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Well-posedness and Stability of

Exact Non-reflecting Boundary Conditions

Sofia Eriksson∗

Department of Information Technology, Uppsala University, SE-751 05 Uppsala, Sweden

Jan Nordström†

Department of Mathematics, University of Linköping, SE-581 83 Linköping, Sweden

Exact non-reflecting boundary conditions for an incompletely parabolic system have
been studied. It is shown that well-posedness is a fundamental property of the non-
reflecting boundary conditions. By using summation by parts operators for the numerical
approximation and a weak boundary implementation, energy stability follows automat-
ically. The stability in combination with the high order accuracy results in a reliable,
efficient and accurate method. The theory is supported by numerical simulations.

I. Introduction

In computational physics one often encounters the problem of how to limit the computational domain. For
example, when simulating the flow field around an aircraft it is impossible to include the entire atmosphere.
It is therefore necessary to truncate the domain at some distance away from the area of interest and introduce
artificial boundary conditions (ABC). Such boundaries will generate non-physical disturbances, and in many
applications it is essential that these disturbances are minimized.
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(a) Solution at t = 0.4
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(b) Solution at t = 0.4

Figure 1. The solution to equation (1), with initial condition given by (50). At x = 1 the pulse should pass
out without reflections. At the right boundary either (a) a Dirichlet boundary condition or (b) a zeroth order
approximate NRBC is imposed.

If the errors produced at the boundary stay localized, the boundary conditions have limited influence over
the flow field and a simple boundary condition, of Dirichlet type could be used. However, this assumption
∗PhD, Uppsala University, SE-751 05 Uppsala, Sweden.
†Professor, University of Linköping, SE-581 83 Linköping, Sweden.
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is seldom valid, and when a wave encounters the boundary a significant portion will reflect back. This is
illustrated in Figure 1(a), where the Dirichlet boundary condition pollutes the whole solution.

Apparently a better strategy is needed. In the classical paper,7 exact boundary closures are constructed
in transformed space for the wave equation. The approach is to express the solution as a superposition of
waves, and eliminate the incoming waves at the boundaries. Similar techniques for deriving the non-reflecting
boundary conditions (NRBC), for other types of equations, are used in.12,16,18 Note that these conditions
are exact, but formulated in transformed space.

Exact NRBC’s are in most cases global in space and time, and can therefore be cumbersome to implement
numerically. For that reason it is common to approximate or localize the NRBC’s in space or time. In,7 where
the exact NRBC’s are made local in space and time using expansions, it is shown that some approximations
are well-posed, and some ill-posed. To achieve boundary conditions that give sufficiently small reflections,
high order expansions are necessary, which typically yields an ill-posed problem. For low order expansions,
which result in a Dirichlet-to-Neumann map, it is easier to obtain well-posedness, and the results are still
clearly better than the results obtained using the Dirichlet boundary condition, see Figure 1(b).

The main drawback with the approximative NRBC’s are that they ruin the increased accuracy expected
from mesh refinement of the interior scheme. From Table 1 it is evident that the solution obtained using the
approximate NRBC’s, although it looks promising in Figure 1(b), does not converge to the correct solution
as we refine the mesh. There will always be an order one error remaining in the solution.

N Error(u) ratio conv. rate
16 0.01385376
32 0.01407668 0.9842 -0.0230
64 0.01409021 0.9990 -0.0014
128 0.01409115 0.9999 -0.0001

Table 1. Results obtained using the approximative NRBC.

The area of ABC’s has been the subject of massive research, see for example,2,9, 11,13,17 where the
approach in2,17 yields local boundary conditions that can be made arbitrarily accurate. When it comes to
the implementation of exact NRBC’s it is, for special geometries, possible to localize the boundary conditions
in time while still keeping them exact. This is exemplified in10 where computations are performed for the
wave equation on a spherical domain, and in30 where highly accurate boundary conditions are used for
a flow in a cylinder. See16 for more details on exact and approximate NRBC on special computational
domains. These techniques are unfortunately not always feasible, and in23 computations are performed for
the Schrödinger equation with the exact NRBC’s using convolution quadratures. For an extensive review
on ABC’s, see.33 An alternative to the above mentioned methods is to introduce buffer zones outside the
artificial boundary, where the governing equations are modified such that waves are damped. When these
zones are constructed to be exactly non-reflecting for the continuous problem, they are called perfectly
matched layers (PML), see.1,3, 19

In this paper we follow the work in7 to some extent, but consider a slightly different problem and most
importantly; no approximations will be used. Our main interest is the theoretical aspects of the problem, i.e.
the well-posedness and stability properties of exact NRBC’s. The exact boundary conditions are derived in
the Laplace transformed space, and thereafter transformed back for the numerical simulations. The boundary
conditions are hence global in time. We use high order accurate finite difference techniques, see,4,26,28,32

such that the error originating from the interior discretization is kept at a minimum.
The main point of this paper is that we show that the exact NRBC’s result in a well-posed problem, and

that this leads to energy estimates both for the continuous and the discrete formulation of the problem. We
can thus, by a chain of arguments, guarantee a stable numerical procedure. The stability in combination
with the high order accuracy results in a reliable, efficient and accurate method.

The paper is organized as follows. In section 2 we formulate the continuous problem. In section 3
exact non-reflecting boundary conditions are derived. In section 4 we show that the continuous problem is
well-posed when using the non-reflecting boundary conditions, and that this leads to an energy estimate.
The corresponding semi-discrete problem is presented in section 5. In section 6, two different approaches
to choose the boundary procedure are presented, both leading to energy stability. Then, in section 7, the
boundary conditions which are derived in the Laplace transformed space are transformed to physical space
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using convolution quadratures. In section 8 numerical experiments are presented and conclusions are drawn
in section 9.

II. The continuous problem formulation

Consider the linear 2× 2 system of partial differential equations

Ut +AUx −BUxx = F, x ∈ [xL, xR], t ≥ 0

U = f, x ∈ [xL, xR], t = 0

LL,RU = gL,R, x = xL,R, t ≥ 0,

(1)

where

U =

[
p

u

]
, A =

[
v c

c v

]
, B =

[
0 0
0 ε

]
, v > 0.

F (x, t) is the forcing function and f(x) is the initial data. The operators LL and LR and the data gL and gR
in the boundary conditions LL,RU = gL,R are at this stage unknown. The Initial Boundary Value Problem
(IBVP) (1) is incompletely parabolic and hence it has most of the properties and difficulties associated
with the compressible Navier-Stokes equations. Throughout the paper we assume v > 0. Exactly the same
analysis can be done for negative values of v.

The Laplace transformed version of (1) is

sÛ +AÛx −BÛxx = F̂ + f, x ∈ [xL, xR]

L̂L,RÛ = ĝL,R, x = xL,R,
(2)

where s = η + ξi is the dual variable to time, and Û = [ p̂, û ]T is defined as

Û(x, s) = L{U(x, t)} =
∫ ∞

0

e−stU(x, t) dt, L{U ′(x, t)} = sÛ(x, s)− U(x, 0).

To simplify the analysis, we write (2) on first order form by introducing ŵ = ûx, which yields

S̄Ū + ĀŪx = F̄ , x ∈ [xL, xR]

L̄L,RŪ = ĝL,R, x = xL,R,
(3)

where S̄ = diag(s, s, 1) and where

Ā =

 v c 0
c v −ε
0 −1 0

 , Ū =

 p̂

û

ŵ

 , F̄ =

 F̂1 + f1

F̂2 + f2

0

 . (4)

The solution to (3) consists of a homogenous and a particular part, such that Ū = Ūh + Ūp. The particular
solution Ūp (which depends on the data F̄ ) is assumed to be known. The ansatz Ūh = eκxΨ leads to a
generalized eigenvalue problem for κ(s) and Ψ(s) on the form

(S̄ + κĀ)Ψ = 0. (5)

The eigenvalue problem (5) can have non-trivial solutions Ψ 6= 0 if the determinant |S̄+κĀ| is zero. Written
out explicitly the determinant is

|S̄ + κĀ| = q(κ, s), q(κ, s) = s2 + 2svκ+ (v2 − c2 − sε)κ2 − εvκ3. (6)

Solving q(κ, s) = 0 for the eigenvalues κ, and assuming that the three roots κj are distinct, gives the general
homogeneous solution

Ūh =
3∑
j=1

σje
κjxΨj . (7)
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The coefficients σj can be determined by using the boundary conditions. This procedure is described in
detail in.14,27

Remark: The solution Ūh can be written on the form given in (7) unless s = 0 at the same time as v = c,
since q(κ, s) in (6) then has a multiple root. In the rest of the paper we assume v 6= c.

III. Derivation of the boundary conditions

Before the boundary conditions are constructed it is essential to know how many that are needed at each
boundary. It is shown in31 that for each negative Re(κ) we need one condition at the left boundary, and for
each positive Re(κ) we need one condition at the right boundary. The number of roots with negative and
positive real parts, respectively, is given by

Proposition III.1. Consider the roots of q(κ, s) = 0 in (6). For v > 0 and s such that Re(s) > 0, two of
the κ’s have negative real part and one of the κ’s has positive real part.

Proof. Assume that κ passes the imaginary axis, i.e. that κ = βi. Inserting this into equation (6) and using
that s = η + ξi yields

c2β2 + εηβ2 + η2 − (ξ + vβ)2 + (2η + εβ2)(ξ + vβ)i = 0. (8)

The imaginary part of (8) is zero if either ξ + vβ = 0 or 2η + εβ2 = 0. In both of these cases, it is required
that either η < 0 or that η = ξ = 0 to cancel the real part. That is, as long as the real part of s is positive
(η > 0), no purely imaginary κ can exist and hence the real part of the κ’s can not change sign. Dividing
q(κ, s) in (6) by −εv yields

q̃(κ, s) = κ3 − (v2 − c2 − sε)
εv︸ ︷︷ ︸
r2

κ2 +
−2s
ε︸︷︷︸
r1

κ− s2

εv︸︷︷︸
r0

= (κ− κ1)(κ− κ2)(κ− κ3)

r2 = κ1 + κ2 + κ3, r1 = κ1κ2 + κ1κ3 + κ2κ3, r0 = κ1κ2κ3,

(9)

and by assuming s real and large, we get r0 > 0, r1 < 0 and r2 < 0. According to Descartes’ rule of signs,29

the polynomial q̃(κ, s) has exactly one positive root for these values of r0, r1 and r2.

Thus two boundary conditions are needed at the left boundary and one boundary condition is needed at
the right boundary. Without loss of generality, let Re(κ1) < 0, Re(κ2) < 0 and Re(κ3) > 0.

A. Non-reflecting boundary conditions

One approach when constructing non-reflecting boundary conditions is to prohibit the solution outside the
artificial boundary from growing, i.e. by demanding that Ūh(x)→ 0 as x→ ±∞, see.33 This is accomplished
by canceling the coefficients σj in (7) corresponding to the growing modes at each boundary.

Remark: Compare with the hyperbolic version of (1), where the characteristics of U(x, t) travel with
constant wave speed aj . In this case the eigenvalues of the Laplace transformed solution have the form
κj = −s/aj and the eigenvectors Ψj are independent of s, such that

U(x, t) =
∑
j

hj(t− x/aj)Ψj , Û(x, s) =
∑
j

ĥj(s)e−xs/aj Ψj .

Thus a positive wave speed aj , which means that the eigensolution Ψj is right-going, implies that Re(κj) =
−Re(s)/aj is negative. Likewise, if Re(κj) > 0, the eigenfunction Ψj is left-going. For a hyperbolic problem,
providing zero data directly to the ingoing variables means that the outgoing waves can pass through the
boundary freely, without reflections. Analogously, in (7) we should at each boundary cancel the modes that
are growing outwards.

Recall that the real parts of κ1 and κ2 are negative and the real part of κ3 is positive for Re(s) > 0. Our
aim is to construct boundary conditions for the left boundary that force σ1 and σ2 to zero, and a boundary
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condition for the right boundary that forces σ3 to zero. With access to an eigenvalue κi we compute the
eigenvector Ψi and the corresponding orthogonal vector Φi

Ψi =

 −c
(s+ vκi)/κi
s+ vki

 , Φi =

 ε(vκj + s)(vκk + s)/sc
εvκjκk/s

ε

 , (10)

where κj and κk are the remaining two roots (if κi = κ1 then κj,k = κ2,3). The vector Φl is orthogonal to
Ψi for i 6= l, such that

ΦTi Ψi = εv(κi − κj)(κi − κk)/κi, ΦTj Ψi = 0, ΦTk Ψi = 0. (11)

Using (7) and (11) we see that the boundary condition ΦTi Ūh = 0 is equivalent to σieκixΦTi Ψi = 0, which
forces σi to zero. This gives the exact non-reflecting boundary conditions

x = xL :

{
ΦT1 Ūh = 0
ΦT2 Ūh = 0

, x = xR : ΦT3 Ūh = 0. (12)

The boundary conditions (12) are L̄LŪh = 0 and L̄RŪh = 0, where

L̄L = [Φ1, Φ2]T , L̄R = ΦT3 . (13)

Thus we can identify

L̄L,RŪ = L̄L,R(Ūh + Ūp) = L̄L,RŪp =⇒ ĝL,R = L̄L,RŪp.

Finding the data ĝL,R can be difficult. Common choices are to assume that Ūp is constant or zero. To take
the possibility of non-exact data into account, assume that the boundary data has been chosen such that
ĝL,R = L̄L,RŪp + g′L,R. Then, in practice, the boundary conditions imposed are

x = xL : L̄LŪh = g′L, x = xR : L̄RŪh = g′R, (14)

where g′L,R should be some perturbation close to (or preferably equal to) zero.

Remark: The particular solution Ūp depends on F̄ , which in turn depends on the forcing function F and
the initial function f in (1). Often these functions are defined so that they have compact support, which
implies that Ūp = 0 at the boundaries and that ĝL,R = 0. One reasonable exception is a constant non-zero
background flow.

IV. Well-posedness of the IBVP in the GKS sense

The problem (1) is well-posed in the GKSa sense if no solutions U(x, t) that grow exponentially in time
exist, see.6,14,15,25,27 (A more generous definition of well-posedness, that opens up for a wider range of
problems, is to accept bounded growth of the solution. In this paper we limit ourselves to zero growth.)

Remark: A problem is well-posed (Hadamard’s well-posedness) if: i) A solution exists, ii) The solution is
unique, iii) The solution depends continuously on provided data. Existence is guaranteed by using the right
number of boundary conditions and uniqueness follows from iii). We will focus on the third requirement,
which is equivalent to limit the growth of the solution, see.14

Consider the homogeneous solution (7). By defining

Ψ = [Ψ1,Ψ2,Ψ3], K(x) = diag(eκ1x, eκ2x, eκ3x), σ = [σ1, σ2, σ3]T ,

aGKS refers to the classical paper15 by Gustafsson, Kreiss and Sundström.
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we can write Ūh = ΨKσ. Next, the boundary conditions in (14) are applied, yielding

E(s)σ = g′, E(s) =

[
L̄LΨK(xL)
L̄RΨK(xR)

]
=

 eκ1xLΦT1 Ψ1 eκ2xLΦT1 Ψ2 eκ3xLΦT1 Ψ3

eκ1xLΦT2 Ψ1 eκ2xLΦT2 Ψ2 eκ3xLΦT2 Ψ3

eκ1xRΦT3 Ψ1 eκ2xRΦT3 Ψ2 eκ3xRΦT3 Ψ3

 ,
where g′ = [(g′L)T , (g′R)T ]T . Each row of the system above corresponds to one boundary condition, and for
general boundary conditions the matrix E(s) is full. If E(s) is non-singular we can solve for σ and obtain
a unique solution Ū = Ūp + ΨKE(s)−1g′. Recalling that the first two entries of Ū are denoted Û , we can
formally transform back to the time domain, as

U(x, t) = L−1{Û} = eη0t
(

1
2π

∫ +∞

−∞
Û(x, η0 + iξ)eiξtdξ

)
where E(s) must be non-singular for η > η0. The problem is well-posed in our restrictive GKS sense if
η0 ≤ 0, (for convergence to steady-state η0 < 0 is necessary).

Proposition IV.1. Consider the ordinary differential equation (3) with boundary operators (13). The
corresponding matrix E(s) is non-singular for Re(s) ≥ 0 (if 0 < v 6= c), and hence the problem (1) is
well-posed.

Proof. Using that ΦTj Ψi = 0 for i 6= j leads to

E(s) =

 eκ1xLΦT1 Ψ1 0 0
0 eκ2xLΦT2 Ψ2 0
0 0 eκ3xRΦT3 Ψ3

 .
From (11) we know that ΦTi Ψi = εv(κi − κj)(κi − κk)/κi and thereby the three entries of E(s) are non-zero
if the roots κi, κj , κk are distinct. In Appendix A it is shown that there are no multiple roots for Re(s) ≥ 0,
unless s = 0. This special case is treated separately, and it can be shown that lims→0 ΦTj Ψj 6= 0 as long as
v 6= c. Consequently |E(s)| 6= 0 for all Re(s) ≥ 0 when v 6= c.

A. Well-posedness in the energy sense

Proposition IV.1 above shows that the exact non-reflecting boundary conditions yield well-posedness (in the
GKS sense). Next we show that the non-reflecting boundary conditions also leads to an energy estimate.

Equation (2) is multiplied by the conjugate transpose of Û (denoted Û∗) from the left and integrated
with respect to x. Adding the complex conjugate of the resulting relation to itself, and using that s = η+ ξi,
we get

2η
∫ xR

xL

Û∗Ûdx+ 2
∫ xR

xL

Û∗xBÛxdx = BTL +BTR (15)

where

BTL = Û∗AÛ − Û∗BÛx − Û∗xBÛ
∣∣∣
xL

, BTR = − Û∗AÛ + Û∗BÛx + Û∗xBÛ
∣∣∣
xR

. (16)

Note that the forcing term F̂ + f is omitted since it does not affect well-posedness.14 We know from the
previous analysis of E(s) that the operators in (13) give a well-posed problem. However, if the boundary
conditions can be imposed such that the boundary terms BTL and BTR are non-positive we also obtain an
energy estimate, which will lead directly to stability for the discrete problem.

Since we have derived the boundary conditions for the first order form in (3) we rewrite (16) on the
equivalent form

BTL = Ū∗ÃŪ
∣∣∣
xL

, BTR = − Ū∗ÃŪ
∣∣∣
xR

, Ã =

 v c 0
c v −ε
0 −ε 0

 . (17)

Remark: Well-posedness in the GKS sense considers the homogenous solution, Ūh =
∑
j σje

κjxΨj . Com-
puting the energy estimate for the homogenous solution instead of the total solution only involves the forcing
term (which is disregarded) and hence the boundary terms in (17) holds for Ūh as well as for Ū .
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Proposition IV.2. The left boundary term in (17) is non-positive, i.e. BTL ≤ 0.

Proof. The left boundary conditions in (12) force σ1 and σ2 to zero which yields the solution Ūh = σ3e
κ3xΨ3.

Inserting this into BTL in (17) we obtain

BTL = |σ3e
κ3xL |2AL

where it is possible to show, see,8 that

AL = Ψ∗3ÃΨ3 ≤ 0. (18)

Proposition IV.3. The right boundary term in (17) is non-positive, i.e. BTR ≤ 0.

Proof. The right boundary condition in (12) yields the solution Ūh = σ1e
κ1xΨ1 + σ2e

κ2xΨ2. Inserting this
into BTR in (17) we obtain

BTR = −

[
σ1e

κ1xR

σ2e
κ2xR

]∗
AR

[
σ1e

κ1xR

σ2e
κ2xR

]
,

where it is possible to show, see,8 that

AR =

[
Ψ∗1ÃΨ1 Ψ∗1ÃΨ2

Ψ∗2ÃΨ1 Ψ∗2ÃΨ2

]
≥ 0. (19)

Since the boundary terms BTL and BTR are negative the right hand side of (15) is bounded, which leads
to η ≤ 0 and an energy estimate.

Remark: In Proposition IV.2 and Proposition IV.3 we have assumed that the provided data is exact, such
that σ1,2 = 0 at the left boundary or σ3 = 0 at the right boundary. Later in Section VI we will also include
the possibility of having non-zero (incorrect) boundary data and show that the problem is in fact strongly
well-posed.

V. The semi-discrete problem formulation

The boundary operators in (13) can be written

L̄L =

[
α1 β1 ε

α2 β2 ε

]
, ĝL =

[
ĝ1

ĝ2

]
, L̄R =

[
α3 β3 ε

]
, ĝR =

[
ĝ3

]
, (20)

where αj , βj depend on s and κj(s). The structure of the complementing vectors in (10) gives

αi =
−sc

s+ vκi
, βi =

s

κi
. (21)

The boundary conditions can also be rewritten such that they are appropriate for the problem (2), as

L̂LÛ = HLÛ +GLÛx = ĝL ⇐⇒

[
α1 β1

α2 β2

][
p̂

û

]
+

[
0 ε

0 ε

][
p̂x

ûx

]
=

[
ĝ1

ĝ2

]

L̂RÛ = HRÛ +GRÛx = ĝR ⇐⇒
[
α3 β3

] [ p̂

û

]
+
[

0 ε
] [ p̂x

ûx

]
=
[
ĝ3

]
.

(22)
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A. The numerical scheme

The domain x ∈ [xL, xR] is discretized in space using N+1 equidistant grid points, as xi = xL+(xR−xL)i/N ,
where i = 0, 1, . . . , N . The solution U is represented by the discrete solution vector V such that

V = [V T0 , V
T
1 , . . . , V

T
N ]T , Vi(t) ≈ U(xi, t).

The semi-discrete scheme representing the IBVP in (1) is written

Vt + (D ⊗A)V − (D2 ⊗B)V = F + ((Σ0 ∗ V )(t)− Γ0) + ((ΣN ∗ V )(t)− ΓN ) ,
V (0) = f,

(23)

where the symbol ⊗ refers to the Kronecker product. The boundary conditions (22) are imposed weakly in
(23) using the Simultaneous Approximation Term (SAT) technique, by the penalties ((Σ0,N ∗ V )(t)− Γ0,N (t))
which are yet unknown but will be derived in the Laplace transformed domain. Further, the difference op-
erator D (which mimics ∂/∂x ) is on so called Summation-By-Parts (SBP) form, and hence the following
holds

D = P−1Q, Q+QT = eNe
T
N − e0eT0 , P = PT > 0, (24)

where e0 = [1, 0, . . . , 0]T and eN = [0, . . . , 0, 1]T . The second derivative ∂2/∂x2 is approximated by the wide
operator D2. For a read-up on SBP and SAT, see5,24 and references therein. Note that we use the same
notation for F, f both in the continuous and the discrete setting.

By Laplace transforming (23) the discrete representation of (2) is obtained, as

sV̂ + (D ⊗A)V̂ − (D2 ⊗B)V̂ = F̂ + f +
(

Σ̂0V̂ − Γ̂0

)
+
(

Σ̂N V̂ − Γ̂N
)
, (25)

where V̂ (s) = L{V (t)} and where Σ̂0,N , Γ̂0,N remains to be determined. As in the continuous case we
simplify by omitting the forcing function F̂ + f . We multiply (25) by V̂ ∗P̄ from the left, where P̄ = P ⊗ I2,
and add the conjugate transpose of the equation to itself. Thereafter using the SBP-properties in (24) yields

2ηV̂ ∗P̄ V̂ + 2(D̄V̂ )∗(P ⊗B)D̄V̂ = BTDL +BTDR , (26)

where D̄ = D ⊗ I2 and where

BTDL = V̂ ∗0 AV̂0 − V̂ ∗0 B(D̄V̂ )0 − (D̄V̂ )∗0BV̂0 + V̂ ∗P̄ (Σ̂0V̂ − Γ̂0) + (Σ̂0V̂ − Γ̂0)∗P̄ V̂

BTDR = −V̂ ∗NAV̂N + V̂ ∗NB(D̄V̂ )N + (D̄V̂ )∗NBV̂N + V̂ ∗P̄ (Σ̂N V̂ − Γ̂N ) + (Σ̂N V̂ − Γ̂N )∗P̄ V̂ .
(27)

Note the similarity between the semi-discrete relation (26) and the continuous one in (15).
The matrices Σ̂0,N and the vectors Γ̂0,N depend on how the boundary conditions are imposed. We use

the following ansätze for the penalty terms

Σ̂0V̂ − Γ̂0 = (P−1e0 ⊗ τ0 + P−1DT e0 ⊗ σ0 )(HLV̂0 + GL(D̄V̂ )0 − ĝL)

Σ̂N V̂ − Γ̂N = (P−1eN ⊗ τN + P−1DT eN ⊗ σN )(HRV̂N +GR(D̄V̂ )N − ĝR),
(28)

where all dependence of boundary data sits in Γ̂0,N , such that Γ̂0,N = 0 if ĝL,R = 0. The boundary operators
HL,R, GL,R are given in (22) and the penalty parameters τ0 and σ0 are 2×2 matrices and τN and σN are
2×1 vectors. The relations in (28) lead to

V̂ ∗P̄ (Σ̂0 V̂ − Γ̂0) = (V̂ ∗0 τ0 + (D̄V̂ )∗0σ0 )(HLV̂0 + GL(D̄V̂ )0 − ĝL)

V̂ ∗P̄ (Σ̂N V̂ − Γ̂N ) = (V̂ ∗NτN + (D̄V̂ )∗NσN )(HRV̂N +GR(D̄V̂ )N − ĝR).
(29)

Inserting the expressions (29) into (27), the boundary terms can be written as

BTDL =

[
V̂0

(D̄V̂ )0

]∗ [
A+ τ0HL + (τ0HL)∗ −B + τ0GL + (σ0HL)∗

−B + σ0HL + (τ0GL)∗ σ0GL + (σ0GL)∗

][
V̂0

(D̄V̂ )0

]

−

[
V̂0

(D̄V̂ )0

]∗ [
τ0

σ0

]
ĝL −

([
V̂0

(D̄V̂ )0

]∗ [
τ0

σ0

]
ĝL

)∗ (30)
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and

BTDR =

[
V̂N

(D̄V̂ )N

]∗ [
−A+ τNHR + (τNHR)∗ B + τNGR + (σNHR)∗

B + σNHR + (τNGR)∗ σNGR + (σNGR)∗

][
V̂N

(D̄V̂ )N

]

−

[
V̂N

(D̄V̂ )N

]∗ [
τN
σN

]
ĝR −

([
V̂N

(D̄V̂ )N

]∗ [
τN
σN

]
ĝR

)∗
,

(31)

respectively.
Similarly to the definition of well-posedness for the continuous problem, a numerical scheme is energy

stable if the growth of the solution is bounded. As in the continuous case we limit ourselves to zero growth,
which means that η ≤ 0 in (26) is needed. Hence, to prove stability, we must show that the boundary terms
in (30) and (31) are non-positive for zero data. In the next section, we present two distinctly different ways
of choosing the penalty parameters τ0,N and σ0,N such that BTDL,R ≤ 0.

VI. Energy estimates in Laplace space

The stability requirements alone do not determine the penalty parameters τ0,N and σ0,N in (28) uniquely.
We will here present two different possible choices (here referred to as ”replacing the indefinite terms” and
”replacing the ingoing variables”), both guaranteeing a stable numerical scheme. In both cases the strategy
is to first reformulate the continuous boundary terms BTL,R using the boundary conditions, and then to
choose the penalty parameters such that the discrete boundary terms BTDL,R mimic the continuous ones.

A. Replacing the indefinite terms

1. The continuous formulation

Using the boundary conditions (22), which are related to the system (2), it is possible to replace the indefinite
terms found in the continuous boundary terms (16), and rewrite them as

BTL = Û∗ (A+ H̃L + H̃∗L )︸ ︷︷ ︸
ML

Û − Û∗g̃L − g̃∗LÛ
∣∣∣
xL

BTR = −Û∗ (A+ H̃R + H̃∗R)︸ ︷︷ ︸
MR

Û + Û∗g̃R + g̃∗RÛ
∣∣∣
xR

.

(32)

where H̃L = SLHL, g̃L = SLĝL and H̃R = SRHR, g̃R = SRĝR. The scaling matrices SL and SR have the
form

SL =

[
a −a
b 1− b

]
, SR =

[
0
1

]
, (33)

where a 6= 0 and b are arbitrary. For an energy estimate we need ML = A+ H̃L + H̃∗L in (32) to be negative
semi-definite and MR = A+ H̃R + H̃∗R to be positive semi-definite.

Proposition VI.1. The constants a and b in SL in (33) can always be chosen such that ML = A+H̃L+H̃∗L
in (32) is negative semi-definite.

Proposition VI.2. The matrix MR = A+ H̃R + H̃∗R in (32) is positive semi-definite.

The proofs of Proposition (VI.1) and Proposition (VI.2) are omitted, but can be found in.8

2. Choice of penalty parameters for the discrete formulation

Proposition VI.3. Choosing the left penalty parameters as τ0 = SL, where SL is given in (33), and σ0

being a 2× 2 zero matrix 02, yields a stable numerical scheme, given that Proposition VI.1 holds and under
the assumption that the right boundary terms are bounded as well.
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Proof. Inserting τ0 = SL and σ0 = 02 into (30), the left discrete boundary term becomes

BTDL = V̂ ∗0 (A+ H̃L + H̃∗L)V̂0 − V̂ ∗0 g̃L − g̃∗LV̂0, (34)

and according to Proposition VI.1 ML = A+ H̃L + H̃∗L can be designed to be negative semi-definite.

Proposition VI.4. Choosing the right penalty parameters as τN = −SR, where SR is given in (33), and
σN = [0, 0]T , yields a stable numerical scheme, under the assumption that the left boundary terms are
bounded as well.

Proof. Inserting τN = −SR and σN = [0, 0]T into (31), the right discrete boundary term becomes

BTDR = −V̂ ∗N (A+ H̃R + H̃∗R)V̂N + V̂ ∗N g̃R + g̃∗RV̂N (35)

and according to Proposition VI.2 MR = A+ H̃R + H̃∗R is positive semi-definite.

Remark: Note that when using the penalty parameters as specified in Proposition VI.3 and VI.4, the
discrete boundary terms (34) and (35) mimics the continuous ones perfectly, c.f. equation (32).

B. Replacing the ingoing variables

1. The continuous formulation

Using the boundary conditions (20), which are related to the system (3), it is possible to replace the ingoing
variables found in the continuous boundary terms (17).

Consider the matrix Ã in (17), and assume that we have found a rotation such that Ã = XΛXT , where
Λ is diagonal. Note that the elements of Λ are not necessarily the eigenvalues of Ã, and that the vectors in
X may then not be orthogonal. According to Sylvester’s law of inertia, the matrices Ã and Λ will always
have the same number of positive/negative eigenvalues for a non-singular X. The matrix Λ has two positive
entries and one negative entry for v > 0, and is sorted as Λ = diag(Λ+,Λ−). The vectors are divided
correspondingly, X = [x+, x−]. Further, we introduce scaling matrices JL,R and RL,R as

L̄L = JL(xT+ +RLx
T
−), L̄R = JR(xT− +RRx

T
+), (36)

where L̄L,R are given in (20). Using the above relations, together with L̄L,RŪ = ĝL,R from (3), the boundary
terms in (17) are rewritten as

BTL =
(
xT−Ū − C−1

L R∗LΛ+g̃L
)∗ CL (xT−Ū − C−1

L R∗LΛ+g̃L
)

+ g̃∗L
(
Λ+ − Λ+RLC−1

L R∗LΛ+

)
g̃L

BTR = −
(
xT+Ū − C−1

R R∗RΛ−g̃R
)∗ CR (xT+Ū − C−1

R R∗RΛ−g̃R
)

− g̃∗R(Λ− − Λ−RRC−1
R R∗RΛ−)g̃R

(37)

where CL = R∗LΛ+RL + Λ− and CR = Λ+ + R∗RΛ−RR and g̃L = J−1
L ĝL and g̃R = J−1

R ĝR. For an energy
estimate of the continuous problem CL ≤ 0 and CR ≥ 0 are necessary in (37).

Proposition VI.5. The scalar CL in (37) is non-positive, and hence the non-reflecting boundary condition
(14) at the left boundary leads to an energy estimate.

Proposition VI.6. The matrix CR in (37) is non-negative, and hence the non-reflecting boundary condition
(14) at the right boundary leads to an energy estimate.

The proofs of Proposition VI.5 and Proposition VI.6 are omitted here, but can be found in.8
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2. Choice of penalty parameters for the discrete formulation

The penalty parameters are

τ0 =

[
τ11
0 τ12

0

τ21
0 τ22

0

]
, σ0 =

[
σ11

0 σ12
0

σ21
0 σ22

0

]
, τN =

[
τ11
N

τ21
N

]
, σN =

[
σ11
N

σ21
N

]
. (38)

Proposition VI.7. Choosing the penalty parameter elements τ ij0 and σij0 in (38) as

σ11
0 = σ12

0 = 0,

 τ11
0 τ12

0

τ21
0 τ22

0

σ21
0 σ22

0

 = −x+Λ+J
−1
L

results in a strongly stable numerical scheme.

Proof. Inserting the specific choice above into (30) yields

BTDL =
(
xT−V̄0 − C−1

L R∗LΛ+g̃L
)∗ CL (xT−V̄0 − C−1

L R∗LΛ+g̃L
)

+ g̃∗L
(
Λ+ − Λ+RLC−1

L R∗LΛ+

)
g̃L (39)

− (L̄LV̄0 − ĝL)∗J−∗L Λ+J
−1
L (L̄LV̄0 − ĝL)

where, according to Proposition VI.5, CL ≤ 0.

Proposition VI.8. Choosing the penalty parameter elements τ ijN and σijN in (38) as

σ11
N = 0,

 τ11
N

τ21
N

σ21
N

 = x−Λ−J
−1
R

results in a strongly stable numerical scheme.

Proof. Inserting the penalty parameters above into (31), yields

BTDR = −
(
xT+V̄N − C−1

R R∗RΛ−g̃R
)∗ CR (xT+V̄N − C−1

R R∗RΛ−g̃R
)

− g̃∗R
(
Λ− − Λ−RRC−1

R R∗RΛ−
)
g̃R (40)

+ (L̄RV̄N − ĝR)∗J−∗R Λ−J
−1
R (L̄RV̄N − ĝR)

where CR ≥ 0 according to Proposition VI.6.

In the propositions above we have used V̄0 = [p̂0, û0, (Dû)0]T and V̄N = [p̂N , ûN , (Dû)N ]T .

Remark: Note that when using the penalty parameters as specified in Proposition VI.7 and VI.8, the
discrete boundary terms BTDL,R in (39) and (40) correspond exactly to the continuous boundary terms
BTL,R in (37), except for a small damping term. The damping term is a function of the deviation from the
boundary data, and goes to zero as the mesh is refined.

VII. Implementation details

Here we describe the numerical procedure, including how the Laplace transform is inverted. As an
example, we consider imposing the Dirichlet boundary conditions at the left boundary, and using the exact
NRBC at the right boundary. Hence the term (Σ0 ∗ V )(t) = L−1{Σ̂0(s)V̂ (s)} in (23) will be replaced by

(P−1e0 ⊗ τDir.0 + P−1DT e0 ⊗ σDir.0 )(LLV0 − gL). (41)

Giving Dirichlet boundary conditions such that p = g1 and u = g2 at the left boundary, implies that LL = I2.
The penalty matrices in (41) are chosen such that the numerical scheme becomes stable.
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A. Inverting the Laplace transform

At the right boundary we impose the non-reflecting boundary conditions. The convolution (ΣN ∗ V )(t) =
L−1{Σ̂N (s)V̂ (s)} in (23) is defined as

L−1{Σ̂N (s)V̂ (s)} =
∫ t

0

ΣN (τ)V (t− τ)dτ. (42)

We follow the work in,21,22 and approximate the integral (42) at time tn = nh by the convolution quadrature

n∑
j=0

ωj(h)V (tn−j), (43)

where h is the time step, and where ωj(h) ≈ hΣN (tj) for jh away from zero. The coefficients ωj(h) in (43)
are approximated by

ω̂j(h) = ρ−j
1
L

L−1∑
l=0

Σ̂N

(
δ(ρeiτl)

h

)
e−ijτl , τl = 2πl/L. (44)

The constants ρ and L and the function δ must be suitably chosen. We use ρ = 0.975, L = T/h, where T is
the end time of the computation, and δ(ζ) =

∑3
i=1

1
i (1− ζ)i.

Remark: Note that there exist more elaborate versions of this method, see e.g.23

B. Time discretization

We let the boundary data ĝR be zero such that Γ̂N = 0 in (25) and ΓN = 0 in (23). The semi-discrete
scheme (23) is then expressed as

Vt = F(t, V ), (45)

such that

F(t, V ) = AV + G(t) +
∫ t

0

ΣN (τ)V (t− τ)dτ, (46)

where, including the Dirichlet boundary condition in (41),

A = −(D ⊗A) + (D2 ⊗B) + (P−1e0 ⊗ τDir.0 + P−1DT e0 ⊗ σDir.0 )(eT0 ⊗ LL)

G(t) = F − (P−1e0 ⊗ τDir.0 + P−1DT e0 ⊗ σDir.0 )gL(t).

The ordinary differential equation (45) is discretized in time using the trapezoidal rule,

Vn+1 = Vn +
h

2
(F(tn, Vn) + F(tn+1, Vn+1)) . (47)

We insert (46) into (47), and use the approximation∫ t

0

ΣN (τ)V (t− τ)dτ ≈
n∑
j=0

ω̂j(h)V (tn−j).

After moving all terms containing Vn+1 to the left-hand side, we obtain the final scheme(
I − h

2
(A + ω̂0)

)
Vn+1 =

(
I +

h

2
A
)
Vn +

h

2

n∑
j=0

(ω̂j + ω̂j+1)Vn−j

+
h

2
(G(tn) + G(tn+1)) .

(48)
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When computing ω̂j in (48), using (44), we need Σ̂N . We rewrite the parts of Σ̂N V̂ in (28) such that we can
identify

Σ̂N = P̄−1(EN ⊗ τNHR +DTEN ⊗ σNHR + END ⊗ τNGR +DTEND ⊗ σNGR), (49)

where EN = eNe
T
N . That is, Σ̂N is a 2(N + 1)× 2(N + 1) matrix, and consequently so are ω̂j . Fortunately

Σ̂N is sparse since EN mainly consist of zeroes, and it suffice to compute the lower right corner of ω̂j .

Remark: The scheme (48) exemplifies the special case when having the Dirichlet boundary conditions at
the left boundary and the exact NRBC at the right boundary. Other scenarios, for example when having the
exact NRBC’s at the left boundary and the Dirichlet boundary condition at the right boundary, are derived
in a similar way.

VIII. Numerical results

We let the computational domain be [xL, xR] = [0, 1], and as reference solution we use the solution from
a five times larger domain. The errors are defined as the difference between the solution and the reference
solution, as ∆p = p−pref and ∆u = u−uref . The SBP matrix P is used for computing norms of the errors,
as

Error(p) = ‖∆p‖P , Error(u) = ‖∆u‖P ,

where the norm of a vector v is defined as ‖v‖2P = vTPv. See20 for details on the accuracy and interpretations
of SBP norms. For the space discretization we use a third order accurate SBP scheme, and as mentioned
earlier, the trapezoidal rule is used for the time discretization. In all simulations we use the physical parameter
values c = 1, v = 0.5 and ε = 0.1. The time step is h = 0.001 and the end time T = 0.4. The number of
grid point varies, but in the figures we have used N = 64. The time step is sufficiently small, such that the
errors from the space discretization are dominating. Both the ”replacing the indefinte terms” penalty and
the ”replacing the ingoing variables” penalty have been used in the simulations, and the results are equally
good. To reduce the number of figures we only show the solution for the variable u, but the results for the
variable p are similar and presented in the tables.

A. Non-reflecting boundary conditions at the right boundary

First, simulations are performed using the scheme (48). As initial condition we use

p(x, 0) = u(x, 0) =


0 0.05 ≥ x

cos3(2.5π(x− 0.25)) 0.05 < x < 0.45
0 x ≥ 0.45.

(50)

At the left boundary the Dirichlet boundary conditions are imposed and at the right boundary the solution
is supposed to propagate out without reflections. This is the same problem setup as in the introducing
examples in Figure 1 and Table 1. In comparison the exact NRBC outperforms those examples by far, see
Figure 2.
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Figure 2. The solution to (1) with initial condition given by (50). At x = 1 the pulse should pass without
reflections. At the right boundary the Dirichlet boundary condition, the approximate NRBC or the exact
NRBC is used, (here with the ”replacing the indefinite terms” penalty).

More importantly, the exact NRBC solution converges to the reference solution as the mesh is refined,
see Table 2 and 3. The errors have the same size, independently of whether the ”replacing the indefinite
terms” or the ”replacing the ingoing variables” penalty is used. In the simulations, the computational cost
when using the exact NRBC’s are the same as when using any of the other boundary conditions.

N Error(p) ratio conv. rate Error(u) ratio conv. rate
16 0.00094582 0.00120231
32 0.00010451 9.0497 3.1779 0.00014386 8.3575 3.0631
64 0.00001193 8.7569 3.1304 0.00001848 7.7862 2.9609
128 0.00000142 8.3796 3.0669 0.00000239 7.7320 2.9508

Table 2. Results obtained using the exact NRBC (with the ”replacing the indefinite terms” penalty) at the
right boundary.

N Error(p) ratio conv. rate Error(u) ratio conv. rate
16 0.00091109 0.00121302
32 0.00010158 8.9690 3.1649 0.00014664 8.2722 3.0483
64 0.00001152 8.8217 3.1411 0.00001872 7.8317 2.9693
128 0.00000139 8.2978 3.0527 0.00000241 7.7753 2.9589

Table 3. Results obtained using the exact NRBC (with the ”replacing the ingoing variables” penalty) at the
right boundary.

B. Non-reflecting boundary conditions at the left boundary

Next we consider the NRBC’s at the left boundary. For this case we use the initial condition

p(x, 0) = −u(x, 0) =


0 0.3 ≥ x

−cos3(2.5π(x− 0.5)) 0.3 < x < 0.7
0 x ≥ 0.7,

(51)

such that the main content of the initial solution travels in the left direction. The resulting solution at time
t = 0.4 is shown in Figure 3, and as can be seen in Table 4 the solution converges to the reference solution
as the mesh is refined.
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Figure 3. The solution to (1) with initial condition given by (51). At x = 0 the pulse should pass without
reflections. At the left boundary the Dirichlet boundary condition, the approximate NRBC or the exact
NRBC is imposed (with the ”replacing the ingoing variables” penalty).

N Error(p) ratio conv. rate Error(u) ratio conv. rate
16 0.00026816 0.00036867
32 0.00003824 7.0134 2.8101 0.00005167 7.1355 2.8350
64 0.00000414 9.2323 3.2067 0.00000522 9.9028 3.3078
128 0.00000051 8.0689 3.0124 0.00000064 8.1321 3.0236

Table 4. Results obtained using the exact NRBC (with the ”replacing the ingoing variables” penalty) at the
left boundary.

The results obtained using the ”replacing the indefinite terms” are omitted since those are similar to the
results obtained using the ”replacing the ingoing terms” penalty.

C. Initial condition without compact support

In the boundary conditions (14) the possibility of perturbed data, due to an unknown particular solution, is
indicated. To model this, we also use an initial condition that does not have compact support in x ∈ [0, 1],

p(x, 0) = u(x, 0) =


0 0.7 ≥ x

cos3(2.5π(x− 0.9)) 0.7 < x < 1.1
0 x ≥ 1.1,

(52)

where p(1, 0) = u(1, 0) ≈ 0.35. Despite this, we still give zero boundary data to the non-reflecting boundary
condition (which we know is wrong, i.e. g′R in (14) will be non-zero). The results for the exact NRBC’s are
still superior compared to the ones obtained with the Dirichlet or the approximate NRBC’s, see Figure 4.
However, since the boundary data does not match the non-zero particular solution, the convergence rates
are zero.

IX. Conclusions

We have investigated exact non-reflecting boundary conditions (NRBC) for flow problems, with focus
on the theoretical aspects, well-posedness and stability. We consider an incompletely parabolic system of
partial differential equations, as a model of the Navier-Stokes equations. The exact NRBC’s were derived in
Laplace transformed space.
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Figure 4. The solution to (1) with initial condition given by (52). At x = 1 the pulse should pass out without
reflections. At the right boundary the Dirichlet boundary condition, the approximate NRBC or the exact
NRBC is imposed, (here with the ”replacing the indefinite terms” penalty).

We express the transformed solution as a superposition of ingoing and outgoing waves, and eliminate the
ingoing waves at each boundary. Both inflow and outflow NRBC’s are derived. It is shown that the exact
non-reflecting boundary conditions lead to well-posedness, both in the GKS sense and in the energy sense.

The system is discretized in space using a high order accurate finite difference scheme on Summation-
By-Parts form (SBP), and the boundary conditions are imposed weakly using a penalty formulation (SAT).
With the continuous energy estimate as a guideline, two different SAT formulations have been derived, both
yielding a discrete energy estimate mimicking the continuous one. Hence, by the combined use of the SBP
operators and the SAT implementation, stability follows directly from the result of well-posedness for the
continuous problem.

The exact non-reflecting boundary conditions are global in time, and must be transformed back for
the numerical experiments. This is done by employing convolution quadratures. In the simulations the
solutions converge to a reference solution, as accurately as the design order of the numerical scheme. The
two different SAT formulations derived perform equally good, producing almost identical results in the
numerical simulations.

We have compared the exact NRBC’s to the Dirichlet boundary conditions and to approximate NRBC’s.
The exact NRBC’s outperform the other conditions, yielding lower reflections both for exact and erroneous
boundary data. Unlike the approximative non-reflecting boundary conditions and the Dirichlet boundary
conditions, the exact ones yields convergence to the correct solution when the mesh is refined (and exact
boundary data is available).

The superior accuracy, both on the boundary and in the interior (owing to the exact NRBC’s and the high
order scheme, respectively), in combination with the guaranteed stability, results in a competitive numerical
method for computations on unbounded domains.

A. Multiple roots

We show that the polynomial q(κ, s) in (6) has no multiple roots κ for Re(s) ≥ 0, unless v = c. We start
by writing q̃(κ, s) = −q(κ, s)/(εv) as

q̃(κ, s) = κ3 − r2κ2 + r1κ− r0

where the coefficients r0, r1 and r2 are given in (9). The derivative q̃′(κ, s) = ∂
∂κ q̃(κ, s),

q̃′(κ, s) = 3κ2 − 2r2κ+ r1,
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has roots

κ4,5 =
r2
3
±
√(r2

3

)2

− r1
3
.

If the polynomial q̃(κ, s) has a multiple root κj , then that root κj will be a solution to the derivative q̃′(κ, s)
as well. To check whether q̃(κ, s) and q̃′(κ, s) have any roots in common, we insert κ4,5 into q̃(κ, s). This
yields

q̃(κ4,5, s) =
−1
27

(
r2
(
2r22 − 9r1

)
± 2
√
r22 − 3r1

(
r22 − 3r1

)
+ 27r0

)
.

Requiring q̃(κ4,5, s) = 0 leads to

r2
(
2r22 − 9r1

)
+ 27r0 = ∓2

√
r22 − 3r1

(
r22 − 3r1

)
,

which we square on both sides to obtain

(r2
(
2r22 − 9r1

)
+ 27r0)2 = 4

(
r22 − 3r1

)3
. (53)

If the relation (53) is fulfilled q(κ, s) has a multiple root. We check if this can occur by defining Υ =
(r2
(
2r22 − 9r1

)
+ 27r0)2 − 4

(
r22 − 3r1

)3, and see whether it is possible to find Υ = 0. Inserting the values
r0 = s2/(εv), r1 = −2s/ε and r2 = (v2 − c2 − sε)/(εv) from (9) gives

Υ = −27
s2

ε4v4

(
4c2(v2 − c2)2 + 4c2(3c2 + 5v2)sε+ (v2 + 12c2)(sε)2 + 4(sε)3

)
.

Let sε = η̃ + ξ̃i to split Υ into one real and one imaginary part, as

Υ =− 27
s2

ε4v4

(
4c2(v2 − c2)2 + 4c2(3c2 + 5v2)η̃ + (v2 + 12c2)(η̃2 − ξ̃2) + 4(η̃3 − 3η̃ξ̃2)

)
− 27

s2

ε4v4

(
4c2(3c2 + 5v2) + 2(v2 + 12c2)η̃ + 4(3η̃2 − ξ̃2)

)
ξ̃i.

The imaginary part of Υ can be cancelled either by choosing ξ̃ = 0 or by choosing ξ̃2 = c2(3c2 + 5v2) + (v2 +
12c2)η̃/2 + 3η̃2. In both these cases the real part of Υ can only be cancelled if η̃ < 0. The only exception
is if s = 0, then a multiple root is possible. That case must be treated separately, and the matrix E(s) in
Proposition IV.1 is in fact non-singular unless s = 0 and v = c. In this paper we will simply avoid the special
case v 6= c.
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