classifiers is to

; estimate their behaviour in everyday life scenarios, thwus t
D. Performance measures simulate how they would perform in named situations. The

The common measures are used to describe the classificg@mmonly used standarkiold cross-validation (CV) is not
tion performance of the different approaches: precisienalt, ~adequate for this task, since it only estimates the behaviou
F-measure and accuratyHowever, since the focus of this ON .the scenario in which the classifier was traln.e.d., thus on a
work is on the recognition of the basic activity classesséhe limited and known set of users and physical activities. eve
performance measures are adjusted so that they also focus Bigless, standard 10-fold CV is also applied as an evahiatio
the basic activities. The adjusted definition of theneasures technique in the experiments of this work for comparison
uses the following notationcf. also the confusion matrix in feasons. These results will show how “optimistictold CV
Table ). Assume that a confusion matrix is given by its estri IS for validation, how unrealistic the so achieved perfonoe
P;;, wherei refers to the rows (annotated activities), ahd S in real life scenarios.

to the columns (recognized activities) of the matrix. Sgthe The simulation of everyday life scenarios means concretely
the sum of all entries in the row of the ma_trlx (referring to 4 simulate how the created system behaves when used by
the number of samples annotated as activliyand R; the 3 previously (in training time) unknown person, or when a
sum of all entries in the colump of the matrix (referring to previously unknown activity is performed. To simulate ]
3Recently new error metrics were introduced for continuouiviac recog- independency the evaluation tEChnique Ieave-one-SHmet
nition, e.g. insertion, merge, overfill, etc. [21], [22]. However, comyrao (I.‘OSO) CVis appllgd. Since the used PAMAPZ C.iata.set pro—
activity recognition ine.g. home or industrial settings, for physical activity Vid€S dat"‘j‘ frond subjects, LOSO 9'f.0|d C_V is applied n t.h|3
monitoring the frame by frame metrics are sufficient, as discliss¢16]. paper. This means that data frésubjects is used for training




Algorithm 1 LOSO_LOOAO

Require: Sis the set ofS different subjectss: 1,...,5
C is the set ofC different basic activities¢ : 1,...,C
B is the set ofB different other activitiesh : 1,...,B
A is the set of all different activitiesA = C U B, an arbitrary activity is referred to as
N is the set of N different samples, where each sample comdistshject and activity information and a feature vector,
thusn: <s,a, features >
s(n) refers to the subject of the sampie
a(n) refers to the activity of the sample
1: procedure LOSO_LOOAO(S,C,B,AN
2 for i+ 1,5 do
3 Pirain = {Vﬂ €N |3(@) 3& Z}
4: Ptest = {v@ €N |S(ﬂ) = Z}
S Ptest_basz'c = {Vﬂ € Ptest|a(ﬂ) € C}
6
7
8
9

Train classifier usind®y,qin — F;
Use F; 0N Piest basic % LOSO on basic activities
for j <« 1,B do
Ptrain_other = {V1 € Pirain|((a(n) € C) or ((a(n) € B and (a(n) # 7))} % thus the sample does not belong to
the jth other activity

10: Piest other = {Vn € Piest|((a(n) € B ) and (a(n) = j))} % thus the sample belongs to the jth other activity
11: Train classifier usin®srqin_other — Fi j

12: Use F; ; 0N Piest_other % LOOAO on jth other activity

13: end for 9% LOOAO with all B other activities is finished here

14: end for % The LOSO results with the basic activities and the LOOAOIt®swith the other activities together return the LOS@OAO result
15: end procedure

and data from the remaining subject for testing, repeating basic activity classes, nor to one of the other activities
this procedure) times leaving always another subject’s data available during the training phase (estimated through
for testing. Moreover, to simulate the scenario of perforgni the LOOAO component). This scenario simulates basi-
unknown other activities a new evaluation technique isointr cally the generalization characteristic of the classHier’
duced: leave-one-other-activity-out (LOOAQ). It has aim other activity model, estimating how robust the system
concept to the LOSO technique: if the classification problem is in the usually neglected situation when unknown
includes B other activities, data fronB — 1 other activities activities are performed.

is used for training and data from the remaining other agtivi
for testing, repeating this procedure times leaving always
another activity’s data for testing.

To receive the best possible estimation of the developed Table Il shows the confusion matrix on the ‘basic’ classifi-
system’s behaviour in everyday life scenarios, the newlyation task using the C4.5 decision tree classifier and atand
introduced LOOAO evaluation technique is combined withCV as evaluation technique (the results are an average of
the LOSO technique. This combined evaluation method will10 test runs). Almost no misclassifications can be observed,
be referred to as LOS@OOAO throughout the paper, all performance measures are clearly ab69&:. Therefore,
the procedure is formally described in Algorithm 1. With this result could indicate that physical activity recogmitis
LOSO_LOOAO evaluation the following practical scenarios an easily solvable classification problem, even with a simpl
are evaluated: classifier such as a decision tree. However, the result déTab
das two main drawbacks: it is subject dependent (thus ddes no
for the ‘extended’ task. Then the system is deployed€!l @nything about the performance of the system when used
to a new subject (thus for this subject no data wad’y @ New subject), and only applies to the specific scenario of
available during the training phase of the system), an hese6 basic activity classes. Therefore, an extension of this

result is required to increase the applicability of the eyst

the new subject performs one of the basic activities i T . It
(estimated through the LOSO component). concerning both limitations. Further results in this sattivill

e The system is trained with a large amount of subject§h°W that the p_er_formance of activity recognition is much
for the ‘extended’ task. Then the system is deployed tdower under realistic, everyday life conditions.
a new subject, who performs one of the known other
activities (estimated through the LOSO component).o  The ‘hasic’ task
This is the first step in testing the robustness of the
system in situations when the user performs activities The ‘basic’ classification task serves only for comparison,
other than the few basic recognized ones. thus to see the baseline characteristic of physical agtivit
e The system is trained with a large amount of subjectgecognition. Since all activities of the task are to be rexined,
for the ‘extended’ task. Then the system is deployedonly the subject independency of the system can be simulated
to a new subject, who performs a previously unknownfrom the aforementioned two issues. The performance mea-
activity — thus an activity neither belonging to the sures are shown in Table Il for both standard CV and LOSO

[1l. RESULTS AND DISCUSSION

e The system is trained with a large amount of subject



TABLE II. C ONFUSION MATRIX ON THE ‘BASIC’ TASK USING THE - .
C4.5DECISION TREE CLASSIFIER AND STANDARDCV EVALUATION C4.5 decision tree only achieves an F-measuresB0%

TECHNIQUE. THE TABLE SHOWS HOW DIFFERENT ANNOTATED ACTIVITIES while with the AdaBoost.M1 classifi€r2.22% can be reached.

0,
ARE CLASSIFIED IN[%]. From the results of Table IV it is trivial that the perfor-

Annotated Recognized activity mance measures achieved with LOSO evaluation are signifi-
activity 2 3 4 5 6 cantly lower than results obtained with standard CV, asadiye

L g . 0 0 O P seen in Table lIl. If only considering subject independency
3 walk 0O 005 QEO9BEN O 002 027 the ‘allSeparate’ model performs best, closely followedtHoy
g;urgle 8 0029 0025 200 0 O%G mode_zls_ ‘preRej_ect’ and ‘bgClass’. However, on the ‘extatide

o Nordic walk 0 o o060 0o _O 99.40 task it is also simulated when the user of the system performs

unknown other activities (LOOAQO). The results of applying

evaluation. Each of the tests is performitltimes, the table (e evaluation method of Algorithm 1 are shown in Table IV
shows the mean and standard deviation of thestest runs, 1N the respective rows of LOS@OOAQO. Considering this
combined evaluation technique the ‘bgClass’ model perform
The results of Table Il show the significant difference Pest, followed by the models ‘preReject’ and “allSepaate’
between using standard CV or LOSO as evaluation method, fdi/om all the4 other activity models the “allSeparate’ model
both classifiers. An interesting result is that the AdaBddst shows the largest decrease in performance from LOSO eval-
classifier only slightly outperforms the C4.5 classifier e t Uation to LOSOLOOAQ evaluation. Especially the precision
‘basic’ task (the difference between the two classifiershan t Measure decreases largely, thus when the user performs un-
‘extended’ task is much more significant, as shown in the nexfnown activities they are more likely recognized as one of

subsection). This can be explained by the fact that the ¢hasi the basic activity classes compared to the results of other
task is a rather simple classification problem where evefnodels. This can be explained by the fact that for this model

base-level classifiers can reach the highest possible amcur Separate activity classes are created and trained for éabh o
Therefore, it is not necessarily worth using more complexxnown other activities, thus the generalization capabditthe
classification algorithms here. The lower performance whefnodel is rather limited when a previously unknown activay i
using LOSO evaluation is due to the difficulty of the gener-Performed. On the other hand, the training instances beigng
alization in respect of the users, and not due to the difficult {0 the other/background activity class of the ‘bgClass’ elod
of the classification task. Although using subject indeentd '€ Scattered in the feature space, resulting in a largs wldis
evaluation is the first step towards simulating the conditiof ~900d generalization characteristic. Moreover, since nraore
everyday usage of activity recognition applications, thesic’ ~ Instances are used for the creation of the background Bctivi
task only estimates the system’s behaviour when activitfes class during training than for thé basic activity qlasses_, this
one of the6 included activity classes are performed, thus€lass becomes more important, thus resulting in signifigant

the system’s response is not defined when the user perforniégher precision than recall result with the ‘bgClass’ mlode
activities such as descend stairs or vacuum clean. Thig issu  The ‘preReject’ model performed second best for both

is investigated in the next subsection, by analyzing thelt®s | 0SO and LOSOLOOAO evaluation, justifying the idea

obtained on the ‘extended’ classification task. of first recognizing whether a performed activity belongs to
the basic activity classes or not. When analyzing the trained
B. The ‘extended’ task classifiers for the two levels of this model, it can be noticed

that the classifier of the first level is much more complex:

The performance measures on the ‘extended’ task are predthough representing only a binary decision, the separati
sented in Table IV: for each of theother activity models, by of basic activities from other activities is a difficult task
using the2 classifiers and tha different evaluation techniques. The classification problem defined in the second level of the
The results are given in form of mean and standard deviatiomodel is identical to the ‘basic’ classification task defined
of the 10 test runs performed for every possible combinationin this paper, and thus is — as discussed in the previous
of the models, classifiers and evaluation methods. Overall isubsection — a rather simple task. Finally, the ‘postRégject
is clear that with the inclusion of the other activities the model performed worst with both LOSO and LOS@OAO
classification task becomes significantly more difficulf. ( evaluation, resulting in the lowest F-measure and accuracy
the comparison of the results achieved with standard CWalues. Since the basic activities are distinguished orfitke
and LOSO to the respective results on the ‘basic’ task)level of this model (without any other activities concerjed
This can be explained not only by the increased number othis model has the least confusion between the basic activit
activities in the classification problem, but also by the that  classes. The confusion matrices belonging to the evaluafio
the characteristic of some of the introduced other aatisiti this model — not shown in this paper due to the limited space
overlap with the characteristic of some of the basic agtivit — confirm this statement: except of some misclassificatidns o
classes. For example, the other activitgn has a similar Nordic walksamples into the normaValk class, all confusion
characteristic as when talking and gesticulating dustend is done towards the other activity class. Moreover, due to
thus misclassifications appear between these two acsivitiethe unbalanced classification tasks defined on the second
Similarly it is nontrivial to distinguish running with a Hal level of the model (only one basic activity versus all other
(during the other activitplay soccey from justrunning Since  activities, thus these tasks are even more unbalanced than
the ‘extended’ task defines a complex classification propblem the classification task defined by the ‘bgClass’ model), the
is worth to apply more complex classification algorithmseher precision values are comparable with those of other models.
— contrary to the ‘basic’ classification task. For examplewh Therefore, if the goal of an activity recognition appliceti
considering the ‘allSeparate’ model and LOSO evaluatibe, t is only the precise recognition of activities of interese th



TABLE III. PERFORMANCE MEASURES ON THEBASIC’ ACTIVITY RECOGNITION TASK

Classifier Evaluation method| Precision Recall F-measure | Accuracy
C4.5 standard CV 99.71 + 0.04 99.70 £ 0.02 99.71 + 0.03 99.71 & 0.03
LOSO 96.05 + 1.06 94.96 + 1.40 95.50 & 1.20 95.14 & 1.10
AdaBoost.M1 standard CV 99.97 & 0.02 99.97 £ 0.02 99.97 £ 0.02 99.97 £ 0.02
LOSO 95.91 + 1.45 95.47 + 1.45 95.69 =+ 1.40 95.43 + 1.54

TABLE IV. PERFORMANCE MEASURES ON THE EXTENDED' ACTIVITY RECOGNITION TASK

Model Classifier Evaluation method| Precision Recall F-measure | Accuracy
"allSeparate” C4.5 standard CV 98.17 £ 0.23 98.00 =+ 0.09 98.09 +0.14 95.80 £ 0.25
LOSO 89.77 + 1.89 77.75 % 3.08 83.30 + 2.10 73.81 + 2.21

LOSO LOOAO 81.84 + 1.77 78.59 + 3.43 80.16 =+ 2.44 67.06 &+ 2.71

AdaBoost.M1 standard CV 99.94 + 0.01 99.93 + 0.04 99.93 + 0.02 99.83 + 0.05

LOSO 95.42 + 0.98 89.23 4 2.00 92.22 + 1.40 86.60 =+ 2.09

LOSO LOOAO 86.80 % 0.99 88.72 +1.28 87.75 + 1.07 78.83 & 1.29

'bgClass’ C45 standard CV 98.68 £ 0.17 98.66 £ 0.11 98.67 £ 0.12 96.85 £ 0.21
LOSO 89.85 + 1.35 85.83 + 3.11 87.78 £2.11 80.63 + 1.81

LOSO _LOOAO 83.64 + 2.46 85.56 + 2.67 84.58 + 2.39 73.76 & 2.10

AdaBoost.M1 standard CV 99.96 + 0.02 99.88 & 0.03 99.92 + 0.02 99.77 + 0.05

LOSO 96.07 % 0.99 85.76 + 2.45 90.61 + 1.72 84.14 +2.35

LOSO LOOAO 91.81 4 0.82 86.82 4+ 1.71 89.24 4 1.17 80.97 4 1.20

‘preReject’ C4.5 standard CV 98.28 + 0.14 97.83 £ 0.12 98.05 + 0.07 95.46 + 0.14
LOSO 88.58 =+ 1.40 78.66 & 2.51 83.30 & 1.36 71.78 £ 1.76

LOSO LOOAO 83.07 + 1.68 78.83 + 3.63 80.87 4 2.53 67.32 4 2.74

AdaBoost.M1 standard CV 99.95 =+ 0.04 99.89 & 0.04 99.92 & 0.04 99.82 & 0.06

LOSO 93.85 + 1.57 88.46 + 2.26 91.07 + 1.83 85.20 + 2.07

LOSO LOOAO 87.99 + 1.47 87.98 & 1.80 87.98 + 1.58 79.11 + 1.60

‘postReject’” C4.5 standard CV 99.08 + 0.09 98.21 + 0.15 98.64 4 0.10 96.89 + 0.20
LOSO 92.93 +0.93 77.65 + 3.05 84.59 + 2.11 74.89 & 1.80

LOSO LOOAO 89.02 + 0.62 78.96 4 2.05 83.67 4 1.23 71.59 + 1.66

AdaBoost.M1 standard CV 99.93 =+ 0.04 99.82 =+ 0.02 99.87 £ 0.03 99.75 £ 0.05

LOSO 95.76 + 1.38 81.18 + 2.57 87.86 + 1.87 80.92 + 2.50

LOSO _LOOAO 92.01 + 1.80 80.65 + 3.02 85.94 + 2.40 77.78 £ 2.52

‘postReject’ model can also be considered, but otherwige onapproach shows such robustness with most of other unknown
of the three other models should be used. activities as well. Only unknown activities similar to trerdget
§activities might be problematic for the ‘bgClass’ approaas

. . - een withdrive caror iron, or is expected with activities such
obtained with LOSOLOOAO evaluation should be regarded o computer workor watch TV Hovr\)/ever, it is difficult to set

as most important, since this evaluation technique sire8lite b gefining boundaries of some of the basic activity classes
widest range of practical scenarios. The approach aclgevin e.g.if computer workshould be regarded astting or as
the best performance results with LOSMOAO can thus 5 genarate other class. Deciding this question might highly
be regarded as the approach which is the most robust 'Bepend on the actual application

everyday life situations. Therefore, overall the ‘bgClasedel '
can be regarded as the model with the best generalization
characteristic: the approach using the ‘bgClass’ model and
the AdaBoost.M1 classifier achieves an average F-measure of This paper created the means for simulating everyday life
89.24% and an average accuracy 8.97%. The confusion scenarios and thus to evaluate the robustness of activibgre
matrix obtained with this approach is shown in Table V (thenition — a usually neglected point of view in the development
results represent the average from the test runs). It is of physical activity monitoring systems. Experiments were
obvious that most of the misclassifications occur due to thearried out on a classification problem defined on the regentl
other activities: either a sample belonging to a basic agtiv released PAMAP2 dataset, includitigbasic activity classes
class is classified into the background class, or a samphe froand 9 different other activities. The goal of the classification
an other activity is confused with one of the basic actigitie task was the accurate recognition and separation of the basi
For example,drive car and iron are in high percentage activities, while samples of the other activities shouldree-
confused with the basic classt/stand This is due to the ognized as part of an other activity class or should be reject
overlapping characteristic of some basic and other ag#it Common data processing and classification methods were used
as already discussed above. The strength of the ‘bgClastd achieve this, comparing two — in previous work success-
model is especially pointed out by the results obtained witHully applied — classification algorithms: the C4.5 decisio
other activities such aascend stairsdescend stairsvacuum  tree classifier and the AdaBoost.M1 algorithm. Moreover, to
clean or rope jump although previously unknown to the deal with other activities4 different models are proposed:
system, these activities were basically not misclassifiec a ‘allSeparate’, ‘bgClass’, ‘preReject’ and ‘postRejedtinally,

basic activity. Therefore, it can be expected that the pgego the evaluation of the proposed methods was performed with

IV. CONCLUSION



TABLE V. CONFUSION MATRIX ON THE ‘EXTENDED’ CLASSIFICATION
TASK USING THE ‘BGCLASS MODEL, ADABOOST.M1 CLASSIFIER AND
LOSO_LOOAO EVALUATION TECHNIQUE. THE TABLE SHOWS HOW [1]
DIFFERENT ANNOTATED ACTIVITIES ARE CLASSIFIED IN[%)].

Annotated Recognized activity
activity 1 2 3 4 5 6 0
1 lie IB8’E 262 o0 0 0 0 o072 2]
2 sit/stand 0.15 90105 © 0 0 0 9380
3 walk 0 o |g5’7 o 0 013 14.00
4 run 0 0 0167624 0 0.30 2331 [3]
5 cycle 0 0 001 0 |92¥48 0.03 7.53
6 Nordic walk 0 0 871 0 0 [79%9 11.60
7 drive car 0 /8940 0 0 006 O [60.84 4]
8 asc. stairs 0 0 053 0 0  0.01 |99¥8| 5]
9 desc. stairs 0.08 0O 1.97 0.02 0.84 0.06
10 vacuum clean 0 0 0 0 042 O -
11 iron 0 2002 0 0 001 O - 6]
12 fold laundry 0 370 001 O 0 0
13 clean house 026 710 O 0 006 0 [92i58
14 play soccer 0 0 3.34 32.08 O 0.13 | 64.46
15 rope jump 0 0 011 011 0 0 [OON8 [7]

different techniques, including standard CV, LOSO and the 8
newly introduced LOOAQO. Standard 10-fold CV was only
included for comparison reasons: to underline how unriéalis

the so achieved performance is in everyday life scenarios|9]
The LOSO technique serves to simulate subject independency
while LOOAO simulates the scenario of performing unknown
other activities. The results of the thorough evaluatioocpss
revealed that the ‘bgClass’ model has the best generalizati
characteristic, while the generalization capability of thidely  [10]
used ‘allSeparate’ approach is rather limited in respect of
performing previously unknown activities. (11]

Developing physical activity monitoring systems while (12]
also takinge.g. subject independency or unknown activities
into account has two important benefits compared to when
standard CV evaluation is used only. First of all it is estiada  [13]
how the developed system behaves in various everyday life
scenarios, while this behaviour would be otherwise unddfine
Moreover, the best performing models and algorithms cant’
be selected when applying LOSO and LOOAO evaluation
during the development phase of the system, hence creating
the best possible system from the robustness point of views]
for everyday life. In future work it is planned to apply the
proposed models and evaluation techniques also with othét®]
classification problems. It should be also investigated tvelV
the developed approaches generalize with user groegs ( [17]
elderly) significantly differing from the subjects (all yog,
healthy adults) included in the PAMAP2 dataset. Moreower, i[18]
is also planned to investigate the effect of increasing ta-n
ber of known (thus in the training included) other actistie
with the goal to increase even more the robustness towarq§9]
unknown other activities while keeping the high perfornanc
regarding the basic activity classes.

[20]
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