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Abstract

Numerous obesity loci have been identified using genome-wide association studies. A UK study indicated that physical
activity may attenuate the cumulative effect of 12 of these loci, but replication studies are lacking. Therefore, we tested
whether the aggregate effect of these loci is diminished in adults of European ancestry reporting high levels of physical
activity. Twelve obesity-susceptibility loci were genotyped or imputed in 111,421 participants. A genetic risk score (GRS) was
calculated by summing the BMI-associated alleles of each genetic variant. Physical activity was assessed using self-
administered questionnaires. Multiplicative interactions between the GRS and physical activity on BMI were tested in linear
and logistic regression models in each cohort, with adjustment for age, age2, sex, study center (for multicenter studies), and
the marginal terms for physical activity and the GRS. These results were combined using meta-analysis weighted by cohort
sample size. The meta-analysis yielded a statistically significant GRS 6 physical activity interaction effect estimate
(Pinteraction = 0.015). However, a statistically significant interaction effect was only apparent in North American cohorts
(n = 39,810, Pinteraction = 0.014 vs. n = 71,611, Pinteraction = 0.275 for Europeans). In secondary analyses, both the FTO rs1121980
(Pinteraction = 0.003) and the SEC16B rs10913469 (Pinteraction = 0.025) variants showed evidence of SNP 6 physical activity
interactions. This meta-analysis of 111,421 individuals provides further support for an interaction between physical activity
and a GRS in obesity disposition, although these findings hinge on the inclusion of cohorts from North America, indicating
that these results are either population-specific or non-causal.
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Introduction

Obesity is a major risk factor for many non-communicable

diseases including type 2 diabetes, cardiovascular disease, and

certain cancers [1]. Genetic predisposition and lifestyle factors are

known to increase obesity susceptibility, and the technological

breakthroughs that came with genome-wide association studies

(GWAS) have led to the successful identification of a large number

of obesogenic loci [2–6]. Recent studies suggest that physical

activity may modify genetic susceptibility to obesity, with the

genetic burden being higher in physically inactive compared with

active persons [7–9]. The most extensively studied example of a

gene 6physical activity interaction in obesity is for the FTO locus

[7,10], which was recently replicated in a meta-analysis compris-

ing 240,000 persons [11]. Elsewhere, Li et al reported that physical

activity offsets the aggregated genetic risk of 12 obesogenic loci

[12].

In the current study, we aimed to replicate the findings of Li et al

[12] in a sample collection of 111,421 individuals of European

ancestry. We also undertook detailed analyses focused on the role

of within- and between-study factors to establish how the design of

gene 6 environment interaction meta-analyses impacts the power

to detect interactions.

Results

Supplementary Table S1 shows participant characteristics for

each of the 11 participating cohorts.

Genetic risk score (GRS) 6 physical activity interactions
The forest plot in Figure 1 shows the interaction coefficients

across the 11 cohorts included in the meta-analysis, along with the

overall interaction effect estimate (Pinteraction = 0.015). Table 1

summarizes the adjusted main effects of the GRS on BMI and

obesity in the combined data from all cohorts and by strata of

physical activity. Each unit increase in the GRS, equivalent to one

BMI-raising allele, was associated with a mean 0.161 (SE = 0.006)

kg/m2 higher BMI (P = 2.16102176), which corresponds to 465 g

heavier weight for a person 1.70 m tall. Overall, among physically

inactive individuals (with a Cambridge Physical Activity Index

[CPAI] of 1), each additional BMI-raising allele was associated

with 0.186 (SE = 0.006) kg/m2 higher BMI, equivalent to 538 g in

weight for a person 1.70 m tall (P = 4.8610247), whereas the effect

in the most physically active group (CPAI of 4) was 0.143 kg/m2

per GRS allele (SE = 0.011, P = 5.6610240), or 413 g in weight for

a person 1.70 m tall. In the ‘combined active’ group (individuals

with a CPAI of 2–4), each additional risk allele was associated with

0.150 kg/m2 (SE = 0.007, P = 3.36102107) higher BMI, or 434 g

in weight for a person 1.70 m tall (Figure 2). As illustrated in

Figure 3, in the inactive group (CPAI of 1), the difference in BMI

between persons with a low (#11 alleles) and high (.11 alleles)

GRS was 0.647 kg/m2 (SE = 0.06; P = 1.9610225), while the

difference in the combined active group was 0.532 kg/m2

(SE = 0.03; P = 6.6610267).

The CPAI characterizes total physical activity levels by

considering both occupational and leisure time physical activity

[13]. Sensitivity analyses were performed in the GLACIER and

MDC cohorts (n = 39,000) where interaction terms (gene 6
physical activity) were modeled separately for occupational and

leisure time physical activity, but these results were not materially

different from the main analyses (data not shown). Within these

two cohorts, we additionally adjusted the models for putative

confounding by smoking and education, but the results were

essentially the same irrespective of whether these additional

covariates were or were not included; hence, for the sake of

comparability, we focus on the results with the regression models

adjusted as reported by Li et al [12]. We also undertook sensitivity

analyses in European and North American cohorts separately

(Supplementary Figures S1a and S1b), which revealed a statisti-

cally significant GRS 6 physical activity interaction effect in the

latter (n = 39,810, Pinteraction = 0.014), but not the former

(n = 71,611, Pinteraction = 0.275).

Gene 6 Physical Activity Interactions in Obesity
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Individual SNP 6 physical activity interactions
In analyses modeling the interaction of each of the 12 individual

SNPs and physical activity, two tests of interaction were nominally

statistically significant: the FTO rs1121980 variant, which concurs

with previous reports of interaction at this locus [11], and the

SEC16B rs10913469 locus, which has not previously been reported

(Table 2). It should be noted that several of the cohorts used here are

included in Kilpeläinen et al. [11], and so this is not entirely

independent confirmation of these findings. The magnitude of the

interaction effects (bGE) for FTO rs1121980 and SEC16B

rs10913469 variants was 20.052 and 20.049 kg/m2 per risk allele

respectively, which compares with bGE of 20.108 kg/m2 per 8.33

alleles for the GRS (equivalent to 1 allele on the bi-allelic scale). For

FTO, the interaction effect was almost 10-fold larger in North

American than in European cohorts, whereas for the SEC16B locus,

the interaction effect was approximately twice the magnitude in

North American vs. European cohorts. Supplementary Table S2

shows individual SNP interaction results across each of the 11

cohorts. In models excluding the FTO and SEC16B variants from

the GRS, the interaction test was no longer statistically significant

(in the entire cohort [Pinteraction = 0.25] or separately within the

cohorts from North American [Pinteraction = 0.39] and Europe

[Pinteraction = 0.44]), strongly suggesting that the GRS 6 physical

activity interaction result is driven by the inclusion of one or both of

these variants.

Figure 1. Forest plot showing the meta-analysis of interaction coefficients (GRS 6Cambridge Physical Activity Index) in relation to
BMI (11 cohorts; N = 111,421) (Pinteraction = 0.015).
doi:10.1371/journal.pgen.1003607.g001

Author Summary

We undertook analyses in 111,421 adults of European
descent to examine whether physical activity diminishes
the genetic risk of obesity predisposed by 12 single
nucleotide polymorphisms, as previously reported in a
study of 20,000 UK adults (Li et al, PLoS Med. 2010).
Although the study by Li et al is widely cited, the original
report has not been replicated to our knowledge.
Therefore, we sought to confirm or refute the original
study’s findings in a combined analysis of 111,421 adults.
Our analyses yielded a statistically significant interaction
effect (Pinteraction = 0.015), confirming the original study’s
results; we also identified an interaction between the FTO
locus and physical activity (Pinteraction = 0.003), verifying
previous analyses (Kilpelainen et al, PLoS Med., 2010), and
we detected a novel interaction between the SEC16B locus
and physical activity (Pinteraction = 0.025). We also examined
the power constraints of interaction analyses, thereby
demonstrating that sources of within- and between-study
heterogeneity and the manner in which data are treated
can inhibit the detection of interaction effects in meta-
analyses that combine many cohorts with varying charac-
teristics. This suggests that combining many small studies
that have measured environmental exposures differently
may be relatively inefficient for the detection of gene 6
environment interactions.

Gene 6 Physical Activity Interactions in Obesity
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Statistical power simulations
Power to detect interactions. We began by estimating

power to detect the original interaction effect reported by Li et al

[12] (Supplementary Figure S2a). We estimated that a sample size

of N = 110,000 (equivalent to the sample collection included in this

meta-analysis) yields close to 100% power to detect the estimated

interaction effect of bGE = 20.07 kg/m2 per GRS allele from Li et

al [12]. Under the same assumptions, a sample size of N = 20,000

(roughly equivalent to that of the Li et al study [12] yields around

83% power to detect bGE = 20.07 kg/m2. Although power to

detect the interaction effect from the original study is adequate in

the current analysis, we observed a much smaller interaction effect

Table 1. Association of the genetic risk score with BMI and risk of obesity adjusted for age, age2, and sex in the combined sample
of all 11 cohorts and further stratified by physical activity level.

Physical activity
levela N bb (SE) P-value bweight

c
n (normal weight)/n
(obese)

ORd

(95% CI) P-value

Overall 111,421 0.161 (0.006) 2.16102176 465 52,714/16,506 1.081 (1.069,
1.094)

1.1610242

Inactive 27,847 0.186 (0.006) 4.8610247 538 11,451/5,696 1.090 (1.072,
1.107)

2.3610225

Moderately inactive 31,956 0.160 (0.011) 3.8610251 462 14,978/4,695 1.052 (1.031,
1.075)

1.6610206

Moderately active 27,440 0.155 (0.011) 1.1610246 478 13,859/3,441 1.093 (1.073,
1.114)

8.5610221

Active 24,178 0.143 (0.011) 5.6610240 413 10,945/4,155 1.095 (1.071,
1.120)

1.7610215

aPhysical activity was estimated according to the Cambridge Physical Activity Index (CPAI), which categorizes total physical activity levels on a four level scale.
bIncrease in BMI units (kg/m2) for each additional unit increase in the GRS (equivalent to one additional risk allele).
cb converted to body weight (g) for a person 1.70 m tall.
dhigher odds of being obese ($30 kg/m2) versus normal weight (18.5#BMI,25 kg/m2) for each additional BMI-increasing allele.
doi:10.1371/journal.pgen.1003607.t001

Figure 2. Association between the GRS and BMI in the inactive and ‘combined active’ groups (N = 111,421). Physical activity was
estimated according to the Cambridge Physical Activity Index (CPAI), where the inactive group is defined as individuals with a CPAI of 1 and the
‘combined active’ group as individuals with a CPAI of 2–4.
doi:10.1371/journal.pgen.1003607.g002
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estimate in our meta-analysis (bGE = 20.013 kg/m2 per GRS

allele), which may be owing to the Winner’s curse [14]. Indeed, to

gain adequate power (80%) to detect this small effect, given the

distributions of the GRS and physical activity variables reported in

Li et al, and assuming that these independent variables are not

correlated, would require a sample size considerably larger than

the current study (Supplementary Figure S2a).

Error, variance and statistical power. We also estimated

sample sizes required to detect the interaction between physical

activity and the GRS (bGE = 20.07 kg/m2 per GRS allele, at 80%

power and critical alpha 0.05) when the GRS is dichotomized

(GRS ,/. 11.2 alleles) and all else is held equal; under this

scenario, a sample size of approximately 370,000 observations is

required (compared with 20,000 observations when the GRS is

expressed on a continuum) (Supplementary Figures S2a and S2b),

which is owing to the decreased variance in the GRS that occurs

with dichotomization (s2 = 5.06 to s2 = 0.25) (see Supplementary

Table S3 for further details). Loss of power would also be

anticipated when a continuous physical activity variable is

dichotomized, a concept that is discussed at length elsewhere

[15]. We also noted that power to detect the interaction increases

as the correlation between the two predictor variables increases, as

shown in Supplementary Table S4. The ratio of physically inactive

to active persons within a population also influences the variable’s

variance, and hence sample size requirements; providing the

interaction effect is approximately linear, the required sample size

is smallest when this ratio is balanced and all else remains equal, as

shown in Figure S3.

Combining results from multiple cohorts can also lead to a

substantial loss of power owing to inflation of model error. Sources

of error may include imprecise measurement of exposures and

outcomes [16], variable LD structures between populations, and

differences in the magnitude of the relationships of BMI with

underlying adiposity phenotypes across populations. In order to

account for differences in such error, we compared models based

on simulations where the population BMI s increased from 3.5 (as

reported in Li et al) to, 4.0, 4.5 and 5.5, when all else is held equal.

These analyses (Table S5) show that the population s for BMI is

inversely related with statistical power to detect the interaction; for

example, a sample size of 31,000 yields ,80% to detect bGE

Table 2. Meta-analyzed single SNP interactions with physical
activity* on BMI.

SNPs Nearest gene bGE (95% CI) Pinteraction

rs1121980* FTO 20.052 (20.086, 20.018) 0.003

rs7498665* SH2B1 20.003 (20.039, 0.033) 0.867

rs10913469* SEC16B 20.049 (20.091, 20.006) 0.025

rs10838738* MTCH2 20.012 (20.047, 0.023) 0.502

rs17782313* MC4R 20.029 (20.069, 0.010) 0.147

rs3101336* NEGR1 0.006 (20.028, 0.040) 0.728

rs6548238* TMEM18 0.002 (20.043, 0.047) 0.936

rs10938397 GNPDA2 20.001 (20.036,0.034) 0.946

rs925946* BDNF 20.013 (20.052, 0.025) 0.491

rs368794* KCTD15 20.001 (20.037, 0.035) 0.969

rs7647305* ETV5 0.024 (20.018, 0.066) 0.267

rs7132908* FAIM2 20.024 (20.059, 0.010) 0.164

Physical activity was expressed according to the Cambridge Physical Activity
Index (CPAI) (4 level scale); further details for the construction of the CPAI can
be found in the Materials and Methods section and Table S7.
*Some studies used proxies for these variants, as reported in Table S8.
doi:10.1371/journal.pgen.1003607.t002

Figure 3. Adjusted least square mean BMI (95% CI) stratified by GRS level (.11 vs. #11 BMI-associated alleles) and by physical
activity levels (N = 111,421). Physical activity was estimated according to the Cambridge Physical Activity Index (CPAI), where the ‘inactive’ group
is defined as individuals with CPAI = 1 and the ‘combined active’ group as individuals with CPAI = 2–4.
doi:10.1371/journal.pgen.1003607.g003
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PLOS Genetics | www.plosgenetics.org 5 July 2013 | Volume 9 | Issue 7 | e1003607



20.07 kg/m2 per GRS allele if the population BMI s = 4.5,

whereas the required sample size increases to 46,000 to detect the

same effect if the population BMI s = 5.5; a sample size of

N,30,000 is required to achieve 80% power to detect bGE

20.07 kg/m2 per GRS allele for the population BMI s = 4.39, as

observed in this study.

Discussion

Here we sought to replicate a widely cited study in which an

interaction on BMI was reported between physical activity and a

GRS comprised of 12 obesity-predisposing gene variants [12]. The

original study is one of the largest and most well conducted single-

cohort interaction studies published to date, yet to our knowledge

no evidence has been published to show that these findings are

replicable. Our study included a collection of cohorts whose

sample totaled almost six times the size of the study reported by Li

et al [12]; the meta-analyzed interaction coefficient is directionally

consistent with the original report [12] and statistically significant

in the current analysis (Pinteraction = 0.015). In secondary analyses, we

explored whether any of the individual SNP 6 physical activity

interaction tests were statistically significant; of these, the FTO

locus (rs1121980) (Pinteraction = 0.003), consistent with previous

findings [11], and the SEC16B rs10913469 variant yielded

statistically significant interaction effects (Pinteraction = 0.025). The

latter finding was not statistically significant after correction for

multiple testing, there is no published literature suggesting that this

locus is exercise-responsive, and a recent analysis in a randomized

clinical trial of lifestyle intervention did not yield evidence of SNP

6 treatment interactions at the SEC16B rs10913469 locus on

weight change phenotypes [17], although that analyses was likely

underpowered and may be false negative. Thus, validation of the

interaction effect observed here for SEC16B rs10913469 is

necessary to confirm or refute its effect-modifying role for physical

activity and obesity.

It is widely acknowledged that initial reports of genetic

association signals are often of considerably greater effect

magnitude than yielded by subsequent replication attempts; this

phenomenon is termed the Winner’s curse [18]. The large Winner’s

curse differential (DbGE = 0.057 kg/m2 per GRS allele for the

comparison of bGE reported by Li et al [12] and observed in the

current study) has a dramatic effect on the sample size required for

replication, with around 530,000 individuals (.25 times the size of

the original study) being required to yield power of 80% to detect

the interaction effect reported in this study (bGE = 20.013 kg/m2

per GRS allele).

We also conducted a range of simulation analyses to determine

how within and between study factors impact power to detect

interactions in meta-analyses. We show that the optimal setting is

one where i) for a given interaction effect size (bGE), the

independent variables are expressed on a continuous scale (and

if physical activity is dichotomized and the interaction effect is

approximately larger the categories should be equally prevalent

(i.e., 50%/50%)), ii) the variance in the GRS is large, iii) the GRS

and environmental exposure are correlated, and iv) the population

variance in the outcome is small, which in part relates to whether

exposure and outcome measurements are standardized across

studies and measured with reasonable precision (the latter of which

is discussed at length elsewhere [16]).

One of the principal arguments for conducting and reporting

studies on gene 6 lifestyle interactions is that they may help

identify persons within target populations who are likely to

respond well or poorly to specific lifestyle interventions, thus

optimizing the delivery and success of the interventions; the same

principle may apply to other medical therapies such as drug

treatment and surgery. The targeting of lifestyle interventions

using genetic information is appealing as it may improve cost-

efficiency, reduce harmful side effects, and increase the health-

promoting effects of diet and lifestyle factors [19]. However, very

few reported gene 6 lifestyle interactions have been replicated,

which may be because many of the original findings were false

positive, the reported interaction effects were cohort-specific, or

because subsequent studies were underpowered and yielded false

negative results [20]. The study by Li et al [12] appears well

conducted and was performed in a relatively large cohort. The

paper was also published in a high impact general medical journal,

which implies that the authors’ findings are clinically relevant, yet,

like most studies of gene 6 environment interaction, they lacked

replication. Importantly, the clinical translation of findings on gene

6 lifestyle interactions requires that the interaction effect sizes are

of a sufficient magnitude to ensure that stratified therapeutic

interventions will yield meaningfully different results across

genotype groups. The interaction effect size reported in this study

is probably too small to be of any clinical value; it is worth noting,

though, that in observational studies, where the precision and

accuracy with which exposures and outcomes are measured is

often low, and where synthetic genetic associations exist (i.e., the

observed locus is merely a tag for the latent functional locus), the

underlying interaction effect sizes are likely to be underestimated.

A second incentive for conducting studies on gene 6 lifestyle

interactions is that doing so may elucidate biological pathways that

lead to the targeting of therapeutic interventions. Most or all of the

SNPs studied here probably tag functional variants, with no

specific functional role of their own. The functional relevance of

the genes most proximal to these SNPs is discussed in detail

elsewhere [2–6]. The majority of these genes regulate CNS-

mediated body weight regulation, energy balance, taste, and

satiation [21]; although not clearly established, these genes might

also regulate reciprocal behaviors; for example, variants in MC4R

[22–24] and FTO [25,26] are reportedly associated with physical

activity.

Although we found statistical evidence of an interaction

between physical activity and the GRS in the meta-analysis, it is

unlikely that all of the gene variants that comprise the GRS

contribute to this interaction effect. For example, the FTO variant

included in the GRS has been shown previously to interact with

physical activity on obesity [11], a finding that was confirmed

here, and the SEC16B variant also yielded a nominally significant

interaction effect in this study. In combination, the two variants

yielded an interaction effect size comparable to that seen here for

the GRS 6physical activity interaction, and the GRS 6physical

activity interaction test was not statistically significant when the

FTO and SEC16B variants were excluded from the GRS,

suggesting that these two loci underlie the aggregate genetic effect

of all 12 SNPs combined. It is difficult to accurately speculate on

whether the GRS 6physical activity interaction reported by Li et

al [12] is also driven by the FTO and SEC16B interaction effects, as

formal comparisons of this nature were not reported in their

paper. Refitting the alleles that comprise a GRS to maximally

exploit this information in a regression model (i.e., by weighting

the alleles by their interaction effect estimates obtained from SNP

6 physical activity interaction analyses) would likely increase the

magnitude of the observed interaction effect for the GRS;

however, to achieve this with minimal bias would require further

sample collections to validate these new genetic models, which

goes beyond the scope of the present study. Nonetheless, we

include the relevant information in Table 2, so that other

investigators can construct such weighted models.
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It is also important to highlight that the interaction results

reported by Li et al [12] were not statistically significant once

persons with prevalent CVD and cancer were excluded; the

inclusion of these individuals may have confounded the interaction

effect owing to reporting biases attributable to disease labeling or

changes in weight and behavior attributable to the disease

processes, although the fact that we have replicated their findings

in cohorts that were largely free of these diseases suggests this is not

the case. It is also possible that the inclusion of diseased individuals

in Li et al’s study [12] augmented the interaction effect through

hitherto unknown causal mechanisms.

As a general point, it is important to bear in mind that in

observational studies, such as those reported here, marginal and

interaction effect estimates may not reflect causal processes. This is

because physical activity and obesity correlate with other lifestyle,

sociodemographic, and metabolic factors, and the gene variants

included in the GRS are unlikely to be functional. Thus, even

replicated examples of gene 6 lifestyle interactions may be

confounded by latent variables. Reverse causality is a further

concern, particularly with cross-sectional data (for example, it is

possible that there is a relationship between the GRS and physical

activity that is dependent on BMI level).

In summary, our meta-analysis of 111,421 samples from 11

cohorts of European ancestry yielded results that support those of

Li et al [12]. However, these effects appear evident only when the

cohorts from North America (n = 39,810) are included in this

meta-analyses. We also demonstrate using simulated data that

combining many small cohorts that vary in their classification of

physical activity and other factors is a relatively inefficient

approach to studying interactions; hence, future studies of gene

6 lifestyle interactions might prove most effective if focused on a

small collection of large cohorts within which standardized and

valid lifestyle assessment methods are available.

Materials and Methods

Study sample
A total of 111,421 participants from the 11 participating cohorts

had genotype and phenotype data necessary for the current

analyses. Descriptions of the cohorts included in the current

analyses are shown in supplementary Table S6. All participants

provided written informed consent and the studies were approved

by the relevant institutional review boards and conducted

according to the Declaration of Helsinki.

Body composition and physical activity assessment
In most studies, height and weight were measured using wall-

mounted stadiometers and calibrated balance-beam scales,

respectively (See Supplementary Table S7). By exception, weight

for the NHS, HPFS [27], and WGHS [28] were self-reported.

BMI was calculated as weight in kilograms (kg) divided by height

in meters squared (m2). Obesity was defined according to WHO

criteria [29].

Information on physical activity was obtained from self-

administered questionnaires, which in most instances were

validated. Occupational physical activity in most studies was

categorized as i) sedentary or standing; ii) light but partly

physically active; iii) light and physically active; and iv) sometimes

or often physically straining. Leisure time physical activity during

the past three months was categorized as exercising: i) occasion-

ally; ii) 1–2 times/week; iii) 2–3 times/week; or iv) .3 times/week.

Among leisure-time physical activity (four categories), participants

with missing information were given the lowest intensity score, i.e.

classified as being ‘occasionally active’. The CPAI was computed

by cross-tabulation of occupational and leisure time physical

activity, classifying an individual’s total physical activity level

according to a four-level scale (inactive, moderately inactive,

moderately active and active), as previously described [13].

Because some cohorts could not compute the CPAI owing to a

lack of specific physical activity data, a binary variable was

computed in all cohorts, which classified participants into active

(top 80% of the physical activity frequency distribution) and

inactive (bottom 20% of the physical activity distribution). This

classification most closely matches the frequency distribution

obtained when dichotomizing the CPAI variable by combining

moderately inactive, moderately active and active individuals (see

Supplementary Table S7 for further details), but, as noted in the

Results, may not be the most statistically powerful classification.

Genotyping
DNA was extracted from peripheral blood cells and diluted

using standard approaches (see Supplementary Table S8 for

further details). Twelve established obesity susceptibility loci [2–6]

(or their proxies with an r2.0.8) were genotyped in the 11 cohorts

(Supplementary Table S8). In all cohorts, the genotyping success

rates for all 12 variants exceeded 95% and most genotypes were in

Hardy-Weinberg equilibrium (P.0.001). The exception to this

was for the SH2B1 rs7498665 SNP in the METSIM and

HEALTH2006 cohorts, which did not conform to Hardy

Weinberg expectations; sensitivity analyses indicated that remov-

ing this SNP from the GRS for the METSIM cohort made no

material difference to the overall results (data not shown), and so

the results shown here are for the full GRS.

Genetic risk score (GRS)
At each SNP locus, genotypes were coded as 0, 1 and 2

indicating the number of risk alleles (those associated with higher

BMI in previous meta-analyses [2–6]) and the overall genetic

burden for each participant was determined by summing the total

number of risk alleles into a GRS, using methods previously

described [30].

In cohorts where genotypes were directly assessed (i.e., not

imputed from GWAS data), missing genotypes were imputed in

participants with four or fewer missing values using previously

described methods [31]. Sensitivity analyses performed in the

GLACIER and MDC cohorts (n = 39,000) showed that there was

no material difference in the effect estimates when analyses were

performed with or without imputed genotypes (data not shown), so

here only results for the GRS using imputed values are presented.

The GRS was normally distributed in all cohorts.

Statistical analysis
Statistical analyses were performed using the SAS software (SAS

Institute, Cary, NC), R software (http://www.r-project.org/) and

STATA (version 12, StataCorp, College Station, TX, USA).

General linear models (GLM) were used to test the association of

the GRS with BMI. Logistic regression was used to test genetic

associations with obesity. All analyses were adjusted for age, age2,

sex, study center (for multi-center studies), and physical activity

(where appropriate), and we assumed additive effects of the alleles.

Interaction tests for individual SNPs and the GRS with physical

activity (for outcomes BMI or obesity) were performed by

including a SNP (or GRS) 6 physical activity interaction term

in the model, with the marginal effect terms also included. The

genetic effect estimates for BMI were also calculated by strata of

physical activity (i.e. inactive vs. combined active), as described

above.
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Meta-analysis
Meta-analyses were undertaken using the metan command in

STATA (version 12, StataCorp, College Station, TX, USA). A

summary interaction effect estimate was calculated for all 11

cohorts combined using meta-analysis weighted by cohort sample

size to summarize the pairwise (SNP/GRS 6 physical activity)

interaction coefficients and SE derived from each cohort. Meta-

analyses were repeated using random and fixed effects models, but

between-study heterogeneity was low (x2 = 15.51, I2 = 3.3% and P-

val = 0.415); thus, the results were not materially different to the

weighted approach (data not shown), leading us to present only the

weighted results here. Analysis of data from the InterAct Study,

which includes multiple sub-cohorts, was conducted as described

elsewhere [32]. The full InterAct Study includes two Swedish

study centers in Malmö and Umeå, which overlap extensively with

the GLACIER and MDC cohorts. Thus, these Swedish InterAct

cohort samples were not included in the main analyses.

Statistical power
The code-generating program mlPowSim [33] was used to

generate R code for simulations and power estimation with 1,000

iterations for each sample size simulation. In order to estimate

power for different samples sizes, we simulated a 12 SNP GRS

using a random normal distribution with mean (s.d.) 11.2 (2.2);

physical activity was simulated using a binomial distribution

assuming the population prevalence of physical inactivity was

30%, as estimated by Li et al. The approach (described in detail in

the Supplementary Material S1) was used to simulate different

scenarios for the predictor variables: i) with the GRS expressed as

a continuous or dichotomized variable (Supplementary Figures

S2a and S2b), ii) a range of frequencies for the binary physical

activity variable and variances (s2) (Figure S3, iii) a range of effect

sizes for bGE (Supplementary Figures S2a and S2b), iv) a range of

covariances between the two predictor variables (Figure S3), and v)

a range of variances (s2) for the population (Supplementary Table

S5).

The main power calculations were performed using estimates

obtained from Li et al [12]: a GRS marginal effect (bG) of

0.154 kg/m2 per GRS risk allele and a physical activity marginal

effect (bE) of 20.313 kg/m2 (active vs. inactive), physical inactivity

prevalence of 30%, and s.d of 63.5. We assumed that the GRS

and physical activity are not correlated and a two-sided critical

alpha of 0.05 was used in the calculations. Although the

interaction effect estimate (bGE) is not explicitly reported in Li et

al’s paper, we were able to estimate this from the GRS effect

estimates reported in Table 2 of their paper (bGE,20.07) by

approximating the difference of bG between the two combined

activity categories (active vs. inactive). To accommodate impreci-

sion in the estimation of bGE and the possibility that Li et al’s study

[12] was affected by the ‘winner’s curse’ [18] and thus over-

estimated the interaction effect size one could hope to observe in

other cohorts, we show statistical power estimations for interaction

effects ranging from 20.05 to 20.10 (Supplementary Figure S2a).

We also simulated the GRS as a binary variable and compared

power using this approach with one where the GRS is expressed

on a continuum (Supplementary Figure S2b), as GRSs are often

reported on the binary scale in genetic association studies.

Supporting Information

Figure S1 Forest plot showing the meta-analysis of interaction

coefficients (GRS 6 Cambridge Physical Activity Index) in

relation to BMI in the three North American cohorts (a) and the

meta-analysis of interaction coefficients (GRS 6 Cambridge

Physical Activity Index) in relation to BMI in the eight European

cohorts (b).

(TIF)

Figure S2 Sample size and power to detect an interaction

(bGE = 20.013 to 20.10) between a normally distributed genetic

risk score (expressed on a continuous [panel A] or binary [panel B]

scale) and physical activity (30% inactive and 70% active). Critical

alpha = 0.05. All other parameters are taken from Li et al [4].

(TIF)

Figure S3 Sample size required for 80% power to detect a gene

6 physical activity interaction in obesity when the prevalence of

physical activity (and the variable’s variance) varies and all other

parameters are fixed. Mean and variance of the genetic risk score

are set at 11.2 and 5.06 respectively. Statistical power and critical

alpha are fixed at 80% and 0.05 respectively. Solid line represents

required sample sizes, dashed line represents s2 for corresponding

prevalence of physical activity, and dotted lines mark the 50th and

80th centile cut-points and the respective sample size requirements

for the binary physical activity variable. Power calculations assume

a linear interaction effect.

(TIF)

Material S1 Additional details on statistical power simulation.

(DOC)

Table S1 Cohort-specific descriptive statistics.

(DOC)

Table S2 Interactions between the 12 SNPs and CPAI (4 level

scale) on BMI across each of the 11 cohorts.

(DOC)

Table S3 Power to detect gene 6physical activity interaction in

obesity for the different simulation settings: physical activity is a

binary variable, and variance of genetic risk score varies.

(DOC)

Table S4 Power to detect a gene 6physical activity interaction

in obesity for the different simulations settings: physical activity is

either binary or approximated by a normal distribution and with

different degrees of correlation between the physical activity

variable and the genetic risk score.

(DOC)

Table S5 Sample sizes required to detect an interaction between

a genetic risk score (12 SNPs) and physical activity (binary) when

the standard deviation (S.D.) in the outcome (BMI) varies and all

other parameters are fixed.

(DOC)

Table S6 Study description of participating cohorts.

(DOC)

Table S7 Cohort-specific methods used for measuring body

mass index and physical activity.

(DOC)

Table S8 Genotyping methods and SNP quality control.

(DOC)
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