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Duality based boundary treatment for the Euler and

Navier-Stokes equations

Jens Berg∗

Uppsala University, Uppsala, SE-751 05, Sweden

Jan Nordström†

Linköping University, Linköping, SE-581 83, Sweden

In this paper we construct well-posed boundary conditions for the compressible Euler
and Navier-Stokes equations in two space dimensions. When also considering the dual
equations, we show how to construct the boundary conditions so that both the primal and
dual problems are well-posed. By considering the primal and dual problems simultaneously,
we construct energy stable and dual consistent finite difference schemes on summation-by-
parts form with weak imposition of the boundary conditions.

According to linear theory, the stable and dual consistent discretization can be used to
compute linear integral functionals from the solution at a superconvergent rate. Here we
evaluate numerically the superconvergence property for the non-linear Euler and Navier–
Stokes equations with linear and non-linear integral functionals.

I. Introduction

Functionals can represent the lift or drag on an aircraft, energy or any other scalar quantity computed from
the solution to a partial differential equation (PDE). In many engineering applications, high order accurate
functionals are often of greater interest than accurate solutions of the equations themselves. Whenever
there is a functional involved, the concept of duality becomes important. The solution of a PDE resides
in some function space, and the set of all bounded linear functionals on that space is called its dual space.
Knowledge of the functional of interest can thus be obtained by studying the dual space. This is the main
topic in functional analysis and references can be found in any standard textbook.

In numerical analysis, and in particular for computational fluid dynamics problems, duality have been
exploited for optimal control problems,1,2 error estimation3–5 and convergence acceleration.6–9 An extensive
summary of the use of adjoint problems can be found in,10 and more recently in11 with focus on error
estimation and adaptive mesh refinement.

In,9 the theory of functional superconvergence was established for time-dependent problems using a fi-
nite difference method on summation-by-parts (SBP) form with boundary conditions imposed weakly by the
simultaneous approximation term (SAT). In order to avoid additional theoretical difficulties, Dirichlet bound-
ary conditions for both the primal and dual problem were used. The Dirichlet boundary conditions ensured
that both problems were well-posed without additional efforts. In an Euler or Navier-Stokes calculation,
however, Dirichlet boundary conditions are rarely used as far-field boundaries. Unless exact boundary data
is known, Dirichlet boundary conditions cause reflections which pollute the solution. Other kind of boundary
conditions are well-known to increase both the accuracy and stability properties of the scheme.12–14

When constructing boundary conditions for the primal problem, it can be beneficial to simultaneously
consider the dual problem. Usually, there are a number of undetermined parameters which can be chosen
more or less arbitrarily in an ad hoc way. The number and form of the boundary conditions for the dual
problem usually differ from those of the primal problem. Tuning the coefficients so that both the primal and
dual problems are well-posed can thus reduce the parameter space.

∗Ph.D student, Department of Information Technology.
†Professor, Department of Mathematics.
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In this paper, we will consider time-dependent partial differential equations of the form

ut + L(u) = f,

J(u) = (g, u)
(1)

where J(u) is a functional output of interest, L can be either linear or non-linear and u can represent either
a scalar or vector valued function. To find the dual problem, we follow the notation in,8,9, 15 and seek a
function θ in some appropriate function space, so that

T∫
0

J(u)dt =

T∫
0

(θ, f)dt. (2)

A formal computation (assume that L is linear and that u have compact support in space) gives

T∫
0

J(u)dt =

T∫
0

J(u)dt−
T∫

0

(θ, ut + Lu− f)dt

=

T∫
0

(θt − L∗θ + g, u)dt+

∫
Ω

[θu]T0 dΩ +

T∫
0

(θ, f)dt,

(3)

where L∗ is the formal adjoint, or dual, operator associated with L under the inner product so that (θ, Lu) =
(L∗θ, u). By having homogeneous initial conditions for the primal problem, we obtain the time-dependent
dual problem as

−θt + L∗θ = g (4)

where we have to put an initial condition for the dual problem at time t = T . Usually one introduces the
time transformation τ = T − t which transforms (4) to

θτ + L∗θ = g (5)

with an initial condition at τ = 0. A discretization which simultaneously approximates the primal and dual
problems consistently, is called dual consistent and produces superconvergent time-dependent linear integral
functionals if the scheme for the primal problem is stable.9

A discretization of the primal problem (1) can be written as

d

dt
uh + Lhuh = f, (6)

where uh is the discrete approximation of u and Lh is a discrete approximation of L, including the boundary
conditions. It is thus required that (6) is both stable and that the discrete dual operator, L∗h, is a consistent
approximation of L∗, including the dual boundary conditions.

A difference operator for the first derivative is said to be on SBP form if it can be written as

D1 = P−1Q (7)

where P = PT defines a norm by ||u||2 = uTPu and Q satisfies the SBP property

Q+QT = EN − E0, (8)

where

EN = diag[0, . . . , 0, 1], E0 = diag[1, 0, . . . , 0]. (9)

The second derivative operator can be constructed either by applying the first derivative twice, i.e.

D2 = (P−1Q)2 (10)

which results in a wide operator, or a compact operator with minimal bandwidth of the form

D2 = P−1(−H + (EN − E0)S) (11)
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as described in.16–18 In this paper, we consider only diagonal norms.19 A first derivative SBP operator is in
essence a 2s-order accurate central finite difference operator which have been modified close to the boundaries
so that it becomes one-sided. Together with the diagonal norm, the boundary closure is accurate of order
s making the SBP operator accurate of order s+ 1 in general.19 For problems with second derivatives, the
compact operator can be modified with higher order accurate boundary closures to gain one extra order of
accuracy.17,20

The discrete inner product in an SBP setting is defined by

(uh, vh)h = uThPvh (12)

and hence the discrete adjoint operator can be computed, according to the definition

(Lhuh, vh)h = (uh, L
∗
hvh)h, (13)

as
L∗h = P−1LThP. (14)

The proof that a stable and dual consistent SBP scheme produces superconvergent linear functionals is
presented in.9 The proof is based on the fact that the norm matrix, P , is a high order accurate integration
operator. It was shown in21 that the matrix P extends the Gregory formulas for integration and is accurate
of order 2s. Moreover, it was shown that when integrating the numerical solution from an SBP discretization
using the mass matrix P , you regain the full accuracy of 2s for the integral.

The procedure for constructing stable schemes which superconvergent linear functionals can now be
summarized as follows;

1. Determine boundary conditions so that both the primal and dual problems are well-posed

2. Discretize the primal problem and ensure stability

3. Compute L∗h and chose the remaining parameters (if any) so that the continuous adjoint L∗ is consis-
tently approximated with the dual boundary conditions

While the procedure seems somewhat abstract, we will show using representative equations that the compu-
tations are straight forward. Note that a stable and consistent discretization of the primal problem does not
imply that the dual problem is consistently approximated. In fact, that is rarely the case. Note also that
dual consistency, and hence superconvergence, is merely a choice of coefficients. Superconvergence is thus
obtained at no extra computational cost.

II. The 2-D Euler equations

We consider the non-dimensional time-dependent compressible Euler equations in two space dimensions.
The non-dimensionalization have been done as

ρ =
ρ∗

ρ∗∞
, u =

u∗

c∗∞
, v =

v∗

c∗∞
, e =

e∗

ρ∗∞(c∗∞)2
, p =

p∗

ρ∗∞(c∗∞)2
, T =

T ∗

T ∗∞
, (15)

where we have the density, velocities, energy, pressure and temperature, respectively. The ∗-superscript
denotes a dimensional variable and the ∞-subscript the free-stream reference value. Note that the velocities
are non-dimensionalized using the free-stream speed of sound, c∗∞. The equation of state is the ideal gas law
in non-dimensional form,

γp = ρT. (16)

More details about the non-dimensionalization can be found in i.e.22

In conservative form, the Euler equations can be written as

qt + F Ix +GIy = 0 (17)

where the conservative variables, q = [ρ, ρu, ρv, e]T , are the density, momentum and energy, respectively.
The energy is defined by

e =
p

γ − 1
+

1

2
ρ(u2 + v2), (18)
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where p is the pressure and γ the ratio of specific heats. The fluxes are given by

F I =


ρu

p+ ρu2

ρuv

(p+ e)u

 , GI =


ρv

ρuv

p+ ρv2

(p+ e)v

 . (19)

Since (17) is a nonlinear system of equations, it is not easily analyzed using standard theory. The analysis
will hence be performed on the linear, constant coefficient symmetric Euler equations in non-conservative
form. This is known as the principle of linearization and localization.23 After linearizing (17), freezing the
coefficients and symmetrizing,24 we obtain

Ut +AUx +BUy = 0 (20)

where U = [ c̄√
γρ̄ρ, u, v,

1

c̄
√
γ(γ−1

T ]T are the symmetrized variables. We abuse the notation a bit and let

ρ, u, v, T have the same meaning whether they are the original or linearized variables. A bar denotes a
constant state around which we have linearized. The symmetric coefficient matrices, A,B are found in.24,25

To simplify the analysis we let the domain of interest be the unit square, Ω = [0, 1]2.
To determine the boundary conditions, we apply the energy method to (20). By using the Gauss-Green

formula for higher-dimensional integration by parts, we obtain

||U ||2t = −
∮
∂Ω

UT (AU,BU) · nds

=

1∫
0

UTBUdx

︸ ︷︷ ︸
south

−
1∫

0

UTBUdx

︸ ︷︷ ︸
north

−
1∫

0

UTAUdy

︸ ︷︷ ︸
east

+

1∫
0

UTAUdy

︸ ︷︷ ︸
west

,
(21)

and the boundary conditions for (20) have to be chosen so that

||U ||2t ≤ 0. (22)

Since the matrices A,B are symmetric, we can diagonalize them as

A = XΛAX
T , B = Y ΛBY

T , (23)

where the eigenvector matrices X,Y have been normalized. By splitting ΛA,B into parts containing the
positive and negative eigenvalues, respectively,

ΛA = Λ+
A + Λ−A, ΛB = Λ+

B + Λ−B , (24)

we can estimate (21) as

||U ||2t ≤
1∫

0

(Y TU)Λ+
B(Y TU)dx−

1∫
0

(Y TU)Λ−B(Y TU)dx

−
1∫

0

(XTU)Λ−A(XTU)dy +

1∫
0

(XTU)Λ+
A(XTU)dy.

(25)

From (25) we can see that we get an energy estimate if we let

Λ+
AX

TU = 0, Λ−AX
TU = 0, Λ+

BY
TU = 0, Λ−BX

TU = 0. (26)

If we define

A+ = XTΛ+
AX, A− = XTΛ−AX, B+ = Y TΛ+

BY, B− = Y TΛ−BY, (27)
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we can write the boundary conditions in (26) as

A+U = 0, A−U = 0, B+U = 0, B−U = 0, (28)

for the west, east, south and north boundaries, respectively. The boundary conditions (28) are the charac-
teristic boundary conditions for the Euler equations which are extensively used in CFD applications. Note
that we have used homogeneous boundary conditions in the analysis. If the boundary data is included, an
energy estimate can still be obtained and the problem is called strongly well-posed.26

To determine the dual operator and dual boundary conditions we let

L = A
∂

∂x
+B

∂

∂y
(29)

and write (20) as
Ut + LU = 0 (30)

together with a linear functional of interest

J(U) = (G,U). (31)

We follow the procedure in9,15 and let Ut = 0, add a forcing function F to (30), and seek θ so that

J(U) = (θ, F ). (32)

Integration by parts gives

J(U) = J(U)−
∫
Ω

θT (LU − F )dΩ

= −
∫
Ω

UT (L∗θ −G)dΩ−
∮
∂Ω

θT (AU,BU) · nds+ (θ, F ),

(33)

where
L∗θ = −Aθx −Bθy (34)

and hence the dual operator is given by

L∗ = −A ∂

∂x
−B ∂

∂y
. (35)

We obtain the dual boundary conditions by expanding the boundary integral and applying the homogeneous
boundary conditions (28) for the primal equation. The minimal number of conditions which remove the rest
of the boundary terms are the dual boundary conditions. A straightforward computation results in

A−θ = 0, A+θ = 0, B−θ = 0, B+θ = 0 (36)

for the west, east, south and north boundaries, respectively. Note that the dual boundary conditions (36)
are the exact opposites of the primal boundary conditions (28).

A. Discretization, stability and, dual consistency

The discrete analysis will also be performed on the linear, constant coefficient and symmetric system (20).
In the implementation, however, the nonlinear conservative form is used and the scheme has been trans-
formed back to the conservative variables. For the purpose of analysis, we discretize (20) with the boundary
conditions given in (28) as

d

dt
Uh + (P−1

x Qx ⊗ Iy ⊗A)Uh + (Ix ⊗ P−1
y Qy ⊗B)Uh =

+ (P−1
x EW ⊗ Iy ⊗ ΣW )((Ix ⊗ Iy ⊗A+)Uh)

+ (P−1
x EE ⊗ Iy ⊗ ΣE)((Ix ⊗ Iy ⊗A−)Uh)

+ (Ix ⊗ P−1
y ES ⊗ ΣS)((Ix ⊗ Iy ⊗B+)Uh)

+ (Ix ⊗ P−1
y EN ⊗ ΣN )((Ix ⊗ Iy ⊗B−)Uh).

(37)
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The subscripts x, y indicates in which coordinate direction the operator is acting, and the subscripts E,W,S,N
indicates that the term acts only on the west, east, south or north boundary, respectively. The matrices
ΣW,E,S,N , so that the scheme is stable, is given by

Proposition II.1. The scheme (37) is stable using

ΣW = σW I4, ΣE = σEI4, ΣS = σSI4, ΣN = σNI4, (38)

with

σW ≤ −
1

2
, σE ≥

1

2
, σS ≤ −

1

2
, σN ≥

1

2
. (39)

Proof. We apply the energy method by multiplying (37) with UT (Px ⊗ Py ⊗ I4). We get

||Uh||2t = UTh (EW ⊗ Py ⊗ (A+ 2ΣWA
+))Uh

+ UTh (EE ⊗ Py ⊗ (−A+ 2ΣEA
−))Uh

+ UTh (Px ⊗ ES ⊗ (B + 2ΣSB
+))Uh

+ UTh (Px ⊗ EN ⊗ (−B + ΣNB
−))Uh

(40)

and it is required that we chose ΣW,E,S,N so that ||Uh||2t ≤ 0. Since all matrices in the first two components
of the Kronecker products are positive, it is sufficient to only consider the third component. Thus, we require
that

A+ 2ΣWA
+ ≤ 0, −A+ 2ΣEA

− ≤ 0, B + 2ΣSB
+ ≤ 0, −B + ΣNB

− ≤ 0. (41)

The conditions (41) are seen to be satisfied by (38) and (39) by diagonalizing A, B, and splitting into their
positive and negative parts, respectively. Hence the scheme is energy stable if the relations in (39) hold.
More details can be found in.22,25

To determine the coefficients σW,E,S,N in (38) so that the scheme is dual consistent, we write (37), using
(38), as

d

dt
Uh + LhUh = F (42)

where

Lh = (P−1
x Qx ⊗ Iy ⊗A) + (Ix ⊗ P−1

y Qy ⊗B)

− (P−1
x EW ⊗ Iy ⊗ σWA+)− (P−1

x EE ⊗ Iy ⊗ σEA−)

− (Ix ⊗ P−1
y ES ⊗ σSB+)− (Ix ⊗ P−1

y EN ⊗ σNB−)

(43)

and we have to compute the dual operator L∗h so that it becomes a consistent approximation of (35) with
the dual boundary conditions (36). The coefficients so that (37) is dual consistent are given in

Theorem II.2. The scheme (37) is dual consistent with (38) and the choices

σW = −1, σE = 1, σS = −1, σN = 1. (44)

Proof. In analogy with (14) we compute the dual operator, according to the definition

L∗h = (Px ⊗ Py ⊗ I4)−1LTh (Px ⊗ Py ⊗ I4), (45)

as

L∗h = −(P−1
x Qx ⊗ Iy ⊗A)− (Ix ⊗ P−1

y Qy ⊗B)

− (P−1
x EW ⊗ Iy ⊗A−) + (P−1

x EE ⊗ Iy ⊗A+)

− (Ix ⊗ P−1
y ES ⊗B−) + (Ix ⊗ P−1

y EN ⊗B+)

+ (P−1
x EW ⊗ Iy ⊗ (1 + σW )A+)− (P−1

x EE ⊗ Iy ⊗ (1− σE)A−)

+ (Ix ⊗ P−1
y ES ⊗ (1 + σS)B+)− (Ix ⊗ P−1EN ⊗ (1− σN )B−).

(46)

The four last terms in (46) imposes the boundary conditions

A+θ = 0, A−θ = 0, B+θ = 0, B−θ = 0 (47)

at the west, east, south and north boundaries, respectively. These are not valid boundary conditions for
the dual problem and are canceled by the choices in (44). Since none of conditions contradicts the stability
conditions (39), the scheme is both stable and dual consistent.
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B. Numerical results for the Euler equations

The theory of functional superconvergence is based on linear problems with constant coefficients and linear
integral functionals. For these problems the theoretical and numerical results are in good agreement.4,8, 9, 15,21

Here we will apply the linear theory to the fully non-linear Euler equations in conservative form to see whether
or not the theory holds also in this case.

To compute the rate of convergence, a forcing function has been added to the right-hand-side so that the
solution is given by

ρ = 1 +
1

2
sin(π(x− y)− t), u =

1

2
cos(πx+ y − t),

v =
1

2
sin(x+ πy − t), p = 1 +

1

2
cos(π(x− y)− t) sin(π(x+ y)− t).

(48)

This is sometimes referred to as the method of manufactured solutions.27,28

The addition of the forcing function does not alter the well-posedness properties or boundary conditions
due to the principle of Duhamel.26 We perform a mesh refinement study from 32 to 256 grid points where
the time integration is done using the classical 4th-order Runge–Kutta method until time t = 0.1 using 1000
time steps.

To avoid showing too many results, we only show the convergence results for the 8th-order operator which
results in a 5th-order accurate solution, see.20 For the Euler equations, we show the results for the both the
dual consistent as in (44) discretization as well as the dual inconsistent as in (39). The rates of convergence
for the conservative variables for the dual consistent case are seen in Table 1 and for the dual inconsistent
case in Table 2.

Table 1. Convergence rates qr for the conservative variables in the Euler equations using the dual consistent
discretization

N qr(ρ) qr(ρu) qr(ρv) qr(e)

64 4.7498 5.1201 5.2513 5.3562

96 5.5454 5.1739 5.6076 5.4327

128 5.7281 5.3122 5.3432 5.4978

160 5.4519 5.2569 4.9460 5.4139

192 5.3262 5.1627 5.0112 5.3523

224 5.3772 5.0984 5.0819 5.3462

256 5.4024 5.0562 5.0123 5.3304

Table 2. Convergence rates qr for the conservative variables in the Euler equations using the dual inconsistent
discretization

N qr(ρ) qr(ρu) qr(ρv) qr(e)

64 4.6858 4.8067 4.9053 4.8350

96 5.4669 5.1441 5.3276 5.1247

128 5.2475 5.0821 5.0106 5.1784

160 4.8783 4.8968 4.9261 5.1207

192 5.1188 5.0338 5.3047 5.0758

224 5.2215 5.0934 5.1739 5.1222

256 5.0817 5.0181 4.9316 5.1390

The functionals we consider are the volume integrals of the conservative variables and the volume integral
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of the pressure and the kinetic energy,

J1(q) =

∫
Ω

ρdΩ, J2(q) =

∫
Ω

ρudΩ, J3(q) =

∫
Ω

ρvdΩ,

J4(q) =

∫
Ω

edΩ, J5(q) =

∫
Ω

pdΩ, J6(q) =

∫
Ω

kedΩ,

(49)

where

p = (γ − 1)(e− 1

2
ρ(u2 + v2)), ke =

1

2
ρ(u2 + v2), (50)

are non-linear functions of the conservative variables. These functionals can be computed analytically and
the rates of convergence are measured against the exact values. The rates of convergence for the functionals
are seen in Table 3 for the dual consistent case and in Table 4 for the dual inconsistent case.

Table 3. Convergence rates qr for the functionals from the dual consistent discretization of the Euler equations.
The last row is the constant least square (cls) fit which represent an expected value.

N qr(J1) qr(J2) qr(J3) qr(J4) qr(J5) qr(J6)

64 4.5780 5.3914 4.8985 4.5785 4.5495 4.3555

96 8.1389 10.2924 13.2182 8.3594 8.1815 7.2962

128 4.1186 1.3917 -1.3703 4.7803 5.2629 8.4514

160 6.6508 7.0548 11.5813 8.0494 8.0560 8.1333

192 10.8908 8.8689 27.0329 16.7060 20.5837 7.4007

224 8.3161 6.0510 -3.6784 17.4289 2.2955 2.5346

256 3.1693 4.1337 0.2751 -5.9980 19.2379 7.1131

cls 6.5518 6.1691 7.4225 7.7006 9.7381 6.4693

Table 4. Convergence rates qr for the functionals from the dual inconsistent discretization of the Euler
equations. The last row is the constant least square (cls) fit which represent an expected value.

N qr(J1) qr(J2) qr(J3) qr(J4) qr(J5) qr(J6)

64 4.6017 4.9105 4.7553 4.9072 4.9909 3.8402

96 5.0038 5.1344 5.1212 5.0948 5.1267 4.8317

128 5.1127 5.0674 5.1322 5.0634 5.0657 5.0456

160 4.8696 5.1995 5.0439 5.0918 5.1176 4.8976

192 4.9294 5.2151 5.1612 5.1669 5.1827 5.0520

224 5.1733 5.1164 5.2961 5.1918 5.1828 5.2568

256 5.1197 5.1597 5.2264 5.1542 5.1542 5.1542

cls 4.9729 5.1147 5.1052 5.0957 5.1172 4.8683

As we can see from Tables 1 and 2, the rate of convergence for the conservative variables does not differ
between the dual consistent and dual inconsistent discretization.

From Table 3 we can see that the superconvergence is not clearly visible. From linear theory, one should
expect 8th-order accuracy. The rates of convergence are at any rate higher than for the dual inconsistent case
in Table 4. Note the non-smooth behavior of the rates of convegence for the dual consistent case. This was
seen also for linear equations9 and is due to the lack of dissipation for the PDE itself. The dual inconsistent
case attains its design order 5th-order accuracy also for the functionals.
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III. The 2-D Navier-Stokes equations

The two-dimensional, compressible Navier-Stokes equations in non-dimensional form can be written in
conservative form as

qt + F Ix +GIy = ε(FVx +GVy ), (51)

where q, F I , and GI are as before. The coefficient ε = Ma/Re is the ratio between the Mach and Reynolds
numbers and the viscous fluxes are given by

FV = [0, τxx, τxy, uτxx + vτxy + κTx]T ,

GV = [0, τxy, τyy, uτyx + vτyy + κTy]T ,
(52)

where κ is the thermal conductivity coefficient. The stress tensor is given by

τxx = 2µ
∂u

∂x
+ λ

(
∂u

∂x
+
∂v

∂y

)
, τyy = 2µ

∂v

∂y
+ λ

(
∂u

∂x
+
∂v

∂y

)
,

τxy = τyx = µ

(
∂u

∂y
+
∂v

∂x

)
,

(53)

where µ and λ are the dynamic and second viscosity, respectively. More details can be found in i.e.22,25,29

Since (51) is a highly non-linear system of equations it cannot be analyzed using standard theory. We
hence follow the procedure in section II and linearize (51) around a constant state. By applying the parabolic
symmetrizer derived in,24 we obtain the symmetric constant coefficient system

Ut +AUx +BUy = ε((C11Ux + C12Uy)x + (C21Ux + C22Uy)y), (54)

where U , A, B are as before and the matrices C11, C12, C21 and C22 can again be found in.24,25

A. Well-posed boundary conditions for the primal problem

In order to derive well-posed boundary conditions for the primal problem (51), we consider the unit square
and a flow going from left to right. We have linearized around a state with constant x, y-directional velocities
ū, v̄ > 0. The west/south boundaries are inflow boundaries, while the east/north boundaries are outflow
boundaries. In this case, the west/south boundaries require 4 boundary conditions while the east/north
boundaries require 3 boundary conditions.25 See figure 1.
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Figure 1. Computational domain and flow assumptions

The (homogeneous) boundary conditions we consider are of the form

HWU − ε(C11Ux + C12Uy) = 0,

HEU + ε(C11Ux + C12Uy) = 0,

HSU − ε(C21Ux + C22Uy) = 0,

HNU + ε(C21Ux + C22Uy) = 0,

(55)
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for the west, east, south and north boundaries, respectively. The matrices HW,E,S,N are yet to be determined
for well-posedness of both the primal and dual problems.

A necessary, but not sufficient, requirement onHW,E,S,N is that they give an energy estimate. By applying
the energy method to (54) and using the Green-Gauss formula for higher dimensional integration-by-parts
we obtain,

||U ||2t = −
1∫

0

UT (−A+HW +HT
W )Udy −

1∫
0

UT (A+HE +HT
E )Udy

−
1∫

0

UT (−B +HS +HT
S )Udx−

1∫
0

UT (B +HN +HT
N )Udx

− 2ε

∫
Ω

∇UT · (C11Ux + C12Uy, C21Ux + C22Uy)dΩ.

(56)

The last term in (56) is dissipative22,25 and it is clear that HW,E,S,N must be chosen so that

−A+HW +HT
W ≥ 0, A+HE +HT

E ≥ 0,

−B +HS +HT
S ≥ 0, B +HN +HT

N ≥ 0,
(57)

in order to obtain a bounded energy growth and hence an energy estimate. The specific form of HW,E,S,N

will be determined after considering well-posedness of the dual problem.

B. Well-posed boundary conditions for the dual problem

To determine the dual problem we write (54) as

Ut + LU = 0 (58)

where

L = A
∂

∂x
+B

∂

∂y
− ε

(
C11

∂2

∂x2
+ C12

∂2

∂yx
+ C21

∂2

∂xy
+ C22

∂2

∂yy

)
. (59)

By adding a forcing function, R, and letting Ut = 0, we seek a function θ so that

J(U) = (θ,R), (60)

where
J(U) = (S,U) (61)

is a linear functional of interest. Repeated use of the Green-Gauss formula results in

J(U) = J(U)− (θ, LU −R)

= (θ,R) + (S − L∗θ, U)

+

1∫
0

θT (AU − ε(C11Ux + C12Uy)dy + ε

1∫
0

(θTxC11 + θTy C12)Udy

−
1∫

0

θT (AU − ε(C11Ux + C12Uy)dy − ε
1∫

0

(θTxC11 + θTy C12)Udy

+

1∫
0

θT (BU − ε(C21Ux + C22Uy)dx+ ε

1∫
0

(θTxC21 + θTy C22)Udx

−
1∫

0

θT (BU − ε(C21Ux + C22Uy)dx− ε
1∫

0

(θTxC21 + θTy C22)Udx.

(62)
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The dual operator, L∗, is given by

L∗ = −A ∂

∂x
−B ∂

∂y
− ε

(
C11

∂2

∂x2
+ C12

∂2

∂yx
+ C21

∂2

∂xy
+ C22

∂2

∂yy

)
(63)

and we obtain the dual boundary conditions by applying the homogeneous primal boundary conditions to
the boundary integral terms. By using (55), we can write (62) as

J(U) = (θ,R) + (S − L∗θ, U)

+

1∫
0

UT ((A−HT
W )θ + ε(C11θx + C12θy))dy,

−
1∫

0

UT ((A+HT
E )θ + ε(C11θx + C12θy))dy,

+

1∫
0

UT ((B −HT
S )θ + ε(C21θx + C22θy))dx,

−
1∫

0

UT ((B +HT
N )θ + ε(C21θx + C22θy))dx,

(64)

and hence the dual boundary conditions are given by

(A−HT
W )θ + ε(C11θx + C12θy) = 0,

(A+HT
E )θ + ε(C11θx + C12θy) = 0,

(B −HT
S )θ + ε(C21θx + C22θy) = 0,

(B +HT
N )θ + ε(C21θx + C22θy) = 0,

(65)

for the west, east, south and north boundaries, respectively.
Once the dual operator, L∗, and the dual boundary conditions (65) have been determined, we can consider

the time-dependent dual problem. By again applying the time transformation

τ = T − t, (66)

we can write the time-dependent dual problem as

θτ −Aθx −Bθy = ε((C11θx + C12θy)x + (C21θx + C22θy)y). (67)

It is necessary, but not sufficient, that the dual boundary conditions in (65) gives an energy estimate for the
time-dependent dual problem (67). The energy method applied to (67) results, as before, in

||θ||2τ = −
1∫

0

θT (−A+HW +HT
W )θdy −

1∫
0

θT (A+HE +HT
E )θdy

−
1∫

0

θT (−B +HS +HT
S )θdx−

1∫
0

θT (B +HN +HT
N )θdx

− 2ε

∫
Ω

∇θT · (C11θx + C12θy, C21θx + C22θy)dΩ.

(68)

and we can see that the same requirements for obtaining an energy estimate holds for the dual problem as
for the primal problem. It is thus sufficient to construct the matrices HW,E,S,N so that (57) holds and so
that the correct number of boundary conditions are imposed for both the primal and dual problems. An
energy estimate for both problems will follow.
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C. Well-posed boundary conditions for both the primal and dual problems

To obtain well-posedess, it is necessary that an energy estimate is obtained with the correct number of
boundary conditions. Such an operator is called maximally semi-bounded.26 Too many boundary conditions
can prevent a solution from existing, and too few results in non-unique solutions. The reasoning regarding
the number of boundary conditions is identical for all boundaries, and hence we restrict the attention to the
west and east boundaries for simplicity.

The specific form of the matrices HW,E in the boundary conditions (55) and (65) can now be determined.
Since the west boundary is an inflow boundary, it requires 4 boundary conditions for the primal problem.
The west boundary for the dual problem, however, is an outflow boundary and only 3 boundary conditions
can be used. See25,30 for details about the number of required boundary conditions. Thus, it is required
that

A−HT
W =


0 0 0 0

α21 α22 α23 α24

α31 α32 α33 α34

α41 α42 α43 α44

 (69)

or equivalently,

HW =



ū
c̄
√
γ
− α21 −α31 −α41

c̄
√
γ

ū− α22 −α32 c̄

√
γ − 1

γ
− α42

0 −α23 ū− α33 −α43

0 c̄

√
γ − 1

γ
− α24 −α34 ū− α44


. (70)

Unless HW have this form, the top row of A − HT
W is non-zero and too many boundary conditions would

be imposed for the dual problem, making it ill-posed since a solution to overdetermined problems might not
exist. We can also see that the top row of HW is always non-zero and thus there are 4 boundary conditions
imposed for the primal problem at all times.

We can apply the same reasoning for the east boundary. The east boundary is an outflow boundary for
the primal problem and hence 3 boundary conditions are required. For the dual problem, however, we are
allowed to use 4 boundary conditions. This immediately puts restrictions on HE to have the form

HE =


0 0 0 0

β21 β22 β23 β24

β31 β32 β33 β34

β41 β42 β43 β44

 (71)

or too many boundary conditions would be imposed for the primal problem, making it ill-posed. Since the
dual problem requires 4 boundary conditions, it is also required that the top row of A+HT

E is non-zero. By
computing

A+HT
E =



ū
c̄
√
γ

+ β21 β31 β41

c̄
√
γ

ū+ β22 β32 c̄

√
γ − 1

γ
+ β42

0 β23 ū+ β33 β43

0 c̄

√
γ − 1

γ
+ β24 β34 ū+ β44


, (72)

we can see that the top left entry will be non-zero and hence 4 boundary conditions for the dual problem
will be imposed at all times.

The same reasoning can be applied to the south/north boundaries which gives the form of the matrices
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as

HS =



v̄ −ζ21
c̄
√
γ
− ζ31 −ζ41

0 v̄ − ζ22 −ζ32 −ζ42

c̄
√
γ

−ζ23 v̄ − ζ33 c̄

√
γ − 1

γ
− ζ43

0 −ζ24 c̄

√
γ − 1

γ
− ζ34 v̄ − ζ44


,

HN =


0 0 0 0

η21 η22 η23 η24

η31 η32 η33 η34

η41 η42 η43 η44

 .
(73)

Once that the form of the matrices HW,E,S,N have been determined, it is a matter of choosing the
coefficients αi ∈ HW , βj ∈ HE , ζk ∈ HS and ηl ∈ HN so that (57) hold. The choice of coefficients are not
unique and there are plenty of combinations which satisfy the requirements. One particular choice is given
in

Theorem III.1. Both the primal problem (54) with the primal boundary conditions (55) and the dual problem
(67) with the dual boundary conditions (65), are well-posed with the choice of the coefficients αi ∈ HW ,
βj ∈ HE, ζk ∈ HS and ηl ∈ HN given by

α21 =
c̄
√
γ
, β21 = − c̄

√
γ
, ζ21 = 0, η21 = 0,

α31 = 0, β31 = 0, ζ31 =
c̄
√
γ
, η31 = − c̄

√
γ
,

α41 = 0, β41 = 0, ζ41 = 0, η41 = 0,

α32 = −α23, β32 = −β23, ζ32 = −ζ23, η32 = −η23,

α42 = −α24 + c̄

√
γ − 1

γ
, β42 = −β24 − c̄

√
γ − 1

γ
, ζ42 = −ζ24, η42 = −η24,

α43 = −α34, β43 = −β34, ζ43 = c̄

√
γ − 1

γ
− ζ34, η43 = −c̄

√
γ − 1

γ
− η34,

α22 ≤
ū

2
, β22 ≥ −

ū

2
, ζ22 ≤

v̄

2
, η22 ≥ −

v̄

2
,

α33 ≤
ū

2
, β33 ≥ −

ū

2
, ζ33 ≤

v̄

2
, η33 ≥ −

v̄

2
,

α44 ≤
ū

2
, β44 ≥ −

ū

2
ζ44 ≤

v̄

2
, η44 ≥ −

v̄

2
.

(74)

Proof. The matrices HW,E,S,N are constructed to give the correct number of boundary conditions for the
primal and dual problems. We need to make sure that the relations in (74) are sufficient to obtain energy
estimates. For both the primal and dual problems, it it sufficient that the coefficients in (74) ensures that
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(57) holds. By inserting the relations with equality into (57) we obtain

−A+HW +HT
W =


ū 0 0 0

0 ū− 2α22 0 0

0 0 ū− 2α33 0

0 0 0 ū− 2α44

 ,

A+HE +HT
E =


ū 0 0 0

0 ū+ 2β22 0 0

0 0 ū+ 2β33 0

0 0 0 ū+ 2β44

 ,

−B +HS +HT
S =


v̄ 0 0 0

0 v̄ − 2ζ22 0 0

0 0 v̄ − 2ζ33 0

0 0 0 v̄ − 2ζ44

 ,

B +HN +HT
N =


v̄ 0 0 0

0 v̄ + 2η22 0 0

0 0 v̄ + 2η33 0

0 0 0 v̄ + 2η44

 ,

(75)

and the inequality relations ensures that

−A+HW +HT
W ≥ 0, A+HE +HT

E ≥ 0,

−B +HS +HT
S ≥ 0, B +HN +HT

N ≥ 0.
(76)

Hence we impose the correct number of boundary conditions for both the primal and dual problems, and
energy estimates are obtained.

Remark III.1. Note that there are many possible choices of the coefficients in HW,E,S,N so that (57) holds.
Theorem III.1 is merely one choice with the purpose of making the matrices in the energy estimates diagonal.
Even so, there are several free parameters which can be chosen arbitrarily and used for various optimization
purposes. For example, the coefficients can be chosen so that the boundary conditions for the primal and dual
Navier–Stokes equation converge to well-posed boundary conditions for the primal and dual Euler equations
as ε → 0. This is ongoing work and will be presented in a future paper. With the current choices, there is
no convergence to the Euler equations as ε→ 0.

IV. Discretization, stability, and dual consistency

To perform a stability analysis, we discretize the linear and symmetric system (54) with the boundary
conditions in (55). In the computations, however, the non-linear equations (51) is used and the system have
been transformed to its conservative form.

An SBP-SAT discretization of (54) can be written as

d

dt
Uh + (P−1

x Qx ⊗ Iy ⊗A)Uh + (Ix ⊗ P−1
y Qy ⊗B)Uh

− ε(P−1
x QxP

−1
x Qx ⊗ Iy ⊗ C11)Uh − ε(P−1

x Qx ⊗ P−1
y Qy ⊗ C12)Uh

− ε(P−1
x Qx ⊗ P−1

y Qy ⊗ C21)Uh − ε(Ix ⊗ P−1
y QyP

−1
y Qy ⊗ C22)Uh

= (P−1EW ⊗ Iy ⊗ ΣW )((Ix ⊗ Iy ⊗HW )Uh − ε((P−1
x Qx ⊗ Iy ⊗ C11)Uh + (Ix ⊗ P−1

y Qy ⊗ C12)Uh))

+ (P−1EE ⊗ Iy ⊗ ΣE)((Ix ⊗ Iy ⊗HE)Uh + ε((P−1
x Qx ⊗ Iy ⊗ C11)Uh + (Ix ⊗ P−1

y Qy ⊗ C12)Uh))

+ (Ix ⊗ P−1
y ES ⊗ ΣS)((Ix ⊗ Iy ⊗HS)Uh − ε((P−1

x Qx ⊗ Iy ⊗ C21)Uh + (Ix ⊗ P−1
y Qy ⊗ C22)Uh))

+ (Ix ⊗ P−1
y EN ⊗ ΣN )((Ix ⊗ Iy ⊗HN )Uh + ε((P−1

x Qx ⊗ Iy ⊗ C21)Uh + (Ix ⊗ P−1
y Qy ⊗ C22)Uh))

(77)
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where the terms before the equality sign approximate the equations, and the terms after imposes the boundary
conditions (55). The matrices ΣW,E,S,N are given in

Theorem IV.1. The scheme (77) is energy stable when chosing

ΣW = ΣE = ΣS = ΣN = −I4 (78)

where I4 is the 4× 4 identity matrix.

Proof. The energy method applied to (77) results in

||Uh||2t = UTh (EW ⊗ Py ⊗ (A+ ΣWHW +HT
WΣTW ))Uh

+ UTh (EE ⊗ Py ⊗ (−A+ ΣEHE +HT
EΣTE))Uh

+ UTh (Px ⊗ ES ⊗ (B + ΣSHS +HT
S ΣTS ))Uh

+ UTh (Px ⊗ EN ⊗ (−B + ΣNHN +HT
NΣTN ))Uh

− 2εUTh (EWP
−1
x Qx ⊗ Py ⊗ (C11 + ΣWC11))Uh

+ 2εUTh (EEP
−1
x Qx ⊗ Py ⊗ (C11 + ΣWC11))Uh

− 2εUTh (EW ⊗Qy ⊗ (C12 + ΣEC12))Uh

+ 2εUTh (EE ⊗Qy ⊗ (C12 + ΣEC12))Uh

− 2εUTh (Qx ⊗ ES ⊗ (C21 + ΣSC21))Uh

+ 2εUTh (Qx ⊗ EN ⊗ (C21 + ΣNC21))Uh

− 2εUTh (Px ⊗ ESP−1
y Qy ⊗ (C22 + ΣSC22))Uh

+ 2εUTh (Px ⊗ ENP−1
y Qy ⊗ (C22 + ΣNC22))Uh

−DI.

(79)

The last term, DI, can be written as

DI = ε

[
(P−1
x Qx ⊗ Iy ⊗ I4)U

(Ix ⊗ P−1
y Qy ⊗ I4)U

]T [
(Px ⊗ Py ⊗ C11) (Px ⊗ Py ⊗ C12)

(Px ⊗ Py ⊗ C21) (Px ⊗ Py ⊗ C22)

][
(P−1
x Qx ⊗ Iy ⊗ I4)U

(Ix ⊗ P−1
y Qy ⊗ I4)U

]
(80)

and is a purely dissipative term.22,25 By the choices in (78), the expression (79) simplifies to

||Uh||2t ≤ −UTh (EW ⊗ Py ⊗ (−A+HW +HT
W ))Uh

− UTh (EE ⊗ Py ⊗ (A+HE +HT
E ))Uh

− UTh (Px ⊗ ES ⊗ (−B +HS +HT
S ))Uh

− UTh (Px ⊗ EN ⊗ (B +HN +HT
N ))Uh,

(81)

where the matrices HW,E,S,N are constructed so that (57) holds and hence

||Uh||2t ≤ 0. (82)

Thus an energy estimate have been obtained and the scheme (77) is energy stable.

In contrast to the discretization of the Euler equations, there is no freedom in the choice of penalty
coefficients to obtain an energy estimate. In the Euler case, all coefficients were bounded from above or
below in order to obtain an energy estimate. The requirement that the scheme should be dual consistent
fixed all coefficients to unique values. In this case, all penalty coefficients are uniquely determined from the
energy estimate, and it is necessary that the scheme (77) is dual consistent with the choice in (78).

To be dual consistent, it is required that the discrete operator approximates the dual operator (63) with
the dual boundary conditions in (65). The main result of this paper can then be summarized in

Theorem IV.2. The discretization (77) is energy stable and dual consistent with the choice of penalty
coefficients given in (78).
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Proof. Energy stability has already been proven, and we must show that the scheme (77) together with the
coefficients in (78) is dual consistent. To prove this, we rewrite (77), using (78), as

d

dt
Uh + LhUh = 0, (83)

where

Lh = (P−1
x Qx ⊗ Iy ⊗A) + (Ix ⊗ P−1

y Qy ⊗B)

− ε(P−1
x QxP

−1
x Qx ⊗ Iy ⊗ C11)− ε(P−1

x Qx ⊗ P−1
y Qy ⊗ C12)

− ε(P−1
x Qx ⊗ P−1

y Qy ⊗ C21)− ε(Ix ⊗ P−1
y QyP

−1
y Qy ⊗ C22)

+ (P−1EW ⊗ Iy ⊗ I4)((Ix ⊗ Iy ⊗HW )− ε((P−1
x Qx ⊗ Iy ⊗ C11) + (Ix ⊗ P−1

y Qy ⊗ C12)))

+ (P−1EE ⊗ Iy ⊗ I4)((Ix ⊗ Iy ⊗HE) + ε((P−1
x Qx ⊗ Iy ⊗ C11) + (Ix ⊗ P−1

y Qy ⊗ C12)))

+ (Ix ⊗ P−1
y ES ⊗ I4)((Ix ⊗ Iy ⊗HS)− ε((P−1

x Qx ⊗ Iy ⊗ C21) + (Ix ⊗ P−1
y Qy ⊗ C22)))

+ (Ix ⊗ P−1
y EN ⊗ I4)((Ix ⊗ Iy ⊗HN ) + ε((P−1

x Qx ⊗ Iy ⊗ C21) + (Ix ⊗ P−1
y Qy ⊗ C22))).

(84)

The discrete dual operator can be computed according to the definition,

L∗h = (Px ⊗ Py ⊗ I4)−1LTh (Px ⊗ Py ⊗ I4), (85)

as

L∗h = −(P−1
x Qx ⊗ Iy ⊗A)− (Ix ⊗ P−1

y Qy ⊗B)

− ε(P−1
x QxP

−1
x Qx ⊗ Iy ⊗ C11)− ε(P−1

x Qx ⊗ P−1
y Qy ⊗ C12)

− ε(P−1
x Qx ⊗ P−1

y Qy ⊗ C21)− ε(Ix ⊗ P−1
y QyP

−1
y Qy ⊗ C22)

− (P−1
x EW ⊗ Iy ⊗ I4)((Ix ⊗ Iy ⊗ (A−HT

W )) + ε((P−1
x Qx ⊗ Iy ⊗ C11) + (Ix ⊗ P−1

y Qy ⊗ C12)))

+ (P−1
x EE ⊗ Iy ⊗ I4)((Ix ⊗ Iy ⊗ (A+HT

E )) + ε((P−1
x Qx ⊗ Iy ⊗ C11) + (Ix ⊗ P−1

y Qy ⊗ C12)))

− (Ix ⊗ P−1
y ES ⊗ I4)((Ix ⊗ Iy ⊗ (B −HT

S )) + ε((P−1
x Qx ⊗ Iy ⊗ C21) + (Ix ⊗ P−1

y Qy ⊗ C22)))

+ (Ix ⊗ P−1
y EN ⊗ I4)((Ix ⊗ Iy ⊗ (B +HT

N )) + ε((P−1
x Qx ⊗ Iy ⊗ C21) + (Ix ⊗ P−1

y Qy ⊗ C22))).

(86)

We can see that the six first terms in (86) approximates the continuous dual operator (63), while the last
four terms imposes the dual boundary conditions in (65). The discrete dual operator is thus a consistent
approximation of the dual problem and the scheme (77) is hence dual consistent with the choices in (78).

Remark IV.1. Remember that the primal and dual equations have the same energy estimate in the continuous
case. This holds also for the discretized equations. The energy method applied to the time-dependent discrete
dual problem,

d

dτ
θh + L∗hθ = 0, (87)

results in

||θh||2t ≤ −θTh (EW ⊗ Py ⊗ (−A+HW +HT
W ))θh

− θTh (EE ⊗ Py ⊗ (A+HE +HT
E ))θh

− θTh (Px ⊗ ES ⊗ (−B +HS +HT
S ))θh

− θTh (Px ⊗ EN ⊗ (B +HN +HT
N ))θh,

(88)

which is identical to the energy estimate of the discrete primal problem (81). Hence the discretization of
the dual problem is also energy stable. This can open for a efficient method for simultaneous solution of the
dual problem since much of the structure for the primal problem can be re-used.
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A. Numerical results for the Navier–Stokes equations

To verify the rate of convergence, we use the analytical solution given in (48) with the same parameter
values. In Table 5 we show the rates of convergence for the conservative variables and in Table 6 the rates
of convergence for the functionals.

The boundary conditions and numerical scheme were derived with the purpose of being dual consistent,
and hence there is no dual inconsistent case to compare with. Note that we are solving the non-linear
compressible Navier-Stokes equations in conservative form, and not the linear symmetric form on which the
analysis have been performed.

Table 5. Convergence rates qr for the conservative variables in the Navier–Stokes equations

N qr(ρ) qr(ρu) qr(ρv) qr(e)

64 4.7839 4.9275 4.7768 4.5232

96 5.0482 4.9936 4.8054 4.5468

128 4.9215 4.8725 4.7662 4.6401

160 4.8173 4.8208 4.7526 4.6761

192 4.7551 4.8064 4.7499 4.6957

224 4.7162 4.8060 4.7544 4.7110

256 4.6879 4.8116 4.7635 4.7253

Table 6. Convergence rates qr for the functionals from the Navier–Stokes equations

N qr(J1) qr(J2) qr(J3) qr(J4) qr(J5) qr(J6)

64 4.3153 5.5219 6.3834 1.8565 1.5444 4.9082

96 6.1506 6.6984 7.3771 6.1298 6.0771 6.3547

128 6.8749 7.1829 7.9124 6.8258 6.8054 6.9197

160 7.2215 7.4752 8.2180 7.2135 7.2010 7.2724

192 7.4742 7.6864 8.4029 7.4843 7.4751 7.5280

224 7.6595 7.8422 8.5396 7.6796 7.6726 7.7142

256 7.7906 7.9598 8.6587 7.8240 7.8135 7.8521

We can see from Table 5 and 6 that the 5th-order accuracy for the conservative variables are almost
attained, and that the functionals become superconvergence with 8th-order accuracy. Note that the rates
of convergence for the functionals are much smoother than for the Euler equations, probably due to the
dissipation from the PDE itself.

B. A remark on the implementation

In the derivations, the assumption has been that ū, v̄ ≥ 0. If ū < 0 or v̄ < 0, the inflow boundary is changed
to an outflow boundary. Since the number of boundary conditions change, the matrices are then constructed
so that

HW =


0 0 0 0

α21 α22 α23 α24

α31 α32 α33 α34

α41 α42 α43 α44

 , A+HT
E =


0 0 0 0

β21 β22 β23 β24

β31 β32 β33 β34

β41 β42 β43 β44

 ,

HS =


0 0 0 0

ζ21 ζ22 ζ23 ζ24

ζ31 ζ32 ζ33 ζ34

ζ41 ζ42 ζ43 ζ44

 , B +HT
N =


0 0 0 0

η21 η22 η23 η24

η31 η32 η33 η34

η41 η42 η43 η44

 ,
(89)
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where the coefficients in theorem III.1 are valid with all signs reversed. From an implementational point of
view, all inequalities can be replaced by equalities for an energy stable scheme independently whether or not
ū < 0 or v̄ < 0.

The stability and dual consistency theory have been derived for the linearized and symmetrized Navier-
Stokes equations (54). In an implementation, however, the non-linear conservative flux formulation (51) is
used. The stability theory can be seen as constructing a scheme for which one grid point on the boundary
does not contribute to unbounded energy growth during one explicit time step, or time integration stage if
a multistage method is used. In the non-linear formulation, the boundary conditions have to be applied on
a nodal basis and the penalty matrices has thus to be recomputed for each node on the boundary, in each
time integration stage.

One can identify terms which are common for both the non-linear and linear, symmetric formulation.
For example, the boundary condition

HWU − ε(C11Ux + C12Uy) = 0 (90)

can be written as
HW (A)U − εFVS = 0 (91)

where FVS = C11Ux+C12Uy is the viscous flux and HW = HW (A) is a function of A, which is the symmetrized
inviscid flux jacobian. In the non-linear formulation, the viscous flux terms are always computed and
the values along the boundary can be re-used in the boundary conditions. The transformation of HW to
conservative form is done in three steps;

1. Construct HW from the coefficients in Theorem III.1.

2. Transform back to primitive form from the symmetric form, H
(P )
W = SPHWS

−1
P .

3. Transform back to conservative form from the primitive form, H
(C)
W = SCH

(P )
W S−1

C .

The transformation matrices SP and SC are found in24 and,31 respectively. Since the transformation matri-
ces, and their inverses, are explicitly available, step 2 and 3 can be combined to a single transformation to
reduce the computational complexity. Finally, the boundary condition is applied to each grid point on the
boundary, in each time integration stage, as

H
(C)
W q − εFV = g, (92)

where FV is the viscous flux and g is the boundary data.

V. Conclusions

We have derived new far-field boundary conditions for the Navier–Stokes equations. The derivations
were made by simultaneously considering the primal and dual problems. The boundary conditions lead to
a stable and dual consistent discretization which produced superconvergent linear and non-linear integral
functionals. This superconvergence property has previously been shown for linear problems, but is now
verified for non-linear problems with non-linear integral functionals.

For the Euler equations, we showed that the characteristic boundary conditions can be used to construct
a stable and dual consistent discretization. Due to the lack of dissipation for the PDE itself, the supercon-
vergence was not as clearly seen, but it was verified that the rates of convergence were higher than for a dual
inconsistent discretization.
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5Giles, M. B., Larson, M. G., Levenstam, J. M., and Süli, E., “Adaptive Error Control for Finite Element Approximations

of the Lift and Drag Coefficients in Viscous Flow,” Tech. rep., Report NA-97/06, Oxford University Computing Laboratory,
1997.

6Giles, M. B. and Pierce, N. A., “Superconvergent lift estimates through adjoint error analysis,” Innovative Methods for
Numerical Solutions of Partial Differential Equations, 2001.

7Pierce, N. A. and Giles, M. B., “Adjoint Recovery of Superconvergent Functionals from PDE Approximations,” SIAM
Review , Vol. 42, No. 2, 2000, pp. 247–264.

8Hicken, J. E. and Zingg, D. W., “Superconvergent Functional Estimates from Summation-By-Parts Finite-Difference
Discretizations,” SIAM Journal on Scientific Computing, Vol. 33, No. 2, 2011, pp. 893–922.

9Berg, J. and Nordström, J., “Superconvergent functional output for time-dependent problems using finite differences on
summation-by-parts form,” Journal of Computational Physics, Vol. 231, No. 20, 2012, pp. 6846–6860.
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