
  

  

The Influence of Viscous Operator and Wall 

Boundary Conditions on the Accuracy of the 

Navier-Stokes Equations 

  

  

Peter Eliasson and Jan Nordström 

  

  

Linköping University Post Print 

  

  

 

 

N.B.: When citing this work, cite the original article. 

  

  

Original Publication: 

Peter Eliasson and Jan Nordström, The Influence of Viscous Operator and Wall Boundary 

Conditions on the Accuracy of the Navier-Stokes Equations, 2013, AIAA Aerospace Sciences 

- Fluid Sciences Event. 

http://dx.doi.org/10.2514/6.2013-2956 

 

From the 21st AIAA Computational Fluid Dynamics Conference 24 - 27 June 2013 San 

Diego, California. 

 

 

Postprint available at: Linköping University Electronic Press 

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-96884 

http://dx.doi.org/10.2514/6.2013-2956
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-96884
http://twitter.com/?status=OA Article: The Influence of Viscous Operator and Wall Boundary Conditions on the Accuracy o... http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-96884 via @LiU_EPress %23LiU


 
 
1

The Influence of Viscous Operator and Wall Boundary 
Conditions on the Accuracy of the Navier-Stokes Equations  

Peter Eliasson 
Swedish Defence Research Agency (FOI), SE-16490, Stockholm, Sweden 

Jan Nordström  
Linköping University, Department of Mathematics, SE-581 83, Linköping, Sweden 

The discretization of the viscous operator in an edge-based flow solver for unstructured 
grids has been investigated. A compact discretization of the Laplace and thin-layer operators 
in the viscous terms is used with two different wall boundary conditions. Furthermore, a 
wide discretization of the same operators is investigated. The resulting numerical operators 
are all formally second order accurate in space; the wide operator has higher truncation 
errors. The operators are implemented weakly using a penalty formulation and are shown to 
be stable for a scalar model problem with given constraints on the penalty coefficients. The 
different operators are applied to a set of grid convergence test cases for laminar flow in two 
dimensions up to a large-scale three dimensional turbulent flow problem. The operators 
converge to the same solutions as the grids are refined with one exception where the wide 
operator converges to a solution with higher drag. The 2nd compact discretization, being 
locally more accurate at a wall boundary than the original 1st compact operator, reduces the 
grid dependency somewhat for most test cases. The wide operator performs very well and 
leads for most test cases to results with minimum spread between coarsest and finest grids. 
For one test case though, the wide operator has a negative influence on the steady state 
convergence. 

I. Introduction 
The no-slip wall boundary condition is difficult to implement numerically in a stable and accurate manner. Weak 
boundary conditions are preferred for node vertex based schemes since stability and accuracy can be shown using 
Summation-by-Parts (SBP) operators combined with the Simultaneous Approximation Term (SAT) approach 1-5. 
This approach has earlier been shown to give satisfactory steady state convergence for viscous flow computations 
when implemented in a finite volume scheme for unstructured grids 6,7. That investigation demonstrated how to 
specify no-slip wall velocity and gave an interval on the penalty strength parameter to ensure stability.  

The weak boundary conditions are further explored in this paper by investigating the accuracy and asymptotic 
convergence as the grid is refined. A compact stencil of the viscous terms is used with the wall boundary conditions 
from Eliasson et al. 6. An alternative boundary discretization for the compact operator is explored 4 which is locally 
more accurate than the original one. Furthermore, a wider discretization of the viscous terms is also investigated 1-3. 
The three approaches are compared and evaluated for a model problem for which stability is shown to hold under 
conditions on the penalty parameters. 

The different numerical schemes are implemented in the Edge flow solver for unstructured grids 8-10. A compact 
discretization of the Laplace and thin-layer part of the viscous operator is applied. Two different boundary 
conditions with different wall fluxes are used resulting in stencils corresponding to those for the model problem. A 
wide discretization of the viscous operator results in the corresponding wide stencil for the model problem. The 
three viscous stencils are applied on a number of test cases with focus on how the errors are reduced as the grid is 
refined. Comparisons are made on simpler laminar cases up to a large scale turbulent test case from the AIAA drag 
prediction workshop. 

In the following sections the weak boundary conditions are introduced and applied to a scalar model problem for 
which a theoretical analysis is carried out. Then the spectra are analyzed for the linearized Navier-Stokes equations. 
Following that a description of the flow solver Edge and the wall fluxes for the various viscous operators are given. 
Then numerical results are presented for the computed test cases followed by a discussion of the results. 
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II. Weak Boundary Conditions 
The flow solver, described below, is of finite volume type with the unknowns in the nodes. All boundary 

conditions are implemented in weak way which implies that a boundary flux is computed and added to the residual 
of the unknown boundary quantities which are updated like any other variables in the interior domain. In earlier 
work 6 we have shown that weak no-slip wall boundary conditions improve the efficiency with respect to steady 
state convergence compared to strong conditions where the specified boundary value is injected on the boundary and 
the boundary quantities are no longer unknowns.  

Here we extend our previous work on weak no-slip wall boundary conditions by introducing alternative viscous 
operators as well as alternative boundary conditions. Our ambition is to enhance the accuracy of flow in the near 
wall region and, hence, to reduce the differences between flow solutions as the grid is refined. 

We consider three different numerical operators of the viscous terms. The first option uses a compact 
discretization in the interior with a low order accurate boundary treatment 6. The second operator uses the same 
compact operator in the interior but has a more accurate boundary treatment. The third variant has a wider non-
compact stencil that corresponds to using nodal gradients in the viscous flux calculations, further described below. 
The weak no-slip condition is applied in exactly the same way for all formulations and all discretizations are 
formally second order accurate.  

Below the different operators are described and analyzed for a scalar model problem. 

A. A scalar model problem 
We consider the continuous one-dimensional half plane convection-diffusion model problem  

 gtuuauu xxxt =),0(,=   (1) 

where a  0, 0   1. For simplicity we consider the left boundary only, the right boundary requires a similar 
treatment.  

Following the discretization in 6,7 we use second order accurate operators and end up with the following semi-
discrete equations 

  0
111 )( E

x
aPMPQaPt 

   (2) 

where it has been assumed that 0g . The first derivative xu  is approximated such that it satisfies the SBP 
property, i.e. 

 QPux
1  (3) 

where )1,0,,0,1(,0  diagQQPP TT . All matrices are given in Appendix. The last terms of Eq. (2) is a 
generalized penalty term for the convective and viscous parts that force the solution towards the specified boundary 
value.  ,  are the penalty strength parameters. In Appendix it is demonstrated that the convective part only 
( 0 ) is stable provided 21 . Below we address the different viscous operators and provide bounds for the 
viscous penalty strength parameters to obtain stability. 
 

1. The compact viscous operator 1 
The first viscous operator is currently used in Edge and is the same operator that was first implemented in a 

weak sense 6.  This operator at the left boundary becomes 
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The operator in Eq. (4) is zero order accurate at the boundary which is sufficient for global second order 
accuracy provided that the solution is point wise bounded 11. To ensure stability it was shown that 821   
was required and that larger value of  increases the stiffness. The proof of stability is given in Appendix.  

 
2. The compact viscous operator 2 
To increase the accuracy locally on the boundary an alternative boundary treatment developed by Carpenter et 

al.4 of the viscous term is proposed. By modifying the boundary flux a different boundary stencil is obtained which 
is locally more accurate; the intention is to enhance the accuracy of the flow solution locally near the boundary on 
coarser grids and hence to enhance grid convergence which, in this context, refers to reducing differences between 
fine and coarse grids. The proposed approach results in the following second derivative operator 
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where the stencils for the second derivative for the boundary and the first interior nodes are the same. This operator 
is first order accurate on the boundary. To ensure stability it is shown in Appendix that 852  is required.  
 

3. The wide viscous operator 
A third variant of the discretization of the viscous term is also considered; the discretization is obtained by 

applying the central first difference operator QP 1  twice 5,7. This operator corresponds to what is obtained when 
averaging nodal gradients in the flux calculation of an Edge based scheme and is hence easily implemented. The 
resulting viscous operator becomes 
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This wide operator is zero order accurate at the first two grid nodes, but again, that is sufficient for global second 
order accuracy if the scheme is point-wise bounded 11. The operator has a larger truncation error than the compact 
one. In Appendix it is shown that stability is obtained provided 843  .  

B. System of equations 
We expand our model problem to a system of equations. The model equation is obtained by considering the two 

dimensional frozen coefficient Navier-Stokes equations. A Fourier-transform is applied tangential to the solid 
boundary and we consider the least dissipative case, namely the one corresponding to zero frequency ( 0 ). We 
then neglect the equation for the tangential velocity. The system we obtain and the boundary conditions at the solid 
boundary are 

 0=),0(,0=),0(,= tTtuBUAUU xxxxt   (7) 

where 
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and where u  is the mean normal velocity close to the solid wall, ca   ,  /)1(  cb and c speed of 
sound. The coefficients ,  are of order one and Eq. (7) is the symmetrized version of the one-dimensional 
Navier-Stokes equations12.  

The dependent variables Tu ,,  are scaled versions of the density, the normal velocity and the temperature, 
respectively. It can be shown 13  (using the energy-method) that Eq. (7) is well-posed for 0u . 

  Similar to the scalar problem we discretize Eq. (7) using the SBP operators in Eq. (3) above and obtain the 
system  

 VEPVBMPVAQPVt )()(=)( 0
111     (9) 

where  is the so called Kronecker product 4,14-16 and where the weak boundary conditions are contained in the last 
penalty term. 

With the procedure above we now look at the spectra of the semi discrete equations including the boundary 
conditions and penalty terms which is obtained by looking at the eigenvalues of the matrix C ( C contains all the 
terms in Eq. (9)) 

 CVV
dt
d

 , (10) 

and where non-positive eigenvalues are required for stability. At the right boundary (at x=1) we specify all the 
variables (ρ, u and T) weakly using penalty terms. Figure 1 displays the spectra for the three viscous operators. All 
eigenvalues are negative for the selected parameters with penalty strength parameter 1 for all operators. The two 
compact operators have a very similar appearance but the eigenvalues with maximum real part differ slightly as can 
be seen from Table 1 below. The second compact operator seems to require a somewhat higher value of the penalty 
strength parameter than that derived for the scalar model problem and is unstable if 81.02  . Numerical 
calculations for the test cases below confirm that a higher penalty strength parameter is required for this operator. 
For the chosen set of parameters, the two other operators are stable for penalty strength parameters with values 
somewhat lower than those derived for the scalar model problem.  

 
 

 

Table 1. Maximum real eigenvalues  of C in Eq. (10), 02.0;8.0  u . 

  
Coarse op. 1 
Real( max ) 

Coarse op. 2 
Real( max ) 

Wide op. 1 
Real( max ) 

0.75  -1.69 0.60 -1.58 
1 -1.69 -1.32 -1.68 
2 -1.71 -1.65 -1.71 

 

   
Figure 1.  Spectra of C for the linearized Navier-Stokes equations. Δx=1/(N-1)=1/64, 

1;02.0;8.0  u . From left to right: Compact operator 1, Compact operator 2, Wide operator. 
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III. The flow solver Edge 
The CFD solver employed in the calculations is the Edge code which is an edge- and node-based Navier-Stokes 

flow solver applicable for both structured and unstructured grids 8-10. Edge is based on a finite volume formulation 
where a median dual grid forms the control volumes with the unknowns allocated in the centres. The governing 
equations are integrated with a line-implicit approach in areas with highly stretched elements and explicitly 
elsewhere with a multistage Runge-Kutta scheme to steady state and with acceleration by Full Approximation 
Storage (FAS) agglomeration multigrid. A large number of turbulence models are available. Throughout this paper, 
a central scheme is used for the convection to which a small amount of numerical dissipation is added. This applies 
for the mean flow equations and for turbulent  

There are numerous boundary conditions in Edge for walls, external boundaries as well as periodic boundaries. 
All of these boundary conditions are implemented weakly. The different stencils for the viscous terms described 
above are implemented for the viscous terms of the governing mean flow equations and turbulent diffusive terms. 
The implementation is done under the assumption that the grid is structured normal to the surface which is usually 
the case for practical applications on stretched RANS grids, e.g. through prismatic layers. The penalty formulation is 
applied to the equations where data is supplied which include no-slip velocity, iso-thermal conditions and turbulent 
boundary data.  

C. The semi-discrete Navier-Stokes equations in an edge based flow solver 
Consider a control volume iV  for an arbitrary node with subscript i. The spatial discretization of the Navier-

Stokes equations with a finite volume formulation on an unstructured grid for this node may be written in semi-
discrete form as  

 i
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k
iki
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k
ik

i
i ggff

t
qV

ii ~~
11



 
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 (11) 

where ),,( iiii Euq  contains the conservative variables of density, velocity vector and total energy for node i. ikf  
denotes the convective flux between nodes i and k, iN is the number of nodes connected with an edge to node 

i, ikg the corresponding viscous flux. The terms ii gf ~,~  denote the convective and viscous boundary fluxes to node i, 
provided the node is located on a boundary, otherwise these quantities vanish. The convective and viscous fluxes 
may be formulated as 
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where ikS denotes control surface along the edge between the two nodes i and k, iku the average velocity 
( )(21 kiik uuu  ) on the edge between the nodes and ikAD  numerical dissipation 8. ik is the stress tensor, ikT  
denotes the average temperature and  the thermal conductivity coefficient. The stress tensor is divided in two parts 
with a first part based on a thin-layer approximation 17 
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where ikikik SnS  ,  the dynamic viscosity or the sum of dynamic and turbulent viscosity for turbulent flow. The 

remaining tangential derivatives  tdikik S that are added from nodal Green-Gauss integration, 
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 to have a full viscous operator and where ii S,  are boundary quantities if the node i 
is located on a boundary, otherwise these quantities vanish. 
 As indicated by Eq. (11), the computation of fluxes is done in two steps in the 
code. In the first step the fluxes are computed in a loop over all edges in the entire 
computational domain, the fluxes are added and subtracted to the corresponding 
residuals of the two nodes involved. In the second step, the boundary flux is computed 
and added to the residuals of the boundary nodes to close the control volume.  
 Our focus is on wall boundary conditions. On a wall boundary at node 0i  the 
convective boundary flux becomes, assuming a zero normal velocity component, 
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 The convention from Fig. 2 is used. The boundary surface vector 0S  is directed out of the computational 
domain. Below we demonstrate how the viscous wall flux ig~  is computed corresponding to the different viscous 
discretizations for the scalar model equation above. The discretizations vary for the thin-layer part of the stress 
tensor. The viscous wall flux may be formulated as 
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where the tangential derivatives for the momentum equation from Eq. (13) are left out and assumed not to contribute 
to the boundary flux. In the description below the weak no-slip wall boundary conditions assume adiabatic 
conditions for the temperature, i.e. zero total energy wall flux. The weak conditions can be applied to other 
quantities with known values such as isothermal wall temperature and turbulent wall quantities.   
 

1. Implementation of compact viscous operator 1 
 The normal derivative in Eq. (13) is approximated in a compact way 18 as 
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where ki xx , are the coordinates of the two nodes. The discretization can be shown to lead to a positive and stable 
discretization of the Laplace operator 19 but not necessarily to a consistent approximation on all types of grids.  

The derivation of the wall flux follows the approach in Eliasson et al. 6 in which the boundary normal derivatives 
are computed as: 
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and inserted in the wall boundary flux in Eq. (16). Indices 0 and 1 denote the boundary node and the first interior 
node respectively according to Fig. 2 showing the notation of nodes with the primary (solid) and dual grid (dashed) 
at a wall boundary and where 000 SnS  . Note that the first term in the expression for nu   is a term to cancel 
out the contribution from the interior loop over the edges.   is the penalty strength parameter defined above and 

41  is required for stability as derived for the scalar model equation. Note that it is assumed that the grid is 
structured normal to the wall which is typical for hybrid unstructured grids with quadrilateral (2D) or prismatic 
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S01

S23

 
Figure 2. Wall boundary 
grid (solid line) with its 
dual grid (dashed). 
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(possibly hexahedral) near-wall elements (3D). U in Eq. (18) denotes the prescribed wall velocity, typically 
0U on a no-slip wall, but it is included here to simplify the explanation. The expression for nu   is then 

inserted in the boundary wall flux 0
~g in Eq. (16). 

 
2. Implementation of compact viscous operator 2 
The second compact operator has the same interior fluxes as the first operator with the normal derivative 

approximated as in Eq. (17). The boundary momentum flux is different though. To obtain the stencil for the model 
problem in Eq. (5), the velocity gradient in the first interior node is used: 
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 which is inserted in the wall flux given in Eq. (16) and where 1u is computed as in Eq. (14). Note that on an 
equidistant and orthogonal mesh 020201 )( xxuunu   . 85  is required for stability. 
 

3. Implementation of wide viscous operator 
The wide operator has a different discretization in the interior as well as on the boundary. All fluxes are 

computed from averaged gradients in the nodes. The normal derivative is hence computed as  

 ikki
ik

nuu
n
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
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1 . (20) 

 The normal derivative at the boundary is also computed from the gradient on the boundary similar to the 
approach for the compact viscous operator 1: 
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where the first term on the right hand side is identical to the first term in Eq. (18) on an equidistant and orthogonal 
grid. 21  is required for stability. 
 

IV. Numerical results 
Numerical results are presented for steady state viscous calculations. The 

accuracy of the results is investigated by grid convergence studies on 
sequences of grids with the same topology and uniformly refined. All test 
cases employ no-slip adiabatic wall conditions and characteristic far-field 
boundary conditions. The viscous penalty strength parameters applied in the 
calculations are 131   and a higher value 22   for the 2nd compact 
viscous operator to obtain stability.  

D. Laminar flow over an airfoil 
The first test case is the laminar flow over an airfoil, NACA0012, at 

subsonic flow conditions and at a low Reynolds number; M∞ = 0.5,  α  =  0º, 
Re=5000. A sequence of 6 structured O-grids are used for the grid 
convergence study, the coarser grids have been obtained by consecutively 
removing every second node from the finest grid in the two grid directions. 
The finest grid contains about 2106 nodes (2305 nodes around the airfoil, 
897 nodes in normal direction), the coarsest grid about 2,000 grid nodes being displayed in Fig. 3. The grids are 
refined at the leading and trailing edges and refined normal to the airfoil. The finest grid has a distance of 510-5 

 
Figure 3. Coarsest NACA0012 O-
grid, 7329 nodes. 
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chords between the wall and first interior nodes which corresponds to a cell Reynolds number of ReC=0.25 which 
should resolve viscous phenomena well.  

The differences in the steady state convergence rate due to the three operators are negligible for this test case. 
The convergence of the drag and the pressure and friction drag components are given in Fig. 4. All viscous operators 
have a tendency to converge to the same drag, the difference on the finest grid is only about 0.04% or 0.2 drag cts (= 
0.610-4). The patterns of the differences are similar for the pressure and friction parts of the drag. The influence of 
the new boundary treatment of the 2nd compact operator does not have the desired effect for this test case since the 
differences between the coarsest and finest grids increase compared to the 1st compact operator.  

The error of the drag with components are shown in Fig. 5 in which the error is computed as the difference 
between the drag values and the corresponding drag values on the finest grid. The errors for the three operators are 
similar and of about the same order of magnitude. The decay of the errors approach the expected 2nd order decay as 
the grid is refined.  

 

 

E. Laminar flow over an analytical 3d body of revolution 
The second test case is the three-dimensional flow over a 3d body of revolution. The geometry is a streamlined 

body based on a 10 % thick airfoil with boundaries constructed by a surface of revolution. This test case is one of 
the test cases for the international workshop on higher order CFD methods for which numerous numerical results are 
available, see http://www.dlr.de/as/desktopdefault.aspx/tabid-8170/13999_read-35550/ for details. The laminar 
viscous test case is considered; M∞ = 0.5,  α  =  1º, Re=5000. Three supplied structured grids from the workshop were 
used. The three successively coarsened grids, for the entire configuration, contain 6.3106, 0.81106, 100103 nodes 

    
Figure 5.  Error of drag as the grid is refined over NACA0012. Left: error for total drag. Mid: error for 
pressure drag. Right: error for friction drag. N denotes number of nodes. M = 0.5,  α  =  0, Re=500. 
 

         
Figure 4.  Convergence of drag as the grid is refined over NACA0012. Left: total drag. Mid: pressure drag. 
Right: friction drag. N denotes number of nodes. M = 0.5,  α  =  0, Re=5000. 
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and about the same number of hexahedral elements. In addition to the 
supplied grids, an extra fine grid (denoted Xfine) was generated from 
the fine grid by doubling nodes in all directions, this grid contains 
51106 nodes. The finest grid has a distance of 710-4 characteristic 
length scales between the wall and first interior nodes which 
corresponds to a cell Reynolds number of ReC=3 which should be 
sufficient to resolve viscous phenomena reasonably well. The surface 
grid and a cut at the symmetry plane (y=0) are displayed in Fig. 6. 

Figure 7 shows the computed lift, drag and viscous drag components 
for the three viscous operators as the grid is refined. There are rather 
small variations in the computed lift and reasonably good agreement 
with other numerical results for which the predicted reference lift is 
CL

ref=0.002577. The best agreement with this value is obtained by the 
calculations using the wide viscous operator.  

 

 
There are larger differences between the computed results for the drag though. Calculations with the wide 

operator give substantially higher drag values than obtained with the compact discretizations, the variation on the 
three finest grids is also smallest with the wide operator. The drag comes mainly from the viscous operators; the 
pressure drag is fairly constant and substantially smaller. The reference drag value computed by the workshop 
participants is CD

ref=0.0632 which agrees very well with the drag obtained by the wide viscous operator, CD=0.0631. 
The compact operators predict drag values that are about 7% or 45 drag cts lower. In spite of the lower predicted 

     
Figure 8.  Stream-wise skin friction distribution on the 3d body of revolution on three grids and viscous 
operators. Left: symmetry plane (y=0). Right: waist of body (z=0). M = 0.5,  α  =  1, Re=5000. 
 

      
Figure 7.  Computed forces for the 3d body of revolution. Left: lift. Right: total and viscous drag components. 
N denotes number of nodes. M = 0.5,  α  =  1, Re=5000. 
 

Figure 6. 3d body coarse surface 
mesh and cut in symmetry plane. 
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drag with the compact viscous operator, the new boundary condition with the 2nd operator does increase the drag on 
coarser grids and hence reduces the grid dependency. The comparatively large difference in drag from the compact 
and wide viscous operators is surprising and needs to be explained. One possible explanation is that compact normal 
derivative in Eq. (17) does not lead to a consistent discretization of the Laplace operator 19. 

The stream-wise skin friction distributions in Fig. 8 at two cuts along the symmetry and body waist reveal the 
differences in the drag; the distributions are separated along the y-axis to fit in the same plot. There are some 
differences between the viscous operators that do not vanish as the grid is refined. The skin friction for each operator 
converge well though. The main differences between the operators occur at the downstream part of the body where 
the wide operator results in higher skin friction levels which is the main reason behind the higher integrated drag. 
The behavior at the trailing edge is also different between the three operators.  

F. Turbulent flow over an airfoil 
The third test case is the turbulent flow over 

an airfoil, NACA0012, at transonic flow 
conditions with a boundary layer shock 
interaction; M∞ = 0.754,   α   =   2.57º, Re=20106. 
Three unstructured hybrid grids are used with the 
same stream-wise resolution but with different 
wall normal distributions and distance between 
the wall and first interior node. The distances are 
10-5, 10-6, 10-7 chords for the three grids.  

One of the grids is displayed in Fig. 9. The 
grids are structured close to the airfoil with, in 
average, 30, 40, and 50 quadrilateral layers of 
cells and have 315 nodes around the airfoil. The 
grids contain a total number of 50103, 54103, 
57103 nodes, respectively, with triangular elements outside the quadrilaterals. 

The Spalart-Allmaras turbulence model 23 is used to model the turbulent flow. The 
high Reynolds number results in y+-values in the order of about 10, 1, 0.1, respectively, 
for the three grids with increasing near wall resolution. The coarsest grid is then 
expected to be too coarse; the two finer grids should have a sufficient resolution. 

A line-implicit integration approach is used to speed up the rate of convergence 10.  Very similar convergence 
rates are obtained for the three viscous operators as displayed in Fig. 10.  

 

 
Figure 11 displays the convergence of lift and drag as the mesh is refined as well as the skin-friction distributions 

for the three grids and viscous operators. There are very small differences in the integrated lift, the 1st compact 
operator deviate somewhat on the coarsest grid from the other operators on the same grid. The coarse grid drag is 
improved by the 2nd compact viscous operator which is also visible in the skin friction. In general, there are very 
small differences between the solutions on the two finer grids. 

       
Figure 11.  Lift (left), drag (mid) and skin friction as function of near wall resolution for the turbulent flow 
over NACA0012 with three viscous operators.  M = 0.754,  α  =2.57, Re=20106. 
 

 
Figure 9. Naca0012 hybrid grid. 
 

 
Figure 10. NACA0012 
steady state convergence 
of density residual. Near 
wall distance 10-7 chords. 
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G. Turbulent flow over the DPW4 CRM configuration 
The last test case is a larger test from the 4th drag prediction 

workshop, DPW4 20-22. The configuration is a common wing-body-tail 
configuration and is denoted the Common Research Model (CRM).  

The flow conditions are M∞ = 0.85, Re=5106 and the calculations in 
this investigation are made according to the instructions for the grid 
convergence studies at a constant lift force CL=0.5 and 0º tail incidence; 
the angle of attack is adjusted to obtain the requested lift. Three 
unstructured hybrid grids are used that were supplied by DLR and used 
earlier 20. The grids contain unstructured quadrilateral surface elements 

with a few surface triangles. The surface grids are expanded 
normal to the wall resulting in hexahedral and prismatic 
elements. Outside of this region there are tetrahedral elements 
to the far-field boundary. The grids satisfy y+≤1   on   all   grids  
and have approximately a uniform refinement. The grids 
contain about 4106, 11106 and 34106 nodes.  

The Spalart-Allmaras turbulence model is used to model the 
turbulent flow 23. A line-implicit integration approach is used to 
speed up the rate of convergence 10. The convergence of the 
density residual and lift coefficient for the three viscous 
operators is displayed in Fig. 13 for the medium grid size. The 
rate of convergence is very similar for the lift for all three 
operators. The density residual with wide operator does not 
converge as well though as for the compact operators. This 
may be due to the lack of damping from the viscous terms of 
high frequency errors and thus would require a somewhat 
higher level of numerical dissipation. 

The convergence of integrated drag, drag components and 
pitching moment are displayed in Fig. 14. The quantities are plotted as function of 232 ~ hN   which, ideally, 
should give convergence with straight lines assuming a second order accurate scheme and uniform refinement. The 
convergence is fairly good with all three operators and the differences in the results from the viscous operators are 
reduced as the grid is refined. The 2nd compact operator reduces the mesh dependency slightly. The 1st operator has a 
difference of 4.5 drag cts between the coarse and fine grids whereas the 2nd operator has a difference of 4.1 cts. The 
smallest difference is obtained with the wide operator though giving only 3.4 drag cts difference. 

 
Apart from the differences in integrated forces and moments only small differences are observed in the 

converged solutions. The skin friction patterns reveal the flow is attached on the entire upper side of the wing, the 
main difference is observed inboard close to the wing-body junction as can be seen in Fig. 15 for two span-wise 

        
Figure 14.  Convergence of drag and moment, N is the number of nodes, DPW4. M = 0.85, Re=5106, 
CL=0.5. Left: Total drag. Middle: Drag decomposed into pressure and friction parts. Right: Pitching moment. 
 

 
Figure 12. DPW4 CRM configuration. 
 

  
Figure 13. Steady state convergence rate of 
density residual and CL. DPW4 medium grid.  
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sectional cuts where the cut at 11.5% span is located in this 
region. The reason for the deviations is most likely due to a 
relatively coarse surface grid resolution in this region. 

 

V. Discussion 
An investigation of three different discrete numerical 

discretizations of the viscous terms in the Navier-Stokes 
equations is presented. The investigation is carried out for an 
edge-based solver for unstructured grids. Two of the 
discretizations have a compact discretization of the normal 
derivatives (including the Laplace and thin-layer part of the 
viscous terms) with different no-slip wall boundary 
conditions. The third discretization involves a wide operator 
which is obtained when nodal gradient only are used to 
compute the viscous fluxes. The boundary conditions are 
implemented in a weak sense with penalty type boundary conditions. A theoretical investigation is carried out for a 
scalar model problem and limits are given to the penalty strength parameters to ensure stable discretizations. The 
implementation of the operators including boundary treatment is described as well. 

The viscous operators are analyzed for several steady state test cases where grid convergence is studied on 
sequences of successively refined grids. For most test cases there are relatively small differences between the 
computed results. The 2nd compact discretization is locally more accurate at the boundary compared to the 1st 
discretization and is introduced with the intention to decrease mesh dependency and to increase accuracy on coarser 
grids. For three out of four test cases the mesh dependency is actually decreased, for the first and simplest test case 
the situation is reversed though. Although the wide viscous operator has larger truncation errors than the other 
schemes, it performs surprisingly well for all test cases and provides as accurate results as obtained with the compact 
schemes. For several test cases this scheme gives the smallest variation between the coarsest and finest grids. 
 For three out of four test cases the three viscous operators seem to converge towards the same solutions as the 
grids are refined. One exception is the three-dimensional laminar flow over a bluff body where the coarse operator 
converges to a drag that is approximately 7% higher than that obtained with the compact operators. The higher drag 
is in line with other numerical results and is therefore believed to be the most accurate result. The reason for the 
under-prediction with the two compact schemes is not known and is a subject for future studies. 

The steady state convergence rate is in general not much affected by the viscous terms; very similar convergence 
rates are obtained. One exception is the large three-dimensional turbulent drag prediction test case where the 
residuals “hang” after a while using the wide operator whereas with the compact operators the residuals continue to 
converge. One possible explanation is that the wide operator does not damp the highest frequencies as the compact 
operators do and may hence need a bit more numerical dissipation. Despite the somewhat high level of residuals the 
convergence rate of the integrated forces is about the same for all the schemes. 

  

Appendix 
We present the specific forms of the stencils that satisfy the SBP stability requirements being second order 

accurate. We consider the discrete form of Eq. (1) as defined by Eq. (2) where   is defined as the error of the 
discrete solution. The first derivative is approximated as: 
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where the lower part of the matrices are omitted. Q  is skew symmetric and 0E has only one non-zero element, 

 
Figure 15. DPW4 skin friction distributions 
at 11.5% and 28% span. Medium grid. 
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We define the following matrices: 

 




































































































 



11
11

10
00

0

,

11
11

11
10

0

,

11
11

11
11

1

DDD   

Following Eq. (2) and multiplying with PT  we derive the following equation for the decay of the solution: 
 

  00
2 2)()21( E

x
MMEa

dt
d TTTT

P 
  (22) 

where the norm is defined as PvvT
P
 . Stability is obtained if the right hand side can be shown to be non-

positive thus preventing error growth in time. For convection only ( 0 ) it is obvious that 21  must be 
satisfied. Below we show the conditions for the two last terms on the right hand side in Eq. (22) to be non-positive 
for the different viscous operators defined in Eqs. (4)-(6) above, the convective condition corresponding to the first 
term on the right hand side in Eq. (22) is left out. 
 

1. The compact viscous operator 1 
 The proof follows in principle the proof given by Eliasson et al. 6.  The viscous operator in Eq. (4) is written as  
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leading to the following expression for the decay of solution:  
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 The first term on the right hand side is obviously non-positive. Then the 2×2 matrix in the last term must have 
non-positive eigenvalues which is obtained if  411  .  
 

2. The compact viscous operator 2 
 The viscous operator in Eq. (5) can be written as  
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leading to the following equation for the decay of error:  
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where the 33  matrix can be shown to have non-positive eigenvalues if 852  . 
  

3. The wide viscous operator 
 The viscous operator in Eq. (6) can be written as  

 QQP
x
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for which the which the decay of the solution can be written as 
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 which after some algebra can be written as  
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 The first term is quadratic and non-positive, the matrix of the second term has non-positive eigenvalues provided 
213  .  



 
 

15 

Acknowledgments 
The work has been supported by the EU project IDIHOM under contract No. ACP0-GA-2010-265780.  
 

References 
1Svärd, M. and Nordström, J., “A Stable High-Order Finite Difference Scheme for the Compressible Navier-Stokes 

Equations: No-Slip Wall Boundary Conditions”, Journal of Computational Physics, Vol. 227, 2008, pp. 4805-4824. 
2Svärd, M., Carpenter, M. and Nordström, J., “A Stable High Order Finite Difference Scheme for the Navier-Stokes 

Equations, far-field Boundary Conditions”, Journal of Computational Physics, Vol. 225 (1), 2007, pp. 1020-1038. 
3Nordström, J., Gong, J., van der Weide, E. and Svärd, M., “A stable and conservative high order multi-block for the 

compressible Navier–Stokes equations”, Journal of Computational Physics, Vol. 228, 2009, pp. 9020-9035. 
4Carpenter, M., H., Nordström, J. and Gottlieb, D. “A Stable and Conservative Interface Treatment of Arbitrary Spatial 

Accuracy”, Journal of Computational Physics, Vol 148 No. 2, 1999, pp. 341-365. 
5Berg, J., Nordström, J. “Stable Robin Solid Wall Boundary Conditions for the Navier-Stokes Equations”, Journal of 

Computational Physics, Vol 230, 2011, pp. 7519-7532. 
6Eliasson, P., Eriksson, S., Nordström, J. “The Influence of Weak and Strong Wall Boundary Conditions on the Convergence 

to Steady-State of the Navier-Stokes Equations”, AIAA-2009-3551. 
7Nordström, J., Eriksson, S. and Eliasson, P., “Weak and Strong boundary procedures and convergence to steady-state of the 

Navier-Stokes equations”, Journal of Computational Physics, Vol. 231, 2012, pp. 4867-4884. 
8Eliasson, P., “EDGE, a Navier-Stokes Solver for Unstructured Grids”, Proceedings to Finite Volumes for Complex 

Applications III, 2002, pp. 527-534. 
9Eliasson, P., Weinerfelt, P., “Recent Applications of the Flow Solver Edge”, Proceedings to 7th Asian CFD Conference, 

Bangalore, India, 2007. 
10Eliasson, P., Weinerfelt, P., Nordström, J. “Application of a Line-implicit Scheme on Stretched Unstructured Grids”, 

AIAA-2009-0163. 
11Svärd, M., Nordström, J., “On the order of accuracy for difference approximations of initial-boundary value problems”, 

Journal of Computational Physics, Vol. 218, 2006, pp. 333-352. 
12Nordström, J. “The Influence of Open Boundary Conditions on the Convergence to Steady State of the Navier-Stokes 

Equation”, Journal of  Computational Physics, Vol. 85, No. 1, 1989, pp. 210-244. 
13Nordström, J., Svärd, M. “Well-posed Boundary Conditions for the Navier-Stokes Equations”, SIAM J. Num. Anal., Vol. 

43, No. 3, 2005, pp. 1231–1255 
14Nordström, J. and Carpenter, M. H. “Boundary and Interface Conditions for High Order Finite Difference Methods Applied 

to the Euler and Navier Stokes Equations”, Journal of Computational Physics, Vol 148 No. 2, 1999, pp. 621-645. 
15Nordström, J. and Carpenter, M. H. “High Order Finite Difference  Methods, Multidimensional Linear Problems and 

Curvilinear Coordinates”, Journal of Computational Physics, Vol 173, 2001, pp. 149-174. 
16Nordström, J., Forsberg, K. Adamsson, C. and Eliasson, P. “Finite Volume Methods, Unstructured Meshes and Strict 

Stability”, Applied Numerical Mathematics, Vol. 48, 2003, pp. 453-473. 
17Gnoffo, P. A., “An Upwind-Biased, Point-Implicit Relaxation Algorithm for Viscous, Compressible Perfect Gas Flows”, 

NASA TP-2953, 1990. 
18Haselbacher, A., McGuirck, J. J., and Page, G.J., “Finite Volume Discretization Aspects for Viscous Flows on Mixed 

Unstructured Grids”, AIAA Journal, Vol. 37, No. 2, 1999, pp. 177-184. 
19Svärd, M. and Nordström, J. “Stability of finite volume approximations for the Laplacian operator on quadrilateral and 

triangular grids”, Applied Numerical Mathematics, Vol. 51, 2004, pp. 101–125. 
20Eliasson, P., Peng. S.-H., “Computations from the 4th Drag Prediction Workshop Using the Edge Solver”, AIAA Paper 

2010-4548. 
21Vassberg, J. C., Tinoco, E. N., Mani, M., Rider, B., Zickhur, T., Levy, D. Brodersen, O. P., Eisfeld, B., Crippa, S., Wahls, 

R. A., Morrison, J. H., Mavriplis, D. J. and Murayama, M. “Summary of the Fourth AIAA CFD Drag Prediction Workshop”, 
2010, AIAA 2010-4547. 

22Morrison, J. H. “Statistical Analysis of CFD Solutions from the Fourth AIAA Drag Prediction Workshop”, AIAA Paper 
2010-4673, 2010. 

23Spalart, P. R., and Allmaras, S. R., ”A One-Equation Turbulence Model for Aerodynamic Flows”, AIAA Paper 92-0439, 
1992.  


	AIAA-Peter-parallel-TitlePage
	AIAA-Peter-parallel

