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Abstract

The standard model of particle physics can excellently describe the vast majority
of data of particle physics experiments. However, in its simplest form, it cannot
account for the fact that the neutrinos are massive particles and lepton flavors
mixed, as required by the observation of neutrino oscillations. Hence, the standard
model must be extended in order to account for these observations, opening up the
possibility to explore new and interesting physical phenomena.

There are numerous models proposed to accommodate massive neutrinos. The
simplest of these are able to describe the observations using only a small number
of effective parameters. Furthermore, neutrinos are the only known existing parti-
cles which have the potential of being their own antiparticles, a possibility that is
actively being investigated through experiments on neutrinoless double beta decay.
In this thesis, we analyse these simple models using Bayesian inference and con-
straints from neutrino-related experiments, and we also investigate the potential of
future experiments on neutrinoless double beta decay to probe other kinds of new
physics.

In addition, more elaborate theoretical models of neutrino masses have been
proposed, with the seesaw models being a particularly popular group of models in
which new heavy particles generate neutrino masses. We study low-scale seesaw
models, in particular the resulting energy-scale dependence of the neutrino param-
eters, which incorporate new particles with masses within the reach of current and
future experiments, such as the LHC.

Keywords: Neutrino mass, lepton mixing, Majorana neutrinos, neutrino oscilla-
tions, neutrinoless double beta decay, statistical methods, Bayesian inference, model
selection, effective field theory, Weinberg operator, seesaw models, inverse seesaw,
right-handed neutrinos, renormalization group, threshold effects.
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Sammanfattning

Standardmodellen för partikelfysik beskriver den stora majoriteten data fr̊an par-
tikelfysikexperiment utmärkt. Den kan emellertid inte i sin enklaste form beskriva
det faktum att neutriner är massiva partiklar och leptonsmakerna är blandande,
vilket krävs enligt observationerna av neutrinooscillationer. Därför måste standard-
modellen utökas för att ta hänsyn till detta, vilket öppnar upp möjligheten att
utforska nya och intressanta fysikaliska fenomen.

Det finns många föreslagna modeller för massiva neutriner. De enklaste av dessa
kan beskriva observationerna med endast ett f̊atal effektiva parametrar. Dessutom
är neutriner de enda kända befintliga partiklar som har potentialen att vara sina
egna antipartiklar, en möjlighet som aktivt undersöks genom experiment p̊a neutri-
nolöst dubbelt betasönderfall. I denna avhandling analyserar vi dessa enkla mod-
eller med Bayesisk inferens och begränsningar fr̊an neutrinorelaterade experiment
och undersöker även potentialen för framtida experiment p̊a neutrinolöst dubbelt
betasönderfall att bergänsa andra typer av ny fysik.

Även mer avancerade teoretiska modeller för neutrinomassor har föreslagits, med
seesawmodeller som en särskilt populär grupp av modeller där nya tunga partiklar
genererar neutrinomassor. Vi studerar seesawmodeller vid l̊aga energier, i synnerhet
neutrinoparametrarnas resulterande energiberoende, vilka inkluderar nya partiklar
med massor inom räckh̊all för nuvarande och framtida experiment s̊asom LHC.

Nyckelord: Neutrinomassor, leptonblandning, Majorananeutriner, neutrinooscil-
lationer, neutrinolöst dubbelt betasönderfall, statistiska metoder, Bayesisk infer-
ens, modellval, effektiv fältteori, Weinbergoperator, seesawmodeller, invers seesaw,
högerhänta neutriner, renormeringsgrupp, tröskeleffekter.
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Preface

This thesis is divided into two parts. Part I is an introduction to the subjects that
form the basis for the scientific papers, while Part II consists of the five papers
included in the thesis.

Part I of the thesis is organized as follows. In Chapter 1, a general introduction
to the subject of particle physics is given. Chapter 2 deals with the standard model
of particle physics and some simple extensions, with emphasis put on neutrino
masses and lepton mixing. Chapter 3 introduces the experimental consequences
of massive neutrinos, while Chapter 4 gives an overview of the seesaw models,
treating in some detail the type I and inverse versions. Chapter 5 introduces the
concepts of regularization and renormalization in quantum field theories and dis-
cusses renormalization group equations in seesaw models. Chapter 6 deals with
statistical methods of data analysis, while Chapter 7 is a short summary of the
results and conclusions found in the papers of Part II. Finally, in Appendix A, all
the renormalization group equations of the type I seesaw model are given.

Note that Part II of the thesis should not be considered as merely an appendix,
but as being part of the main text of the thesis. The papers include discussion
and interpretation of the results presented in them. Since simple repetition of this
material is deemed unnecessary, the reader is referred to the papers themselves
for the results and the discussion, except for a short summary in Chapter 7. The
background material presented in the first five chapters contains both a broader
introduction of the considered topics, as well as a more detailed and technical
description of the models and methods considered in the papers. Hence, although
there is necessarily some overlap with the corresponding sections in the papers,
the more detailed discussion should be of help to the reader unfamiliar with those
topics.

List of papers included in this thesis

[1] J. Bergström, M. Malinský, T. Ohlsson, and H. Zhang
Renormalization group running of neutrino parameters in the inverse seesaw
model
Physical Review D81, 116006 (2010)
arXiv:1004.4628
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Threshold effects on renormalization group running of neutrino parameters in
the low-scale seesaw model
Physics Letters B698, 297 (2011)
arXiv:1009.2762

[3] J. Bergström, A. Merle, and T. Ohlsson
Constraining new physics with a positive or negative signal of neutrino-less
double beta decay
Journal of High Energy Physics 05, 122 (2011)
arXiv:1103.3015

[4] J. Bergström
Bayesian evidence for non-zero θ13 and CP-violation in neutrino oscillations
Journal of High Energy Physics 08, 163 (2012)
arXiv:1205.4404
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Combining and comparing neutrinoless double beta decay experiments using
different nuclei
Journal of High Energy Physics 02, 093 (2013)
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Unparticle self-interactions at the Large Hadron Collider
Physical Review D80, 115014 (2009)
arXiv:0909.2213
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Besides discussing methods, results, and conclusions of all the papers together with
the other authors, the main contributions to the articles are

[1] I did a substantial part of the numerical computations, produced many of the
plots, and did some of the analytical computations. I revised the manuscript
and wrote some parts of it.
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it.
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Notation and Conventions

The metric tensor on Minkowski space that will be used is

(gµν) = diag(1,−1,−1,−1) (1)

Dimensionful quantities will be expressed in units of ~ and c. Thus, one can effec-
tively put ~ = c = 1. As a result, both time and length are expressed in units of
inverse mass,

[t] = T = M−1, [l] = L = M−1.

Also, the Einstein summation convention is employed, meaning that repeated in-
dices are summed over, unless otherwise stated.

Erratum

In paper I [1], there are factors of v2, where v is the vacuum expectation value
of the Higgs field, missing in Eq. (32). It should read
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Chapter 1

Introduction

Physics, in its most general sense, is the study of the constituents of Nature and
their properties, from the large size and age of the Universe to the very small
distances and time scales associated with heavy elementary particles. The goal is
to make experiments and observations, collect and organize the data, and construct
theories or models to describe those data. This thesis is within the area of particle
physics, which studies the smallest known building blocks of matter, the elementary
particles.

A scientific theory must be able to make predictions which can be compared
with experimental results, i.e., it must be possible to conduct experiments which
could agree or disagree with the predictions of the theory. This should be possible
not only in principle, but also in practice (at least in the not too distant future).
In the end, a theory should be judged on how well it describes reality, and a good
theory should not be inconsistent with the experimental data collected to date.
However, it is not only whether a theory is inconsistent (or has been “falsified”)
or not which determines the validity of a theory. Observations which confirm the
predictions of a model can increase its validity, but only in cases where it could
have been falsified, but was not. A practical complication is that no experiment
is perfect; there will always be uncertainties and noise which can often make it
difficult to tell if an experiment actually confirmed a prediction, or contradicted
it. This is especially common at the frontiers of physics, where one is looking for
small signals not previously observed. This is the point where statistical analysis,
taking into account these uncertainties and noise, is necessary in order to compare
the predictions of a model with observations.

Occam’s razor states in its most basic form states that, out of two models
which can describe observations, the model which is the “simpler” one should be
preferred over the more “complex” one. However, it is not at all clear what in
general is meant by a “simple” model, although models which are extensions of a
more basic model (to which the more complex reduces as a special case) are usually
considered as more complex. However, we will see that when data is statistically

3



4 Chapter 1. Introduction

analyzed using what is called Bayesian inference, a quantitative form of Occam’s
razor emerges automatically from the laws of probability theory. More precisely,
predictivity becomes the measure of simplicity, i.e., the model which best predicted
the data is to be preferred. A simpler model making precise predictions before the
data was observed is better than a model which is compatible with “anything” and
thus actually predicted very little. In a sense, a more predictive model is more
easily falsifiable, and so our confidence in it should increase if it is not falsified.

Particle physics is the study the most fundamental building blocks of the Uni-
verse, out of which all other objects are composed, and simple compositions of such
building blocks. The elementary particles are the particles for which there exists
no evidence of substructure. Thus, the property of being elementary is not really
fixed, and particles once thought to be elementary could turn out not to be so in the
future. Many of these particles are rather heavy, and so to produce and study them
requires concentrating a lot of energy into a small region of space, and so the field
also goes under the name of high-energy physics. These highly energetic particles
can be created in man-made particle accelerators, but also in natural environments
in the Universe and by us observed as cosmic rays.

A very good way to test theories of particle physics is to build machines, particle
accelerators, that collide particles together and then observing what comes “flying”
out in what directions and with what energies. Hence, in order to produce increas-
ingly heavier particles, these accelerators need to be able to accelerate the particles
to increasingly higher energies. The most powerful accelerator built so far is the
Large Hadron Collider (LHC), which has been built in a circular tunnel 27 kilome-
ters in circumference beneath the French-Swiss border near Geneva, Switzerland,
and has been colliding particles for a few years. Its main goal is thus to look for
new particles which we have not been able to find until now because the previous
accelerators were not powerful enough.

Today, the established theory of the Universe on its most fundamental level is
the standard model (SM) of particle physics. It describes all known fundamental
particles and how they interact with each other, except for the gravitational inter-
action. It has been tested to great precision in a very large amount of experiments
and has been found to be a good description of fundamental particles and their in-
teractions at energies probed so far. Since its formulation in the 1960’s, it has only
been slightly modified. During its life, it has made a vast number of predictions
which have later been confirmed by experiments. This includes the existence of new
particles such as the Z- and W -bosons, the top quark, and the tau neutrino. Until
last year, the only part of the standard model yet to be confirmed was the existence
of the Higgs boson, which is related to the mechanism of generating the masses of
the particles in the SM. However, after many years of intense efforts by the physics
community, a new particle was discovered at the experiments ATLAS and CMS at
the LHC. Since this particle seems to have just the properties which the Higgs is
expected to have, it is probably the standard model Higgs boson so long searched
for. More data could of course show signs of deviations from the standard model
predictions, but none has been found so far. The LHC is also designed to search for
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other new hypothetical particles. Many possible candidates for such particles have
been suggested, with a very popular class of such particles being supersymmetric
partners of the known SM particles. However, there are no signs of such new parti-
cles as of today. In addition, the LHC has made many measurements of processes
predicted by the SM, and it has confirmed those prediction with high accuracy at
previously unexplored energies. After a very successful initial run, the LHC is now
being upgraded in order to be able to produce collisions with even higher energies.

Despite the incredible success of the SM, it has a number of shortcomings. First,
gravity is not included in the SM, but is instead treated separately, usually using the
general theory of relativity. Note that the SM is a quantum theory, while general
relativity is inherently classical. Although it would be pleasant to have the SM and
gravity unified in a full quantum theory, most such attempt lack testability, which
is due to the fact that they only make unique predictions for processes at energies
much higher than will ever be possible to study.

On a more practical level, cosmological and astrophysical observations indicate
that there exist large amounts of massive particles in the Universe that have not
been detected apart from their gravitational effects. Since none of the particles in
the SM can constitute this dark matter, one expects that there are new particles
waiting to be discovered in the future. However, since the nature of these particles
is largely unknown, it is uncertain when (and if) they will be discovered.

Finally, there is the fact that experiments show that the particles known as
neutrinos in the SM are massive. From the beginning the neutrinos were assumed
to be massless in the SM, and hence some form of extension of the SM is now
required. The fact that neutrinos are massive is the motivation for all the work
presented in this thesis, which will be dedicated to the study of different extensions
of the SM which can accommodate massive neutrinos and their experimental tests.
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Chapter 2

The standard model of

particle physics and slightly

beyond

The standard model (SM) of particle physics is the currently accepted theoretical
framework for the description of the elementary particles and their interactions. It
has been tested to great precision in very many experiments and has been found to
be a good description of fundamental particles and their interactions at the energies
probed so far [7].

In this chapter an introduction to the SM is given. Emphasis is put on those
aspects of the SM which are most relevant for the topics dealt with later in the
thesis, i.e., the lepton sector in general and neutrino masses and lepton mixing in
particular. First, the concept of a quantum field theory is introduced, followed
by a review of the construction of the SM. Then, general fermion mass terms and
the principles of effective quantum field theories are reviewed. Quark and lepton
masses and mixing are treated and finally the discussion also goes slightly beyond
the SM by including right-handed neutrinos. For reviews and deeper treatments of
the SM, see, e.g., Refs. [8–12].

2.1 Quantum field theory

A classical field is a function associating some quantity to each point of space-
time, and is an object with an infinite number of dynamical degrees of freedom.
The SM is a quantum field theory (QFT), and as such it deals with the quantum
mechanics of fields. Basically, this means that the classical fields are quantized, i.e.,
are promoted to operators. A classical field theory can be specified by a Lagrangian

7



8 Chapter 2. The standard model of particle physics and slightly beyond

density L (usually just called the Lagrangian), which is a function of the collection
of fields Φ = Φ(x), i.e., L = L (Φ(x)). The action functional is given by

S [Φ] =

∫

L dDx (2.1)

and gives the dynamics of the fields through the Euler–Lagrange equations of mo-
tion.

The QFTs we will study will basically also be defined by a Lagrangian. However,
in QFT, one is not interested in the values of the fields themselves, which are not
well-defined, but instead other quantities such as correlation functions and S-matrix
elements. From these one can then calculate observable quantities such as cross-
sections and decay rates of particles associated with the fields.

Symmetries and symmetry arguments have played and still play an important
role in physics in general, and in QFT in particular. One important class of sym-
metries are space-time symmetries, which are symmetries involving the space-time
coordinates. The QFTs we will consider will all be relativistic QFTs, meaning that
the Lorentz group is a symmetry group of the theory. This implies that the fields
we consider have to transform under some representation of the Lorentz group. The
lowest dimensional representations correspond to the most commonly used types of
fields,

• A scalar field has spin 0,

• A spinor field has spin 1/2,

• A vector field has spin 1.

Another kind of symmetries are internal symmetries, which are symmetries only
involving the dynamical degrees of freedom, i.e., the fields, and not the space-
time coordinates. A very important and useful class of such symmetries are the
gauge symmetries, which will be the main principle behind the construction of the
SM. Finally, the theories we consider will be local, which basically means that the
Lagrangian is a local expression is the fields, i.e., that it only depends on the fields
at a single space-time point.

The terms in the Lagrangian are usually classified as either

• A kinetic term, which is quadratic in a single field and involves derivatives,

• A mass term, which is quadratic in a single field and does not involve deriva-
tives, or

• An interaction term, which involves more than two fields.

A constant term in the Lagrangian would essentially correspond to an energy den-
sity of the vacuum or a cosmological constant. Since this term is usually irrelevant
for particle physics, it will not be discussed any further. Finally, there could also
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be terms linear in a field (only for a scalar which is also a singlet under all other
symmetries), implying that the minimum of the classical Hamiltonian is not at zero
field value. Since these fields do not appear in the models we consider, neither this
will be further mentioned.

2.2 Basic structure of the standard model

The SM is a gauge theory, and as such its form is dictated by the principle of gauge
invariance. A gauge theory is defined by specifying the gauge group, the fermion
and scalar particle content, and their representations. The gauge group for the SM
is given by

GSM = SU(3)C ⊗ SU(2)L ⊗ U(1)Y, (2.2)

which is a twelve-dimensional Lie group. Here SU(3)C is the eight-dimensional
gauge group of Quantum Chromodynamics (QCD), where the subscript stands for
“color”, which the corresponding quantum number is called. The group SU(2)L ⊗
U(1)Y is the four-dimensional gauge group of the Glashow–Weinberg–Salam model
of weak interactions [13–15]. As will be described later, only the left-handed
fermions are charged under the SU(2)L subgroup, and hence the subscript “L”. The
symbol “Y” represents the weak hypercharge. We will now proceed to describe the
particles of the SM and their interactions.

2.2.1 The gauge bosons

The part of the SM Lagrangian containing the kinetic terms as well as the self-
interactions of the gauge fields is determined by gauge invariance and is given by

Lgauge = −1

4
GaµνG

a,µν − 1

4
W i
µνW

i,µν − 1

4
BµνB

µν , (2.3)

where a ∈ {1, 2, . . . , 8}, i ∈ {1, 2, 3}, and the field strength tensors are given in
terms of the gauge fields as

Bµν = ∂µBν − ∂νBµ, (2.4)

W i
µν = ∂µW

i
ν − ∂νW

i
µ + g2ε

ijkW j
µW

k
ν , (2.5)

Gaµν = ∂µG
a
ν − ∂νG

a
µ + g3f

abcGbµG
c
ν . (2.6)

Here, (g2, ε
ijk) and (g3, f

abc) are the coupling and structure constants of SU(2)L
and SU(3)C, respectively. Note that gauge invariance excludes the possibility of a
mass term for the gauge fields, and thus, the gauge bosons are massless. This is a
problem, since some gauge bosons, i.e., theW -bosons and the Z-boson, are observed
to be massive [7]. To incorporate massive gauge bosons, the gauge symmetry has
to be broken in some way. This can, for example, be done through spontaneous
symmetry breaking, in which case the fundamental Lagrangian, but not the vacuum,
respects the symmetry.
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2.2.2 The fermions

The next step in the construction of the SM is the introduction of the fermions
and the specification of their charges. The fermions of the SM come in two groups,
called quarks and leptons, which in turn come in three generations each. Given
the representations of the fermion ψ, the kinetic term and the interactions with the
gauge bosons are determined by the requirement of gauge invariance and are given
by

Lψ = iψ /Dψ. (2.7)

Here /Q = γµQµ, ψ = ψ†γ0, with γµ the Dirac gamma matrices, and

Dµ = ∂µ − ig1BµY − ig2W
i
µτ

i − ig3G
a
µt
a (2.8)

is the covariant derivative. The gi’s are the coupling constants corresponding to the
different gauge groups, Y the hypercharge of ψ, the τ i’s the representation matrices
under SU(2)L, and the ta’s the representation matrices under SU(3)C. Note that
the hypercharge and representation matrices depend on which fermion is being
considered, and that, if ψ is a singlet under some subgroup, then the generator of
that group is zero when acting on ψ.

The fermion fields in the SM are all chiral, meaning that they transform under
a specific representations of the Lorentz group. The two different kinds of chirality
are left-handed or right-handed, as denoted by the subscripts “L” and “R”. The
quark fields are organized as

qLi =

(

uLi

dLi

)

, uRi, dRi,

where i ∈ {1, 2, 3} is the generation index. They are all in the fundamental repre-
sentation of SU(3)C, while the left-handed qLi’s are doublets and the right-handed
uRi’s and dRi’s are singlets of SU(2)L. The lepton fields are all singlets of SU(3)C
and organized as

ℓLi =

(

νLi
eLi

)

, eRi,

where the ℓLi’s are doublets and the eRi’s are singlets of SU(2)L. For both quarks
and leptons, the names assigned to the components of the doublets correspond
to the names of the fields which appear in the Lagrangian after the electroweak
symmetry has been broken.

In order to restore the symmetry between the quark and lepton fields, one can
also introduce the right-handed neutrinos νRi in the list. However, they would be
total singlets of the SM gauge group and are not needed to describe existing exper-
imental data, and should thus be excluded in a minimal model.1 The hypercharges

1The other right-handed fermions are seen directly in the interactions with the gauge bosons,
since they are not gauge singlets, and they are also required for describing the masses of these
fermions.
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of all the fermions are given in such a way that the correct electric charges are
assigned after the spontaneous breaking of the gauge symmetry.

The rest of this thesis will mostly be concerned with the electroweak sector of
the SM, while QCD will not be discussed in detail. The electroweak interactions
can largely be studied separately from QCD, since SU(3)C remains unbroken and
there is no mixing between the gauge fields of SU(3)C and SU(2)L ⊗ U(1)Y.

This concludes the introduction of the basic structure of the SM. However, in
order to give a good description of experimental data, the gauge symmetry of the
SM needs to be broken. Before the description of this breaking, a short summary
of the different kinds of possible mass terms for fermions will be given.

2.3 Fermion mass terms

There are in general two types of mass terms for a fermion ψ that can be con-
structed, both giving the same kinematical masses. The first one is called a Dirac
mass term, and has the form

−LDirac = mψψ. (2.9)

However, the chiral fields included in the SM satisfy

ψL/R ψL/R = 0 (2.10)

due to the definition of chirality and ψ, and thus terms on the form of Eq. (2.9)
vanish for all the fields of the SM. One could try to remedy this by defining a new
field

χ ≡ ψL + ψR, (2.11)

but in the SM, the left-handed and right-handed fields transform under different
representations of SU(2)L, and thus the resulting mass term,

mχχ = m
(

ψLψR + ψRψL

)

, (2.12)

will not be gauge invariant.
To construct the second type of fermion mass term, called a Majorana mass

term, one first would need to introduce the charge conjugation operator as

Ĉ : ψ → ψc = Cψ
T
, (2.13)

where the matrix C satisfies

C† = CT = C−1 = −C. (2.14)

The Majorana mass term is then given by

−LMajorana =
1

2
mψcψ + H.c., (2.15)

where “H.c.” denotes the Hermitian conjugate, and m can always be made real
and positive by redefining the phase of ψ. However, this kind of mass term is also
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not gauge invariant, unless ψ is a gauge singlet. Any Abelian charges of ψ will be
broken by two units. If the fermion ψ is chiral, as in the SM, the mass term can be
rewritten as

−LMajorana =
1

2
mξξ, (2.16)

where ξ ≡ ψ + ψc is called a Majorana field, since it obeys ξc = ξ, called the
Majorana condition. After field quantization, the Majorana condition on the field
ξ will imply the equality of the particle and antiparticle states. A Majorana field
has only half the independent components of a Dirac field.

In conclusion, none of the fermion fields in the unbroken SM can have a mass
term, and thus, all SM fermions are massless. The only possible exception is the
right-handed neutrino, which is a gauge singlet and can hence have a Majorana
mass term. This is a problem, since the fermions existing in Nature are observed
to be massive.2

2.4 The scalar sector and the Higgs mechanism

In order to make the model described above consistent with experiments, one needs
to introduce some mechanism to break the SM gauge symmetry in a way that
gives masses to the fermions and three of the gauge bosons. In the SM, this is
achieved through the Higgs mechanism [16–21]. It is implemented by introducing
one complex scalar SU(2)L doublet φ, called the Higgs field, which is described by
the Lagrangian

Lscalar = |Dµφ|2 − V (φ), (2.17)

where the scalar potential is given by

V (φ) = −µ2|φ|2 +
λ

4
|φ|4. (2.18)

If µ2 > 0, the minimum of the potential will not be at φ = 0, but instead where

|φ| = v =

√

2µ2

λ
, (2.19)

which is called the vacuum expectation value (VEV) and experimentally determined
to have a value of approximately 174 GeV.3 This breaks electroweak gauge invari-
ance and generates mass terms for the electroweak gauge bosons such that there

2The exceptions are the neutrinos, the masses of which have not been measured directly.
However, the evidence for neutrino oscillations, to be discussed later, requires that they have
small, but non-zero masses.

3Under standard conventions, the vacuum is such that 〈φ〉 = (0 v)T .
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are three massive gauge fields

W±
µ =

1√
2
(W 1

µ ∓ iW 2
µ), with masses mW = g2

v√
2
, (2.20)

Zµ =
1

√

g2
2 + g2

1

(g2W
3
µ − g1Bµ), with mass mZ =

√

g2
2 + g2

1

v√
2
, (2.21)

and one massless,

Aµ =
1

√

g2
2 + g2

1

(g1W
3
µ + g2Bµ). (2.22)

The fieldsW±
µ , Zµ, and Aµ are identified as the fields associated with the W -bosons,

the Z-boson, and the photon, respectively.
The Higgs mechanism accomplishes the breaking

SU(2)L ⊗ U(1)Y → U(1)QED, (2.23)

where U(1)QED is the gauge group of Quantum Electrodynamics (QED). The
fermion electric charge quantum number Q, i.e., the electric charge of a given
fermion in units of the proton charge e, is given as

Q = T 3 + Y, e =
g1g2

√

g2
2 + g2

1

, (2.24)

where T 3 is the third component of the SU(2)L weak isospin. These assignments
give the usual QED couplings of the fermions to the photon field, while the inter-
actions with the W -bosons, i.e., the charged-current interactions, are given by4

Lcc =
g2√
2
W+
µ uLγ

µdL +
g2√
2
W+
µ νLγ

µeL + H.c. (2.25)

The introduction of a scalar field also opens up the possibility of further inter-
actions with fermions through Yukawa interactions, having the form

−LYuk = ℓLφYeeR + qLφYddR + qLφ̃YddR + H.c. (2.26)

Here φ̃ = iτ2φ
∗, where τ2 is the second Pauli matrix, each fermion field is a vector

consisting of the corresponding field from each generation, and Yf for f = e, u, d
are Yukawa coupling matrices. When the Higgs field acquires its VEV, Dirac mass
terms

−Lmass = eLMeeR + uLMuuR + dLMddR + H.c., (2.27)

are generated. Here the mass matrices

Mf = Yfv (2.28)

are arbitrary complex 3 × 3 matrices, and as such are in general not diagonal. In
this case, the flavor eigenstates, which are the states participating in the weak

4There will also be interactions with the Z-boson, called neutral current interactions.



14 Chapter 2. The standard model of particle physics and slightly beyond

interactions, are not the same as the mass eigenstates, which are the states which
propagate with definite masses. For n fermion generations, one would expect that
each of the matrices Yf contains n2 complex , or 2n2 real, parameters. However,
not all these parameters are physical, a point that will be discussed in more detail
later.

One real degree of freedom of the Higgs fields is left as a physical field after the
breaking of electroweak symmetry. The quantum of this field is usually called the
Higgs boson. It could in principle have any mass, although an upper bound can
be obtained by requiring the self-coupling constant to be perturbative. The Higgs
boson has been actively searched for for many years, and one of the main reasons for
the construction of the Large Hadron Collider at CERN was to study the mechanism
of electroweak symmetry breaking, and, if that was the Higgs mechanism, find the
Higgs boson. Then – finally – last year, a new particle was discovered at the
experiments ATLAS [22] and CMS [23] at the LHC, with a mass of about 126 GeV.
Since this particle seems to have the properties which the Higgs is expected to have
in terms of its couplings, spin, etc., it is probably the SM Higgs boson. As always,
more data could of course show signs of deviations from the SM predictions, but
none has been found so far.

2.5 Effective field theory

So far, only terms in the Lagrangian with a small number of fields have been consid-
ered. From the kinetic term of a field, one can calculate its mass dimension. This
is because, in natural units, the action in Eq. (2.1) is required to be dimensionless.
Denote the mass dimension of X as [X ]. If space-time is D-dimensional, then, since
[ dDx] = −D, the Lagrangian has to have mass dimension D. Using that [∂µ] = 1,
one obtains for the case D = 4

[φ] = [Aµ] = 1, (2.29)

[ψ] =
3

2
. (2.30)

From this, the mass dimensions of the constants multiplying all other terms in the
Lagrangian can then be determined by the fact that the total mass dimension of
each term must be 4.

It is now possible to further classify the interaction terms according to the mass
dimension of the corresponding coupling constant. Field theory textbooks usually
argue that a QFT should be “renormalizable”, meaning that all divergences appear-
ing should be possible to cancel with a finite number of counter terms. One can
show that this is equivalent to having coupling constants with only non-negative
mass dimensions, or equivalently, that the combinations of the fields in all terms in
the Lagrangian have total mass dimension not greater than the space-time dimen-
sionality. Otherwise, one needs an infinite number of counter terms, and hence, an
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infinite number of unknown parameters, resulting in loss of predictive power of the
theory.

An effective field theory Lagrangian, on the other hand, contains an infinite
number of terms

LEFT = LD + LD+D1
+ LD+D2

+ · · · , (2.31)

where LD is the renormalizable Lagrangian, LD+Di
contains terms of dimension

D + Di, and 0 < D1 < D2 < · · · . Although there is an infinite number of terms
in LEFT, one still has approximate predictive power. The coupling constants in
LD+D′ have the form gΛ−D′

, where g is dimensionless and Λ is some energy scale.
The amplitude resulting from this interaction at some energy scale E < Λ will then
be proportional to g(E/Λ)D

′

. Thus, one can perform computations with an error
of order g(E/Λ)D

′′

, with D′′ the mass dimension of the next contributing term
with higher dimension than D′, if one keeps terms up to LD+D′ in LEFT. Hence,
an effective field theory is just as useful as a renormalizable one, as long as one is
satisfied with a certain finite accuracy of the predictions.5 This also means that
the leading contributions for a given process at low energies are induced by the
operators of lowest dimensionality.

Given a renormalizable field theory involving a heavy field of mass M , one
can integrate out the heavy field from the generating functional to produce an
effective theory with an effective Lagrangian below M , consisting of a tower of
effective operators. For example, in QED, one can integrate out the electron field
to produce an effective Lagrangian, the Euler–Heisenberg Lagrangian

LEH = −1

4
FµνFµν +

a

m4
e

(FµνFµν)
2
+

b

m4
e

FµνFνσF
σρFρµ + O

(

F 6

m8
e

)

, (2.32)

where the dimensionless constants a and b can be found explicitly in terms of
the electromagnetic coupling constant. However, even if one has no idea of what
the high-energy theory is, one can still write down this unique Lagrangian (with
unknown a and b, treated as free parameters) by simply imposing Lorentz, gauge,
charge conjugation, and parity invariance. In other words, the only effect of the
high-energy theory is to give explicit values of the coupling constants in the low-
energy theory, which are then functions of the parameters of the high-energy theory.

Also, note that perturbative renormalization of effective operators can be per-
formed in the same way as for those usually called “renormalizable”, as long as one
chooses the renormalization scheme wisely and works to a given order in E/Λ. In
other words, to a given order in E/Λ, the effective theory contains only a finite
number of operators, and working to a given accuracy, the effective theory behaves
for all practical purposes like a renormalizable quantum field theory: only a finite
number of counter terms are needed to reabsorb the divergences [24]. For deeper
treatments of effective field theory, see Refs. [24–27].

In conclusion, the Lagrangian of the SM can be considered to contain terms
of arbitrary dimensionality, of which the usual renormalizable SM Lagrangian is

5The accuracy is in practice almost always finite anyway if one is using perturbation theory.



16 Chapter 2. The standard model of particle physics and slightly beyond

the lowest order low-energy approximation. The allowed terms are given by the
requirements of gauge and Lorentz invariance and any other assumed symmetries.
There is only one allowed dimension-five operator (which is the lowest possible
dimensionality of an effective operator) in the SM. This operator gives the lowest-
order contribution to neutrino masses, and will be discussed in Section 2.7.1.

2.6 Quark masses and mixing

The mass terms for quarks in Eq. (2.27), i.e.,

−Lq-mass = uLMuuR + dLMddR + H.c., (2.33)

couple different quark flavors to each other, i.e., they mix the quark flavors. To find
the mass eigenstate fields, i.e., the fields of which the excitations are propagating
states, define a new basis of the quark fields by

uL = ULu
′
L, uR = URu

′
R, dL = VLd

′
L, dR = VRd

′
R, (2.34)

where UL, UR, VL,, and VR are some unitary 3×3 matrices. The kinetic terms of the
quark fields are still diagonal in this new basis. Then, choose the unitary matrices
such that

U †
LMuUR = Du, V †

LMdVR = Dd, (2.35)

where Du and Dd are real, positive, and diagonal. This choice of unitary matrices
is possible for any complex matrices Mu and Md. Thus, the fields

u′i = u′Li + u′Ri, d′i = d′Li + d′Ri (2.36)

are Dirac mass eigenstate fields with masses mu,i = (Du)ii and md,i = (Dd)ii,
respectively.

The interactions of the quarks with the gauge bosons originating from Eq. (2.25)
will no longer be diagonal, but instead given by

LWud =
g2√
2
W+
µ uLγ

µdL + H.c.

=
g2√
2
W+
µ u

′
LU

†
LVLγ

µd′L + H.c.

=
g2√
2
W+
µ u

′
LUCKMγ

µd′L + H.c.,

(2.37)

where the unitary matrix UCKM = U †
LVL is the Cabibbo-Kobayashi-Maskawa (CKM)

or quark mixing matrix [28, 29].
A general complex n× n matrix can be parameterized by 2n2 real parameters,

and a unitary one such as UCKM by n2 real parameters, out of which n(n−1)/2 are
mixing angles and n(n+1)/2 are phases. By rephasing the left-handed quark fields,
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one can naively remove 2n phases from the CKM matrix. However, since a global
phase redefinition of the quark mass eigenstates leaves the CKM matrix invariant,
only (2n− 1) phases can be removed. If one then rephases the right-handed quark
fields in the same way, the Lagrangian will be left invariant. This means that these
phases of the quark fields are not observable, and that neither are the removed
phases from the CKM matrix. To conclude, the number of physical parameters for
n quark generations are 2n masses, n(n− 1)/2 angles and (n− 1)(n− 2)/2 phases.
The total number of physical parameters of the quark sector is thus (n2 +1), which
is to be compared to the naive expectation of 2n2 for each Yukawa matrix, i.e., 4n2

in total.
The CKM matrix can be parametrized in many ways, but a common paramet-

rization is, for three generations, given by

UCKM =





1 0 0
0 C23 S23

0 −S23 C23









C13 0 S13e
−i∆

0 1 0
−S13e

i∆ 0 C13









C12 S12 0
−S12 C12 0

0 0 1





=





C12C13 S12C13 S13e
−i∆

−S12C23 − C12S23S13e
i∆ C12C23 − S12S23S13e

i∆ S23C13

S12S23 − C12C23S13e
i∆ −C12S23 − S12C23S13e

i∆ C23C13



 ,

(2.38)

where Cij = cosΘij and Sij = sinΘij , Θ12, Θ23, and Θ13 are the quark mixing
angles, and ∆ is the CP-violating phase. The values of the quark mixing parameters
have been inferred from experiments and the mixing angles have been found to be
relatively small, while the phase factor e−i∆ is complex (and not real), i.e., there is
CP-violation in the quark sector [7].

2.7 Lepton masses and mixing

The mass term for the charged leptons in Eq. (2.27), i.e.,

−Le-mass = eLMeeR + H.c., (2.39)

can be diagonalized in the same way as the down quark mass term by defining

eL = VLe
′
L, eR = VRe

′
R, (2.40)

where VL and VR are unitary matrices such that

V †
LMeVR = De, (2.41)

where De is real, positive, and diagonal. Then,

e′i = e′Li + e′Ri (2.42)
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are Dirac fields with masses me,i = (De)ii. Also note that VL diagonalizes MeM
†
e

and VR diagonalizes M †
eMe, i.e.,

V †
L

(

MeM
†
e

)

VL = V †
R

(

M †
eMe

)

VR = D2
e , (2.43)

and that similar relations hold for the quark mass matricesMu andMd. If neutrinos
would be massless, i.e., have no mass terms, one could define the rotated neutrino
fields by

νL = VLν
′
L, (2.44)

in which case the charged current interaction in Eq. (2.25) would still be diagonal.

2.7.1 Neutrino masses without right-handed neutrinos

In the SM, the left-handed neutrinos do not obtain their masses through Yukawa
interactions as the other fermions do. This is because there is no need for the
introduction of right-handed neutrinos to describe experimental data, and hence,
in the spirit of simplicity, there are no such fields in the SM to which the neutrinos
could couple.

A simple and economical way to describe neutrino masses in the SM is based on
an effective operator of dimension five (see Sec. 2.5), sometimes called the Weinberg
operator [30]. It is given by

−Ld=5
ν =

1

2

(

ℓLφ
)

κ
(

φT ℓcL
)

+ H.c., (2.45)

and is the only dimension-five operator allowed by the SM symmetries. Here, κ is
a complex 3 × 3 matrix having the dimension of an inverse mass. However, using
the anticommutativity of the fermion fields, one can show that only the symmetric
part of κ is physically relevant, i.e., κ can always be chosen to be symmetric. Since
the Higgs field acquires a VEV, the term in Eq. (2.45) will lead to a Majorana mass
term for the light neutrinos,

−LMaj,L =
1

2
νLMLν

c
L + H.c., (2.46)

with ML = v2κ. Just as the mass matrices considered previously, ML is in general
not diagonal. One can redefine the neutrino fields as

νL = ULν
′
L, (2.47)

where UL is chosen such that

U †
LMLU

∗
L = DL, (2.48)

with DL real, positive, and diagonal. This diagonalization is always possible for
symmetric ML. Equations (2.40) and (2.47) imply that the interaction in Eq. (2.25)
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takes the form

LWνe =
g2√
2
W+
µ νLγ

µeL + H.c.

=
g2√
2
W+
µ ν

′
LU

†
LVLγ

µe′L + H.c.

=
g2√
2
W+
µ ν

′
LU

†γµe′L + H.c.,

(2.49)

where U = V †
LUL is the lepton mixing matrix, also referred to as the Pontecorvo-

Maki-Nakagawa-Sakata (PMNS) matrix [31–33]. The difference to the quark sector
is that the Majorana mass term is not invariant under rephasings of the mass
eigenstate fields. Thus, the phases of the Majorana neutrino fields are physical and
cannot be removed from the lepton mixing matrix. It follows that there are (n− 1)
additional physical phases for n generations. The lepton mixing matrix is usually
parametrized as

U =

(

1 0 0
0 c23 s23

0 −s23 c23

)(

c13 0 s13e−iδ

0 1 0
−s13eiδ 0 c13

)(

c12 s12 0
−s12 c12 0

0 0 1

)

diag
(

eiρ, eiσ, 1
)

=





c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13









eiρ

eiσ

1





=





c12c13e
iρ s12c13e

iσ s13e
−iδ

−s12c23eiρ − c12s23s13e
i(δ+ρ) c12c23e

iσ − s12s23s13e
i(δ+σ) s23c13

s12s23e
iρ − c12c23s13e

i(δ+ρ) −c12s23eiσ − s12c23s13e
i(δ+ρ) c23c13



 ,

(2.50)

where cij = cos θij and sij = sin θij , θ12, θ23, and θ13 are the lepton mixing angles, δ
the CP-violating Dirac phase, and σ and ρ are CP-violating Majorana phases. Note
however that there exists different parametrizations, differing in the convention for
the CP-violating phases. Hence, in addition to the well-measured charged lepton
masses, there are 9 parameters in the lepton sector of the SM with the Weinberg
operator, separated as 3 neutrino masses, 3 mixing angles, and 3 CP-violating
phases.

In conclusion, the SM can incorporate massive neutrinos, while also indicating
that they should be light, a reflection of the fact that the first tree-level mass term
has a dimension equal to five and not less. Whatever high-energy theory one can
come up with in which the neutrinos are Majorana particles, it must always reduce
to the SM with the Weinberg operator at low energies (unless it is forbidden by
some symmetry of the high-energy theory). However, writing κ as

κ =
κ̃

Λν
, (2.51)
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with κ̃ dimensionless and Λν some energy scale, we have that, since v ≃ 174 GeV,6

Λν ≃ v2

mν
κ̃ ≃ 3 · 1013 GeV

[

eV

mν

]

κ̃. (2.52)

Since experiments indicate that the neutrino mass scale mν is of the order of 1 eV
or smaller (see chapter 3), this will imply that the scale Λν will be very high (unless
κ̃ is very small), out of reach of any foreseeable experiments. The scale Λν could
be within the reach of future experiments, if either κ̃ is very small, which can be
natural, or if for some reason the Weinberg operator is forbidden and neutrino
masses are instead the result of even higher-dimensional operators [34]. Note that
this operator necessarily introduces one more mass scale into the theory, above
which the effective description ceases to be valid. Hence, one can say that at some
high-energy scale, some kind of new physics must appear.

2.7.2 Neutrino masses with right-handed neutrinos

In order to restore the symmetry in the particle content of the SM, one can choose
to extend it by adding 3 right-handed neutrinos νRi

7, often also denoted by NRi or
just Ni. Then, a new set of Yukawa couplings are allowed,

−LYuk,ν = ℓLφ̃YννR + H.c., (2.53)

which after electroweak symmetry breaking yields a Dirac-type mass terms as

−LDirac,ν = νLMDνR + H.c., (2.54)

with MD = Yνv. However, since the right-handed neutrinos are total singlets under
the SM gauge group, they can have Majorana masses on the form

−LMaj,R =
1

2
νcRMRνR + H.c., (2.55)

with MR symmetric. Without loss of generality, one can always perform a basis
transformation on the right-handed neutrino fields and work in the basis in which
MR is real, positive, and diagonal, i.e., MR = diag(M1,M2,M3). Thus, the full
Lagrangian describing the masses in the neutrino sector is given by

−Lν-mass =
1

2
νLMLν

c
L + νLMDνR +

1

2
νcRMRνR + H.c. =

1

2
ΨMνΨ

c + H.c., (2.56)

where

Ψ =

(

νL
νcR

)

, Mν =

(

ML MD

MT
D MR

)

. (2.57)

Thus, it now has the form of a Majorana mass term for the field Ψ, with a symmetric
6 × 6 Majorana mass matrix Mν . Diagonalization of this matrix leads in general

6Since we are dealing with matrices, the eigenvalues of which are the physical masses, the
individual components of ML could be much larger than the eigenvalues if there are large cancel-
lations.

7Although there are models with different numbers of νRi’s, we stick to 3 in this section for
simplicity and symmetry reasons.
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to 6 Majorana mass eigenstates, each of which is a linear superposition of the left-
and right-handed neutrinos, and vice versa.

An often considered special case is ML = MR = 0, resulting in 6 Majorana fields
which can be combined into 3 Dirac fields. In this case, one again has the freedom
to rephase the neutrino fields, just as in the quark sector. Thus, the form of the
lepton mixing matrix is given by Eq. (2.50), but without the last matrix containing
the Majorana phases, in analogy with the CKM matrix in Eq. (2.38). However,
for this to be the case, the MR term has to be forbidden by some additional exact
symmetry. A new gauge symmetry will not work, since after this symmetry is
broken, the Majorana mass term for the right-handed neutrino will in general be
generated. In this respect, the neutrino sector of the SM is fundamentally different
from the charged lepton and quark sectors. Also, the neutrino Yukawa couplings
have to be very small, of the order of 10−11. Although this is technically natural,
unless the right-handed neutrinos have some additional kind of interaction, the
right-handed neutrinos will in practice be undetectable.

Another special case, which as been studied intensively in the literature, is the
caseMR ≫MD, which will be further discussed in Ch. 4. This is possible, since MR

is not related to the electroweak symmetry breaking, while MD is determined by the
Higgs VEV. On the other hand, a commonly used naturalness criterion states that
a number can be naturally small if setting it to zero increases the symmetry of the
Lagrangian. Since without a Majorana mass for the right-handed neutrino, the U(1)
of total lepton number is a symmetry of the Lagrangian, a small MR is also natural.
To conclude, neutrinos can be Dirac particles, in which case there are additional
degrees of freedom in the form of right-handed neutrinos. If instead neutrinos are
Majorana particles there is some new physics at the scale Λν . Hence, some kind of
physics beyond the SM is required to describe non-zero neutrino masses.
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Chapter 3

Experimental signatures of

massive neutrinos

The observation of neutrino oscillations imply that neutrinos are massive particles,
indicating the existence of new physics beyond the SM. In this chapter, we give a ba-
sic introduction to the different ways the effects of neutrino masses can be searched
for experimentally. Neutrino oscillations are sensitive to the mixing parameters and
mass-squared differences while beta decay, cosmology, and neutrinoless double beta
decay are probes sensitive to the absolute values of neutrino masses.

3.1 Neutrino oscillations

In a charged-current interaction, the left-handed component of the mass eigenstate
e′i will be produced. Defining this as a charged lepton, and the neutrino produced
in association with it as a flavor eigenstate, the lepton mixing matrix U relates the
neutrino flavor eigenstates |να〉 and the mass eigenstates |νi〉 as

|να〉 = U∗
αi|νi〉. (3.1)

This will lead to neutrino oscillations, in which a neutrino of flavor α, produced in a
charged-current interaction, can, after propagating a certain distance, be detected
as a neutrino of a generally different flavor β [35–38]. Since the time evolutions of the
mass eigenstates are simply given by multiplication of the exponential exp(−iEit),
the amplitude for this transition is

A (να → νβ) = 〈νβ |U∗
αie

−iEit|νi〉 = 〈νj |UβjU∗
αie

−iEit|νi〉 = Uβi
(

U †
)

iα
e−iEit,

(3.2)

giving the transition probability as P (να → νβ) = |A (να → νβ) |2. As it turns out,
neutrino oscillations are not sensitive to all the parameters in the neutrino sector,
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which are 7 for Dirac neutrinos and 9 for Majorana neutrinos. The sensitivity is
restricted to 2 independent mass-squared differences ∆m2

31 ≡ m2
3 − m2

1, ∆m2
21 ≡

m2
2 − m2

1, the 3 mixing angles, and the CP-violating Dirac phase δ. Neutrino
oscillations have been verified by experiments on solar [39–42], atmospheric [43,44],
and artificially produced neutrinos [45–49]. These measurements in combination
with others have yielded rather strong constraints on the three mixing angles and
the two mass squared differences, but with essentially no information on the CP-
violating phase δ. Furthermore, since the sign of ∆m2

31 is not known, neither is
the ordering of the masses. The neutrino masses are said to have either normal
or inverted ordering, depending on whether m1 < m2 < m3 or m3 < m1 < m2.
Although neutrino oscillations are in principle sensitive to the mass ordering, there
is as of today no firm evidence for one or the other.

While two of the mixing angles were long required to be non-zero, the third
one, θ13, was allowed by the data to vanish. This is related to the fact that the
oscillations observed until recently correspond to the dominant effective two-flavor
oscillation modes, driven by two mass-squared differences and two relatively large
mixing angles. The purpose of many current and future experiments is mainly to
explore sub-leading effects. Recently, several experiments have reported new inter-
esting results related to two previously unobserved modes of neutrino oscillations,
both of which rely on θ13 being non-zero. The first such mode is νµ → νe oscilla-
tions, which has been investigated by looking at tee appearance of electron neutrinos
in a beam consisting of mainly muon neutrinos in MINOS [50] and T2K [51,52].
Although the indication for a non-zero θ13 from these data are not really statis-
tically significant, they are considered rather robust since these measurements are
connected to the another mode of oscillation recently discovered, the disappearance
of electron antineutrinos produced in the cores of nuclear reactors. Following an
earlier indication by Double Chooz [53], the observation was first made by Daya

Bay [54]. After that, further data has corroborated that measurement [55–58]. As
a result, the uncertainty in the value of θ13 has become very small.

Following these successful measurements, there are two main goals for cur-
rent and future neutrino oscillation experiments. First, one would like to estab-
lish whether there is CP-violation in the lepton sector of the standard model and
measure the value of the CP-violating Dirac phase. In fact, CP-violation in neu-
trino oscillations, which is a genuine three-flavor effect, is only possible for a non-
zero value of θ13. Then, there is the determination of the neutrino mass ordering,
and also any realistic possibility to determining that relies on θ13 not being too
small [59]. Therefore, the recent experimental results on θ13 will be of crucial im-
portance for the feasibility and planning of future experiments aiming to determine
the neutrino mass ordering or search for leptonic CP-violation. Because individual
neutrino oscillation experiments cannot determine all the oscillation parameters si-
multaneously, there exists a long history of global fits of oscillation data, in which
all experimental results are combined. A recent such fit are has been performed in
Ref. [60], with the resulting preferred ranges of the oscillation parameters (given as
approximate confidence intervals) given in Tab. 3.1. There is a small, but insignifi-
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cant, deviation of the best-fit value of θ23 away from maximal mixing (θ23 = π/4 ).
To test whether θ23 is maximal or not, and in the latter case whether it is smaller
or larger than π/4, is also a goal for future experiments.

Most of the relevant results to date is consistent with the three-neutrino mixing
scheme. However, there are some experimental results which does not seem to be,
the most important ones being the old results of the LSND experiment [61,62] and
the more recent MiniBooNE experiment [63]. One common interpretation of these
results is that they could be due to the effect of sterile neutrinos, which are eV-scale
neutrinos without any weak interaction, mixing with the SM neutrinos. However,
this interpretation is not really consistent with other experiments [64], and so the
implications of these results are currently unclear.

To summarize, although neutrino oscillation experiments give a large amount
of information on the neutrino sector of the standard model and the associated
parameters, they are not directly sensitive to the absolute values of the neutrino
masses, cannot distinguish between Dirac and Majorana neutrinos nor give infor-
mation on the values of any possible Majorana phases. Luckily, there are other
types of experiments which have the potential to answer the above questions.

Parameter Preferred range (3σ)
θ12/

◦ 31.1 − 35.9
θ23/

◦ 35.8 − 54.8
θ13/

◦ 7.2 − 10.0

∆m2
21/(10−5 eV2) 7.00 − 8.09

∆m2
31/(10−3 eV2) (NO) 2.28 − 2.70

−∆m2
32/(10−3 eV2) (IO) 2.24 − 2.65

Table 3.1. Currently preferred values for the neutrino oscillation parameters,
adopted from Ref. [60]. The ranges are approximate “3σ” confidence intervals, NO
(IO) stands for normal (inverted) neutrino mass ordering and ∆m2

32
= ∆m2

31
−

∆m2

21
.

3.2 Beta decay and cosmology

Since the two mass square differences are measured accurately, it is sufficient to
measure one of the individual masses to accurately infer all three of them. Of
course, this could also be done by measuring other combinations of masses and
mixing parameters, as long as the associated errors are small enough. There are a
number of different types of experiments which are sensitive to the absolute values
of the neutrino masses.

The most direct method is studying the energy spectra of electrons emitted in
beta decays of certain isotopes. Beta decay is the decay of a nucleus accompanied
by the emission of an electron or a positron. In beta-minus decay, an electron is
emitted together with an electron antineutrino when a nucleus with mass number
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A (the number of nucleons) and atomic number Z (the number of protons) decays
according to

(A,Z) → (A,Z + 1) + e− + νe, (3.3)

which on the level of the nucleons is essentially

n→ p+ e− + νe. (3.4)

In beta-plus decay, a positron is emitted together with an electron neutrino in the
process

p→ n+ e+ + νe, (3.5)

which, because of energy conservation, can only occur inside a nucleus. The final
state positron can also be exchanged for an initial state electron, in which case
the process is called electron capture. All these processes can be accurately de-
scribed through the exchange of SM W -bosons, or, since the relevant energies are
much lower than the W -boson mass, by using the standard four-fermion interac-
tion between the proton, neutron, electron, and neutrino fields. (Or between the
quark, electron, and neutrino fields in the quark-level description.) Historically,
the properties of beta decay, specifically the apparent non-conservation of energy
and angular momenta, was what led Wolfgang Pauli to suggest that there was an
undetected neutral particle being emitted together with the electron.

These spectra of the emitted electrons are sensitive to the effective kinematical
electron neutrino mass mβ , given by

m2
β =

3
∑

i=1

|Uei|2m2
i = m2

1c
2
12c

2
13 +m2

2s
2
12c

2
13 +m2

3s
2
13. (3.6)

Hence, such experiments cannot yield any information on any CP-violating phases,
but since the mixing angles and the mass square differences are rather well deter-
mined, there is potential for measuring the absolute values of the neutrino masses.
There is no evidence of the effect associated with a non-zero m2

β , and mβ is con-
strained to be roughly below 2.5 eV [65, 66]. Near-future experiments such as
MARE [67] and KATRIN [68,69] are aiming to detect the effect of a non-zero mβ ,
or in any case to reduce the upper bound to the order of 0.2 eV.

The values of neutrino masses can also be probed by cosmological observations.
The effective sum Σ = m1 +m2 +m3 of neutrino masses can be inferred from mea-
surements of the cosmic microwave background (CMB) radiation when combined
with results from other observations, such as those of high-redshift galaxies, baryon
acoustic oscillations, and type Ia supernovae [70, 71]. In addition, CMB observa-
tions are sensitive to additional light particles (relativistic degrees of freedom) in
the early universe, such as sterile neutrinos. Although the South Pole Telescope
(SPT) has reported an indication for a large value of Σ [72], neither the data from
the Atacama Cosmology Telescope [73], nor the recent high-precision data from
Planck [74] give any support for this indication. Σ is constrained to below between
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about 0.2 eV and 1 eV, depending on which cosmological model is assumed and
which sets of data is used. There is no sign of any relativistic degrees of freedom
in addition to those 3 present in the standard model.

3.3 Neutrinoless double beta decay

Another well-investigated process related to neutrino masses is that of neutrinoless
double beta decay. In nuclei where ordinary single beta decay is forbidden for
kinematical reasons, double beta decay (2νββ) can be the dominant process. In this
process, a nucleus with mass number A and atomic number Z decays through the
emission of two electrons and two antineutrinos according to

(A,Z) → (A,Z + 2) + 2e− + 2νe. (3.7)

Double beta decay has been observed in around 10 nuclei, and the corresponding
half-lives are very long, typically of the order of 1019 to 1021 years. This decay is
essentially described as two “simultaneous” single beta decay processes, which is
also the reason why the decay rates are so small.

If neutrinos are Majorana particles, it may be possible for the same nuclei
to undergo double beta decay without emission of neutrinos. Replacing the two
external neutrinos with an internal line and working on the level of the quarks
inside the nucleons, one obtains the diagram in Fig. 3.1, giving the process

(A,Z) → (A,Z + 2) + 2e−. (3.8)

In this decay process, lepton number is violated by two units. This will be referred
to as the “standard” mechanism responsible for 0νββ [75, 76]. Just as in the case
of single beta decay, the internal momentum in the diagram is of the order of the
typical energy transfer in the nucleus, and hence much smaller than the mass of
the W -bosons. Thus, the quark-lepton interaction becomes point-like and can be
described using the standard four-fermion interaction. However, due to the small
neutrino masses, the light neutrino propagator will depend strongly on the energy
transfer and can thus not be treated as point-like. In fact, due to the lightness of
the neutrinos and the chirality structure of the charged current interaction vertices,
the propagator of a Majorana mass eigenstate neutrino field with mass mi will be
[77]

PL
/q +mi

q2 −m2
i

PL =
mi

q2 −m2
i

≃ mi

q2
, (3.9)

where q is the transfered momentum.
In the calculation of the resulting inverse half-life T−1 of a specific nucleus N ,1

one can separate the dependence on the underlying particle physics and the nuclear
physics by writing it as [75, 76]

T−1
N = GN |MN |2m2

ee. (3.10)

1The decay rate is in general equal to the inverse half-life divided by log 2.
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d u

d u

W−

W−

e−

e−
νi

Figure 3.1. The leading order Feynman diagram for 0νββ through Majorana neu-
trino exchange.

Here, GN is a known phase space factor, MN is the nuclear matrix element (NME),
containing all the dependence on the nuclear physics, and |mee| is the effective
neutrino mass given by

|mee| =

∣

∣

∣

∣

∣

3
∑

i=1

U2
eimi

∣

∣

∣

∣

∣

=
∣

∣m1c
2
12c

2
13 +m2s

2
12c

2
13e

2iα +m3s
2
13e

2iβ
∣

∣ , (3.11)

which is the magnitude of the ee-element of the neutrino mass matrix in the flavor
basis. Here, α and β are the Majorana phases. This expression is given using a
slightly different, but physically equivalent, parametrization of the lepton mixing
matrix than what was used in Eq. (2.50). First, the neutrino fields have been given
a common phase redefinition in order to make Ue1 real. Then, the third neutrino
mass eigenstate ν3 has been given an additional phase redefinition so that the Ue3
becomes independent of δ. From Eqs. 3.10 and 3.11 one observes that all the
parameters which cannot be probed in oscillation experiments, i.e., the absolute
values of the neutrino neutrino masses and the Majorana phases, could in principle
be constrained using 0νββ experiments. The NME is given as the sum of two more
basic matrix elements, the Gamow–Teller and Fermi type matrix elements as

M = MGT − g2
V

g2
A

MF, (3.12)

where g2
V and g2

A are two constants of order one. The matrix elements MGT and
MF can be written as expectation values of certain operators between the initial
and final nuclear states [75, 76]. However, since they are rather complicated and
not needed for the discussion of the particle physics, they will not be discussed in
detail.

In order to extract the values of the underlying particle physics parameters, one
needs the values of the NMEs. The calculation of the matrix elements MGT and
MF requires the knowledge of the wave functions of complicated nuclei and need to
be calculated numerically using some nuclear physics model. This is a notoriously
difficult task [78–80], and the resulting theoretical uncertainties must be taken into
account when inferring the parameters of the underlying models.
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In addition, an observation of 0νββ will actually always imply that neutrinos
are Majorana particles. This is because any diagram leading to 0νββ, regardless
of its origin or form, can be extended by connecting the external electron lines
with the quark lines by two W -boson lines [81]. The resulting diagram will then
be a four-loop diagram for a Majorana neutrino mass term. As of today, there
is experimentally no other realistic way to determine if neutrinos are Dirac or
Majorana particles.

In order to detect this extremely rare process against the much larger back-
ground of ordinary double beta decay, one can make use of the fact that the energy
spectra of the final state electron differ widely. In 2νββ, the final state contains
four particles in addition to the nucleus, out of which only two (the electrons) can
realistically be detected, while the neutrinos carry their energy out of the detector.
Thus, the energy of the electrons will be broadly distributed in the region between
0 and the total energy being released, the Q-value. In contrast, due to the nucleus
being very heavy compared to the electrons, most of the energy will be carried off
by the electrons in 0νββ, while being emitted almost back-to-back and monochro-
matically, and with the total energy equal to the Q-value. Using this, one can
effectively discriminate the signal (0νββ) from the background (2νββ).

There has been no clear detection of the neutrinoless decay generally accepted by
the community, although a small subset of the Heidelberg-Moscow collaboration,
using 76Ge as the decaying nucleus, did make such a claim [82]. This analysis
was subsequently updated in Refs. [83, 84] (see also Ref. [85]). The claimed signal
would correspond to mee being roughly equal to 0.3 eV. For many years, there
was no other experiment with enough sensitivity to test these claims. Recently,
however, the first data from a new generation of experiments has been released
by EXO [86] and KamLAND-Zen [87], which have sensitivities in the same region
of mee-values as those preferred by the 76Ge claim. These experiments find no
evidence of the decay and the reported combined lower limit on the half-life is
3.4 · 1025 yr at 90% C.L., which corresponds to upper limits on mee in the range
0.12 eV−0.25 eV, depending on the NME assumed. It is not only the NMEs which
are uncertain, however, but also the upper limit by itself might not accurately
represent the constraints implied by the data. The reason is that the limit is a
frequentist upper limit, which is well-known for being unreliable when there are
downward fluctuations in the background (see Sec. 6.6 for further discussion), in
which case the limit depend strongly on the method used to derive it.

EXO and KamLAND-Zen use 136Xe as the decaying nucleus, which has its own
NME, also with a large uncertainty. In order to combine and compare these results,
one first needs to chose a specific underlying mechanism predicting the decay, but
also take into account the statistical uncertainties and the uncertainties on both the
NMEs. Due to the this difficulty, the uncertainties associated with the data used
to claim an observation in 76Ge, and perhaps also due to the lack of appropriate
statistical tools, neither the EXO nor KamLAND-Zen collaborations attempted to
really test the consistency of their data with that of the claim (not even for fixed
values of the NMEs).
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In paper V [5], I performed a global fit of the claim using 76Ge and the recent
data using 136Xe within the standard model with massive Majorana neutrinos.
In particular, I was interested in testing the consistency of the different data sets.
Furthermore, instead of simply performing the analysis for fixed values of the NMEs,
I took into account the theoretical uncertainties of the NMEs which is possible
within a Bayesian analysis (see Sec. 6).

Finally, we mention that the GERDA experiment [88] is currently running.
Since it uses 76Ge as source, it will enable a more direct comparison with the positive
claim, i.e., without any uncertainty from the NMEs. The GERDA collaboration
recently released their first results on 0νββ [89]. The data show no signs of 0νββ,
and seem to disfavour the previous claim.

3.3.1 Other mechanisms of neutrinoless double beta decay

Although the standard mechanism for 0νββ is the exchange of light Majorana
neutrinos, other mechanisms could very well appear in certain extensions of the SM,
such as supersymmetric models and models with heavy neutrinos [90–93], as well as
left-right symmetric models [94]. To discriminate between different mechanisms of
0νββ, it will obviously not be enough to detect 0νββ in a single isotope. However,
since the NMEs for different mediating mechanisms are different, one could in
principle tell them apart using measurements of several different isotopes [92,95,96].

Instead of treating specific high-energy models, one can use effective field theory
and look at the most general operators which could be responsible for 0νββ . First,
one can alter the Lorentz and/or chirality structure of the effective four-fermion
interaction, while keeping the neutrino propagator [77]. There is also the possibility
that no neutrino exchange is involved in the new decay mechanism. If the virtual
particles responsible for the decay are heavier than the typical nuclear energies, the
whole process should be describable by a single point-like interaction in effective
field theory. Since in this case there are four quark fields and two electron fields
involved, the effective operator has to have a mass dimension equal to nine. The
most general such Lagrangian is given by [97]

L0νββ =
G2

F

2
m−1

p (ǫ1JJj + ǫ2J
µνJµνj + ǫ3J

µJµj + ǫ4J
µJµνj

ν + ǫ5J
µJjµ) + H.c.,

(3.13)
where J and j denote hadron and electron currents, respectively. The proportion-
ality to the Fermi constant G2

F has been introduced, since this also appears in the
standard mechanism, while the factor m−1

p finally gives the coefficient the correct
mass dimension.2 The strengths of the different operators are parametrized by the
(generally complex) dimensionless coefficients ǫi. Actually, there are many more

2The choice of the proton mass is arbitrary, but in some sense natural since the proton appears
as a final state, and since the typical energy transfer inside the nucleus is substantially smaller.
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operators in Eq. (3.13) then there seems to be at first sight. This is because differ-
ent chirality structures are permitted for all the currents. The hadron currents in
Eq. (3.13) are given by

JL,R = u (1 ∓ γ5) d, JµL,R = uγµ (1 ∓ γ5) d, JµνL,R = u
i

2
[γµ, γν ] (1 ∓ γ5) d,

(3.14)
and the electron ones by

jL,R = e (1 ∓ γ5) e
c = 2 eR,Le

c
R,L, jµL,R = eγµ (1 ∓ γ5) e

c = 2 eL,Rγ
µecR,L. (3.15)

Note that there are some more Lorentz invariant terms, which could have been
added to Eq. (3.13), namely

L′
0νββ =

G2
F

2
m−1

p (ǫ6J
µJνjµν + ǫ7JJ

µνjµν + ǫ8JµαJ
ναjµν ) , (3.16)

where the electron tensor currents are given by jµνL,R = e i2 [γµ, γν ] (1 ∓ γ5) e
c. How-

ever, one can show that all operators proportional to eγµec, e i2 [γµ, γν ] ec, and

eγ5
i
2 [γµ, γν ] ec vanish identically, since the electron fields anti-commute [98]. Thus,

the terms in Eq. (3.16) all vanish and do not need to be considered.
The resulting half-life, including interferences, can be calculated from the inter-

actions in the Lagrangian in Eq. (3.13) [97], and also interferences with the standard
light neutrino exchange mechanism can be derived [3]. Note that, depending on
the chiralities of the final state electrons, several of the interference terms will be
suppressed, see Ref. [3] for a discussion.

Paper III of this thesis [3] deals with prospective constraints on the effective
operators in Eq. (3.13) from future data on 0νββ, in combination with data from
single beta decay experiments and cosmological observations.
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Seesaw models

Seesaw models are a group of models involving new heavy degrees of freedom such
that, in the low-energy theory where the heavy fields are integrated out, the effec-
tive operator in Eq. (2.45) is generated, resulting in a Majorana mass matrix for
the light neutrinos. In other words, they are simple extensions of the SM such that,
at low energy, the SM with the Weinberg operator is recovered and the matrix κ
can be given in terms of the parameters of the high-energy theory. The Weinberg
operator is usually generated at tree-level, but can also appear due to radiative cor-
rections [99]. For the tree-level case, there are three main type of models, depending
on which type of fields generate the Weinberg operator,

• Type I seesaw models [100–103], where a number of fermionic SM singlets,
basically right-handed neutrinos, are introduced,

• Type II seesaw models [104–109], where scalar SU(2)L triplets are introduced,

• Type III seesaw models [110], where fermionic SU(2)L triplets are introduced.

In general, there is nothing that prevents more than one of these sets of fields to
be present simultaneously, giving combinations of seesaw models.

Usually, the new fields introduced have masses far above the electroweak scale,
outside the reach of any foreseeable experiments, making these versions of seesaw
models essentially untestable.1 However, there are also seesaw models where the
new particles have masses above the electroweak scale, but within the reach of future
experiments such as the LHC, so-called low-scale seesaw models. For potential
collider signatures of such models, see Refs. [118, 119] and references therein.

In this chapter, the type I seesaw model as well as its variation the inverse seesaw
model will be discussed in more detail. Both of these models can be constructed
such that the new particles have masses at low energy scales, e.g., at the TeV scale,

1They could affect processes at very high energies. For example, they could generate the baryon
asymmetry of the Universe through leptogenesis [111–117].
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making them, in principle, testable in future experiments. The reader is referred
to the references for more details on the other types of seesaw models. The type I
seesaw model was studied in paper I of this thesis [1] and the inverse seesaw model
in paper II [2].

4.1 The type I seesaw model

The type I seesaw model is the canonical seesaw model, and is basically a special
case of the model introduced in Sec. 2.7.2, i.e., the particle content of the SM is
extended with three right-handed neutrino fields νRi with a Majorana mass matrix
MR, which has eigenvalues above the electroweak scale. Also, it is usually assumed
that there are no other contributions to the masses of the light neutrinos. In this
case, at energies below MR, the Weinberg operator with

κ = YνM
−1
R Y Tν (4.1)

is generated at tree-level.2 This can be represented diagrammatically as in Fig. 4.1;
at low energies the propagators of the right-handed neutrinos can be “shrunk” to a
single point. Thus, after electroweak symmetry breaking, there is a Majorana mass
term with mass matrix

ML = v2κ = v2 · YνM−1
R Y Tν = FMRF

T , (4.2)

with F = vYνM
−1
R . It is thus suppressed by a factor of YνvM

−1
R with respect to

that expected for a Dirac mass, i.e., Yνv.
The next operator generated in the tower of effective interactions, relevant for

neutrinos, is the dimension-six operator [120–123]

Ld=6
ν =

(

ℓLφ̃
)

Ci/∂
(

φ̃†ℓL

)

, (4.3)

where the coefficient matrix is given, at leading order, by

C =
(

YνM
−1
R

) (

YνM
−1
R

)†
. (4.4)

After electroweak symmetry breaking, this dimension-six operator leads to correc-
tions to the kinetic terms for the light neutrinos. In order to keep the neutrino
kinetic energy canonically normalized, one has to rescale the neutrino fields, result-
ing in a non-unitary matrix relating the flavor and mass eigenstates, given by

N =

(

1 − v2

2
C

)

U =

(

1 − FF †

2

)

U, (4.5)

where U diagonalizes the light neutrino mass matrix. For |F | & O (0.1), non-
negligible non-unitarity effects could be visible in the near detector of a future

2This is accurate for energies E below all the eigenvalues of MR. For energies between two
eigenvalues of MR, only the right-handed neutrinos with masses above E should be integrated
out. This will be discussed in more detail in Sec. 5.3.
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Figure 4.1. The generation of the Weinberg operator in the type I seesaw model.

neutrino factory [124–128], and there are further constraints coming from the uni-
versality tests of weak interactions, rare lepton decays, the invisible Z width, and
neutrino oscillation data [129]. However, note that such a large value of F is in-
compatible with Eq. (4.2) and the current bounds on neutrino masses unless severe
fine tuning is involved so that large cancellations occur.

The model can also be analyzed by keeping the right-handed fields in the the-
ory, breaking electroweak symmetry spontaneously, and then approximately block
diagonalizing the resulting full mass matrix, given in Eq. (2.57) with ML = 0. This
can be done using

U ≃
(

11 ρ
−ρ† 11

)

, (4.6)

with ρ = MDM
−1
R , giving

UTMνU ≃
(

−MDM
−1
R MT

D 0
0 MR

)

= Dν (4.7)

to lowest order in MDM
−1
R . The upper left 3 × 3 block is then a Majorana mass

matrix for the fields R = νL + ρνcR, containing a small admixture of the gauge
singlet right-handed neutrinos, proportional to ρ ≪ 1. Also, the heavy neutrino
mass eigenstate fields, which are mainly composed of the gauge singlet right-handed
fields, also contain a small component of left-handed neutrino fields. Note that the
matrix which enters into the lepton mixing matrix is the matrix which diagonalizes
the upper left 3 × 3 block of the full mass matrix Mν . However, this matrix will
not necessarily be unitary, as it is only a part of the full unitary 6 × 6 matrix
which diagonalizes the full mass matrix. This is how the non-unitarity enters in
this way of looking at the model, which is to be compared with the effects of the
dimension-six operator in Eq. (4.3).

In paper II of this thesis [2], some properties of the low-scale type I seesaw
model were considered, in which the right-handed neutrinos have masses close to
the electroweak scale. In the ordinary seesaw models with right-handed neutrino
masses far above the electroweak scale, Yν can be sizable, e.g., at order unity. In
the low-scale seesaw model, Yν should be relatively small in order to maintain the
stability of the masses of the light neutrinos. However, there exist mechanisms that
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could stabilize neutrino masses without the requirement of a tiny Yν . For example,
additional suppression could enter through a small lepton number violating con-
tribution, as in the inverse seesaw model (see Sec. 4.2). Also, the neutrino masses
could be generated radiatively, in which case the additional suppression is guaran-
teed by loop integrals [99]. Finally, neutrino masses could be forbidden at d = 5,
but appear from effective operators of higher dimension [34]. In these cases, there
will still be restrictions on Yν from the unitarity of the lepton mixing matrix.

To fully specify the type I seesaw model one needs to specify 18 parameters,
in addition to the ones in the SM [130]. This can be done in different ways.3 For
example, in the top-down parametrization, the model is considered at high-energy
scales, where the right-handed neutrinos are propagating degrees of freedom. As
mentioned before, one can always choose a νR basis where the mass matrix MR

is diagonal, with positive and real eigenvalues, i.e., MR = DR. The remaining
neutrino Yukawa matrix Yν is an arbitrary complex matrix, from which 3 phases
can be removed by phase redefinitions of the ℓLi’s, giving 15 additional parameters.
Another useful and popular parametrization, more natural and relevant for low-
energy physics, is the Casas–Ibarra parametrization [131]. First, it uses the real and
diagonal matrices DR, Dκ = DL/v

2, and the lepton mixing matrix U , containing a
total of 12 parameters. The remaining 6 parameters are encoded in the matrix

O ≡ D−1/2
κ U †YνM

−1/2
R . (4.8)

If the relation in Eq. (4.1) is to hold, O has to be a complex orthogonal matrix,
which means that it can be written in the form O = R23(ϑ1)R13(ϑ2)R12(ϑ3) with
Rij(ϑk) being the elementary rotations in the 23, 13, and 12 planes, respectively.
Different from the quark or lepton mixing angles, ϑi are in general complex.

4.2 The inverse seesaw model

In the inverse seesaw model [132], the smallness of the neutrino masses is guaranteed
by a small amount of lepton number breaking instead of suppression by a very large
mass scale. It contains three extra fermionic SM gauge singlets Si, coupled to the
right-handed neutrinos in a lepton-number conserving way, while the ordinary right-
handed neutrino Majorana mass term is forbidden by some additional symmetry.
It is only through a symmetric mass matrix MS in the Majorana mass term ScMSS
that the lepton number is broken, andMS can thus be naturally small. The relevant
part of the Lagrangian is then, in the flavor basis,

−LIS = ℓLφ̃YννR + ScMRνR +
1

2
ScMSS + H.c. (4.9)

3One can always choose the ℓL basis such that Y †
e Ye = De, containing three parameters.
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Here, the fields νRi and Si are not mass eigenstates, but instead the Majorana mass
matrix in the basis {νR, S} is

MIS =

(

0 MR

MT
R MS

)

. (4.10)

For MS ≪MR, the right-handed neutrinos and the extra singlets Si are, to lowest
order, maximally mixed into three pairs of heavy Majorana neutrinos with opposite
CP parities and essentially identical masses, with a splitting of the order of MS,
and can as such be regarded as components of three heavy pseudo-Dirac neutrinos.

Integrating out these heavy fields yields the Weinberg operator with

κ =
(

YνM
−1
R

)

MS

(

YνM
−1
R

)T
(4.11)

at tree-level, which, after electroweak symmetry breaking as usual, yields a Majo-
rana mass matrix for the light neutrinos as

ML = FMSF
T , (4.12)

where F = vYνM
−1
R . This is to be compared with Eq. (4.2) for the type I seesaw

model. The diagrammatical representation is still given by the diagrams in Fig. 4.1,
but with all the 6 heavy mass eigenstate fields appearing as intermediate states.

In spite of the underlying physics responsible, the particle content of the inverse
seesaw model is essentially the same as that of the type I seesaw model, but with
six right-handed neutrinos. Thus, one can in principle treat the heavy singlets Si
as three additional right-handed neutrinos, possessing vanishing Yukawa couplings
with the lepton doublets. It is also worth comparing the canonical type I and inverse
seesaw models with the discussion of the Weinberg operator in Sec. 2.7.1. In the
seesaw models, the cutoff scale Λν in Eq. (2.51) can essentially be identified with
MR, which is generally above the electroweak scale. However, the dimensionless κ̃
in Eqs. (2.51) and (2.52) then have the order of magnitudes

κ̃ =

{

O(Y 2
ν ) canonical type I seesaw,

O(Y 2
νMSM

−1
R ) inverse seesaw.

(4.13)

Thus, κ̃ can be strongly suppressed by the potentially very small ratio MSM
−1
R in

the inverse seesaw model.
Finally, note that, in the inverse seesaw model, the correct light neutrino masses

can be obtained even for F = O(1), i.e., for the new heavy fields around the
electroweak scale and with large Yukawa couplings Yν , and that the non-unitarity
effects are, as in the type I seesaw model, given by Eq. (4.5). Thus, as opposed
to the ordinary type I seesaw model, large non-unitarity effects are possible in the
inverse seesaw model.
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Chapter 5

Renormalization group

running

This chapter is a description of the concept of renormalization group (RG) running.
The need for regularization and renormalization is described using a simple example
and the motivations for studying the RG running in the SM and seesaw models
as well as the methods for solving the resulting RG equations are reviewed. The
decoupling of the right-handed neutrinos and the use of effective theory is explained.
Finally, the proper description of the running between the masses of the heavy
particles and how this can lead to the so-called threshold effects in the running of
the neutrino parameters is described.

5.1 The main idea

Calculations of quantum corrections, represented by loops in Feynman diagrams,
to physical quantities (such as cross sections, decay rates, and particle masses),
as well as unphysical ones (such as correlation functions), often yield divergent
results. This implies that the calculated corrections are not uniquely defined, and
as a result, neither are the predictions of the theory.

The standard way to deal with this issue is to implement a two-step procedure.
First, one has to regularize the divergence by modifying the theory in some way.
This is performed by introducing some parameter ǫ, such that the modified predic-
tion is a well-defined function of ǫ and the original, divergent result is reobtained in
the limit ǫ → 0. Then, one has to renormalize the theory by redefining its param-
eters, such that the prediction becomes finite in the ǫ→ 0 limit. For this to be the
case, the original parameters and fields appearing in the Lagrangian, the so-called
bare parameters and fields, must formally diverge as ǫ→ 0. In order to make these
concepts easier to grasp, a simple example will be used for illustration.

39



40 Chapter 5. Renormalization group running

φ φ

φ

k

Figure 5.1. Self-energy diagram of a scalar field φ. Here, k is the loop momentum.

Consider the QFT with only a single real scalar field φ with mass m and quartic
self-coupling λ. The one-loop self-energy diagram is given in Fig. 5.1, the value of
which is

iΣφ =
λ

2

∫

d4k

(2π)4
1

k2 −m2 + iǫ
, (5.1)

where k is the loop momentum. One way to evaluate these kinds of integrals is to
perform a Wick rotation by changing variables to

k0 ≡ ik4
E, k ≡ kE, (5.2)

which implies that the Lorentz inner product is given by

k2 = (k0)2 − k
2 = −(k4

E)2 − k
2
E = −k2

E, (5.3)

where k2
E = (k4

E)2 + k
2
E is just the ordinary inner product in four-dimensional

Euclidean space. Re-routing the integral in the complex plane and then going to
spherical coordinates, iΣφ can be calculated as

iΣφ = −i
λ

2(2π)4

∫

dΩ

∞
∫

0

dkE
k3
E

k2
E +m2

, (5.4)

which is divergent in the region of large kE.
It is now time to regularize this integral, which in general can be done in a

number of different ways. The simplest way, and arguably the physically most
intuitive, is to use an ultraviolet cutoff. Simply cut off the integral at some large
energy scale kE = Λ , i.e., only integrate up to Λ instead of ∞, giving

Σφ = − λ

32π2

[

Λ2 −m2 log

(

1 +
Λ2

m2

)]

. (5.5)

The parameter ǫ can then, for example, be chosen as ǫ = Λ−1. Note that Λ
is not the (fixed) energy scale up to which your theory is valid, but an arbitrary
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regularization scale. This regularization method has the disadvantage that is breaks
gauge invariance, and is thus not suitable for gauge theories.

Another regularization method is the Pauli-Villars regularization, in which a
smooth cutoff is introduced in the propagator by making the replacement

i

k2 −m2
→ i

k2 −m2
− i

k2 −M2
=

i(m2 −M2)

(k2 −m2)(k2 −M2)
, (5.6)

which can also be viewed as the introduction of a new fictitious particle with a
large mass M and wrong overall sign of the propagator. The parameter ǫ can be
taken to be M−1. However, this method becomes too complicated for less simple
theories, such as the SM.

Lattice regularization implies replacing the space-time continuum by a lattice
with finite spacing ǫ = l, removing modes of the field with momenta larger than
l−1. This regularization is automatically present in numerical non-perturbative
calculations, but less suitable for analytical calculations using perturbation theory,
since this regulator breaks Lorentz invariance.

Finally, the most widely used regularization method, which preserves Lorentz
and gauge invariance, but is perhaps the most non-intuitive one, is dimensional
regularization. Here, the number of space-time dimensions is altered to d = 4 − ǫ.
Of course, one has to make sure that the mathematical framework one is using is
properly generalized to arbitrary d. For example, the mass dimensions of the fields
have now changed, so that Eqs. (2.29) and (2.30) are generalized to

[φ] = [Aµ] =
d− 2

2
, (5.7)

[ψ] =
d− 1

2
. (5.8)

In general, all the mass parameters still have the dimension of a mass, but all the
other coupling constants need to be redefined in order to keep their mass dimensions
(they are typically dimensionless). For example, in the SM and related theories,
one has to make the replacements

λ→ λ0 = µǫλ, (5.9)

gi → gi0 = µ
ǫ
2 gi for i ∈ {1, 2, 3} , (5.10)

Yf → Yf0 = µ
ǫ
2Yf for f ∈ {u, d, ν, e} . (5.11)

Here, µ is an arbitrary energy scale, called the renormalization scale, and the sub-
script “0” denotes the bare quantities which have mass dimensions, while the cou-
plings without this subscript denote the renormalized couplings. These relations
between the bare and renormalized couplings are only the lowest order results, while
loop corrections will modify the relations to include the renormalization constants.
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Continuing the example, by Wick rotating and using standard formulae [8], the
scalar self-energy can then be calculated as

iΣφ = µǫ
λ

2

∫

ddk

(2π)4
1

k2 −m2 + iǫ

= −i
λ

32π2
(4π)

ǫ
2 Γ
(

−1 +
ǫ

2

)

m2

(

µ2

m2

)
ǫ
2

= i
λ

32π2
m2

[

2

ǫ
+ log

µ2

m2
+ log 4π + 1 − γE + O(ǫ)

]

,

(5.12)

where the expression in the middle line has been expanded in ǫ to yield the last
line, and γE ≃ −0.5572 is Euler’s constant. It is now clear in which way the integral
diverges in the limit ǫ → 0, and how the introduction of the scale µ ensures that
the argument of the logarithm is dimensionless.

After having regularized a loop diagram, it is time for the step of renormaliza-
tion. In general, loop corrections to two-point functions, as the one in the example,
yield corrections to the corresponding field’s mass and wave function normaliza-
tion. If the corresponding correction is divergent in the limit ǫ → 0, the mass
and wave function renormalizations also have to be divergent in this limit, leaving
the renormalized masses and fields finite. Loop corrections to higher-order corre-
lation functions require renormalization of the corresponding coupling constants.
For example, a loop diagram with four external scalars requires renormalization of
the coupling constant λ0, yielding the renormalized coupling. There are in general
a number of ways of renormalizing a QFT, the main groups of renormalization
schemes being the mass-dependent and mass-independent schemes, meaning that
the counterterms introduced to cancel the divergences are dependent and indepen-
dent of the mass parameters of the theory, respectively.

The renormalized parameters are the ones one should relate to experiments,
although they are not observables in the strict sense. For example, in perturbation
theory, predictions for observables are expansions in the renormalized couplings,
which are functions of the renormalization scale. Fixing a renormalization scale
(usually of the order of the relevant energy in the process), the values of the cou-
pling constants at that renormalization scale can be inferred from the experimental
data. Note that the exact result for a physical observable should be independent of
the renormalization scale (and more generally, the renormalization scheme), while
individual terms in the perturbation expansion are not necessarily so. Thus, by
choosing the renormalization scheme and scale wisely, i.e., in a way that the effec-
tive expansion parameter becomes small, one can optimize the expansion.

Writing m0 for the bare mass of our example scalar field, the corrected mass
squared will be m2

0 − Σφ.
1 Defining the counterterm δm2 by m2

0 ≡ m2 + δm2, the
corrected propagator and the renormalized mass m will be finite if δm2 is made

1In general, there will be a wave function renormalization as well, but in this example there is
no need for this.
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to diverge in such a way so that it cancels the divergence of Σφ exactly. There
are different ways of accomplishing this, corresponding to different renormalization
schemes, but the most widely used is the Minimal Subtraction (MS) scheme, or its
modified version MS. In MS, only the poles in ǫ are subtracted.2 In our example,
one takes

δm2 =
λ

16π2
m2 1

ǫ
. (5.13)

Now, by noting that all the bare parameters are independent of the renormalization
scale µ, one can from Eq. (5.9) calculate that

µ
dλ

dµ
= −ǫλ, (5.14)

and hence

µ
dm2

dµ
=

λ

16π2
m2, (5.15)

and so the renormalized mass depends on the renormalization scale. Note that m2

is renormalized multiplicatively, implying that if m = 0 at tree level, it will remain
so after quantum effects are considered.

The above statement is generally true for fermion fields, but not for scalar fields.
This is because the fermion mass terms generally break chiral symmetry, implying
that it is natural to have them small, since the symmetry of the theory is then
increased by setting the masses to zero. This is usually not the case for scalar
masses, and so, using dimensional regularization, the quantum corrections to the
SM Higgs mass are in general proportional to the mass of any particle running
in the loop (but not to a high-energy cutoff scale). This phenomenon is often
called the hierarchy problem, since it is argued that in order to obtain the small
value of the Higgs mass observed at low energies, a large degree of “fine-tuning”
is necessary. As an example, in the type I seesaw model there are corrections to
the Higgs mass proportional to the Majorana masses of the right-handed neutrinos,
which are generally much larger than the electroweak scale. Thus, it is not natural
to have the SM Higgs mass at the electroweak scale. However, in the (unbroken)
SM, where there are no right-handed neutrinos, all fermions are massless, and thus
all quantum corrections to the Higgs mass are proportional to the mass itself, and
thus smaller than the tree-level mass.3

The hierarchy problem is thus not really a problem in the SM, but rather a
potential problem of high-energy extensions of the SM, in which particles with
masses far above the electroweak scale appear. In these theories, obtaining a Higgs
mass at the electroweak scale can involve fine-tuning between different parameters.
See Ref. [133] for a recent discussion. This fine-tuning problem can be avoided if,

2In MS, also the constant term ln 4π−γE is subtracted, generally leading to a better convergence
of the perturbation series.

3This is true even if one considers the broken SM with massive fermions, since all fermions
have masses at the electroweak scale or below.
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for example, there are additional symmetries in the high-energy theory protecting
the Higgs mass, or if the Higgs is a composite particle.

5.2 Renormalization group running of neutrino

parameters in seesaw models

The example in the previous chapter can be generalized to more complicated the-
ories, such as the SM and the seesaw models. The resulting renormalization group
equations (RGEs) describe the dependence of the renormalized parameters on the
renormalization scale µ, and constitute a system of coupled ordinary differential
equations, one for each parameter. In mass-independent renormalization schemes,
the RGEs have the general form

µ
dPi
dµ

≡ βi (P1, . . . , Pn) , (5.16)

where Pi (i = 1, . . . , n) are the n parameters of the theory and the beta functions
βi do not depend explicitly on µ. The RGEs for the type I, type II, and type III
seesaw models with both the SM and the minimal supersymmetric standard model
(MSSM)4 as underlying theories have been derived in the literature [137–143]. In
this chapter, mainly the RGEs of the type I seesaw model will be discussed. They
can be found in Appendix A, both for the extended SM and MSSM. The RGEs of
both the SM and the inverse seesaw model can be obtained as special cases of the
ones for the type I seesaw model.

Although it can be interesting to study the running of the gauge couplings and
quark masses (or, rather, the quark Yukawa couplings), we are here mainly inter-
ested in is the RG evolution of the parameters in the lepton sector of the SM, and
more specifically, the light neutrino masses and the lepton mixing parameters. In
the case of the parameters outside the lepton sector of the SM, the RG running is
usually studied because of the need to reconcile experimental measurements at dif-
ferent energies, which without any running would not be compatible. For example,
this is the case for the electromagnetic coupling constant. However, this is not the
case in the lepton sector, since the current experimental uncertainties are generally
much larger than the running effects, and because the lepton parameters have only
been measured at relatively low energies so far. Instead, the reason to study them is
that theoretical predictions of models beyond the SM, such as grand unified theories
(GUTs), are valid at some high-energy scale, while experimental data are taken at
low energies. Therefore, one has to take into account the running of the parameters
between the high-energy (GUT) and low-energy (experimental) scales in order to
compare the experimental results with the theoretical predictions. Extensions of
the SM sometimes predict specific mixing patterns in the lepton sector, i.e., specific

4The MSSM is a extensively studied extension of the SM, where every SM particle has an
additional partner having spin differing by one half. See, for example, Refs. [134–136] for reviews.



5.2. Renormalization group running of neutrino parameters in seesaw models 45

values for the lepton mixing matrix. Two such common symmetric mixing patters
are the bimaximal mixing pattern [144–147] with s12 = s23 = 1/

√
2 and s13 = 0

[see Eq. (2.50)] and the tri-bimaximal mixing pattern [148–150] with s12 = 1/
√

3,
s23 = 1/

√
2, and s13 = 0.

The RGE evolution of the neutrino masses and lepton mixing parameters can
be determined through the evolution of the effective light neutrino mass matrix (in
the effective or full theories) and the charged lepton Yukawa matrix, see Sec. 2.7.1.
Often, the RG running is calculated numerically, after which the neutrino masses
and lepton mixing parameters are determined by diagonalizing the mass matrices.
However, one can also translate the full RGEs for the neutrino mass matrix into
a system of differential equations for mixing angles, CP-violating phases, and light
neutrino masses directly. The corresponding formulas have been discussed below
the seesaw scale [151–153], as well as above the seesaw thresholds in the type I
[154, 155], type II [141, 142], and type III [143] seesaw frameworks. Note that the
usual diagonality assumption made on Ye is not in general invariant under the
RG running, and neither is the parametrization of the lepton mixing matrix in
Eq. (2.50), which generally includes three additional unphysical phases which have
to be rotated away in order to determine the physical mixing parameters.

There are two different strategies for solving the RGEs. In the top-down ap-
proach, the initial conditions on the parameters are specified at a certain high-
energy scale, often motivated by the flavor structure of a specific high-energy model.
Once this is done, the running down to low energies and crossing the seesaw thresh-
olds is relatively straightforward. In this approach, the main issue is the fact that
only small regions of the parameter space of the full theory will lead to values of
the low-energy parameters that are consistent with experiments, and this makes
this approach difficult to implement in practice. In the bottom-up approach, on the
other hand, the initial conditions on the parameters are specified at a low-energy
scale, usually the electroweak scale. Hence, all the available experimental informa-
tion is taken into account from the start. However, after running to higher energy
scales, one reaches the seesaw threshold, where one has to match the effective and
full theories. Then, since the number of parameters in the full theory is larger than
in the effective one, one has to make additional assumptions on the parameters and
flavor structure of the full theory.

The general features of the running of the lepton parameters have been stud-
ied in the literature, and it has been shown that there could be large radiative
corrections to the lepton mixing parameters at very high energy scales (see, e.g.,
Ref. [156] and references therein). In particular, certain flavor symmetric mixing
patterns can be achieved at the GUT scale indicating that there might exist some
flavor symmetries similar to the gauge symmetry (see, e.g., Ref. [157] and references
therein).
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5.3 Decoupling of right-handed neutrinos and

threshold effects

The description using effective field theory plays an essential role in the study of the
RG running of QFT parameters. The Appelquist–Carazzone theorem [158] states
that the effect of heavy particles decouples at energies much smaller than their
masses, and that they do not contribute to the beta functions at low energies.
This can be seen explicitly if one uses a mass-dependent renormalization scheme,
such as momentum space subtraction. However, this does not happen if one uses
a mass-independent renormalization scheme, such as MS, since the beta functions
are independent of masses. Generally, in perturbative calculations, one will obtain
finite contributions to observables on the form

log
E2

µ2
,

which is the reason why one generally should take µ ≃ E to minimize the effects of
higher-order terms. However, one can also have potentially large logarithms,

log
M2

µ2
,

where M is the mass of the heavy particle [26]. If M ≫ E, these terms might
destroy the perturbation expansion. In order to implement the decoupling in mass-
independent schemes, one decouples the heavy particles “by hand” by integrating
them out at the matching scale µ ≃M , and describing the RG running for µ < M
using the effective theory.

This holds in general for all particles, and in particular for the ones in the
SM, but here we will concentrate on the heavy neutrinos, which are assumed to
have masses above the electroweak scale. In the previous discussion of the seesaw
models, only the different regions of energy E < MR and E > MR were considered.
However, the three right-handed neutrinos do in general not have the same masses,
i.e., the masses can be non-degenerate. In that case, the heavy neutrinos have to
be sequentially decoupled from the theory [159], leading to a series of effective field
theories. Once again, it is worth pointing out that perturbative renormalization of
effective operators can be performed in the usual way, as long as one is satisfied
with a finite accuracy and works to a given order in E/Λ.

When crossing the seesaw thresholds, one should make sure that the full and
effective theories give identical predictions for physical quantities at low-energy
scales, and therefore, the physical parameters of both theories have to be related to
each other. In the case of the neutrino mass matrix, this means relations between
the effective coupling matrix κ and the parameters Yν and MR of the full theory.
This is called matching the full and effective theories. For the simplest case, when
the mass spectrum of the heavy singlets is degenerate, namely M1 = M2 = M3 =
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M0, one can simply make use of the tree-level matching condition at the scale
µ = M0,

κ
∣

∣

M0

= YνM
−1
R Y Tν

∣

∣

M0

. (5.17)

In the most general case with non-degenerate heavy singlets, i.e., M1 < M2 <
M3, the situation becomes more complicated. For µ between Mn and Mn−1, the
heavy mass eigenstates

{

νnR . . . ν
3
R

}

are integrated out. In this effective theory, only

a 3×(n−1) sub-matrix of Yν remains, denoted by Y
(n)
ν , as well as an (n−1)×(n−1)

submatrix of MR, denoted by M
(n)
R . The decoupling of the n-th heavy singlet leads

to the appearance of an effective dimension-five operator through the tree-level
matching condition at µ = Mn,

κ(n)
∣

∣

Mn
= κ(n+1)

∣

∣

Mn
+

Y(n)
ν Y(n)T

ν

Mn

∣

∣

Mn
, for n = 1, 2, 3, (5.18)

where Y(n)
ν is the n-th column of Yν (i.e., the part which has been removed from

Yν), and it is understood that κ(4) = 0 is the effective operator in the full theory and
κ(1) = κ is the effective operator with all the heavy fields decoupled. In between
these scales, all the parameters are to be run using their respective RGEs. Note
that the matching has to be done in a basis where the right-handed mass matrix is
diagonal, since it is the eigenstate with a specific mass which is to be decoupled.

The renormalized effective neutrino Majorana mass matrix for µ below Mn is
described by two parts as

m(n)
ν = v2

[

κ(n) + Y (n)
ν

(

M
(n)
R

)−1

Y (n)T
ν

]

, (5.19)

where (n) labels the quantities relevant for the effective theory between the n-th
and (n−1)-th thresholds. Both of these contributions run with the renormalization
scale µ, and the running can be determined from Eqs. (A.1g), (A.1h), and (A.1j).
As it turns out, the flavor non-diagonal parts of the running are the same in both
the SM and the MSSM. However, the RGEs for the two terms have different flavor
diagonal contributions, but only in the SM and not in the MSSM. In particular,
the coefficients for the gauge coupling and Higgs self-coupling contributions are
different. The flavor diagonal parts are ακ and 2αν , respectively, and they differ as

ακ − 2αν = λ+
9

10
g2
1 +

3

2
g2
2 in the SM, (5.20)

ακ − 2αµ = 0 in the MSSM. (5.21)

Thus, the running of the two different parts contributing to the effective neutrino
mass matrix in Eq. (5.19) has different gauge and Higgs self-coupling contribu-
tions. Since these couplings are in general rather large, there can be potentially
large running of the lepton mixing angles due to this “mismatch” between the two
contributions. These effects are usually referred to as threshold effects.
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Figure 5.2. Feynman diagrams of the one-loop corrections to the neutrino mass
matrix due to the Higgs self coupling in the effective theory (left) and in the full
theory (right). Here, p and q are the external momenta and k is the loop momentum.

As an example to visualize where this difference comes from, consider the cor-
rections to the four-point functions relevant to the neutrino mass matrix from the
Higgs self-coupling in Fig. 5.2. In the effective theory (left diagram), there is a
contribution involving the loop integral

∫

d4k

(2π)4
1

k2 −m2

1

(k − p− q)2 −m2
,

which is divergent, while the loop integral appearing in the full theory (right dia-
gram) is given by

∫

d4k

(2π)4
/k +Mn

k2 −M2
n

1

(k + p)2 −m2

1

(q − k)2 −m2

and is not divergent. Therefore, there are no corrections proportional to λ to the
neutrino mass matrix in the full theory, while λ does enter the beta function of κ
in the effective theory. See also Ref. [154] for a detailed discussion. If the relevant
seesaw threshold is above the SUSY-breaking scale, such a mismatch is absent in
the MSSM due to the supersymmetric structure of the MSSM Higgs and gauge
sectors. Therefore, this may result in significant RG running effects only in the
SM, but not in the MSSM.

In paper II of this thesis [2], the threshold effects on the RG running of the
neutrino parameters in the type I seesaw model have been studied, while in paper I
[1], the general RG running of the neutrino parameters in the inverse seesaw model
has been investigated, including threshold effects.



Chapter 6

Statistical methods

As discussed in the introduction, science progresses through experimentation, ob-
servation, and measuring properties of the Universe around us, and then comparing
the results with those predicted by theoretical models. However, no experiment is
perfect. Instead, there are always uncertainties and noise which can make it dif-
ficult to compare the obtained experimental results with model predictions. This
is essentially the standard case at the frontiers of physics, where one is looking for
small signals or effects not previously observed. In this case, one needs to analyze
the data while trying to model the present uncertainties.

There are different opinions on the usefulness of more sophisticated modelling
and statistical analyses. One common viewpoint is that there is no point worrying
about fine details since there will anyway in the close future be more sensitive
data that will definitely find an effect if it is there, and in any case render the
current experiment obsolete. Particle physics, in particular, has arguably for a long
time been “spoiled” with having a constant and rapid improvement of experimental
technology. However, particle physics experiments are constantly becoming more
and more complex and expensive, and also the time between each generation of
experiment tends to increase. The canonical example is of course the LHC, but
also proposed future colliders as well as neutrino-related experiments are becoming
more expensive, while offering less radical improvements over previous generations
of experiments. Hence, there are many situations where there might be a long time
until there will be significantly better data, and in the mean time one should try
to do the best with the existing data. Additionally, as a theorist, it is desirable to
have a good understanding of statistics, since a very common error among theorists
is to put too much emphasis on small deviations in data without any real statistical
significance.1

1However, for theorists, the potential benefit of being first to describe some feature in the data
in terms of a new particle or other physical processes might be very much larger than the potential
loss (as wasted time) associated with investigating a model. Hence, it can be logical to look for a

49



50 Chapter 6. Statistical methods

A physical model with free parameters generally leads to predictions of experi-
mental outcomes as a function of those parameters. Here, we will only be concerned
with parametric inference, in which one models the data using some parametrized
probability distribution. Non-parametric inference is also possible, where one aims
at making inference without assuming a particular model for the data. An example
of this is estimating the probability distribution of some quantity by only using the
observed values – a simple histogram is an example.

6.1 Probability

The field of statistics and data analysis rely heavily on the use of probabilities of
different kinds of events and propositions. However, what is meant by “probability”
and how it should be defined is not uniquely settled, and this can often cause severe
confusion when attempting to perform even simple tasks of data analysis. On the
contrary, there are two main interpretations of the concept of probability.

In the frequentist interpretation, probability describes “randomness” and is de-
fined as the limit of the relative frequency of an event in a large number of repeated
trials. For example, if a die is tossed many times and the fraction of a certain
outcome (say “4”) converges to a certain number p as it is tossed more and more
times, then the probability of that outcome is p. In the Bayesian interpretation,
probability describes uncertainty and is more generally defined as a quantification
of the plausibility (or credibility, or degree-of-belief ) of a proposition. This is more
general since probability can be defined for essentially any proposition, not only
those related to repeatable phenomena. There is not much point in arguing which
definition is “correct” (as for all definitions), and they could both be internally
consistent. Instead, the key issue is which definition is more useful or appropriate,
and allows one to investigate the actual questions of interest.

Adopting a notation suited for the Bayesian interpretation2, we will write Pr(A|I)
for “the probability of A, given that I is true”. A means “not A”, while A,B means
“A and B”.

Although the preferred interpretation of probability has long been debated,
and still is, what is meant by probability in a mathematical sense is rather well-
established. Basically, probabilities are real numbers between 0 and 1 which con-
form to the rules

Pr(A,B|I) = Pr(A|B, I) Pr(B|I) (6.1)

Pr(A|I) + Pr(A|I) = 1, (6.2)

often called the product rule and sum rule, respectively. The first of these rules
makes it possible to derive how the probabilities change when changing the ordering

possible cause of some potential anomaly in the data even when the plausibility that a new effect
actually has been found is very small.

2Frequentist probabilities can be obtained as special cases.
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of the conditioning: this is Bayes’ theorem

Pr(A|B, I) =
Pr(B|A, I) Pr(A|I)

Pr(B|I) . (6.3)

This relation is very useful when it is applied to the case where B represents a set
of collected data and A a statistical model describing how the data is generated.
This will be discussed in detail in the rest of this chapter.

If a number of propositions {B1, . . . , Bn} are mutually exclusive (i.e., only one
of them can be true) and exhaustive (i.e., one of them must be true), then

n
∑

i=1

Pr(Bi|I) = 1, (6.4)

i.e., the total probability must sum to unity. Furthermore, one can show that

Pr(A|I) =

n
∑

i=1

Pr(A,Bi|I) =

n
∑

i=1

Pr(A|Bi, I) Pr(Bi|I). (6.5)

This relation is very useful when one wants to calculate the probability of A but
does not care about the probabilities of the Bi’s. When we later study Bayesian
inference, this will be useful as this allows one to effectively eliminate nuisance
parameters, i.e., parameters of no immediate interest, when comparing different
statistical hypotheses.

That frequentist probabilities, i.e., long-term relative frequencies, should follow
the rules of Eqs. (6.1) and (6.2) should be relatively clear. But why should the
more general concept of the plausibility of a proposition be given by a probability,
i.e., why should plausibilities follow the mathematical laws of probability theory?

One of the most convincing arguments was originally pointed out by Cox [160]
and beautifully described by Jaynes [161]. If one assumes a small set of reasonable
desiderata which any measure of plausibility should have, these are enough to com-
pletely specify a theory for inference that is equivalent to probability theory. These
desiderata can be summarized as follows. First, one should be able to compare all
plausibilities, which means they can be represented by real numbers. Second, they
should qualitatively agree with common sense. As an example, this can mean that
if, after having learned some new information, the plausibility of A increases, but
that of B is unaffected, then the plausibility of (A and B) must increase. Finally,
one demands consistency, so that, among other things, different ways of calculating
plausibilities must give the same answer. From these desiderata it is essentially
possible to show that the plausibilities must satisfy the “axioms” of probability
theory.3

3Technically, there are an infinite number of real consistent representations of plausibility, but
any such can always be monotonously transformed to probabilities. As put by Loredo [162]: “Every
allowed plausibility theory is isomorphic to probability theory. The various allowed plausibility
theories may differ in form from probability theory, but not in content.”
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The above desiderata only refers to plausibilities of propositions, but not to
frequencies, ensembles, repeated experiments, or random variables. Also, deductive
logic (i.e., deducing true statements from other true statements) is a limiting case in
which “0” represents falsehood and “1” represents truth. Hence, Bayesian inference
can be viewed as the extension of logic to situations in which there is uncertainty,
and then also the unique such extension satisfying the basic consistency conditions
outlined above.

There also exists a motivation for Bayesian probability using the notion of the
coherent bet of de Finetti. Roughly speaking, this means that one should assign and
manipulate probabilities so that one cannot be made a sure loser in a bet based on
them. However, to base inference in terms of optimizing financial gain seems rather
non-scientific. For comparison with other systems of probability, such as that of de
Finetti and the set-theoretic one of Kolmogorov, see Ref. [161].

In the next sections, the application of Bayesian probability to the analysis of
data and inference over physical models and their parameters will be discussed.
Then, we will often have “probability distributions of parameters” (and hypothe-
ses). As an example, say we know that the value of the physical parameter Θ

must either equal Θ0 or Θ1. Then, we have Bayesian probabilities Pr(“Θ = Θ0”)
and Pr(“Θ = Θ1”) of the respective propositions. In order to make the notation
more concise, we will denote these by Pr(Θ0) and Pr(Θ1), but keep in mind that
these are not probabilities that a parameter will take on a certain value per se (as
it would be if one would naively apply the frequentist notion of probability). It
is the probability that is distributed over the space of different hypotheses (and
parameter values), but the hypothesis (or the parameter) is not distributed and is
not “random”. Each parameter has a single “true” value (or at least we can assume
it has), and we want to infer that value. However, since we do not know this value
exactly, we must describe this uncertainty by spreading the probability over the set
of all possible values.

In this chapter we will concentrate heavily on different applications using Bayesian
probabilities, and only have a shorter discussion on the most common non-Bayesian
methods in Sec. 6.6.

6.2 Bayesian inference

Perhaps the main goal of science is to infer which model or hypothesis best de-
scribes a certain set of collected data. Also, as mentioned in the introduction, these
models should preferably be “simple” or “economical” in some sense. If one accepts
the Bayesian interpretation of probability, a very powerful arsenal of inference tools
become available. In a nutshell, the idea is to use the laws of probability to cal-
culate the probabilities (i.e., plausibilities) of different hypotheses or models, when
conditioned on some known (or presumed) information.

If the collected data is denoted by D and the set of possible hypotheses or models
is H1, H2, . . . , Hr, the Bayesian solution is to use Bayes’ theorem to calculate the
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plausibilities of each of the hypotheses after considering the data, the posterior
probabilities,

Pr(Hi|D) =
Pr(D|Hi) Pr(Hi)

Pr(D)
. (6.6)

Here Pr(D|Hi) is the probability of the data, assuming the model Hi to be true,
while Pr(Hi) is the prior probability of Hi, which is how plausible Hi is before
considering the data. The ratios of posterior probabilities, the posterior odds, of
two models then directly follow as

Pr(Hi|D)

Pr(Hj |D)
=

Pr(D|Hi)

Pr(D|Hj)

Pr(Hi)

Pr(Hj)
. (6.7)

In words, the posterior odds is given by the prior odds Pr(Hi)/Pr(Hj) multiplied
by the Bayes factor Bij = Pr(D|Hi)/Pr(D|Hj), which quantifies how much better
Hi describes that data than Hj . The prior odds quantifies how much more plausible
one model is than the other a priori, i.e., without considering the data. If there
is no reason to favor one of the models over the other, the prior odds should be
taken to equal unity (in which case the posterior odds equals the Bayes factor), but
sometimes one must consider this point more carefully.

If one works under the assumption that precisely one of the considered models
is correct, then it follows that Pr(D) =

∑r
j=1 Pr(D|Hj) Pr(Hj), and hence the

posterior probabilities can be calculated as

Pr(Hi|D) =
Pr(D|Hi) Pr(Hi)

∑r
j=1 Pr(D|Hj) Pr(Hj)

=
1

1 +
∑

j 6=i
Zj

Zi

Pr(Hj)
Pr(Hi)

. (6.8)

If the model H is simple, i.e., has no free parameters, then Pr(D|H) is simply
the probability (density) of the data D when H is assumed to be true and is the
likelihood of that model. However, a model often does not uniquely specify its
predictions, which instead depend on a number of free parameters Θ of the model.
These can either be allowed to take on a discrete or continuous set of values, with the
latter being more common. For continuous parameters, one makes the replacement
Pr(Θ) → Pr(Θ)dNΘ, where now Pr stands for a probability density and N is the
number of parameters. In the usual manner, sums in equations such as Eq. (6.5)
become integrals, and, since under the assumption that H is the correct model
one of the hypotheses labeled by values of model parameters must be correct, one
obtains that the evidence of the model H is given by

Z ≡ Pr(D|H) =

∫

Pr(D,Θ|H)dNΘ =

∫

Pr(D|Θ, H) Pr(Θ|H)dNΘ

=

∫

L(Θ)π(Θ)dNΘ. (6.9)

Here, the likelihood function Pr(D|Θ, H) is the probability (density) of the data
as a function of the assumed free parameters, which we often denote by L(Θ) for
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simplicity. The quantity Pr(Θ|H) is the prior probability (density) of the parame-
ters and is often denoted by π(Θ). The prior should reflect how plausible different
values of the parameters are, assuming the model to be correct, but not taking
into account the data. It should always be normalized, i.e., integrate to unity.
The assignment of priors are probably the most discussed and controversial part of
Bayesian inference. This assignment is often far from trivial, but a very important
part of any Bayesian analysis. This point will be discussed further in Sec. 6.3.
Since, according to Eq. (6.9), the evidence is the likelihood marginalized over all
the parameters, it is often called the marginal likelihood, and since Pr(D|H) is the
probability of the observed data assuming the model H , it can also be called the
model likelihood.

This method of comparing models presented here is usually called model se-
lection, although model comparison or model inference might be more accurate
descriptions in the case that no model is actually selected. This is often compared
and contrasted with the Bayesian method of estimating parameters of a fixed model,
which will be described later. Although the practical methods and techniques can
be rather different in these two levels, they are both simply applications of the laws
of probability to perform inference, and there is no real fundamental difference
between them.

From Eq. (6.9), we note that the evidence is the average of the likelihood over
the prior, and hence this method automatically implements a form of Occam’s
razor, since usually a “simpler”4 theory with a smaller parameter space will have
a larger evidence than a more complicated one, unless the latter can fit the data
substantially better. Usually, the data D used in Bayes’ theorem to obtain the
posterior inference is fixed to the value actually observed in experiments, but one
can also consider Pr(D|H) as a function of D. Then, Pr(D|H) is the probability
with which the model predicted D, and it is normalized to unity as long as the
likelihood is correctly normalized. Since it is this probability evaluated at the data
that has been observed that enters into the model comparison, a model is judged on
how well the model as a whole predicted the data that subsequently was observed.
The different predictions for a simple and more complex model is illustrated in
Fig. 6.1.

This is rather different from standard methods used in particle physics (see
Sec. 6.6) which mostly focuses on whether a model prohibits, or is incompatible
with, the observed data. As one could expect, this can lead to overly complex
models being preferred over simpler ones, since these will by construction be com-
patible with a large variety of data. At the same time, these models make very
vague predictions, and hence are disfavoured from a Bayesian viewpoint. The total
probability of the predicted data is always unity, and a more complex model has to
spread this probability more “thinly” over the data space. It is only if the observed
data is sufficiently incompatible with all other simpler and more predictive models
that the more complex one is favoured.

4See Ref. [161] for further discussion on the notion of “simple” models.
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Figure 6.1. The predictions in data space of a simple and a more complex model.
The Bayes factor of the two models is the ratio of the values of the respective
probability distributions at the observed value of the data. Depending on which
value is observed (exemplified by the dashed lines), either of the two models can be
favoured by the data.

If a model is extended by additional parameters which are not constrained by
the data, this will not lead to a smaller evidence, but instead leave the evidence
unaffected. More generally, additional unconstrained parameter combinations are
not disfavoured. This is an important point which is often misunderstood.5

The probabilities of the different hypotheses give the complete posterior infer-
ence on the space of models, and, as probabilities, these have a somewhat unique
and meaningful interpretation on their own. In any case, Bayes factors, or rather
posterior odds, are usually interpreted or “translated” into ordinary language us-
ing the so-called Jeffreys scale, given in Tab. 6.1 (“log” is the natural logarithm).
This has been used in applications such as Refs. [166–170], although slightly more
aggressive scales have been used previously [171,172].

We also note that inference is never performed in complete isolation of any back-
ground information. Relevant such information could be details of the experimental
setup, the structure of the theoretical models, the physical meaning of the free pa-
rameters, and previous measurements. All probabilities are always conditioned on
this information, so that Pr(X |I) should really be written instead of Pr(X). For

5See, e.g., Ref. [163] (and rebuttal [164]) and Ref. [165] for particularly incorrect and misguided
arguments against model comparison.
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| log(odds)| odds Pr(H1|D) Interpretation
< 1.0 . 3 : 1 . 0.75 Inconclusive
1.0 ≃ 3 : 1 ≃ 0.75 Weak evidence
2.5 ≃ 12 : 1 ≃ 0.92 Moderate evidence
5.0 ≃ 150 : 1 ≃ 0.993 Strong evidence

Table 6.1. Jeffrey’s scale often used for the interpretation of model odds. The
posterior model probabilities for the preferred model H1 are calculated by assuming
only two competing hypotheses.

simplicity, we will use the shorter notation, but it is good to keep this condition-
ing in mind, since forgetting it can lead to apparent paradoxes when comparing
probabilities with different background information [161].

Another advantage of the Bayesian approach is the possibility to take into ac-
count information which has not been obtained in the form of data. An important
example is the case when the predictions of a model are uncertain, i.e., not possi-
ble to calculate exactly. These theoretical uncertainties can often by described as
uncertainties in a set of additional parameters, and this uncertainty can then con-
sistently be taken into account by averaging (integrating) over these parameters. In
practice, this is done by adding these additional parameters to the parameter space,
and using the external information on these parameters to assign priors to them.
A relevant example is that of the nuclear matrix elements in Sec. 3.3, which have
rather large theoretical uncertainties. That these uncertainties can be averaged
over in a Bayesian analysis was exploited in paper V of this thesis [5].

The application in particle physics of Bayesian methods in general, and model
comparison in particular, has been rather limited. Examples of the latter are anal-
yses of supersymmetric models [169, 170], of real or simulated spectra in specific
experiments [173–176], and of bottom quark decays [177].

6.2.1 Parameter inference

If one assumes a particular parmetrized model to be correct, the complete inference
of the parameters of that model is given by the posterior distribution through Bayes’
theorem

Pr(Θ|D, H) =
Pr(D|Θ, H) Pr(Θ|H)

Pr(D|H)
=

L(Θ)π(Θ)

Z . (6.10)

We see that the evidence, which appeared previously as a “likelihood” in the nu-
merator, here appears as a normalization constant in the denominator. Since the
evidence does not depend on the values of the parameters Θ, it is usually ignored in
parameter estimation problems and the parameter inference is obtained using the
unnormalized posterior. However, one can wonder how interesting the posterior of
the parameters of a model assumed to be valid is if one has no information if this
model is preferred by the data or not. The posterior distribution of the parameters
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is only really relevant if the model does not have a very small posterior probability,
since otherwise the model as a whole is strongly disfavored. In practice, this means
that one should first calculate the evidences and posterior odds and only then, for
the models with not to small evidences, calculate the posterior distribution.

In fact, if more than one model has a significant probability, it might be better
to consider the distributions of parameters not assuming the model with maximum
probability to be correct, but instead take into account the model uncertainty,
giving the model-averaged posterior distribution [172,178]

Pr(η|D) =
r
∑

i=1

Pr(η|Hi,D) Pr(Hi|D), (6.11)

which is the average of the individual distributions over the space of models, with
weights equal to the posterior model probabilities. This can be done for both the
prior and posterior distributions, but obviously the parameters η, which could be
derived, need to be well-defined in all the models. The posterior in Eq. (6.10) is
obtained by setting all prior model probabilities except one to zero.

Often, one wants to reduce the information contained in the full posterior in
order to obtain the constraints on a subset of the parameters. From probability
theory, we know that the probability density of any subset η of the parameters
Θ = (η, ρ) is obtained by integrating over the remaining parameters ρ, fully taking
into account their uncertainties, as

Pr(η|X) =

∫

Pr(η, ρ|X)dρ. (6.12)

This can be generalized to obtain the probability density of any (unique) function
of the parameters K = F (Θ) as

Pr(K|X) =

∫

Pr(K|Θ, X) Pr(Θ|X)dNΘ =

∫

δ(K − F (Θ)) Pr(Θ|X)dNΘ.

(6.13)
Although this might look like a daunting integral, if one has access to samples from
Pr(Θ|X), one can easily find the total probability in an interval of K by simply
binning the samples.

The main result of Bayesian parameter inference is the posterior and its marginal-
ized versions (usually in one or two dimensions). However, it is also common to
give point estimates such as the posterior mode, mean, or median, as well as credi-
ble intervals (regions), which are defined as intervals (regions) containing a certain
amount of posterior probability. However, these regions are not unique without
further restrictions, and in general they contain very little of the information that
the full distribution contains.

Note that the posterior distributions of the parameters do not depend on the
overall scale of the likelihood, since when rescaling the likelihood by a fixed con-
stant, the evidence scales accordingly. The same holds true for the Bayes factors
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and posterior model probabilities, since the ratio of evidences in Eq. (6.7) is also
independent of the likelihood normalization.

6.3 Priors and sensitivity

The laws of probability dictate how the plausibilities of different propositions are
related and can be manipulated; they provide a “grammar” for inference. However,
in order to have something to manipulate, one has to give inputs by specifying
or assigning probabilities. For normal inference, this is given by the probabilities
Pr(D|Θ, H), the “sampling distribution”, as well the prior π(Θ), and potentially
model priors as well.

Bayesian inference is subjective in the sense that the plausibility of different
hypotheses depend on the prior information available. Furthermore, to represent
this plausibility by a unique mathematical function can in many cases be difficult.
Hence, instead of seeking a unique “right” prior for a given problem, one should
evaluate how robust the posterior inference is when different sets of reasonable
priors are assigned. Such a sensitivity analysis can then determine if the resulting
inference depends severely on a particular choice of prior. In general, if the “correct”
model (or a good approximation thereof) is in the considered set of models, one
expects that model to be strongly preferred, independent of any (not unreasonable)
prior assumptions, once enough data as been collected and analyzed. But how much
is “enough”? An attempt to answer this question (which is difficult with standard
methods) can be made by performing a sensitivity analysis and checking if the
posterior inferences are robust to changes in the prior.

Of particular importance is that continuous prior and posterior probability den-
sities, in order to keep the total probability invariant, transform under a change of
variables Θ → Ω = Ω(Θ) by multiplication by the Jacobian determinant, i.e., as

Pr(Ω) = Pr (Θ)

∣

∣

∣

∣

∂Θ

∂Ω

∣

∣

∣

∣

. (6.14)

Hence, a prior uniform in one parameter will not be so in a nonlinear function of
it, and thus the specification of a prior is essentially equivalent to the specification
of a variable in which the prior is uniform.

In practice, the posterior of the parameters within a given model becomes insen-
sitive to the details of their priors relatively fast, while the evidence is well-known
for being more sensitive to the choice of prior distribution. In particular, if the prior
is altered so that more or less prior probability is put in the region of negligible like-
lihood, but the details of the prior in the high-likelihood region remains the same,
the posterior distribution will be practically unchanged, while the evidence, being
the average of the likelihood under the prior, can change substantially. This is the
reason why sometimes choosing a very broad (or an improper, as an extreme case)
prior can sometimes lead to complete failure. This can create difficulties when one
considers abstract problems without any connections to the real world, but in real
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physics problems one has additional information in the form of the properties of
the physical models one is examining, making it possible to assign meaningful and
sensible priors in most cases. Evaluating the dependence of Bayes factors on the
priors of the parameters is hence even more important than checking the sensitivity
of the posterior distributions.6

6.3.1 Symmetries

Although, most of the time, assigning a prior probability distribution basically
amounts to use the information at hand to simply pick a “reasonable” distribution,
in some cases one can use mathematical and theoretical arguments to constrain the
form of the prior [161,180–182].

One way to do this is to look at the structure of the parameter space itself and
find relevant symmetries which can constrain the form of the prior. The simplest
case would be if one would have n discrete possible values for a quantity, and no
information with which one could distinguish between them. Then, the problem
will be invariant under permutations of these possibilities, and the only probability
assignment consistent with this invariance would be the uniform one, pi = 1/n for
each possibility.

The above argument can be generalized to continuous parameters. If the in-
formation we have of a particular problem is invariant under shifts µ → µ + a of
a parameter µ for all a ∈ R, then the only distribution consistent with this in-
variance is the uniform prior in µ, while for a scale parameter σ > 0, invariance
under σ → ρσ for all ρ > 0, implies a prior uniform in log σ. These priors can be
identified as corresponding to the Haar measures on the groups (R,+) and (R+, ·),
respectively. The problem with these priors is that they are improper, i.e., not
normalizable, which can be traced back to the fact that the problem was assumed
to be invariant under arbitrary transformations of the parameters. In most realistic
problems, such invariances are not expected to be exact, since we usually have at
least some vague idea of which parameter values are most plausible. However, if
the symmetry is a good approximation in some region of parameter space, one can
still use the approximate symmetry to motivate a certain form for the prior in that
region.

These arguments can be generalized to any case where the parameter space
can be identified with a group, in which case the Haar measure on that group is
defined as the measure which is invariant under the action of all group elements,
i.e., µ(aS) = µ(S) (left Haar measure) or µ(Sa) = µ(S) (right Haar measure) for
subsets S ⊂ G and elements a ∈ G. If G is either compact or commutative, the left
and right Haar measures coincide.

These arguments actually have relevance to neutrino physics, something which
is worth discussing in some more detail. Since the set of all possible neutrino mass

6One can either perform this for a small set of prior choices, or even better, to plot the Bayes
factor as a function of the additional (hyper-)parameters specifying the prior as in, e.g., Ref. [179].
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matrices (Dirac or Majorana) do not form a group, they do not have Haar measures.
However, the mass matrix Mν is always diagonalized by unitary transformations as
in Eq. (2.48) (or similar to Eq. (2.41) for Dirac neutrinos). One then demands that
the measure over the neutrino mass matrix elements must not depend on which
basis the matrix is defined in, i.e., for Majorana neutrinos one demands invariance
of the measure under Mν → VMνV

T ,7 for V ∈ U(3) (or SO(3) for real matrices).8

This is achieved if the measure over Mν contains the measure over U which is
invariant under unitary or orthogonal rotations U → V U , i.e., it contains the left
Haar measure on U(3) (or SO(3)) (which equal the right due to compactness). The
total measure on Mν is still not determined, but it can be written as a product of
the measure over the neutrino masses and the Haar measure of the mixing matrix.
In a sense, the 6-dimensional symmetry of the neutrino mass matrix has fixed the
measure on six of the independent parameters (the mixing angles and phases) and
there remains only an invariant but otherwise arbitrary measure on the eigenvalues.

However, if one in addition demands that all the elements of the mass matrix
should be independent, these remaining degrees of freedom disappear, and the
allowed measure becomes unique. It becomes a Gaussian [185]

π(Mν) ∝ exp

(

−Tr(MνM†
ν)

2m2
0

)

(6.15)

for some arbitrary mass scale m0. This can be seen as a generalization of the so-
called Herschel-Maxwell derivation of the Gaussian distribution for the case of a
U(1) symmetry: If two quantities x and y are independent and their distribution

only depends on the “radius”
√

x2 + y2, then that distribution must be a Gaussian
with some undetermined width.

Although the above arguments leading to a unique measure on the neutrino
mixing parameters have been known for more than a decade [183], it has not been
realized that the use of Haar measures is a well-known technique for constraining
prior distributions in the statistics literature. Hence, the proper meaning of such a
measure on the neutrino mass matrix as a Bayesian prior probability distribution
have not been pointed out. Instead, these distributions were mostly though of as
frequentist sampling distributions in some way.9 However, such an interpretation
makes no sense since the mixing parameters, as all other parameters, have fixed
values (assuming the model is correct), and are not random (see also Sec. 6.1).10

7For the case of Dirac neturinos and further discussion, see Refs. [183,184] for further discussion.
8This can of course be generalized to an arbitrary number n of neutrino species.
9See, for example, Refs. [183, 184, 186, 187].

10One could conjecture that we live in one “sample” out a large number of universes, which all
have different physical parameters generated according to some distribution, but the testability
of such a hypothesis is rather questionable.



6.3. Priors and sensitivity 61

6.3.2 Maximum entropy

Sometimes there is information available that is relevant and one would like to
use to constrain the prior distribution, but this information is not in the form
of data, and hence cannot be used to construct a likelihood. As an example,
say we want to assign probabilities to the six possible outcomes of the next roll
of a die, and we are told nothing but the fact that the average outcome in a
large number of rolls is, say, 4. This information is testable in the sense that
for any given probability distribution over the different outcomes, one can always
determine if the distribution is consistent with the information. However, there
might be many distributions which are consistent with the given information, so
the question is which one should be preferred. In our example, assigning probability
1 to obtaining a 4 in the next roll (and zero to all other outcomes) is consistent
with the information, but is rather unreasonable since it excludes possible outcomes
without any reason.

The assignment which should be made is the one which is consistent with the
given information but imposes no other, which is the distribution which contains
the least amount of information or the most entropy [161, 162, 181], which for n
discrete possibilities is given by

H = −
n
∑

i=1

pi log pi. (6.16)

For a continuous variable, the naive replacement of the sum by an integral is prob-
lematic, so one must introduce an additional density m(Θ), which can be taken as
the probability distribution before taking into account the additional information,
and use the entropy

H = −
∫

p(Θ) log

(

p(Θ)

m(Θ)

)

dNΘ. (6.17)

The negative of this quantity is commonly known as the Kullback-Leibler divergence
between the distributions m and p and is a measure of the information gained when
updating m to p. If data is used to update the prior to the posterior distribution,
the Kullback-Leibler divergence between these measures the information contained
in the data, which can be interesting on its own.

Often, the information one wants to consider is in the form of constraints on
n expectations Gi =

∫

p(Θ)gi(Θ)dNΘ, to which the solution can be found using
variational methods as p(Θ) = m(Θ) exp (

∑

λigi(Θ)) /Z(λ1, · · · , λn), with Z and
all the λ’s to be determined using the constraints. If there are no constraints in
addition to normalization, p(Θ) = m(Θ).

Important special cases include those with a broad, roughly uniform m. For
a positive quantity with a fixed mean, the maximum entropy distribution is an
exponential distribution. For a real-valued quantity with fixed mean and variance,
a Gaussian distribution is obtained. However, not all classes of distributions contain
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a maximum entropy distribution, such as the distributions on the real numbers with
only a specified mean.

6.4 Combining and comparing data

When analyzing experimental results one often wants to combine data from different
sources in order to obtain the total constraints on the models and their parameters.
Often, the different data sets can be assumed to be statistically independent once
a complete set of parameters that specify the individual distributions are given. If
the full set of data is given by D = (D1, D2, . . . , Dn), the likelihood becomes

L(Θ) = Pr(D|Θ, H) =

n
∏

i=1

Pr(Di|Θ, H) =

n
∏

i=1

Li(Θ). (6.18)

It is important to remember that the individual distributions multiply only when
they are conditioned on all the parameters needed to fully specify all the distri-
butions. If some of the parameters are marginalized over or eliminated in some
way, the likelihoods do not generally multiply. In particular, for the evidence when
using two independent data sets, Pr(D1, D2|H) 6= Pr(D1|H) Pr(D2|H), and so
Pr(D1|D2, H) depends on D2 in general.

Now, the usual path of inference would use the combination of data to infer
which models can best describe the data, and which values the parameters of those
models are most likely to have. It can also be useful to perform some sort of checks
of the individual models, i.e., evaluating the general compatibility of the data with
the model at hand without performing rigorous inference by comparing it with
other models. This will be discussed further in Sec. 6.6

Another important method is to check if the parameter constraints from different
data sets are consistent within a particular model. In fact, this can be thought of as
checking if the different data sets can be described by a single (unknown) value of
the parameters, or if they require different values. In a Bayesian context, this can be
formulated as a model comparison problem [188], originally applied to cosmological
models. In particle physics, it has been applied in [5, 169,189].

We have a full set of data given by D = (Dtest, Dbkg), where we want to test if
Dtest = (D1, D2, . . . , Dn), with n ≥ 2, gives consistent constraints on the parame-
ters of a model H . The quantity Dbkg is a set of possible “background data” that
we do not want to check the consistency of, but take as given. It can be thought
of as being included in the background information and acts like a prior constraint
on the model parameters. Then consider the different assumptions

C: The data Dtest all give consistent parameter constraints (within H), given
the background data Dbkg. Hence, all the data can be described by a single
set of parameters (of H).
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C: The data Dtest are inconsistent and hence lead to different regions of pa-
rameter space being preferred, i.e., (D1, D2, . . . , Dn) need different sets of
parameters to describe the data.

The posterior odds of C and C (with implicit conditioning on H) is then given by

Pr(C|Dtest, Dbkg)

Pr(C|Dtest, Dbkg)
=

Pr(Dtest|Dbkg, C)

Pr(Dtest|Dbkg, C)

Pr(C|Dbkg)

Pr(C|Dbkg)
=

Pr(Dtest|Dbkg, C)

Pr(Dtest|Dbkg, C)

Pr(C)

Pr(C)
,

(6.19)
where the last step follows from the fact that Pr(C|Dbkg)/Pr(C|Dbkg) equals
Pr(C)/Pr(C), since the probability that Dtest is consistent should not change
without considering it. From this also follows that Pr(Dbkg|C) = Pr(Dbkg|C) =
Pr(Dbkg). The calculable part of Eq. (6.19) is the Bayes factor

R =
Pr(Dtest|Dbkg, C)

Pr(Dtest|Dbkg, C)
=

Pr(Dtest|Dbkg)
∏n
i=1 Pr(Di|Dbkg)

, (6.20)

where the last step follows from the way that the hypotheses C and C were defined,
i.e., the data in Dtest can be described by the same parameters under C, but need
different sets under C. These evidences are given by the integrals of the likelihood
over the “prior” Pr(Θ|Dbkg) as in

Pr(Dtest|Dbkg) =

∫

Pr(Dtest|Θ) Pr(Θ|Dbkg)d
NΘ, (6.21)

and similarly for the other evidences. The conditioning on Dbkg can be dropped in
the likelihood since the probability distribution of the data Dtest does not depend
on Dbkg if all the free parameters Θ are fixed. If there is no background data, one
of course simply uses the “original” priors in the evidence integrals.

These integrals can however be difficult to perform unless Pr(Θ|Dbkg) has a
simple form. In this case one can use that Eq. (6.20) equals

R =
Pr(Dtest, Dbkg)
∏n
i=1 Pr(Di, Dbkg)

Pr(Dbkg)
n−1. (6.22)

These evidences are the ones evaluated using the original priors, but now also
including the background data in the likelihood.

After having derived the expressions for the Bayes factor in Eqs. (6.20) and
(6.22) it is useful see what happens when it is applied on simple problems where it
is known what the “correct” result should be. This has been done on both simple
and more advanced toy problems in Refs. [169, 188, 189] for the case n = 2, i.e.,
considering only two data sets. Some simple analytical limiting cases can be con-
structed by letting D1 and D2 result in likelihoods L1(Θ) and L2(Θ), respectively.
If one of the likelihoods (say L2) is constant, and hence give no information on the
parameter values, one should obtain R = 1, since in this case there is only one
actual measurement and hence one cannot say anything about the consistency of
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the data sets. This is indeed what Eq. (6.22) reduces to. As a second example,
consider the case when the second data set determines the model parameters ex-
actly, L2(Θ) = δ(Θ − Θ0). In this case the consistency test should be equivalent
to testing if the first data set favors Θ = Θ0 or the more complex model with
prior π(Θ) (or Pr(Θ|Dbkg) if background data is included). Indeed, one finds that
R = Pr(D1|Θ0)/Pr(D1|H,Dbkg) = L1(Θ0)/

∫

L1(Θ)π(Θ|Dbkg)d
NΘ.

Finally, we note that one can also combine the data sets into a single likelihood,
but keep open the possibility of an error in the modelling of the data, such as
biases or incorrectly estimated uncertainties. As a general approach not requiring
any detailed knowledge of what might be wrong with the data sets [190], one can
introduce a set of additional parameters α1, . . . , αn in the form of weights of the
individual likelihoods, so that the factors Pr(Di|Θ, H) in the likelihood are replaced
by

Pr(Di|Θ, αi, H) =
Pr(Di|Θ, αi = 1, H)αi

Zi(Θ, αi)
, (6.23)

where Zi(Θ, αi) are required normalization factors. Hence, for αi = 1 the data set
is included in the usual way and for αi = 0 it is completely excluded. One can
then let the data determine whether the inclusion of these weights are necessary by
comparing the model where all weights equal one (the standard case) to the model
where the weights are free (through the Bayesian evidence, as usual). If the data
sets are sufficiently discordant, the model with nonunitary weights will be preferred.
Once the full posterior has been marginalized down to the physical parameters, it
will in this case often be multimodal, with each mode corresponding to the region
preferred by one of the data sets. If the sets are compatible, the model with
unitary weights will be favored and one will obtain the regular inference, without
the risk of having increased uncertainty on the parameter values originating from
the additional freedom in the extra parameters.

6.5 Numerical methods and approximations

To calculate the posterior distribution, and in particular the evidence, is not in
general an easy task. In realistic problems, the parameter spaces often have high
dimensionalities and the likelihoods are often significantly non-zero only in a very
small region of the parameter space. Furthermore, likelihoods can often be quite
complicated functions, having multiple modes or strong degeneracies, confining the
posterior to thin sheets in the parameter space.

The simplest approach to obtaining the evidence and the posterior is to use a
grid in the parameter space on which one evaluates the likelihood and the prior.
However, this become impractical even for problems with quite a small number of
dimensions since the number of points required to produce a dense enough grid
grows exponentially with the dimensionality. This could be improved upon using
deterministic but adaptive methods, but also those will fail for all but the simplest
problems.
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To overcome this curse of dimensionality, the usual method is to use Monte
Carlo methods which rely on using random numbers to obtain the desired numerical
results. For parameter estimation, the standard choice has long been Markov-
Chain Monte Carlo (MCMC), in particular in the form of the Metropolis-Hastings
algorithm [191, 192], to obtain a set of samples from the posterior. Although it
usually works quite well in cases where the likelihood is rather “well-behaved”, it
can have difficulties when the likelihood is not so simple. In addition, it does not
give a straightforward estimate of the evidence.

To calculate the evidence, the most naive Monte Carlo approach is to simply
draw randomly from the prior distribution and then calculate the average of the
likelihoods of those samples. However, if there is only a small volume of the pa-
rameter space in which the likelihood is large, none or a very small number of
the sampled points will fall into the high-likelihood region, leading to a very bad
evidence estimate. If one has access to samples from the posterior, one could use
the harmonic mean of the likelihoods of those samples to form an estimate [172],
since Z−1 =

∫

Z−1π(Θ)dNΘ =
∫

L(Θ)−1P (Θ)dNΘ. However, this method is
notoriously unreliable since the estimate becomes dominated by rare low-likelihood
points in the tails of the distribution, and the estimate generally has very large (or
even infinite) variance.

In order to evaluate the evidence one must instead in some way utilize a dis-
tribution in between the two extremes above (i.e., the prior and the posterior),
so that one can cover the whole of parameter space, but at the same time get
adequate exploration of the peak of the posterior. The canonical way to do this,
called thermodynamic integration, is to obtain MCMC samples from a range of
distributions proportional to L(Θ)λπ(Θ), for different values of the inverse tem-
perature λ. Defining Z(λ) ≡

∫

L(Θ)λπ(Θ)dNΘ, the evidence evaluation reduces
to a one-dimensional integral

logZ =

∫ 1

0

d logZ(λ)

dλ
dλ =

∫ 1

0

〈logL〉λ dλ, (6.24)

where 〈·〉λ denotes the average over the posterior at inverse temperature λ, i.e.,
over the distribution proportional to L(Θ)λπ(Θ). This average can be calculated
using standard methods, such as MCMC, but it still has the previously discussed
difficulties for complex likelihood functions.

Nested sampling [193, 194] is another method which relies on sampling over a
range of nested distributions proportional to π(Θ)I(L(Θ) > L′), where I is the
indicator function and L′ starts of at zero and increases until it is close to the
maximum of the likelihood. Define the remaining prior volume as a function of the
value of the likelihood as

X(L′) =

∫

L(Θ)>L′

π(Θ)dNΘ (6.25)
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and let the inverse of this function be L(X). Then the evidence can be written as

Z =

∫ 1

0

L(X)dX. (6.26)

This one-dimensional integral can be computed as long as L(X) can be found,
which is accomplished by first drawing Nlive live points from the prior π(Θ). At
each subsequent iteration i, the point with the smallest likelihood, Li, is discarded
and replaced by a new point drawn from the prior subject to the constraint that
the likelihood exceeds Li, i.e., from the distribution π(Θ)I(L(Θ) > Li)/X(Li).
This process, generating likelihoods Li = L(Xi), is then continued until the peak
of the likelihood is reached, and the Li’s are then used to estimate the integral in
Eq. (6.26). The dominating uncertainty of the evidence estimate comes not from
the discretization or truncation of the integral, but instead from the fact that the
Xi’s are not known precisely. However, since their distributions are known, this
uncertainty can be folded into the uncertainty of the evidence.

The main difficulty with constructing an efficient and general nested sampling
algorithm is to enable efficient sampling from the constrained distribution, and to be
able to do this for as general likelihood functions as possible. The most widely used
such algorithm is MultiNest [195,196] which accomplishes this by utilizing the set
of live point to perform an estimate of the iso-likelihood surface as a set of possibly
overlapping ellipsoids, from which sampling is straightforward. The number of
ellipsoids used is optimized, allowing for them to follow strong curving degeneracies
and isolate many independent modes, while at the same time only requiring a small
number of ellipsoids for simple problems. Compared to thermodynamic integration
it is in practical applications often more efficient (i.e., requiring fewer likelihood
evaluations). This is especially true for difficult problems, where even estimating
the posterior, a generally easier task, can be very difficult with other methods. Also,
thermodynamic integration will fail completely if logL is not a concave function of
logX , which can happen in realistic problems [168,193,194].

Another approach for evaluating integrals (and generating samples from a dis-
tribution) is importance sampling, which is based on that for any distribution Q(Θ)

∫

L(Θ)π(Θ)dNΘ =

∫ L(Θ)π(Θ)

Q(Θ)
Q(Θ)dNΘ. (6.27)

Hence, the evidence can be accurately estimated if one can find a distribution Q
for which samples can be obtained, π(Θ)/Q(Θ) is calculable, and Q has “fat” tails
enabling the whole prior volume to be sampled, but at the same time is highly
peaked so that the full high-likelihood region is adequately explored. Now, for
an algorithm based on importance sampling to be generally useful, allowing for
its widespread use, the user should not need to specify a Q, but the algorithm
should be able to automatically determine a suitableQ given the likelihood function.
One way to accomplish this would be to use for Q a mixture density Q(Θ) =

M−1
∑M
i=1 fi(Θ)/Zi, where the Zi’s are individual normalization constants and
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each subsequent component fi is chosen to be more concentrated around the peak
of the likelihood then the previous ones. For example, both fi(Θ) = L(Θ)λiπ(Θ)
and fi(Θ) = π(Θ)I(L(Θ) > Li) could be used, but this would require normalization
constants Z(λi) and X(Li), respectively, which are not known but would have to
be estimated in the process.

Recently, the MultiNest algorithm was extended to perform importance sam-
pling in parallel to nested sampling by using for each mixture component fi a
uniform density within the ellipsoidal decomposition at each iteration [197], for
which the normalization constants are basically known. This allows for taking into
account the information content present in all the points discarded in the nested
sampling estimate, and is seen to give even more accurate evidence estimates in
realistic problems. A slight complication, however, is that the ellipsoidal decompo-
sitions, as well as the number of samples taken from each such decomposition, are
random variables too and depend not only on the likelihood but also on the specific
set of points previously sampled (hence yielding dependent samples). This leads to
an additional (but ideally negligible) contribution to the variance of the evidence
estimate. See Ref. [197, 198] (and references therein) for further discussion on the
similarities and differences between different methods of evidence evaluation.

We also note that with most methods, once the evidence has been estimated,
samples from posterior distribution follow with no or very little additional work.11

The Bayes factor between a model H1 and its restriction H0 specified by fixing
a subset of the parameters η = η0 is (under some weak assumptions on the form of
the prior) possible to calculate using only the marginalized posterior of η in H1. It
is given by the Savage-Dickey density ratio

Pr(D|H0)

Pr(D|H1)
=

Pr(η0|D, H1)

Pr(η0|H1)
, (6.28)

and so the data favours η = η0 if the data increases the density under the extended
model at that point (and disfavors η = η0 if the density decreases), which makes
sense. The ratio is also manifestly invariant under arbitrary transformations of η.
Also, this once again points out that one needs both the prior as well as posterior
distribution to compare such nested models, and that the absolute values of the
posterior density, as well as the ratios of the posterior at different values of η
(such as η0 and the maximum) are irrelevant. This representation can be useful
since it only requires normalization of a low-dimensional distribution (that of η),
regardless of the total dimensionalities of the parameter spaces, which can often be
done numerically. A limitation is that it only works when comparing nested models
and that numerical estimates can be quite noisy if there are few samples near η0.
See, e.g., Ref. [199] for further discussion of the Savage-Dickey density ratio and
the related measure-theoretic paradox.

11If one has calculated the normalization constant of the posterior distribution, it is plausible
that one has enough information to be able to obtain samples from it.
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The evidence can be obtained analytically if one approximates L(Θ)π(Θ) by

a Gaussian. Expand log(L(Θ)π(Θ)) around the maximum Θ̂, and denote the
covariance matrix (inverse of the negative Hessian) by Σ. Then

Z ≃ (2π)N/2 det(Σ)1/2L(Θ̂)π(Θ̂). (6.29)

Here one can also see the compensating effects of higher likelihoods giving a higher
evidence and increased “surprise” or “fine-tuning” entering through the covariance
matrix and prior. The main limitation of this approximation is, obviously, that
it only works for posteriors which are close to Gaussian. Although this might
sometimes be a good approximation, often it will not.

There are also various information criteria, motivated either by Bayesian or in-
formation theory, designed to take into account goodness of fit and model complex-
ity when comparing models [200]. In particular, the Bayesian Information Criterion
(BIC) is an asymptotic approximation of the evidence, which is generally rather
easily computed from only the maximum likelihood, and also does not explicitly de-
pend on any prior. However, when the data is only moderately constraining (which
is the case we are interested in, since otherwise we do not need any statistics in the
first place) they do not generally approximate the evidence well at all, and so the
evidence remains the preferred quantity for comparing models.

6.6 Frequentist methods

As noted previously, frequentist probability describes “randomness” and is based
on a more restrictive notion as a relative frequency of an event in a large number
of repeated trials. This interpretation, and the statistical methods associated with
it, is dominating practical data analysis in the field of particle physics. Since we
have already studied Bayesian methods in some detail, in this section I will make
frequent comparisons with the Bayesian methods we have encountered so far in
order to highlight their rather significant differences. Also, I will not be going into
much details about the different methods, but rather try to describe the main ideas
behind them.

In the frequentist approach, one is not allowed to speak about probabilities of
hypotheses or propositions, so one must choose a different approach of evaluating
different models. Since one still has probabilities of the data assuming a certain
model with any free parameters fixed to be correct, there is no problem with cal-
culating the likelihood, Pr(D|H). However, this probability by itself says nothing
about the validity of the model, and that probability can be arbitrarily small (even
dimensionfull) even if the observed data is a typical model prediction, or even the
most probable outcome. Relative probabilities Pr(D|H1)/Pr(D|H2) of simple hy-
potheses are special cases of Bayes factors also defined in a frequentist sense, but
it cannot be converted into posterior odds or probabilities. In principle, one could
attempt to compare models using only the value of the likelihood ratio, but the
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question is then what one should do if the models have free parameters, and on
what scale the likelihood ratio should be interpreted.

The main idea behind the frequentist approach is instead to compare the data
that was observed with data which could have been observed or what is expected
to be observed if one would repeat the experiment many times. If one constructs
some function of the data, called a test statistic, T = T (D), and assume the truth
of some hypothesis, T will take on different values under repetitions of an identical
experiment, and hence it has a probability distribution in a frequentist sense. The
hypothesis is then to be assessed by comparing the observed value of the statistic
with the long-run distribution expected in hypothetical repetitions of the experi-
ment. Although the choice of statistic and method of comparison is not unique,
there are a few classes of statistics which are commonly used and known to often
perform good in practice. One of them, the profile likelihood, will be discussed
later. The remaining question is then how to compare the observed value of T with
its expected distribution, and how to use this comparison to asses the model in
question.

6.6.1 Hypothesis tests

When testing statistical models, there are two rather different approaches which
in practice tend to get somewhat mixed up. The first is often called hypothesis
testing (and often associated with J. Neyman and E. Pearson) and proposes that
one should test a null hypothesis H0 not in isolation, but against an alternative H1

(similarly to Bayesian methods).
Construct a statistic T so that large values of T correspond to data which are

“unexpected” under H0. The test then consists of a decision problem: reject H0 if
T ≥ c, where c is a pre-specified number. Then, one calculates and reports the type-
1 and type-2 error probabilities α ≡ Pr(reject H0|H0) and β ≡ Pr(accept H0|H1).
The justification for this method is that if the same procedure is repeated on a large
number of identical experiments, the fraction of times an error is made is given by
α and β, respectively. One of its main drawbacks is that one can only report a
pre-determined α regardless of the actual observed data. This necessarily discards
almost all the information contained in the data and makes it difficult to figure out
what the data actually implies (apart from the hypothesis being rejected or not).
In principle, one could calculate the Bayes factor using only “H0 is rejected” as
data, which would be α/(1 − β). However, this is not very useful since the “real”
Bayes factor using all the data is generally very different. Another complication is
that usually the alternative hypothesis (as well as the null) has free parameters, in
which case β as function of those parameters must be determined, but reporting
this can be impractical.

Due to the above drawbacks, this method is rarely applied in particle physics
when testing pre-determined null hypotheses. Using a pre-specified α is, however,
common when deriving upper limits on the strength of a possible signal and when
constructing confidence intervals for a free parameter. In these cases, it is instead
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the limits and intervals which vary with the data. When estimating parameters of a
fixed model the most common method is to give the values of the parameters which
maximize the likelihood as a point estimate. In order to estimate the uncertainty of
this estimate, one can try to estimate its variance, or more commonly to calculate
confidence intervals. These intervals are constructed in order to include the true
value of the parameter a fraction 1 − α of repeated experiments, and hence can
be constructed by including all values which are not rejected at the level α. Since
the construction of confidence intervals is not unique12 there can often be large
differences in the resulting confidence intervals. Near physical boundaries of the
parameter space (where much of particle physics takes place) this can even result
in no physical values of the parameters being included in the confidence interval
due to downward fluctuations of the background. Although one can choose test
statistics to prevent this from happening [201,202], it remains that one can obtain
very different results by choosing a slightly different (but still reasonable) method.
Hence, although the intervals are constructed to include the true value in a large
fraction of an ensemble of repeated experiments, a specific interval using the data
that was actually observed can contain essentially no information about the under-
lying models. In these situations it is extremely important for the experimental
collaborations to report enough additional information allowing others to as accu-
rately as possible recover the information contained in the data. This is, however,
unfortunately not always done.

6.6.2 P-values

The most common test when looking for new physical processes and testing pre-
specified hypotheses is instead significance testing (often associated with R. Fisher).
The idea is that one should not be forced to compare a null hypothesis H0 against
a specific alternative, but one should be able to test the compatibility with the data
of H0 alone.

Constructing a test statistic T as above, one would calculate the p-value defined
as a tail probability p = Pr(T ≥ Tobs|H0), which is the probability of obtaining a
test statistic equal or larger than the value calculated for the observed data, Tobs,
in a large number of repeated experiments, assuming H0. The idea is then that
the p-value would indicate the “strength of evidence” against H0. A small p-value
would lead us to doubt the validity of H0, but a large one would not give evidence
in favour of H0. Compared to Neyman-Pearson hypothesis testing, this has the
clear advantage that the reported strength of evidence actually varies with the
data (similar to Bayesian methods), but it also has several drawbacks.

12As mentioned earlier, Bayesian credible intervals are not unique either, but these are far
from the main output of the inference, and rather derived quantities containing very little of the
information contained in the full posterior. Many particle physicists feel for some reason that an
experiment must be completely summarized by a few numbers such as an interval, upper limit,
or best-fit point, and that these might even be the main results of an experiment.
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The motivation for using the probability of data more extreme than the observed
data to evaluate a hypothesis is not clear, and it is well-known that interpreting
the p-value as a posterior probability or an error rate severely overestimates the
evidence against H0. This can be partly understood by the fact the one essentially
replaces the data D = Dobs not with the value of the test statistic, T = Tobs, but
with T ≥ Tobs. Since in all the data sets where this is true are more extreme than the
actual observed data, it is not strange that one finds overly strong evidence against
H0.

13 Another possibility is the case when a large number of tests are performed
on a null hypothesis, but the number of cases where it could be false cannot be very
many.14 As a consequence, most of the null hypotheses which are tested with the
result being a “small” p-value (say, p ≃ 0.01) are in practice actually correct. Of
course, physicists have realized this by trial and error a long time ago, and so are
demanding much smaller p-values before claiming a discovery. But how should we
then interpret p-values? When is a p-value “small” and when is it “very small”? We
have a well-defined quantity which does not depend on considering any alternative
model nor needs any priors to be specified. Instead (or rather because of this),
there is a large uncertainty in its interpretation. The current consensus, within
particle physics at least, is that any p larger than 0.01 is not significant evidence,
while p = 10−4 is significant, and p = 10−6 can be considered “strong” evidence
somehow. In order to reflect this, it is common to translate p-values into a “number
of σ’s” by relating it to the standard normal distribution, S = φ−1(1 − p), with
φ−1 being the inverse of the standard normal cumulative distribution function. The
value S ≃ 5 (p ≃ 10−7−10−6) has become the norm in particle physics for claiming
a “discovery”, meaning a definite rejection of the background-only hypothesis, while
S less then roughly 2.5 does not constitute any real evidence.

Having a universal interpretation of the p-value for all situations does of course
not seem reasonable from a Bayesian point of view, in which one should also consider
the nature of the alternatives one is comparing with. This fact, in particular when
a “small” p-value is found for a null hypothesis simultaneously as a probabilistic
analysis shows that the null is actually preferred over the alternatives, is often
called Lindley’s paradox.15 However, even for Bayesians it can still be useful to use
p-values (and also Bayesian extensions exist [203]) for model checking (as opposed
to full probabilistic inference). In particular, there is the possibility that the correct
model is not in the set of considered ones, and in this case even the most preferred
model can be a bad description of the data, giving a small p-value. In this case one
should consider extending the scope of the considered models. Finally, we note that
Jeffreys [171] has made a rather famous comment on using p-values for testing: “A

13In principle, one could attempt to calculate the posterior (but only when considering an
alternative model, as always) Pr(H0|T ≥ Tobs) ≤ Pr(H0|T = Tobs) which would presumably also
exaggerate the evidence against H0.

14Consider only the numerous searches of new particles at the LHC, where each search has a
very small probability of actually being sensitive to the signal of a new particle.

15See, for example, Ref. [167] for further discussion.



72 Chapter 6. Statistical methods

hypothesis that may be true may be rejected because it has not predicted observable
results that have not occurred.”

6.6.3 Profile likelihood ratio

We have so far not discussed how to choose the test statistic. In practice, choosing
a test statistic of which you know the distribution precisely is only possible in
very simple cases. In more realistic cases, one is forced to use statistics whose
distributions are only approximately known, leading to the test also only being
approximate. A very commonly used statistic is based on the profile likelihood
ratio. If one wants to test the hypothesis that the data is generated by a model
with some free parameters ρ, one then considers an extension of that model with
additional parameters η so that the original model is obtained for η = η0.

16 Then
one calculates

Q2(D) ≡ −2 log
supρ L(η0, ρ)

supη,ρ L(η, ρ)
= −2 log

L(η0, ˆ̂ρ(η0))

L(η̂, ρ̂)
, (6.30)

where “sup” denotes the supremum, a single hat denotes the parameters which
maximize the likelihood, and a double hat indicates the conditional maximum for
fixed η0. A good thing about this statistic is that large values of the test statistic
(which should give evidence against the hypothesis) correspond to cases when there
is a considered hypothesis which can fit the data substantially better than the model
being tested.

Under the assumption that the hypothesis is correct, then in the large sample
limit Q2 (often denoted by ∆χ2) will have a χ2-distribution with number of degrees
of freedom equal to the dimensionality of η. This result is known as Wilks’ theo-
rem [204]. However, there are a number of conditions which need to be satisfied
for this to hold [205]. One could of course go through the mathematical details,
but the main idea is that Q2 becomes χ2-distributed when the distribution of the
maximum likelihood estimates, (η̂, ρ̂), of the parameters becomes a multivariate
normal distribution. This means that it holds in general only “asymptotically”,
i.e., when the amount of data is “large”, and only when the parameters are “far”
from their limits.17 Furthermore, the sensitivity to some of the parameters cannot
disappear when η = η0 (they cannot be unidentifiable), since then normality of the
maximum likelihood estimates can then never be achieved for any amount of data.
In particle physics, it is common to search for a signal of new physics in a spectrum
by looking for an excess (or a deficit) of events on top of a background. This means
that the above conditions are not met: the amount of data (number of events) can
often be quite small, and if the signal has an unknown position and/or shape, these
additional parameters are unidentifiable under the background-only hypothesis. In

16There are generally many different such extensions.
17If η0 is on the edge of the parameter space, this can be corrected for by using a mixture of

χ2-distributions.
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these cases, the only generally reliable method to approximate the distribution of
Q2 is using Monte Carlo generation of simulated data. If one requires accurate
estimates of very small tail probabilities, this can require quite some computational
effort.

6.6.4 Mixing up probabilities

It should be clear that the posterior probability Pr(H0|D), the p-value, and the
type-1 error rate α are all probabilities, but are otherwise not really related, and
there is no way in which one can calculate any one of them from the others without
further information. However, when a p-value is reported, this does often not stop
scientists, and even more so journalists, to automatically convert the p-value into
an error rate, or even more commonly a posterior probability, with potentially
severe consequences. For recent examples of misreporting in the media, see, for
example, the discussion in Ref. [206]. If the public receives constant reports in the
media that the probability that scientists have discovered some new physics is large,
say larger than 99%, but almost all these claims turn out to be false, who could
blame anyone who becomes sceptic towards scientists and science, and perhaps
becomes reluctant to fund science? Understanding statistics matters! Basically,
the error occurs because humans naturally think about how plausible or probable
different propositions are, but are ill-equipped for understanding p-values. What
can happen is that an article reports that the probability that a discovery has
been made is almost 1, but also that physicists are far from convinced that they
actually have discovered something, two positions which of course are inconsistent.
It is rather ironic that only using the frequentist notion of probability in order to
be “objective” can actually make physicists appear not only very subjective, but
completely illogical. It should be noted that also serious physicists mix up p-values,
error rates, and posterior probabilities in publications, see Refs. [207,208] for recent
examples – only on the topic of neutrino oscillations.

Finally, we give in Fig. 6.2 an example illustrating how conclusions using Bayesian
and frequentist methods can widely disagree.
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Figure 6.2. An illustration of the different conclusions which can be obtained using
Bayesian and frequentist methods. http://www.xkcd.com/1132/, May 23 2013.



Chapter 7

Summary and conclusions

Part I of this thesis has dealt with the theoretical background relevant for the sci-
entific papers presented in Part II of the thesis. The standard model of particle
physics has been briefly discussed, and emphasis has been put on the topics of
neutrino masses and lepton mixing, and how the resulting effects can be tested in
experiments. We have discussed seesaw models, in particular the canonical type
I and inverse seesaw models, and also the concepts of renormalization and renor-
malization group (RG) running. Different aspects of statistical inference and the
associated methods have been reviewed. In Part II of the thesis, five scientific
papers is presented, which investigate the models and use the techniques intro-
duced in Part I. All the papers presented in Part II of this thesis are fundamentally
motivated by the observation of neutrino oscillations, implying that neutrinos are
massive and lepton flavors mixed.

In paper I [1], we have studied some very specific aspects, namely the RG run-
ning of the lepton parameters, of the inverse seesaw model, which is a high-energy
model capable of accommodating neutrino masses. We have derived analytical for-
mulas, describing the running of the neutrino parameters above the seesaw threshold
in the SM and the MSSM. Also, a detailed numerical study of the RG running has
been carried out. Because of the potentially large Yukawa couplings, significant
running of the lepton mixing angles can be obtained. The running of the lepton
mixing angles, in particular of θ12, can be large if the mass spectrum of the light
neutrinos is nearly degenerate. In addition, the effects of the seesaw thresholds are
discussed. Some phenomenologically and theoretically interesting lepton mixing
patterns, the bimaximal and tri-bimaximal patterns, can be achieved at a high-
energy scale once the RG running is taken into account. Finally, the RG evolution
of the light neutrino masses and of the CP-violating phases have been studied.

In paper II [2], the RG running of the neutrino parameters in a different seesaw
model, the low-scale type I seesaw model with non-degenerate heavy neutrinos,
has been investigated. We have shown that significant radiative corrections can be
obtained at low energies, and for a short distance of RG running, as a result of
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threshold effects. Analytical formulas for the RG corrections to the neutrino pa-
rameters in crossing the seesaw thresholds have been presented, indicating that the
mismatch between different contributions to the mass matrix of the light neutrinos
can lead to large corrections to the lepton mixing matrix. A numerical example has
also been given to show that, in the presence of low-scale right-handed neutrinos,
the bi-maximal mixing pattern at the TeV scale is fully compatible with the current
measurements lepton mixing angles.

Massive neutrinos are the only known fermions capable of being Majorana parti-
cles, i.e., their own antiparticles, and the Majorana nature of neutrinos is intimately
connected to their masses. Neutrinos being Majorana particles is equivalent to the
existence of neutrinoless double beta decay, a decay which is also closely related
to neutrino masses. There are, however, also other possible sources of neutrino-
less double beta decay, which need to be compared with and disentangled from a
pure neutrino-mediated decay. In paper III [3], we have investigated the possible
future bounds on the strength of different short-range contributions to neutrinoless
double beta decay. These bounds depend on the outcome of ongoing and planned
experiments related to neutrino masses. Three scenarios, A, B, and C, are studied,
corresponding to different combinations of experimental results. For two of the
scenarios, we have determined the bounds on the coefficients ǫi of each point-like
operator that could contribute to the decay, will for the remaining scenario, we
obtain non-zero estimates.

The neutrino oscillations observed until recently correspond to the dominant
effective two-flavor oscillation modes, driven by two mass-squared differences and
two relatively large mixing angles, while the third angle, θ13, was allowed by the
data to vanish. Although the evidence for a non-zero value of the mixing angle θ13
was one of the most discussed topics in neutrino physics for a number of years, there
had been no discussion on the standard Bayesian method to evaluate this. Reference
[209] looked at the Bayesian constraints on θ13, but used none of the recent data.
More importantly, it only considered the constraints assuming θ13 was non-zero,
and hence did not attempt to test whether it was non-zero or not. In paper IV [4],
I described how to apply Bayesian model comparison to neutrino oscillation data,
considering the evidence of a non-zero θ13 and the related question of whether there
is evidence for CP-violation in neutrino oscillations. An interesting observation is
that if no particular symmetry of the effective neutrino mass matrix is assumed,
the invariance under basis redefinitions essentially fixes the prior distributions of
the mixing parameters, making the Bayesian analysis unusually robust with minor
prior dependence. It could be worth noting that the definite observation of a non-
zero θ13 by Daya Bay was published while I was in the last stages of finishing the
paper – without this data the evidence for a non-zero θ13 is much less significant.
The analysis could and should be extended to compare maximal θ23 with θ23 in
the two different octants, compare the different mass orderings, and use a more
accurate likelihood.

Paper V [5] also deals with neutrinoless double beta decay. I performed a
Bayesian global fit of the most relevant neutrinoless double beta decay experiments
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within the standard model with massive Majorana neutrinos. A Bayesian analysis
makes it possible to include the theoretical uncertainties on the nuclear matrix
elements in a coherent manner. In addition to performing model selection and
parameter estimation on the background and signal hypotheses, the aim was to
evaluate the compatibility of the data used to claim the observation of neutrinoless
double beta decay in Germanium with recent data using Xenon. I find moderate to
strong evidence against consistency, with quite small dependence on the prior on
the neutrino mass, from which the the signal rate is derived, and the uncertainties
of the nuclear matrix elements.

For more detailed conclusions, the reader is referred to the corresponding papers.
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Appendix A

Renormalization group

equations in the type I

seesaw model

In this appendix, the RGEs of the parameters of the type I seesaw model with
the SM and the MSSM as underlying theories are given. The RGEs for the inverse
seesaw model can be calculated as a special case of this model with six right-handed
neutrinos.

A.1 SM with right-handed neutrinos

The renormalization group evolution of the parameters of the SM and the coefficient
of the Weinberg operator are given by [137–140,156,157,210]

16π2µ
dg1
dµ

= b1g
3
1, (A.1a)

16π2µ
dg2
dµ

= b2g
3
2, (A.1b)

16π2µ
dg3
dµ

= b3g
3
3, (A.1c)

16π2µ
dYu
dµ

=
(

αu + CuuHu + CduHd

)

Yu, (A.1d)

16π2µ
dYd
dµ

=
(

αd + CudHu + CddHd

)

Yd, (A.1e)

16π2µ
dYe
dµ

=
(

αe + CeeHe + CνeH
(n)
ν

)

Ye, (A.1f)
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16π2µ
dY

(n)
ν

dµ
=
(

αν + CeνHe + CννH
(n)
ν

)

Y (n)
ν , (A.1g)

16π2µ
dM

(n)
R

dµ
= CRM

(n)
R

(

Y (n)†
ν Y (n)

ν

)

+ CR

(

Y (n)†
ν Y (n)

ν

)T

M
(n)
R , (A.1h)

16π2µ
dλ

dµ
= αλλ + αgλ + αYλ , (A.1i)

16π2µ
dκ(n)

dµ
= ακκ

(n) +
(

CeκHe + CνκH
(n)
ν

)

κ(n) + κ(n)
(

CeκHe + CνκH
(n)
ν

)T

,

(A.1j)

where Hf = YfY
†
f for f = e, ν, u, d, and (n) labels the quantities relevant for the

effective theory between the n-th and (n−1)-th thresholds. The matching between
the effective theories is described in the main text. GUT charge normalization for
g1 is used, which means that g1 is related to the conventional SM coupling g̃1 as
g2
1 = 5

3 g̃
2
1. The coefficients determining the evolution of the gauge couplings are

b1 =
41

10
, b2 = −19

16
, b3 = −7. (A.2)

The beta functions for the Yukawa couplings each consist of a flavor diagonal part
and a flavor non-diagonal part. The flavor diagonal parts are given by

αu = tr
(

3Hu + 3Hd +He +H(n)
ν

)

− 17

20
g2
1 − 9

4
g2
2 − 8g2

3, (A.3)

αd = tr
(

3Hu + 3Hd +He +H(n)
ν

)

− 1

4
g2
1 − 9

4
g2
2 − 8g2

3, (A.4)

αe = tr
(

3Hu + 3Hd +He +H(n)
ν

)

− 9

4
g2
1 − 9

4
g2
2 , (A.5)

αν = tr
(

3Hu + 3Hd +He +H(n)
ν

)

− 9

20
g2
1 − 9

4
g2
2 , (A.6)

ακ = 2tr
(

3Hu + 3Hd +He +H(n)
ν

)

+ λ− 3g2
2, (A.7)

while the coefficients determining the flavor non-diagonal parts are given by

Cuu = Cdd = Cee = Cνν =
3

2
, (A.8)

Cdu = Cud = Cνe = Ceν = −3

2
, (A.9)

CR = 1, (A.10)

Ceκ = −3

2
, Cνκ =

1

2
. (A.11)
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Finally, the RGE evolution of the Higgs self-coupling constant is determined by1

αλλ = 6λ2 − 3λ

(

3

5
g2
1 + 3g2

2

)

+ λtr
(

3Hu + 3Hd +He +H(n)
ν

)

, (A.12)

αgλ = 3g4
2 +

3

2

(

3

5
g2
1 + 3g2

2

)2

, (A.13)

αYλ = −8tr

(

3H2
u + 3H2

d +H2
e +

(

H(n)
ν

)2
)

. (A.14)

A.2 MSSM with right-handed neutrinos

If instead the MSSM is the underlying theory, the RGEs in Eqs. (A.1) (except
for Eq. (A.1i), since the parameter λ is absent in the MSSM) still hold above
the supersymmetry-breaking scale, but with different coefficients. Below the scale
of supersymmetry-breaking, one recovers the SM as an effective theory, and the
corresponding RGEs should be used. The coefficients determining the evolution of
the gauge couplings are

b1 =
33

5
, b2 = 1, b3 = −3. (A.15)

The flavor diagonal terms read

αu = tr
(

3Hu +H(n)
ν

)

− 13

15
g2
1 − 3g2

2 − 16

3
g2
3 , (A.16)

αd = tr (3Hd +He) −
7

15
g2
1 − 3g2

2 − 16

3
g2
3 , (A.17)

αe = tr (3Hd +He) −
9

5
g2
1 − 3g2

2 , (A.18)

αν = tr
(

3Hu +H(n)
ν

)

− 3

5
g2
1 − 3g2

2, (A.19)

ακ = 2αν , (A.20)

while the flavor non-diagonal are determined by

Cuu = Cdd = Cee = Cνν = 3, (A.21)

Cdu = Cud = Cνe = Ceν = 1, (A.22)

CR = 2, (A.23)

Ceκ = Cνκ = 1. (A.24)

The fact that ακ = 2αν leads to the absence of threshold effects in the MSSM, as
discussed in the main text.

1The interaction term is (λ/4) φ4.
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