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Receive Combining vs. Multi-Stream Multiplexing
in Downlink Systems with Multi-Antenna Users

Emil Björnson, Member, IEEE, Marios Kountouris, Member, IEEE, Mats Bengtsson, Senior Member, IEEE,
and Björn Ottersten, Fellow, IEEE

Abstract—In downlink multi-antenna systems with many users,
the multiplexing gain is strictly limited by the number of transmit
antennas N and the use of these antennas. Assuming that the
total number of receive antennas at the multi-antenna users is
much larger than N , the maximal multiplexing gain can be
achieved with many different transmission/reception strategies.
For example, the excess number of receive antennas can be
utilized to schedule users with effective channels that are near-
orthogonal, for multi-stream multiplexing to users with well-
conditioned channels, and/or to enable interference-aware receive
combining. In this paper, we try to answer the question if the
N data streams should be divided among few users (many
streams per user) or many users (few streams per user, enabling
receive combining). Analytic results are derived to show how user
selection, spatial correlation, heterogeneous user conditions, and
imperfect channel acquisition (quantization or estimation errors)
affect the performance when sending the maximal number of
streams or one stream per scheduled user—the two extremes in
data stream allocation.

While contradicting observations on this topic have been
reported in prior works, we show that selecting many users
and allocating one stream per user (i.e., exploiting receive
combining) is the best candidate under realistic conditions. This
is explained by the provably stronger resilience towards spatial
correlation and the larger benefit from multi-user diversity. This
fundamental result has positive implications for the design of
downlink systems as it reduces the hardware requirements at
the user devices and simplifies the throughput optimization.

Index Terms—Multi-user MIMO, channel estimation, limited
feedback, block-diagonalization, zero-forcing, receive combining.

I. INTRODUCTION

The performance of downlink wireless communication sys-
tems can be improved by multi-antenna techniques, which
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enable efficient utilization of spatial dimensions. Depending on
the available channel state information (CSI), these dimensions
can be used for enhanced reliability and/or spatial multiplexing
of multiple data streams with controlled interference [1]. The
downlink single-cell sum capacity (with perfect CSI) behaves
as

min(N,MK) log2(P ) +O(1) (1)

where N is the number of base station antennas, K is the
number of users, each user has M ≥ 1 antennas, and P is the
signal-to-noise ratio (SNR) defined as the total transmit power
divided by the noise power. The number of users is assumed
to be large such that K ≥ N , thus we have MK ≥ N and the
maximal multiplexing gain becomes min(N,MK) = N . The
multiplexing gain will have a major impact on the throughput
of future cellular networks, where high SNRs can be achieved
in an energy-efficient way by large-scale antenna arrays [2]
and/or increased cell density [3].

The sum capacity in (1) is theoretically achieved by dirty-
paper coding [4], but this non-linear scheme has impractical
complexity and is very sensitive to CSI imperfections. Fortu-
nately, the maximal multiplexing gain of N can be achieved by
linear spatial division multiple access (SDMA) strategies [5],
such as block-diagonalization (BD) [6], [7] and zero-forcing
with combining (ZFC) [8], [9]. Such SDMA strategies transmit
N simultaneous data streams, but can divide them among the
users in different ways; the system can select between dNM e
and N users to be active and allocate from 1 to M streams to
each of them. This raises a fundamental design question: how
should the receive antennas at each user be used to maximize
the system throughput?

Inter-user interference degrades user performance, while
the mutual interference between users’ own streams can be
handled by receive processing. It thus seems beneficial to
only have a few active users and multiplex many streams to
each of them. However, one should keep in mind that every
additional stream allocated to a user experiences a weaker
channel gain than the previous streams. If fewer than M
streams are allocated to a user, this user has degrees of freedom
for interference-aware receive combining to achieve a strong
effective channel and better spatial co-user compatibility. In
other words, it is not clear whether receive antennas should
be utilized for multi-stream multiplexing or receive combin-
ing, or perhaps something intermediate. The answer has a
profound impact on wireless system design, including the
CSI acquisition protocols, scheduling algorithms, and receiver
architecture.
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A. Related Work

The sum-rate maximization problem is nonconvex and com-
binatorial [10], thus only suboptimal strategies are feasible in
practice. Such low-complexity algorithms have been proposed
in [11]–[14], among others, by successively allocating data
streams to users in a greedy manner. Simulations have indi-
cated that fewer than N streams should be used when P and
K are small, and that spatial correlation makes it beneficial
to divide the streams among many users. Simulations in [12]
indicates that the probability of allocating more than one
stream per user is small when K grows large, but [12] only
considers users with homogeneous channel conditions and all
the aforementioned papers assume perfect CSI.

The authors of [9] claim that transmitting at most one
stream per user is desirable when there are many users in
the system. They justify this statement by using asymptotic
results from [15] where K →∞. This argumentation ignores
some important issues: 1) asymptotic optimality can also be
proven with multiple streams per user;1 2) the performance at
practical values on K is unknown; and 3) the analysis implies
an unbounded asymptotic multi-user diversity gain, which is
a modeling artifact of fading channels [17].

The authors of [7], [8] arrive at a different conclusion
when they compare BD (which selects N

M users and sends M
streams/user) and ZFC (which selects N users and sends one
stream/user) under quantized CSI. Their simulations reveal a
distinct advantage of BD (i.e., multi-stream multiplexing), but
are limited to uncorrelated channels and neither include user
selection nor interference rejection. We show that their results
are misleading, because single-user transmission greatly out-
performs both BD and ZFC in the scenario that they simulate.

Despite the similar terminology, our problem is fundamen-
tally different from the classic works on the diversity-spatial
multiplexing tradeoff (DMT) in [18], [19]. The DMT brings
insight on how many streams should be transmitted in the
high-SNR regime, while we consider how a fixed number of
streams should be divided among the users.

B. Main Contributions

This paper provides a comprehensive answer to how multi-
antenna users should utilize their antennas in downlink trans-
missions, or similarly how many data streams that should be
allocated per active user under different system conditions; see
Fig. 1. The main contributions are:
• New analytic results for analyzing the problem under

spatial correlation, user selection, heterogeneous user
channel conditions, and realistic CSI acquisition. These
enable asymptotic comparison of the two extremes: al-
locating M streams per active user (called BD) and one
stream per active user (called ZFC). We show that ZFC
is more resilient to spatial correlation and well adapted to
find near-orthogonal users, while BD is better at utilizing
heterogeneous user conditions. Imperfect CSI acquisition
is shown to have a similar impact on both strategies.

1The uplink analysis in [16] shows that a non-zero (but bounded) number
of users can use multiple streams, and the well-established uplink-downlink
duality makes this result applicable also in our downlink scenario.

(a) 1 stream per 2-antenna user: ZFC enables receive combining.

(b) 2 streams per 2-antenna user: BD exploits multi-stream multiplexing.

Fig. 1. Two ways of dividing four data streams among multi-antenna users,
which also represents two ways of utilizing the receive antennas to reduce
interference. (a) Receive one stream per user and linearly combine the antenna
to achieve an effective channel that rejects interference. (b) Receive multiple
streams and handle their mutual interference through receive processing.

• Numerical examples show that allocating one stream per
active user is essentially optimal under realistic system
conditions, and we explain how other conclusions may
arise. The main conclusion is that utilizing receive com-
bining is preferable over multi-stream multiplexing.

II. SYSTEM MODEL

We consider a downlink multi-user MIMO system where
a single base station with N antennas communicates with
K ≥ N users. Each user has M antennas. For analytical
convenience2 we assume that M < N and often also that
N
M is an integer, but the precoding strategies considered
herein can be applied for any M . The narrowband, flat-fading
channel to user k is represented in the complex-baseband by
Hk ∈ CM×N . The received signal at this user is

yk = Hkx + nk (2)

where x ∈ CN×1 is the joint transmitted signal for all users
and nk ∼ CN (0, IM ) is the (normalized) circularly-symmetric
complex Gaussian noise vector. For analytic convenience,
and motivated by measurements [20], [21], we employ the
Kronecker model with Hk = R

1/2
R,kH̃kR

1/2
T,k, where RT,k and

RR,k are the positive-definite spatial correlation matrices at
the transmitter and receiver side, respectively, and H̃k has
independent CN (0, 1)-entries. We assume RT,k = IN (i.e.,
large antenna separation at the base station) throughout the
analysis, because transmit correlation both creates complicated
mathematical structures and requires limiting assumptions on

2The case M ≥ N is analytically different because 1) Single-user transmis-
sion achieves the full multiplexing gain; 2) CSI acquisition is simplified since
Hk has full row rank, thus any effective channel CH

k Hk can be achieved
by selecting the receive combining Ck properly. Since user devices are size-
constrained, the case M < N is also reasonable in practice.



BJÖRNSON et al.: RECEIVE COMBINING VS. MULTI-STREAM MULTIPLEXING IN DOWNLINK SYSTEMS WITH MULTI-ANTENNA USERS 3

Downlink
Training

Feedback on
Reverse Link

Resource
Allocation

Downlink Data
Transmission

Dedicated
Downlink
Training

Coherence Time

(a)

Uplink
Training

Downlink Data
Transmission

Downlink
Training

Coherence Time

Resource
Allocation

Uplink Data
Transmission

(b)

Fig. 2. Basic block-fading system operation of (a) FDD systems; and (b)
TDD systems. The system operation is repeated in a cyclic manner.

the user distribution geometry and fading environment. Ob-
serve that RR,k generally is different for each users, describing
different spatial properties.

A. Cyclic System Operation

We assume block fading where Hk is static for a set of
channel uses, called the coherence time, and then updated
independently. We consider both frequency division duplex
(FDD) and time division duplex (TDD); baselines of the
respective cyclic system operations are illustrated in Fig. 2.

In FDD systems, the users acquire CSI through training
signaling [22] and some users feed back quantized CSI. The
base station then performs resource allocation (i.e., data stream
allocation and precoding) and informs the scheduled users
of their precoding through a second training stage. Data
transmission follows until the end of the coherence time, when
the cycle in Fig. 2(a) restarts.

In TDD systems, the system toggles between uplink and
downlink transmission on the same channel, thus enabling
training signaling in both directions. We assume perfect
channel reciprocity3 and that the coherence time makes CSI
obtained in one block of Fig. 2(b) correct until the same
block occurs in the next cycle. The base station does resource
allocation for both uplink and downlink, and it informs the
users through training signaling.

We assume that all training signals sent in the downlink
direction provide the users with perfect CSI, while CSI feed-
back (in FDD) and uplink training (in TDD) might lead to
imperfect CSI at the base station. This assumption enables
coherent reception, thus making the conventional achievable
sum rate expression a reasonable performance measure.4

3The physical channel is always reciprocal, but different transceiver hard-
ware is typically used in the downlink and the uplink. Thus, careful calibration
is necessary to utilize the reciprocity in practice.

4Many of the results herein can be extended to include imperfect CSI
at the users in the resource allocation, followed by a second training stage
that provides scheduled users with sufficiently accurate CSI of the precoded
channels to enable coherent reception. See [23] for an example in FDD
systems. The loss of having imperfect CSI also in the second training stage
can be characterized as in [24].

B. Linear Precoding: General Problem Formulation

We consider linear precoding and the transmitted signal is

x =

K∑
k=1

Wkdk (3)

where Wk ∈ CN×dk is the precoding matrix, dk ∼
CN (0, Idk) is the data signal, and dk is the number of
multiplexed data streams to user k. Each user applies a
semi-unitary receive combining matrix Ck ∈ CM×dk (i.e.,
CH
k Ck = Idk ) and treats inter-user interference as Gaussian

noise. The achievable information rate is

gk({W`},Ck) = log2

det
(
Idk+

K∑̀
=1

CH
k HkW`W

H
` HH

k Ck

)
det
(
Idk+

∑̀
6=k

CH
k HkW`WH

` HH
k Ck

)
(4)

where {W`} denotes the set of precoding matrices and ` is
an arbitrary user index [14]. The transmission is limited by an
average power/SNR constraint of P , thus

E{xHx} =

K∑
k=1

tr(WkW
H
k ) ≤ P. (5)

Ideally, we would like to select Wk,Ck, dk ∀k to maximize
the sum rate; that is,

maximize
{Wk,Ck,dk}

K∑
k=1

gk({W`},Ck)

subject to

K∑
k=1

tr(WkW
H
k ) ≤ P,

CH
k Ck = Idk , dk ≥ 0 ∀k.

(6)

Unfortunately, this resource allocation problem is NP-hard and
therefore not practically solvable [10]. There are algorithms
that find local optima of (6) (see [25] and references therein),
but these are iterative and thus cannot be implemented under
the cyclic system operation in Fig. 2.

We limit the selection of {Wk,Ck, dk} to achieve a
tractable problem formulation.

1) Precoding: Zero or minimal inter-user interference
should be caused, which is possible when

∑K
k=1 dk ≤

N . This makes (6) partially feasible, because it becomes
a convex problem for any fixed Ck, dk. This is a non-
limiting assumption at high SNR [26], which is the
regime where systems with high spectral efficiencies
need to operate (e.g., using high power, small cells, or
large antenna arrays [2], [3]).

2) Receive combining: The matrix Ck is fixed at some
value C̃k beforehand. This makes sense from a CSI
acquisition perspective as only the effective channel
C̃H
k Hk needs to be obtained through feedback (in FDD)

or training signaling (in TDD). The value C̃k might be
the dk strongest (left) singular vectors of Hk, known
as maximum ratio combining (MRC), but can also be
selected to improve the CSI feedback accuracy [8], [9].

3) Stream allocation: Users are scheduled sequentially
using some predefined scheduling policy. This avoids
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making an exhaustive search over all data stream allo-
cations, which is practically infeasible when N and K
grow large. Greedy scheduling algorithms can perform
remarkably close to optimum [11]–[14], while random
selection ensures user fairness.

We now have a simplified resource allocation problem,

maximize
{Wk}

∑
k∈S

log2 det(Idk + C̃H
k HkWkW

H
k HH

k C̃k)

subject to
∑
k∈S

tr(WkW
H
k ) ≤ P,

C̃H
k HkW` = 0dk×d` ∀k ∈ S, ∀` ∈ S\{k},

(7)

where S is the scheduling set given by the predefined schedul-
ing rule and dk > 0 for k ∈ S is the corresponding data stream
allocation.

Remark 1 (Updating the Receive Combiner). When (7) has
been solved, the users are informed of the resource allocation
through training signaling. This enables estimation of both the
precoded channel HkWk and the second-order interference
term Ik =

∑
` 6=k HkW`W

H
` HH

k , both being necessary for
coherent reception. As a nice by-product [9], this enables user
k to replace C̃k with the rate-maximizing MMSE receive
combiner CMMSE

k containing the dk dominating left singular
vectors of (IM +Ik)−1HkWk [14]. This improves the infor-
mation rate by balancing between signal gain and interference
rejection. We consider C̃k in the analysis, while CMMSE

k is
used in simulations.

C. Linear Precoding: BD and ZFC

In this paper, we primarily analyze and compare two in-
stances of (7): block-diagonalization (BD) [6] and zero-forcing
with combining (ZFC) [8], [9]. These strategies allocate a fixed
number of streams per scheduled user, but can be combined
with any scheduling policy. There are alternative strategies
that allocate different numbers of streams to different users
[12], but simulations will show that these are not increasing
the performance when the CSI acquisition overhead is treated
properly.

Definition 1. (Block-Diagonalization Precoding) Let SBD be
a scheduling set with at most N

M users. For each user k ∈
SBD, we set dk = M and Wk = WBD

k Υ
1/2
k , where WBD

k is
a semi-unitary matrix that satisfies WBD,H

k WBD
k = IM and

H`W
BD
k = 0 for all ` ∈ SBD\{k}. The power allocation is

given by the diagonal matrix Υk � 0M . The information rate
is

gBD
k (P ) = log2 det

(
IM + HkW

BD
k ΥkW

BD,H
k HH

k

)
. (8)

Definition 2. (Zero-Forcing Precoding with Combining) Each
user combines its antennas using some channel-dependent
unit-norm vector c̃k ∈ CM×1. Based on the effective channels
hHk = c̃Hk Hk ∈ C1×N , a scheduling set SZFC with at most
N users is selected. For each user k ∈ SZFC, we set dk = 1
and let Wk =

√
pkw

ZFC
k , where wZFC

k is a unit-norm vector

that satisfies hH` wZFC
k = 0 for all ` ∈ SZFC\{k}. The power

pk ≥ 0 is allocated to user k and the information rate is

gZFC
k (P ) = log2

(
1 + pk|hHk wZFC

k |2
)
. (9)

The sum-rate maximizing power allocations for BD and
ZFC are achieved through water-filling (see [6]), but the
asymptotic analysis in this paper often assumes equal power
allocation (i.e., Υk = P

M |SBD|IM ∀k ∈ S
BD and pk =

P
|SZFC| ∀k ∈ S

ZFC) since this becomes optimal in the high-
SNR regime where P → ∞ [27]. Although the definitions
of BD and ZFC assume perfect CSI, both strategies can be
applied when the transmitter has imperfect CSI by making
Wk orthogonal to the acquired co-user channels [7]–[9]. The
resulting loss will be quantified in later sections.

ZFC can schedule up to N users and sends one data stream
per user, while BD can only schedule N

M users but multiplexes
M streams to each of them. Although BD and ZFC are
identical when each user only has one antenna, this does not
mean that BD is a generalization of ZFC. In fact, there are
good reasons for applying ZFC instead of BD when M > 1:

1) The base station only needs to acquire the effective
channels hk;

2) The effective channel hk has better properties than Hk

and can be adapted for interference rejection;
3) User devices require simpler hardware that only decodes

one stream.

The interference mitigation is, on the other hand, less
restrictive under BD since fewer users are involved and the
mutual interference between streams sent to the same user is
handled by receive processing [7]. By analyzing and compar-
ing ZFC and BD under both perfect and imperfect CSI, we try
to answer the fundamental question: should we select many
multi-antenna users to enable receive combining or select few
users and exploit multi-stream multiplexing?

Remark 2 (Ambiguous Terminology). The terminology block-
diagonalization and zero-forcing have been given different
meanings in prior works. Herein, BD refers to the original
work in [6], where each active user receives exactly M data
streams. Apart from the ZFC strategy in Definition 2 (and
in [8], [9]), another downlink zero-forcing strategy for multi-
antenna users was proposed in [26]. In their definition, each
antenna at the multi-antenna users is viewed as a separate
virtual single-antenna user and the zero-forcing idea is applied
to send a separate stream to each antenna with zero inter-
antenna interference. That approach is nothing else than BD
with stricter interference mitigation and can never perform
better than BD. Herein, ZFC means sending one stream per
user and utilizing receive combining, thus ZFC is not a special
case of BD and can hypothetically outperform BD.

III. COMPARISON OF BD AND ZFC WITH PERFECT CSI

In this section, we will compare BD and ZFC in the
ideal scenario when both the base station and the users have
perfect CSI. We derive analytic results indicating the impact of
different system properties. Under perfect CSI, the achievable
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sum rate in (7) asymptotically becomes (as P →∞) [27]

fBD
sum(P ) ∼= N log2

(
P

N

)
+
∑
k∈SBD

log2 det(HkW
BD
k WBD,H

k HH
k ),

fZFC
sum (P ) ∼= N log2

(
P

N

)
+
∑
k∈SZFC

log2(|hHk wZFC
k |2),

(10)

for BD and ZFC, respectively. This result is based on having
scheduling sets that satisfy |SBD| = N

M and |SZFC| = N and
on equal power allocation (which is asymptotically optimal).

For both strategies, the asymptotic sum rate behaves as
M∞ log2(P ) + R∞, where M∞ is the multiplexing gain
and R∞ is the rate offset. Both BD and ZFC achieve a
multiplexing gain of M∞ = N , which is the same high-SNR
slope as of the sum capacity. We thus need to compare the
rate offsets R∞ to conclude which strategy is preferable in
the high-SNR regime.
Theorem 1. Assume the receive correlation matrices RR,k

have eigenvalues λk,M ≥ . . . ≥ λk,1 > 0 and the use of
random user selection with |SBD| = N

M , |SZFC| = N . The
expected asymptotic difference in sum rate between BD and
ZFC (with MRC) is

β̄BD-ZFC = E
{

lim
P→∞

fBD
sum(P )− fZFC

sum (P )
}

= N
log2(e)

M

M−1∑
i=1

M − i
i

+log2

( ∏
k∈SBD

M∏
m=1

λk,m

)
−
∑
`∈SZFC

z`

(11)

where z` = E{log2(‖c̃H` H`‖22)} − ψ(N)
loge(2) and ψ(·) is

the digamma function. Furthermore, log2(λ`,M ) ≤ z` ≤
log2(E{‖c̃H` H`‖22}) −

ψ(N)
loge(2) where E{‖c̃H` H`‖22} is given

by (32) in Lemma 1.
Proof: The proof is given in Appendix B.

The expected asymptotic difference in (11) has several
terms. The first term is the (positive) expected gain of BD
in a spatially uncorrelated scenario with homogenous user
channels and no receive combining—this was considered in
[27, Theorem 3]. The other terms depend on the spatial
correlation and choice of receive combining. For users with
homogenous channel conditions where all RR,k have the same
eigenvalues λk,m = λm, we have

β̄BD-ZFC ≤ N
log2(e)

M

M−1∑
i=1

M − i
i

+N log2

∏M
m=1 λ

1/M
m

λM
(12)

where the last term contains the geometric mean of all
eigenvalues divided by the largest eigenvalue. This ratio is
smaller than one (or equal for uncorrelated channels) and
thus its logarithm is negative and approaches −∞ as the
eigenvalue spread increases. Therefore, Theorem 1 shows that
BD might have an advantage on uncorrelated channels, but
ZFC always becomes the better choice as the receive-side
correlation grows. The explanation is that BD has less re-
strictive interference mitigation, but is more vulnerable to poor
channels since it uses all channel dimensions for transmission.

We can expect a similar impact of any channel property that
increases the eigenvalue spread in HkH

H
k ; for example, spatial

correlation at the transmitter-side or a strong (low-rank) line-
of-sight component.

To illustrate the opposite effect of having users with dif-
ferent path losses, we assume for simplicity that there are N

M
strong users with RR,k = γIM , for some γ > 1, and N − N

M
weak users with RR,k = IM . If BD only serves the strong
users while ZFC serves also the weak users, we have

β̄BD-ZFC ≤ N
log2(e)

M

M−1∑
i=1

M − i
i

+

(
N − N

M

)
log2(γ).

(13)
This upper bound approaches +∞ as the difference γ between
the strong and weak users grows. Although not strictly proved,
this indicates that BD is better at utilizing heterogenous
channel conditions as it requires fewer users to be close
to the base station to achieve high sum rates. This benefit
reduces if some fairness mechanism is used to compensate
for unfavorable path losses.

The expected asymptotic difference in sum rate, β̄BD-ZFC,
can be transformed into a difference − β̄BD-ZFC

10N log10(2) [dB] in
transmit power to achieve the same sum rate in the high-SNR
regime [27].

A. Impact of User Selection

The comparison in Theorem 1 was based on random user
selection of the maximal number of users (NM with BD and N
with ZFC), although scheduling of spatially separated users is
necessary to achieve the full potential of multi-user MIMO.
This paper assumes K ≥ N users, meaning that only a
subset of users is scheduled at each channel use. If the users
are unevenly distributed in the cell, it could be beneficial
to intentionally schedule fewer users than possible. We will
now analyze how the ability of selecting users with spatially
compatible channels impacts performance.

In the high-SNR regime, the optimal (semi-unitary) pre-
coding matrix Wsu

k for single-user transmission matches the
channel as C̃H

k HkW
su
k = C̃H

k Hk, while the precoding matrix
Wk ∈ CN×dk of an SDMA strategy is balanced between
matching the own channel and being orthogonal to the co-
user channels. The expected asymptotic performance loss of
having to cancel inter-user interference is therefore

E{Loss} = E{log2 det(C̃H
k HkH

H
k C̃k)

− log2 det(C̃H
k HkWkW

H
k HH

k C̃k)}

= E
{

log2

det(ΛkΛ
H
k )

det(ΛkBkWkWkBH
k ΛH

k )

}
= −E{log2 det(BkWkWkB

H
k )}

(14)

where Λk ∈ Cdk×dk contains the non-zero singular values
of C̃H

k Hk and Bk contains the corresponding right singular
vectors.5 Observe that the eigenvalues of BkWkWkB

H
k are

5These matrices can be obtained from a compact singular value decompo-
sition C̃H

k Hk = UkΛkBk . Note that Bk contains an orthonormal basis of
the row space of the effective channel C̃H

k Hk .
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smaller or equal to one, thus E{Loss} ≥ 0. The following
theorem indicates how this loss is affected by user selection.

Theorem 2. For any given scheduling sets SBD,SZFC (with
|SBD| = N

M and |SZFC| = N ), suppose we replace one of the
users in each set with the best one among K random users. If
the best user is the one minimizing the expected asymptotic
loss in (14), these losses for BD and ZFC, respectively, can
be lower bounded as

E{LossBD} ≥ −M log2(1− c1K−
1

M(N−M) )

E{LossZFC} ≥ − log2(1− c2K−
1

N−M )
(15)

when K is large (c1, c2 are positive constants, see the proof).

Proof: The proof is given in Appendix C.
The lower bounds in this theorem indicate that it is easier

to find users with near-orthogonal channels under ZFC than
under BD. This seems reasonable since the random channels
of BD users occupy M dimensions and should happen to
be compatible to the co-users in all of them, while ZFC
users only utilize one dimension and use receive combining to
pick the most compatible among its M dimensions. Related
observations can be made in the area of channel quantization,
where fewer codewords are necessary to describe (N × 1)-
dimensional channels to a certain accuracy than are needed for
(N×M)-dimensional channels [28]. The concave structure of
the information rates makes it difficult to obtain exact results,
but the indications of Theorem 2 are verified by simulations
herein.

B. Numerical Illustrations under Perfect CSI

Next, the analytic properties in Theorem 1 and Theorem 2
are illustrated numerically. To this end, we adopt the simple
exponential correlation model of [29], where 0 ≤ ρ ≤ 1,
ι =
√
−1, U [·, ·) denotes a uniform distribution, and

[R(ρ, θ)]ij =

{
(ρeιθ)j−i, i ≤ j,
(ρe−ιθ)i−j , i > j,

θ ∼ U [0, 2π). (16)

The magnitude ρ is the correlation factor between adjacent
antennas, where ρ = 0 means no spatial correlation and ρ = 1
means full correlation. For simplicity, ρ is the same for all
users while θ is different. Note that ρ impacts the perceived
spatial correlation non-linearly; a typical angular spread in a
highly spatially correlated scenario is 10−−20 degrees which
roughly corresponds to ρ ≈ 0.9 [30].

The expected asymptotic difference between BD and ZFC
is shown in Fig. 3 as a function of ρ, using N = 8 transmit
antennas and M = 2 receive antennas. This simulation con-
firms that BD is advantageous in uncorrelated systems, while
ZFC becomes beneficial as the correlation increases (ρ > 0.4
under receive-side correlation, ρ > 0.7 under transmit-side
correlation, and ρ > 0.25 when both sides are correlated). The
two bounds from Theorem 1 are also shown in the Fig. 3. The
lower bound is very accurate, while the upper bound is only
tight at high correlation.

To exemplify the impact of user selection, we use the
capacity-based suboptimal user selection (CBSUS) algorithm
from [31], which greedily adds users sequentially to maximize
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Fig. 3. The expected asymptotic difference between BD and ZFC in a
system with N = 8 transmit antennas, M = 2 receive antennas per user,
and random user selection. The impact of spatial correlation at the receiving
users, transmitting base station, and both sides is shown (using the exponential
correlation model from [29] with different correlation factors ρ).
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Fig. 4. The average achievable sum rate in a system with perfect CSI, N = 8
transmit antennas,M = 4 receive antennas, and the same average SNR among
all users (10 or 20 dB). The performance with different strategies are shown
as a function of the total number of users and for different correlation factors
ρ among the receive antennas.

the sum rate and might give scheduling sets with fewer than N
data streams. We consider a scenario with N = 8 uncorrelated
transmit antennas and M = 4 receive antennas with correlation
factor ρ ∈ {0, 0.4, 0.8}; see [32] for another scenario. We
compare ZFC (1 stream/user) and BD (4 streams/user) with
multi-user eigenmode transmission (MET) from [12] where
data streams are allocated greedily with zero inter-user in-
terference and users can have different numbers of streams.
We also simulated 2 streams/user, but it is not shown herein
because the sum rate was always in between ZFC and BD.

Fig. 4 shows the average achievable sum rate as a function
of the total number of users K. We consider the case when all
users have the same average SNR (defined as P E{‖Hk‖2F }

NM ),
either equal to 10 or 20 dB. Irrespective of the SNR, num-
ber of users, and receive-side correlation, ZFC outperforms
BD. Thus, the scheduling-benefit of ZFC (from Theorem
2) dominates over the interference mitigation-benefit of BD
(from Theorem 1)—even for spatially uncorrelated channels.
As expected, the performance with ZFC improves with ρ,
while correlation degrades the BD performance. MET has an
advantages over ZFC since it can allocate different numbers of
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Fig. 5. The average achievable sum rate in a circular cell with perfect CSI,
N = 8 transmit antennas, M = 4 receive antennas, and an SNR of 20 dB
at the cell edge. The performance with different strategies are shown as a
function of the total number of users and for different correlation factors ρ
among the receive antennas.

streams to different users (based on how many singular values
are strong in their channels), but this advantage is small and
disappears asymptotically with the number of users; this was
also observed in [12].

Next, we consider heterogeneous channel conditions by
having uniformly distributed users in a circular cell with radius
250 m (minimal distance is 35 m), a path loss coefficient
of 3.5, and log-normal shadow-fading with 8 dB in standard
deviation. The average achievable sum rate is shown in Fig. 5
with an SNR of 20 dB at the cell edge.6 The variation in
path loss between users makes the results very different from
the previous scenario in Fig. 4. At low receive-correlation,
BD outperforms ZFC, but the difference reduces with K.
ZFC is however better than BD at high correlation and many
users. MET has a large advantage over the other strategies,
explained by its flexible stream allocation. To comprehend the
difference, the probability that a selected user is allocated a
certain number of streams is shown in Fig. 6. We observe that
spatial correlation reduces the number of streams per user, but
the distance-dependence is even more significant; cell center
users usually receive many streams while cell edge users only
receive one or a few streams. This is natural since cell center
users are more probable to have channel matrices with multiple
relatively strong singular directions.

The conclusion is that ZFC is the method of choice in
multi-user MIMO systems with perfect CSI and homogenous
user conditions (since it performs very closely to the more
complicated MET). On the other hand, MET and BD are
better under heterogeneous user conditions. It is worth noting
that the more streams allocated per user, the more channel
dimensions need to be know at the base station. The next
section will therefore study how practical CSI acquisition
affects our results.

IV. COMPARISON OF BD AND ZFC WITH IMPERFECT CSI

In this section, we continue the comparison of BD and
ZFC by introducing imperfect CSI, originating from either

6Such SNRs are reasonable in dense cellular systems and are necessary to
compare BD and ZFC in regimes where these are supposed to work well.

Whole Cell Cell Center Cell Edge
0

0.2

0.4

0.6

0.8

1
ρ=0 ρ=0.4 ρ=0.8 ρ=0 ρ=0.4 ρ=0.8 ρ=0 ρ=0.4 ρ=0.8

1 stream 2 streams 3 streams 4 streams

Pr
ob

ab
ili

ty
 o

f D
i�

er
en

t S
tr

ea
m

 A
llo

ca
tio

ns

Fig. 6. The probability that a scheduled user is allocated a certain number of
streams, assuming a circular cell with perfect CSI, N = 8 transmit antennas,
M = 4 receive antennas, K = 20 users, and an SNR of 20 dB at the cell
edge. The whole cell has a radius of 250 meters, whereof users closer than
100 meters belong to the cell center and users further away than 200 meters
belong to the cell edge.

quantized feedback in an FDD system or imperfect reverse-
link estimation in a TDD system. The resources for channel
acquisition are limited which has a major impact on both
the number of channel dimensions that can be acquired per
user and the accuracy of the acquired CSI. Theoretically,
users can feed back different numbers of channel dimensions
depending on some kind of long-term statistical CSI, but that
would reduce the coverage (by favoring cell center users) and
require a flexible system operation with additional control
signaling. We therefore assume that the system acquires d
dimensions/user from a randomly selected user set, where
d ≥ 1 is fixed but depends on the intended precoding strategy.
This assumption is relaxed in the numerical evaluation.

A. Comparison with Quantized CSI

In the FDD system operation of Fig. 2(a), each user selected
for feedback conveys the d-dimensional subspace spanned by
its effective channel C̃H

k Hk using B bits. Similar to [7], [28],
[33]–[35], we use a codebook CN,d,B = {U1, . . . ,U2B} with
codewords Ui ∈ CN×d from the (complex) Grassmannian
manifold GN,d; that is, the set of all d-dimensional linear
subspaces (passing through the origin) in an N -dimensional
space. Each codeword forms an orthonormal basis, thus Ui is
a semi-unitary matrix satisfying UH

i Ui = Id. User k selects
the codeword that minimizes the chordal distance [36]:

H̄k = arg min
U∈CN,d,B

δ
(
C̃H
k Hk,U

)
(17)

where δ(B,U) =
√
d− tr(span(B)HUUHspan(B)) and

span(·) gives a matrix containing an orthonormal basis of the
row space. We assume error-free and delay-free feedback, but
the conclusions of this section are expected to hold true also
under feedback errors (cf. [23]).

There is a variety of ways to handle feedback errors (espe-
cially if the error structure is known), but a simple approach
is to treat H̄k as being the true channel [7] and calculate
the precoding using a strategy developed for perfect CSI.
This results in a lower bound on the performance and the
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information rates with BD and ZFC becomes

gBD-Q
k (P ) = log2

det
(
IM+

∑
`∈SBD

HkW̄
BD
` Ῡ`W̄

BD,H
` HH

k

)
det
(
IM+

∑
`∈SBD\{k}

HkW̄BD
` Ῡ`W̄

BD,H
` HH

k

)
(18)

gZFC-Q
k (P ) = log2

(
1+

p̄k|cHk Hkw̄
ZFC
k |2

1 +
∑

`∈SZFC\{k}
p̄`|cHk Hkw̄

ZFC
` |2

)
(19)

for users in the scheduling sets SBD and SZFC, respectively.
Next, we quantify the performance loss for BD and ZFC

compared with having perfect CSI. Random vector quanti-
zation (RVQ) is used for analytic convenience (as in [7],
[8], [37], [38]), meaning that we average over codebooks
with random codewords from the Grassmannian manifold. As
any judicious codebook design is better than RVQ, the upper
bounds on the performance loss that we will derive are valid
for any reasonable codebook. The following theorem provides
an upper bound on the performance loss under BD and extends
results in [7] to include heterogeneous user conditions and
spatial correlation.
Theorem 3. Assume that N

M users are scheduled randomly.
The average rate loss with BD (using equal power allocation)
for user k ∈ SBD due to RVQ is upper bounded as

∆BD-Q
k = E{gBD

k (P )− gBD-Q
k (P )}

≤ log2 det

(
IM +

P

M
DBDRR,k

)
(20)

where the average quantization distortion is

DBD = E{δ2(Hk, H̄k)}

≈
Γ
(

1
M(N−M)

)
M(N −M)

(
2B

(M(N −M))!

M∏
i=1

(N − i)!
(M − i)!

)− 1
M(N−M)

.

(21)

Proof: The proof is given in Appendix D.
This theorem will be compared with the corresponding

result for ZFC, but before stating that result we discuss how
to select the (preliminary) receive combiner c̃k. There are
primarily two factors to consider when selecting c̃k: the gain of
the effective channel ‖c̃Hk Hk‖22 and the quantization distortion.
The results of [39], [40] indicate that the top priority in multi-
user MIMO systems is to achieve small quantization errors,
because it is a prerequisite for low inter-user interference. The
error can be minimized by the quantization-based combining
(QBC) approach in [8], where the codeword and receive
combiner are selected jointly as

(c̃QBC
k , h̄k) = arg max

c:‖c‖2=1
u∈CN,1,B

δ
(
HH
k c,u

)
. (22)

The maximum expected SINR combiner (MESC) in [9]
achieves better practical performance by balancing effective
channel gain and quantization distortion, but is asymptotically
equal to QBC at high SNR. Since this is the regime of main
interest herein, we will exploit the analytic simplicity of QBC.
Observe that QBC and MESC are only used for improved

feedback accuracy; the MMSE combiner in Remark 1 is used
to maximize the performance during transmission (this was
not done in the original QBC framework of [8]).

The following theorem provides an upper bound on the
performance loss under ZFC and extends results in [8] to
include heterogeneous user conditions and spatial correlation.

Theorem 4. Assume that RR,k has eigenvalues λk,M > . . . >
λk,1 > 0 and that N users are selected randomly. The average
rate loss for ZFC (using equal power allocation and the same
c̃QBC
k ) due to RVQ is upper bounded as

∆ZFC-Q
k = E{gZFC

k (P )− gZFC-Q
k (P )}

≤ log2

(
1 +

P

N
DQBCGk

)
(23)

where the average quantization distortion is

DQBC = E{δ2(hk, h̄k)} ≈ 2−
B

N−M

(
N − 1
M − 1

)− 1
N−M

(24)

and the average channel gain with QBC is (where µn = 1
λk,n

)

Gk =

M−1∑
m=1

m∑
n=1

M∑
t=m+1

(N −M + 1)Am,n,t

(µn−µt)
m∏
i=1
i6=n

(µn−µi)
M∏

j=m+1
j 6=l

(µj−µt)
,

Am,n,t = loge
(µm+1

µm

) µm−1
n

(−µt)2+m−M (mµt + µn(M −m− 1))

+

m−1∑
s=0

M−m−1∑
r=0

(
m
s

)(
M −m− 1

r

)µm−sn (−µt)M−m−1−r

(−1)s(1 + s+ r)

×
(
m−s
µn

+
M−m−1−r

µt

)
(µr+sm − µr+sm+1).

(25)

Proof: The proof is given in Appendix E.
The rate loss expressions in Theorem 3 and Theorem 4 for

BD and ZFC, respectively, indicate the joint impact of spatial
correlation (at the receiver) and CSI quantization on the per-
formance. The main observation is that spatial correlation only
has a marginal effect on the feedback accuracy; the expressions
have a similar structure as for uncorrelated channels and the
same scaling in the number of feedback bits is necessary to
achieve the maximal multiplexing gain [7], [8].

Corollary 1. To achieve the maximal multiplexing gain with
BD or ZFC under quantized CSI and arbitrary receive correla-
tion, it is sufficient to scale the total number of CDI feedback
bits for the scheduled users as

Btotal ≈ N(N −M) log2(P ) +O(1). (26)

While this corollary only provides a sufficient condition, we
can expect the scaling law in (26) to also be necessary.7 In any
case, the scaling law in (26) is easily satisfied by allocating
(approximately) N −M channel uses for CSI feedback, since
typically the uplink sum rate also behaves as N log2(P )+O(1)
in the high-SNR regime [23].

7The necessary scaling can be proved for ZFC with QBC using a technique
from [41, Theorem 4], while simulations in [7] show that quantized ZFC and
BD have the same scaling in the necessary number of bits.
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Observe that this result is based on random user selection,
while additional feedback of gain information is necessary
to achieve multi-user diversity or short-term rate adaptation
(cf. [42]). As BD requires M times more bits per user, ZFC
can typically achieve feedback from M times more users. We
therefore expect ZFC to further strengthen its advantage at
finding near-orthogonal users (indicated in Theorem 2 under
perfect CSI). In addition, spatial correlation at the transmitter-
side (and other factors that make the channel matrices ill-
conditioned) will inflict larger performance losses on BD than
ZFC, just as in the case of perfect CSI.

B. Comparison under Estimated CSI

Next, we assume that the base station acquires CSI through
imperfect CSI estimation. The primary focus will be on TDD
systems, where channel estimates are obtained through training
signaling in the uplink (assuming perfect channel reciprocity).
It is worth noting that this approach is similar to having analog
CSI feedback in FDD systems, where the unquantized channel
coefficients are sent on an uplink subcarrier [7], [23].8

The reciprocal uplink counterpart to the system model in
(2) is

ỹk = HT
k x̃k + ñk (27)

where ỹk ∈ CN×1 is the received uplink signal, x̃k ∈ CM×1

is the transmitted uplink signal, and ñk ∼ CN (0, σ2IN ) is
the noise vector.9 To estimate C̃H

k Hk ∈ Cd×N , user k sends
C̃∗kTk over d uplink channel uses, for some known training
matrix Tk ∈ Cd×d and where (·)∗ denotes the complex con-
jugate. Assuming perfect statistical CSI, the MMSE estimate
Ĥk of C̃H

k Hk and the corresponding error covariance matrix
Ek are [22]

vec(ĤT
k ) =

1

σ2
EkT̃

H
k vec(Yk),

Ek =

(
(C̃H

k RR,kC̃k⊗ IN )−1 +
T̃H
k T̃k

σ2

)−1 (28)

where T̃k = (TT
k ⊗ IN ) and Yk is the received signal from

training signaling. The training matrix Tk has a total training
power/SNR constraint tr(TH

k Tk) = Ψ.
As under quantized CSI, we calculate the precoding by

treating Ĥk as the true channel. This results in a lower bound
on the performance and the information rates with BD and

8Digital/quantized feedback might be beneficial over analog/unquantized
feedback when there is plenty of resources for channel estimation [23]. But
if very accurate CSI is required, Corollary 1 shows that the quantization
codebooks grow very large and thus the search for the best codeword might
be computationally infeasible.

9The downlink noise vector was normalized towards the channel matrix in
the system model of (2). To account for a different noise level at the base
station, σ2 is the (relative) uplink noise variance.

ZFC becomes

gBD-EST
k (P ) = log2

det
(
IM+

∑
`∈SBD

HkŴ
BD
` Υ̂`Ŵ

BD,H
` HH

k

)
det
(
IM+

∑
`∈SBD\{k}

HkŴBD
` Υ̂`Ŵ

BD,H
` HH

k

)
(29)

gZFC-EST
k (P ) = log2

(
1 +

p̂k|cHk Hkŵ
ZFC
k |2

1 +
∑

`∈SZFC\{k}
p̂`|cHk Hkŵ

ZFC
` |2

)
(30)

for users in the scheduling sets SBD and SZFC, respectively.
The following theorem provides an upper bound on the per-
formance loss under BD due to imperfect CSI estimation.

Theorem 5. Assume that N
M users are scheduled randomly

under BD. The average rate loss for user k ∈ SBD (using equal
power allocation) due to CSI estimation is upper bounded as

∆BD = E{gBD
k (P )− gBD-EST

k (P )}

≤ log2 det

(
IM +

P (N −M)

N

(
R−TR,k +

TH
k Tk

σ2

)−1
)
.

(31)

Proof: The proof is given in Appendix F.
This theorem will be compared with the corresponding

result for ZFC, but before stating that theorem we need to
consider the impact of having MRC as the receive combiner
c̃k. ZFC is similar to applying BD to the effective channels
hHk = c̃Hk Hk, but an important difference is that the effective
channels are not Rayleigh fading because c̃k depends on
the current channel realization. The expression in (28) will
therefore not give the MMSE estimate, but fortunately the
linear MMSE (LMMSE) estimator from a similar expression
to (28) if we know the first two moments of hk [22].

Lemma 1. Assume that RR has eigenvalues λM > . . . > λ1 >
0, where the user indices were dropped for convenience. If c̃
is the dominating left singular vector of H, it holds that

• the direction h
‖h‖2 of h = c̃HH is isotropically dis-

tributed on the unit sphere;
• the gain ‖h‖22 is independent of the direction and

E{‖h‖22} =

M∑
m=1

∑
ζ∈AM

M∏
`=1

λN−`+1
ζ`

N∏
`=N−M+1

(`− 1)!

(−1)per(ζ)+m+1 det(∆)

×
∑

β∈Bm,M

Km(β)∑
`=0

∑
k̃∈Ω̃

(m)
`

`!

k̃1! · · · k̃m!

(
m∑
i=1

λ−1
ζβi

)−(`+1)

m∏
i=1

λk̃iζβi

(32)

where the ijth element of ∆ ∈ RM×M is given by

[∆]ij = λN−i+1
j (N − i)!. (33)

In (32), the set of all permutations of {1, . . . ,M} is denoted
AM . The sign of a given permutation ζ = {ζ1, . . . , ζM} ∈
AM is denoted (−1)per(ζ), where per(·) is the number of
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inversions10 in the permuted sequence. Next, Bl,M is the col-
lection of all subsets of AM with cardinality l and increasing
elements (i.e., β1 < . . . < βl for β = {β1, . . . , βl} ∈ Bl,M ).
The upper bound in the summation over ` is Kl(β) =∑l
i=1(N−βl). Finally, Ω̃

(l)
` is the set of all l-length partitions

{k̃1, . . . , k̃l} of ` (i.e.,
∑l
i=1 k̃i = `) that satisfy 0 ≤ k̃i ≤

N − βi:

Ω̃
(l)
` =

{
{k̃1, . . . , k̃l} :

∑̀
j=1

k̃j= `, 0 ≤ k̃j ≤ N − βj ∀j
}
.

(34)
Proof: The proof is given in Appendix G.

The following theorem provides an upper bound on the
performance loss under ZFC due to imperfect CSI estimation.
Theorem 6. Assume that N users are scheduled randomly
under ZFC and that MRC is applied. The average rate loss
for user k ∈ SZFC due to CSI estimation is upper bounded as

∆ZFC-EST = E{gZFC
k (P )− gZFC-EST

k (P )}

≤ log2

(
1 +

P (N − 1)

N

1

E{‖hk‖22}−1 + Ψ
σ2

)
(35)

where E{‖hk‖22} is given in (32).
Proof: The proof is given in Appendix H.

The rate loss expressions in Theorem 5 and Theorem 6
indicate the joint impact of spatial correlation and imperfect
channel estimation on the performance of BD and ZFC,
respectively. BD is slightly more resilient to CSI uncertainty,
since the BD expression contains (N −M) where the ZFC
expression has (N − 1). But observe that the performance
losses are calculated against the same precoding strategy with
perfect CSI; we know from Section III that ZFC and BD
have different preferable user conditions, making it hard to
analytically conclude which strategy to use under imperfect
CSI estimation. However, the important result is the following
extension of [23] to spatially correlated scenarios with M ≥ 1.
Corollary 2. To achieve the maximal multiplexing gain with
BD or ZFC under imperfect CSI estimation and arbitrary
receive correlation, it is necessary and sufficient to scale the
training power Ψ as

P

Ψ
→ constant <∞ when P →∞. (36)

Proof: The proof is given in Appendix I.
This corollary says that the training power/SNR should

increase linearly with the transmit power/SNR to achieve the
optimal sum rate scaling. This is, for example, satisfied by
setting the total training power to Ψ = P under ZFC and
Ψ = MP under BD, which corresponds to the reasonable
assumption of having the same average SNR in the downlink
and in the uplink.11 The demands for higher CSI accuracy
with increasing SNR is therefore automatically fulfilled by

10An inversion in a sequence is a pair of numbers that is in incorrect order
(i.e., not in ascending order).

11Battery-powered user devices might operate at lower power budget than
the base station, but Corollary 2 is satisfied as long as P and Ψ exhibit the
same scaling. In practical scenarios, the path loss is the main source of SNR
variations and affects the downlink and uplink equally.
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Fig. 7. The average achievable sum rate in a system with CSI estimation
errors, N = 8 transmit antennas, M = 4 receive antennas, and the same
average SNR among all users (10 or 20 dB). The performance with different
strategies are shown as a function of the total number of users and for different
correlation factors ρ among the receive antennas.

the reduced estimation errors. Observe that one uplink channel
use is consumed per user antenna dimension that is estimated,
thus creating a practical bound on how many user channels
that can be estimated in block fading systems [23]. As ZFC
only has one effective antenna per user, it can accommodate
M times more users than BD on the same estimation overhead
and thereby exploit multi-user diversity to a larger extent.

V. NUMERICAL ILLUSTRATIONS UNDER IMPERFECT CSI

This section consists of two parts. First, the numerical
illustrations in Section III-B are continued under imperfect
CSI estimation. Then, we analyze the performance behavior
under quantized CSI.

A. Continuation of Section III-B under Estimated CSI

We continue the simulations in Section III-B by introduc-
ing imperfect CSI estimation. We use the MSE-minimizing
training matrices from [22, Theorem 1] and training power
Ψ = P d (for estimation of d dimensions/user). The CBSUS
algorithm in [31] is modified12 to include the average inter-
ference (due to CSI estimation errors) in the scheduling.

The average achievable sum rate is shown in Fig. 7 as a
function of the number of users that we obtain CSI estimates
for using ZFC (while BD only obtains channel estimates for
1
M of them). All users have the same average SNR of either 10
or 20 dB. The performance loss compared with having perfect
CSI is 10-20% (see Fig. 4), but the conclusion is otherwise
the same and even clearer than before: ZFC outperforms BD
in terms of performance with few users, in handling spatial
correlation, and in exploiting multi-user diversity.

In case of a circular cell (see Section III-B for details),
the average achievable sum rate is shown in Fig. 8. Recall
from Fig. 5 that BD was often better than ZFC in this

12Estimation errors contribute an average interference of P (|S| −
1)/|S|Eest, where Eest = (R−T

R,k + TH
k Tk/σ

2)−1 for BD and Eest =

(1/E{‖hk‖22}+Ψ/σ2)−1 for ZFC.
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Fig. 8. The average achievable sum rate in a circular cell with CSI estimation
errors, N = 8 transmit antennas, M = 4 receive antennas, and an SNR of
20 dB at the cell edge. The performance with different strategies are shown
as a function of the total number of users and for different correlation factors
ρ among the receive antennas.
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Fig. 9. The average achievable sum rate in a circular cell with CSI estimation
errors, N = 8 transmit antennas, M = 4 receive antennas, and an SNR of
20 dB at the cell edge. The performance is shown as a function of the total
number of users K, and CSI is only acquired for the users with strongest
long-term statistics.

scenario under perfect CSI, but the case is completely different
under imperfect CSI; ZFC outperforms the other strategies
when the limited resources for CSI acquisition are taken into
account. This means that the ZFC benefit of easily finding
near-orthogonal users (among M times more users than with
BD) dominates the BD benefit of multi-stream multiplexing
(preferably to cell center users). We also tested a MET-like
strategy with greedy stream allocation (we took the optimum
among feeding back 1, 2 or 4 channel dimensions per active
user), but it was always identical to ZFC (in both Fig. 4 and
Fig. 5)—this further confirms our conclusion.

The users selected for feedback were chosen randomly
(e.g., in a round-robin fashion) in Figs. 7 and 8, but could
theoretically be based on some kind of long-term statistical
CSI. This could for instance mean that ZFC acquires one
dimension from each of the K users, while BD acquires M
dimensions from the K

M users with the strongest long-term
statistics tr(RT,k)tr(RR,k). The greedy stream allocation
strategy MET in [12] can be generalized to this scenario by
finding the K strongest statistical eigendirections among the
users and acquire CSI for an equivalent number of dimensions
per user. Under these assumptions, the average achievable sum
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Fig. 10. The average achievable sum rate with BD and ZFC, quantized CSI
feedback, N = 4 transmit antennas, M = 2 receive antennas, uncorrelated
channels, and varying SNR. The number of feedback bits is scaled with the
transmit power according to Corollary 1 and [7, Eq. (17)].

rate for the circular cell is shown in Fig. 9. The performance
behavior is quite similar to the case with perfect CSI in Fig. 5;
BD is better than ZFC, except at high correlation, and there is
a large gain from greedy stream allocation. However, we stress
that this scenario is unrealistic as CSI is only acquired for cell
center users, thus reducing the coverage and destroying user
fairness as cell edge users are not even considered when their
channels are relatively strong.

B. Observations under Quantized CSI

Next, we consider quantized CSI and let the number of
feedback bits (per channel dimension) be scaled as (N −
M) log2(P )− constant, where the constant is selected as in
[7, Eq. (17)] to maintain a 3 dB gap between BD with perfect
and quantized CSI. We consider N = 4 transmit antennas,
M = 2 receive antennas, and RVQ. We also modify13 the
CBSUS algorithm in [31] to include the average interference
due to quantization.

First, we compare BD (having either quantized or perfect
CSI) with quantized ZFC using MESC-MMSE combining [9]
and with single-user SVD-based transmission (to a randomly
selected user). The quantized effective channels are obtained
from 8 users under ZFC, while the entire channels are quan-
tized for 4 users under BD. The average achievable sum rate
is shown in Fig. 10 as a function of the average SNR. At
low SNRs, quantized BD only selects one user and performs
similar to single-user transmission. As two data streams are
transmitted to the selected user, both strategies are slightly
better than ZFC in this regime. But quantized ZFC quickly
improves with SNR and becomes the method of choice at
practical SNRs. The simulation was stopped at P = 14.3 dB
where BD requires feedback of 22 bits per user, meaning that
the best codeword is selected in a codebook with over a million
entries.14 BD is therefore suboptimal both in terms of sum rate
and computational complexity.

13Quantization errors contribute an average interference of P (|S| −
1)/|S|Equant, where Equant = N/(M(N − M))DBDRR,k for BD and
Equant = DQBCG/(N − 1) for ZFC. When calculating DBD and DQBC,
BD uses M times more feedback bits per user than ZFC.

14An approach to emulate RVQ for very large random codebooks was
proposed in [7], but this does not change the fact that the quantization
complexity becomes infeasible much faster under BD than under ZFC.
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Fig. 11. Comparison of single-user transmission, BD, and different forms
of ZFC under quantized CSI feedback. The scenario is the same as in [7,
Fig. 6], where the superior single-user strategy was not included.

This observation stands in contrast to the numerical results
in [7], where BD clearly beats ZFC under quantized CSI. To
explain the difference, we repeat the simulation in [7, Fig. 6]
with N = 6 transmit antennas and M = 2 receive antennas.
In this simulation, the RVQ codebooks contain 10 bits/user
under BD and 5 bits/user under ZFC. The achievable sum rate
is shown in Fig. 11 for the quantized BD approach in [7] and
the ZFC-QBC approach in [8]. We have also included: 1) an
improved version of ZFC-QBC where the MMSE receive com-
biner is applied during transmission; and 2) single-user SVD-
based transmission to a randomly selected user. Our simulation
confirms that BD is better than ZFC in this scenario, but the
difference becomes much smaller when the MMSE combiner
is applied. However, none of these strategies should be used in
this scenario since single-user transmission is vastly superior.
The explanation is that the number of feedback bits is fixed
at a number that only satisfies/exceeds the feedback scaling
law in (26) and [7, Eq. (17)] at low SNRs (cf. [7, Fig. 2]),
while the strict interference mitigation in BD and ZFC is only
practically meaningful at high SNR. The observation in [7]
is thus misleading and does not contradict the superiority of
ZFC under proper feedback loads.

Conclusions from the mathematical and numerical analysis
are summarized in the next section.

VI. CONCLUSION

This paper analyzed how to divide data streams among
users in a downlink system with many multi-antenna users;
should few users be allocated many streams, or many users be
allocated few streams? New and generalized analytic results
were obtained to study this tradeoff under spatial correlation,
user selection, heterogeneous user channel conditions, and
practical CSI acquisition.

The main conclusion is that sending one stream per selected
user and exploiting receive combining is the best choice under
realistic conditions. This is good news as it reduces the hard-
ware requirements at the users, compared with multi-stream
multiplexing, and enables computationally efficient resource
allocation as in [43]. The result is explained by a stronger
resilience towards spatial correlation and larger benefit from
user selection. To arrive at alternative conclusions, one has to
consider a scenario with heterogeneous user conditions with

either perfect CSI (unrealistic) or where CSI is only acquired
for the strongest users (destroys coverage and fairness). It
should however be noted that if only very inaccurate CSI can
be acquired, then inter-user interference will limit performance
thus making single-user transmission advantageous.

APPENDIX A
COLLECTION OF LEMMAS

This appendix contains two lemmas that are essential for
proving the theorems of this paper. The first result shows how
spatial correlation at the receiver affects the channel directions.

Lemma 2. Let A � 0M be any Hermitian positive-definite
matrix and let H̃ ∈ CM×N be an arbitrary matrix. Then,
span(H̃) = span(AH̃), where span(·) denotes the row space.

Proof: Let A = UAΛAUH
A be an eigen decomposition

of A. The lemma follows by observing that UA only rotates
the basis vectors of the row space and ΛA scales the rows
without affecting their span.

The second result generalizes the bounding of performance
loss under imperfect CSI in [7], [8].

Lemma 3. Let Wk,W̃k be isotropically distributed on the
Grassmannian manifold GN,dk and independent of Hk, then

E
{

log2 det
(
Idk+

P

N
C̃H
k HkWkW

H
k HH

k C̃k

)}

−E

log2

det
(
Idk+ P

N

∑̀
C̃H
k HkW̃`W̃

H
` HH

k C̃k

)
det
(
Idk+ P

N

∑̀
6=k

C̃H
k HkW̃`W̃H

` HH
k C̃k

)


≤ log2 det
(
Idk+

P

N

∑
6̀=k

E
{
C̃H
k HkW̃kW̃

H
k HH

k C̃k

})
.

(37)

Proof: This lemma follows from two inequalities. First,

E
{

log2 det
(
Idk+

P

N
C̃H
k HkWkW

H
k HH

k C̃k

)}
− E

{
log2 det

(
Idk+

P

N

∑
`

C̃H
k HkW̃`W̃

H
` HH

k C̃k

)}
≤ 0

(38)

since C̃H
k HkWkW

H
k HH

k C̃k and C̃H
k HkW̃kW̃

H
k HH

k C̃k

have the same distribution, and the second term contains
additional positive semi-definite matrices. Second, applying
Jensen’s inequality on the concave function log2 det(·) gives

E
{

log2 det
(
Idk+

P

N

∑
` 6=k

C̃H
k HkW̃`W̃

H
` HH

k C̃k

)}
≤ log2 det

(
Idk+

P

N

∑
` 6=k

E
{
C̃H
k HkW̃`W̃

H
` HH

k C̃k

})
.

(39)

The lemma follows from combining (38) and (39).
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APPENDIX B
Proof of Theorem 1: Using (10), the expected asymptotic

difference is

β̄BD-ZFC = E

{
log2

(∏
k∈SBD det(HkW

BD
k WBD,H

k HH
k )∏

`∈SZFC |c̃H` H`w
ZFC
` |2

)}
.

(40)
The direction c̃H` H`

‖c̃H` H`‖2
is isotropically distributed on the unit

sphere, according to Lemma 1. This enables us to rewrite (40)
as

β̄BD-ZFC =E

{
log2

(∏
k∈SBD det(H̃kW

BD
k WBD,H

k H̃H
k )∏

k∈SZFC |h̃Hk wZFC
k |2

)}
+
∑
k∈SBD

log2 det(RR,k)−
∑
`∈SZFC

E{z`}

(41)

where z` = E
{

log2

(
‖c̃H` H`‖22
‖h̃`‖22

)}
and h̃` ∼ CN (0, IN ).15

The first term in (41) equals the first term in (11) by ap-
plying [27, Theorem 3]. The cited theorem was stated for
uncorrelated channels, but can be applied in our scenario
since WBD

k is not affected by the receive-side correlation
matrices RR,` ∀` ∈ SZFC; see Lemma 2 in Appendix A. Two
bounds on z` are given in the theorem. The lower bound is
achieved by the suboptimal choice of c̃` as the dominating
eigenvector of RR,k; this makes c̃H` H` ∼ CN (0, λ`,MIN ).
The upper bound is achieved from Lemma 1 by applying
Jensen’s inequality and computing E{log2(‖h̃`‖22)} = ψ(N)

loge(2)
using standard integration.

APPENDIX C
Proof of Theorem 2: We begin with BD and assume that

there are K candidates to become the new user k, K =
{1, . . . ,K}, while the other users in SBD are fixed. Since
|SBD| = N

M , all available degrees of freedom are consumed
by the interference cancelation. The precoding matrix WBD

k

is therefore completely determined by the common null space
of the co-users’ channels and fixed in this proof.

Minimizing (14) corresponds to finding the user ` ∈ K with
the row space of H` most compatible with WBD

k . For a user
candidate ` ∈ K, we can lower bound (14) as

−E{log2 det(B`W
BD
k WBD,H

k BH
` )}

= −ME{log2(det(B`W
BD
k WBD,H

k BH
` )1/M )}

≥ −ME

{
log2

(
tr(B`W

BD
k WBD,H

k BH
` )

M

)}

≥ −M log2

(
E{tr(B`W

BD
k WBD,H

k BH
` )}

M

)

= −M log2

(
1 +

E{tr(B`W
BD
k WBD,H

k BH
` )−M}

M

)
.

(42)

The first inequality is the classic inequality between arithmetic
and geometric means, while the second inequality follows

15The vector h̃` is correlated with c̃H` H` (they have the same direction),
but this property does not affect the proof.

from applying Jensen’s inequality on the convex function
− log2 det(·). The final expression in (42) contains M −
tr(B`W

BD
k WBD,H

k BH
` ), which is the squared chordal distance

between B` and WBD
k .

Since the matrices B`, for ` ∈ K, are independent and
isotropically distributed on the Grassmannian manifold GN,M
irrespective of the receive-side correlation (see Lemma 2), we
can bring in results from [28] on quantization of Grassmannian
manifolds using K random codewords. From [28, Theorem 4],
we have the following lower bound on the average squared
chordal distance (for sufficiently large K):

min
`∈K

E
{
M−tr(B`W

BD
k WBD,H

k BH
` )
}

≥ M(N −M)

M(N −M) + 1
c
− 1
M(N−M)

N,M,M,2 K−
1

M(N−M)

(43)

where cN,M,M,2 is a positive constant defined in [28, Eq. (8)].
Plugging (43) into (42) yields the lower bound for BD in the
theorem.

A similar approach can be taken under ZFC (by setting
M = 1 in the derivation), but the M receive antennas provide
degrees of freedom to select the effective channel as the vector
in the row space of H` that minimizes the chordal distance to
wZFC
k . This is done by the QBC approach in [8], which was

derived for uncorrelated channels but can be applied under
receive correlation due to Lemma 2. We apply [8, Lemma 1],
which says that the minimal chordal distance is the minimum
of K independent β(N−M,M)-distributed random variables.
This quantity can be lower bounded by taking the minimum
of K independent β(N −M, 1) variables and further lower
bounded by the quantization bound in [28, Theorem 4]:

min
`∈K

E

{
1−
∣∣∣∣hH` wZFC

k

‖h`‖2

∣∣∣∣2
}
≥ (N−M)K−

1
(N−M)

(N−M) + 1
c
− 1

(N−M)

N−M+1,1,1,2

(44)

where cN−M+1,1,1,2 is a positive constant defined in [28,
Eq. (8)]. Plugging (44) into (42) for M = 1 yields the lower
bound for ZFC in the theorem.

APPENDIX D

Proof of Theorem 3: Using Lemma 2, the row space of
the correlated channel Hk = R

1/2
R,kH̃k is the same as for

the uncorrelated channel H̃k. Consequently, W̄BD
k will be

isotropically distributed on the Grassmannian manifold GN,M ,
just as proved for uncorrelated channels in [7, Theorem 1].
The performance loss can therefore be bounded using Lemma
3 and it only remains to characterize E{HkW̄

BD
` W̄BD,H

` HH
k }

for ` 6= k. Observe that

E{HkW̄
BD
` W̄BD,H

` HH
k }

= R
1/2
R,kE{LkQkW̄

BD
` W̄BD,H

` QH
k LHk }R

1/2,H
R,k

(45)

using that Hk = R
1/2
R,kH̃k = R

1/2
R,kLkQk, where Lk ∈ CM×M

is the lower triangular matrix and Qk ∈ CM×N is the semi-
unitary matrix in an LQ decomposition of H̃k. Observe that
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Lk and Qk are independent, thus we can calculate their
expectations sequentially as

E{LkQkW̄
BD
` W̄BD,H

` QH
k LHk }

=
DBD

N −M
E{LkIMLHk } =

NDBD

N −M
IM .

(46)

The first equality follows from [7, Eq. (43)–(45)], while the
second follows from E{LkLHk } = NIM (since E{H̃kH̃

H
k } =

NIM ). Plugging (46) into Lemma 3 yields

∆BD ≤ log2 det

(
IM +

P

N

(
N

M
− 1

)
NDBD

N −M
RR,k

)
(47)

from which (20) follows directly. The approximate expression
for DBD is given in [7, Eq. (26)].

APPENDIX E

Proof of Theorem 4: This proof follows along the lines
of [8, Theorem 1], with the difference that 1) we have
spatial correlation at the receiver; and 2) we use QBC also
under perfect CSI. Using Lemma 2, we observe that the
row space of the correlated channel Hk = R

1/2
R,kH̃k is the

same as for the uncorrelated channel H̃k. Since the gain of
the effective channel is ignored in (22), the error-minimizing
codeword is the same as for uncorrelated channels and we
can apply [8, Lemma 2] to conclude that the direction of
the effective channel hk = HH

k c̃QBC
k is isotropically dis-

tributed. The beamforming vector w̄ZFC
k is independent of

hk and also isotropic, thus the performance loss can be
bounded using Lemma 3. It only remains to characterize
E{|hHk w̄ZFC

` |2} = E{‖hk‖22}E{|
hHk
‖hk‖2 w̄ZFC

` |2} for ` 6= k.

The second factor equals DQBC

N−1 using [41, Lemma 2] and [8,
Eq. (17)], while computing the average norm E{‖hk‖22} of
the effective channel is nontrivial. To enable reuse of results
from [8], let c̃U-QBC

k be the QBC for the uncorrelated channel
H̃k and observe that

c̃QBC
k =

R
−1/2
R,k c̃U-QBC

k

‖R−1/2
R,k c̃U-QBC

k ‖2
. (48)

We can therefore express the effective channel as

hk = HH
k c̃QBC

k = HH
k

R
−1/2
R,k c̃U-QBC

k

‖R−1/2
R,k c̃U-QBC

k ‖2
=

H̃H
k c̃U-QBC

k

‖R−1/2
R,k c̃U-QBC

k ‖2
(49)

and its squared norm will be

‖hk‖22 = ‖H̃H
k c̃U-QBC

k ‖22
1

c̃U-QBC,H
k R−1

R,kc̃
U-QBC
k

. (50)

The first factor is the same as under uncorrelated fading and
satisfies E{‖H̃H

k c̃U-QBC
k ‖22} = N − M + 1 (see [8, Lemma

4]), while the second factor depends on RR,k. Since both the
quantization codebook and H̃k are isotropically distributed,
c̃U-QBC
k is also isotropic and the two terms in (50) are inde-

pendent. To characterize the second term, observe that c̃U-QBC
k

can be viewed as a normalized uncorrelated circular-symmetric
complex Gaussian vector. By using that the eigenvectors

of RR,k are not affecting the distribution and that squared
magnitudes of CN (0, 1)-variables are exponentially distributed
[44], we conclude that the second term of (50) has the same
distribution as ∑M

i=1 ξi∑M
i=1

ξi
λk,i

(51)

for some independent exponentially distributed ξi ∼ Exp(1).
For any a such that λk,m ≤ a ≤ λk,m+1, we can write the
CDF as

Pr


∑M
i=1 ξi∑M
i=1

ξi
λk,i

≤ a


= Pr

{
m∑
i=1

(
a

λk,i
− 1

)
︸ ︷︷ ︸

≥0

ξi −
M∑

i=m+1

(
1− a

λk,i

)
︸ ︷︷ ︸

≥0

ξi ≥ 0

}
.

(52)

This is the difference of two sums of exponentially distributed
variables (with distinct positive variances). The PDF of each
sum is characterized by [44, Theorem 4] and by calculating
their convolution and integrating over all positive values, we
achieve the CDF

Pr


∑M
i=1 ξi∑M
i=1

ξi
λk,i

≤ a


=

m∑
n=1

M∑
t=m+1

(µn − a−1)m(a−1 − µt)M−m−1

(µn − µt)
m∏
i=1
i6=n

(µn − µi)
M∏

j=m+1
j 6=l

(µj − µt)

(53)

using the simplifying notation µn = 1
λk,n

. The corresponding
mean value is achieved from the CDF by simply taking the
derivative and sum up the mean values over each a-interval.
By multiplying the mean value expression with N −M + 1
(i.e., the contribution of the first part in (50)), we achieve the
expression for Gk.

APPENDIX F

Proof of Theorem 5: The proof follows along the lines of
Theorem 3, but we consider CSI estimation errors instead of
quantization errors. First, observe that both WBD

` and ŴBD
` are

isotropically distributed on the Grassmannian manifold GN,M
(since receive-side correlation is not affecting the row space
of Hk and Ĥk; see Lemma 2). The performance loss can
therefore be bounded using Lemma 3 and it only remains to
characterize E{HkŴ

BD
` ŴBD,H

` HH
k } for ` 6= k. From (28)

we have
Hk = Ĥk + R

1/2
E,kẼk (54)

where the second term is the estimation error, RE,k =(
R−TR,k +

THk Tk
σ2

)−1

, and Ẽk has CN (0, 1)-entries. By using

that ĤkŴ
BD
` = 0 for ` 6= k, we achieve

E{HkŴ
BD
` ŴBD,H

` HH
k } = R

1/2
E,kE{ẼkŴ

BD
` ŴBD,H

` ẼH
k }R

1/2
E,k

(55)
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where E{ẼkŴ
BD
` ŴBD,H

` ẼH
k } = MIM since Ẽk is

complex Gaussian and independent of ŴBD
` . Therefore,

E{HkŴ
BD
` ŴBD,H

` HH
k } = M

(
R−TR,k +

THk Tk
σ2

)−1

.

APPENDIX G

Proof of Lemma 1: Observe that H = R
1/2
R H̃ has the

same distribution as HU for any unitary matrix U. Thus,
we can rotate h arbitrarily without changing the statistics,
meaning that h

‖h‖2 must be isotropically distributed. Next, note
that ‖h‖22 = ‖c̃HHU‖22 = ‖c̃HH‖22, thus unitary rotations
will not affect the effective channel gain meaning that the
direction and the channel gain are statistically independent.
‖h‖22 is the dominating eigenvalue of the correlated complex
Wishart matrix HHH ∈ WM (N,RR). The expectation in
(32) achieved directly from [45, Theorem 3] or by using the
moment generating function in [46] (which gives an equivalent
expression that looks slightly different).

APPENDIX H

Proof of Theorem 6: This theorem is proved in the same way
as Theorem 5. The only notable difference is that we use the
effective channel hk, which has a single effective receive an-
tenna, instead of the original channel Hk. The effective chan-
nel is zero-mean and has an average channel gain E{‖hk‖22}
given by (32). Thus, the effective channel and its channel

estimate is related as hHk = ĥHk +
(

1
E{‖hk‖22}

+ Ψ
σ2

)−1/2

ẽHk ,
where ẽk ∼ CN (0, IN ).

APPENDIX I

Proof of Corollary 2: The sufficiency is easily achieved
from Theorem 5 and Theorem 6. To obtain the necessity with
BD, consider the interference term HkŴ

BD
` Υ̂`Ŵ

BD,H
` HH

k =

R
1/2
E,kẼkŴ

BD
` ŴBD,H

` ẼH
k R

1/2
E,k, where the true and estimated

are related as in (54). This term must be bounded as P →∞.
Since the product ẼkŴ

BD
` is non-zero almost surely and

Υ̂` → P
M |SBD|IM , it is necessary that 1

P RE,k has bounded
elements. This makes (36) a necessary condition. The proof
for ZFC is analogous.
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