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The major problem associated with the walking of humanoid robots is to main-
tain its dynamic equilibrium while walking. To achieve this one must detect

gait instability during walking to apply proper fall avoidance schemes and bring

back the robot into stable equilibrium. A good approach to detect gait insta-
bility is to study the evolution of the attitude of the humanoid’s trunk. Most

attitude estimation techniques involve using the information from inertial sen-

sors positioned at the trunk. However, inertial sensors like accelerometer and
gyro are highly prone to noise which lead to poor attitude estimates that can

cause false fall detections and falsely trigger fall avoidance schemes. In this
paper we present a novel way to access the information from joint encoders

present in the legs and fuse it with the information from inertial sensors to

provide a highly improved attitude estimate during humanoid walk. Also if the
joint encoders’ attitude measure is compared separately with the IMU’s atti-

tude estimate, then it is observed that they are different when there is a change

of contact between the stance leg and the ground. This may be used to detect
a loss of contact and can be verified by the information from force sensors

present at the feet of the robot. The propositions are validated by experiments

performed on humanoid robot NAO.

Keywords: Humanoid walking; Dynamic equilibrium; Attitude estimation; In-

stability detetection; Sensor fusion; Inertial sensors; Joint encoders.

1. Introduction

There has been increasing academic and commercial interest in humanoid

robots for various applications since the recent significant advancements in

robot control technology. An effective trunk attitude control is one of the
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most important factors for a humanoid to continue dynamically stable walk-

ing which is necessary to accomplish any given task. Most indoor robots

use inertial sensors and vision, or other external signals and cues, for deter-

mining their position and orientation. In most cases, humanoid robots like

NAO use MEMS based inertial sensors to calculate its attitude due to cost,

payload and other limitations. Most inertial measurement units (IMUs)

consist of 3-axis gyros and accelerometers which measure the angular rate

and specific forces of the vehicle respectively. Hence these IMUs do not

need external sources for attitude measurement. Conventionally, attitude

is computed by integrating the angular rate obtained from gyro readings.

However, this method is inappropriate as the gyro bias error makes the

attitude error to diverge.1 On the other hand the attitude calculated by ac-

celerometers is heavily influenced by mechanical disturbances caused by the

movement of the robot. Accordingly, a number of fusion algorithms have

been developed like Complementary filter method,2 direction cosine ma-

trix method,3 Euler angle update method4 and modified versions of linear

and extended Kalman Filter (EKF)567 in particular. In all these methods,

different filtering or fusion techniques are applied to minimize the error in

IMU measurements. However, accuracy of the attitude thus calculated is

still poor considering the high level of noise present in the inertial sensor

readings. There is a need to gather more information from other sensors to

improve the accuracy of the estimated attitude for a better trunk control

capability. We propose that the information from joint encoders present

in the legs can be used to measure the trunk’s attitude during different

phases of humanoid walk. This extra sensor measurement, which is readily

avaliable, is combined with the IMU data using an EKF to provide a highly

improved estimate of the trunk’s attitude. Another outcome is that if the

joint encoders’ attitude measure is compared separately with the IMU’s

attitude estimate, then it is observed that they are different when there is

a change of contact between the stance leg and the ground. This may be

used to detect a loss of contact and can be compared and validated by the

information from force sensors located at the feet of the humanoid.

In this paper, the process model of the EKF is developed using the gyro

data. Then, indivudial measurement models are developed for accelerom-

eter and joint encoders for different phases of the humanoid walk. These

individual measurement models are then combined to construct a general

Measurement Model for the EKF. Different experiments are done on hu-

manoid robot NAO and the results are discussed to show the relevance of

using joint encoder data for obtaining an improved trunk attitude estimate.
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2. EKF for Estimating the Trunk Attitude

A Kalman filter provides a simple yet effective way to fuse all sensor infor-

mation that is provided to it.8 We use an EKF as the described process is

non-linear. The notations of Welch and Bishop5 are used for constructing

the EKF.

The orientation of the non-inertial frame n, attached to the trunk of

the humanoid, relative to the inertial reference frame b, attached to the

ground, can be described in terms of three consecutive rotations through

three body-referenced Euler angles.9 These are commonly written as ψ, θ

and φ which are the yaw, pitch and roll angles respectively. In this paper,

the states variables of the EKF provide a measure of only θ and φ. They

are enough to detect the instability at the trunk. The yaw angle diverges

as there is no other measurement to compensate for the gyro bias erros.4

The overall transformation nRb from frame b to n is calculated49 and the

elements of last row of bRn are chosen as the state variables (x1, x2, x3):

nRb = bRT
n =

1 0 0

0 cosφ sinφ

0 −sinφ cosφ

cosθ 0 −sinθ
0 1 0

sinθ 0 cosθ

 cosψ sinψ 0

−sinψ cosψ 0

0 0 1

 (1)

∴ x1 = −sinθ; x2 = sinφcosθ; x3 = cosφcosθ (2)

Angles θ and φ are calculated from the state variables as θ = −sin−1x1
and φ = tan−1x2/x3 respectively.

2.1. Process Model of the EKF

The process model is based on gyro measurements. There exists a relation-

ship between the angular rates in the x, y, z axis, i.e ωx, ωy, ωz and the

time rate-of-change of the Euler angles:9φ̇θ̇
ψ̇

 =

1 sinφtanθ cosφtanθ

0 cosφ −sinφ
0 sinφsecθ cosφsecθ

ωx

ωy

ωz

 (3)

Differentiating the state variables in eq. (2) and using eq. (3), the state

derivatives can be written in matrix form (refer eq. (4)) where u is skew-

symmetric matrix of the angular rates and w represents process noise. This

can then be expressed in discrete time as shown in eq. (5)(for i = 1, 2, 3).[
ẋ1 ẋ2 ẋ3

]T
=
[
uskew−symmetric(ω)

] [
x1 x2 x3

]T
+ w(t) (4)

⇒ xi,k = [I + (uk−1 + wk−1)∆t]xi,k−1

= fi(xi,k−1, uk−1, wk−1) (5)
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The state variables so chosen meet a constraint, i.e. x21 + x22 + x23 = 1.

Imposing this constraint we obtain the process model as:

xi,k =
fi(xi,k−1, uk−1, wk−1)

‖fi(xi,k−1, uk−1, wk−1)‖
(6)

2.2. Measurement Model of the EKF

Individual measurement models are constructed for accelerometer and joint

encoders for single and double support and then combined based on the

type of support the humanoid has with the ground to form a general mea-

surement model. (All variables of the measurement model are expressed in

discrete time and have a subscript k.)

2.2.1. Accelerometer

The accelerometer is not used to measure the real acceleration of the robot

but to measure the trunk attitude assuming that the IMU (or trunk) is in

steady state. Here it measures only the gravity vector expressed in the frame

n, as this frame is attached to the IMU. The effect of trunk velocity and ac-

celeration are included in accelerometer noise vacc. Thus the accelerometer

measurements can be expressed as a function of the state variables (using

eq. (2)) which gives the accelerometer measurement model as:[
accx accy accz

]T
= −g

[
−sinθ sinφcosθ cosφcosθ

]T
+ vacc

= −g
[
x1 x2 x3

]T
+ vacc

⇒ gAcc(accx, accy, accz) = hAcc(x1, x2, x3, vacc) (7)

2.2.2. Joint Encoders - Single Support (SS)

The joint values are provided by the joint encoders present at the hip and

legs. Modelling of the humanoid is done using the DH method10 and the

notation of Khalil11 is used. (For eg. refer Fig. 1a.) In SS, the humanoid

is considered as a serial structure from the stance foot to the trunk. By

computing the DH table for each leg, the transformation matrix bTn is

calculated using the Direct Geometric Model (DGM). It must be noted that

the rotation matrices bR0 and lfRn must be known (frame lf is attached

to the last link of the leg). The rotation matrix bRn is simply the first 3

rows and columns of bTn:

bRn,Leg = bR0
0Rlf (qi, vjoint)

lfRn (8)
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where qi are the joint angles used to calculate the DGM and vjoint is the

noise at each joint. This rotation can also be represented using Euler angles.

Hence comparing the last row of bRn,Leg (R31, R32, R33) with last row

of bRn in eq. (1) and substituting state variables using eq. (2); the joint

encoder model for SS is obtained as:[
R31 R32 R33

]T
=
[
x1 x2 x3

]T
⇒ gLeg(qi, vjoint) = hLeg(x1, x2, x3) (9)

2.2.3. Joint Encoders - Double Support (DS)

In DS since both feet are on the ground, the trunk along with two legs acts

as a closed-loop structure. The joint encoder model for DS is a combination

of the joint encoders present on both the legs:[
lR31 lR32 lR33 rR31 rR32 rR33

]T
=
[
x1 x2 x3 x1 x2 x3

]T
⇒ gBothLegs(lqi,r qi, vjoint) = hBothLegs(x1, x2, x3) (10)

where the left subscripts l and r stand for the left and right leg respec-

tively. But this closed-loop structure leads to kinematic coupling between

the joints of both legs. Hence Jacobian VBothLegs (used to compute the

Kalman Gain) in closed loop is given as:

VBothLegs =

[
lVLeg lrVLeg

rlVLeg rVLeg

]
(11)

The terms lVLeg and rVLeg are calculated from hLeg as in eq. (9) for the

given leg but the terms lrVLeg and rlVLeg are calculated using the kinematic

model of closed-loop robots.12 Inertial frame b is taken as the root of the

closed-loop and trunk frame n is attached to the cut joint k (at the hip)

such that the two legs act as the two branches of the loop. Applying the

kinematic constraint at cut joint k:[
υ ω
]T

= lJ l∂qi = rJ r∂qi (12)

Using eq. (12), the terms lrVLeg and rlVLeg are derived and substituted back

in eq. (11) to get VBothLegs:

lrVLeg = lVLeg
l∂qi

r∂qi
= lVLeg lJ

−1
rJ (13)

∴ VBothLegs =

[
lVLeg lVLeg lJ

−1
rJ

rVLeg rJ
−1

lJ rVLeg

]
(14)
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3.2.2. Disturbed Walk

As shown in Fig. 5 the effect of noise that is introduced by the external

push (at approx. 7s) is clearly visible in the estimation of roll and pitch

angles by using only IMU data. Even after the motion stops, it takes a

while for the IMU’s attitude estimate to come back to zero. This can lead

to a false fall detection. However, data fusion with joint encoders help to

correct the effect of inertial noise to give an improved attitude estimate of

the humanoid trunk.

4. Conclusion

Attiude estimates from inertial sensors that form a part of the IMU cannot

be completely trusted as they suffer heavily from various kinds of noise.

It is understood that there shall be many external disturbances which the

humanoid shall encounter while walking on even or uneven terrains. Poor at-

titude estimates would risk false fall detections. An effective trunk attitude

control capability requires good attitude measures. This can be provided

by the joint encoders in the legs which are readily available on a humanoid

platform. By fusing the noisy IMU data with joint encoders’ data from the

legs, an improved trunk attitude estimation can be achieved.
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