
Virtual Clustered-based Multiprocessor
Scheduling in Linux Kernel

Master Thesis

Author:
Syed Md Jakaria Abdullah
sah11001@student.mdh.se

Supervisor:
Nima Moghaddami Khalilzad

Examiner:
Moris Behnam

School of Innovation, Design and Engineering (IDT)
Mälardalen University

Västerås, Sweden

7th July 2013

Abstract

Recent advancements of multiprocessor architectures have led to increasing use of multiproces-
sors in real-time embedded systems. The two most popular real-time scheduling approaches in
multiprocessors are global and partitioned scheduling. Cluster based multiprocessor scheduling
can be seen as a hybrid approach combining benefits of both partitioned and global scheduling.
Virtual clustering further enhances it by providing dynamic cluster resource allocation during
run-time and applying hierarchical scheduling to ensure temporal isolation between different
software components. Over the years, the study of virtual clustered-based multiprocessor schedu-
ling has been limited to theoretical analysis. In this thesis, we implemented a Virtual-Clustered
Hierarchical Scheduling Framework (VC-HSF) in Linux without modifying the base Linux
kernel. This work includes complete design, implementation and experimentation of this frame-
work in a multiprocessor platform. Our main contributions are twofold: (i) to the best of our
knowledge, our work is the first implementation of any virtual-clustered real-time multiprocessor
scheduling in an operating system, (ii) our design and implementation gives practical insights
about challenges of implementing any virtual-clustered algorithms for real-time scheduling.

Acknowledgements

First of all I would like to thank my thesis supervisor Nima Moghaddami Khalilzad and thesis
examiner Moris Behnam for giving me the opportunity to do this interesting thesis. Special
thanks to Svenska Institutet (SI) for sponsoring my education in Sweden. Finally, I thank my
loving family who always provided mental support while studying in Sweden for past two years.

1

Contents

1 Introduction 6
1.1 Introduction . 6
1.2 Related Works . 7

1.2.1 Clustered Multiprocessor Scheduling 7
1.2.2 Hierarchical Multiprocessor Scheduling 8

1.3 Thesis Objective . 9
1.3.1 Aim of this Thesis . 9
1.3.2 State of the Art Challenges . 9

1.4 Outline of the report . 9

2 State of the Art 11
2.1 Terminology . 11
2.2 Multiprocessor Scheduling . 12

2.2.1 Partitioned Scheduling . 12
2.2.2 Global Scheduling . 13
2.2.3 Semi-partitioned Scheduling . 16
2.2.4 Cluster Based Scheduling . 17
2.2.5 Virtual Cluster Scheduling . 18

3 Background 21
3.1 Linux Scheduling Mechanism . 21

3.1.1 Scheduler Invocation . 21
3.1.2 Tasks and RunQueue . 22
3.1.3 Linux Modular Scheduling Framework 22
3.1.4 Priority Based Real-time Scheduling in Linux 24
3.1.5 Task Migration Mechanism . 24
3.1.6 Hierarchical Scheduling Support in Linux 25

3.2 ExSched Scheduler Framework . 26
3.2.1 ExSched Core Module . 26
3.2.2 ExSched User Space Library . 27
3.2.3 ExSched Plug-in Developement . 27

4 Design 28
4.1 System Model . 28
4.2 Design Issues . 28

4.2.1 Task to Cluster Mapping - Issue 1 . 29

2

CONTENTS CONTENTS

4.2.2 Task to Server Mapping - Issue 2 . 30
4.2.3 Server Budget Assignment - Issue 3 30
4.2.4 Schedulers - Issue 4 . 31
4.2.5 Time Management - Issue 5 . 33
4.2.6 Data Structures - Issue 6 . 33
4.2.7 Migration of Tasks - Issue 7 . 34
4.2.8 Synchronization of Access to Global Data Structures - Issue 8 35

4.3 Detail Design . 35
4.3.1 Extension of ExSched . 35
4.3.2 Task Execution . 35
4.3.3 Descriptors . 36
4.3.4 Queues . 38
4.3.5 Scheduler Plug-in Functions . 39
4.3.6 Scheduler Interrupt Handlers . 40
4.3.7 Major Non-Interrupt Functions . 40
4.3.8 Miscellaneous Functions and Global Variables 41

5 Results 42
5.1 Experimental Setup . 42
5.2 Sample Run . 42
5.3 Overhead Measurement . 44

6 Conclusion 46
6.1 Summary . 46
6.2 Future Work . 46

A VC-HSF 53
A.1 Guidelines for running VC-HSF . 53
A.2 Source code listing of VC-HSF . 53

3

List of Figures

1.1 Example of clustered scheduling [50] . 7
1.2 Overview of VC-HSF . 9

2.1 McNaughton’s algorithm . 15
2.2 DP-Wrap algorithm (a) without mirror (b) mirror mechanism applied 15
2.3 Virtual cluster mapping using MPR . 19
2.4 Examples of inter cluster scheduling using the McNaughton’s Algorithm 20

4.1 Intra-cluster scheduling problem with no task-to-server mapping (a) unnecessary
migration (b) better choice by the scheduler 32

4.2 Structure of a bitmap queue . 34
4.3 Execution of real-time task in VC-HSF . 36
4.4 Overview of main descriptors in VC-HSF . 38
4.5 Wrapup handling in release queue using virtual time 39
4.6 Operations of VC-HSF job release handler function 39
4.7 Operations of VC-HSF job complete handler function 39
4.8 Cluster release handler beginning operations 40
4.9 Cluster release main operations . 40
4.10 Cluster release handler first run operations . 40
4.11 Cluster release handler end operations . 40
4.12 Server complete handler operations . 40
4.13 Cluster complete handler operations . 41
4.14 Try to run server operations . 41
4.15 Run server operations . 41
4.16 Preempt server operations . 41
4.17 Try to run task operations . 41

5.1 Sample run . 43

4

List of Tables

2.1 Periodic servers for virtual clusters . 19

4.1 Timing events in VC-HSF . 33

5.1 Overhead Measurement in VC-HSF . 44

5

Chapter 1

Introduction

1.1 Introduction
In recent years, we have witnessed a major paradigm shift in the computing platform design. Ins-
tead of increasing the running frequency of processors to improve the performances of processing
platforms, the hardware vendors now prefer to increase the number of processors available in a
single chip. Single-core chip designs suffer many physical limitations such as excessive energy
consumption, chip overheating, memory size and memory access speed. These problems can be
reduced by placing multiple processing cores that share some levels of cache memories on the
same chip. In the general-purpose arena, this trend is evidenced by the availability of affordable
Symmetric Multiprocessor Platforms (SMPs), and the emergence of multicore architectures. In
the special-purpose and embedded arena, examples of multiprocessor designs include network
processors used for packet-processing tasks in programmable routers, system-on-chip platforms
for multimedia processing in set-top boxes and digital TVs, automotive power-train systems, etc.
Most of these multiprocessor based embedded systems are inherently real-time systems [10].
A major reason for the proliferation of multicore platforms in real-time systems is that such
platforms now constitute a significant share of the cost-efficient Components-Off-the-Shelf
(COTS) market. Another important factor is their considerable processing capacity, which makes
them an attractive choice for hosting compute-intensive tasks such as high-definition video
stream processing. If the current shift towards multicore architectures by the major hardware
vendors continues, then in near future, the standard computing platform for real-time embedded
system can be expected to be a multiprocessor. Thus multiprocessor-based software designs will
be inevitable.

The study of real-time scheduling in multiprocessors dates back to early 70s [42], even
before the appearance of the actual hardware. Recent advancement of the processing platform
architectures led to a regain of interest for the multiprocessor real-time scheduling theory during
the last decade. Even though the real-time scheduling theory for uniprocessor platforms can be
considered as being mature, the real-time multiprocessor scheduling theory is still an evolving
research field with many problems remained open due to their intrinsic difficulties. A detail
survey of real-time multiprocessor scheduling up to 2009 can be found in [22].

Two most popular approaches in multiprocessor scheduling are global scheduling and parti-
tioned scheduling [22]. In partitioned scheduling a task set is partitioned into disjoint partitions
and each of the partition is independently scheduled in its assigned processor. In contrast, global
scheduling uses only one global scheduler to schedule all the tasks in all the available processors.

6

1.1. INTRODUCTION CHAPTER 1. INTRODUCTION

However, partitioned scheduling suffers from inherent algorithmic complexity of partitioning
and global scheduling is not scalable due to scheduler overhead. Recently, a number of hybrid ap-
proaches combining both partitioned and global scheduling methods have been proposed such as
semi-partitioned [7] and clustered scheduling [16]. Clustering reduces the partitioning problem
by making smaller number of large partitions (clusters of processors) and distributes overhead
of global scheduler into per-cluster schedulers. Moreover, clustered scheduling can schedule
task sets that can not be scheduled using partitioned and global scheduling. For example, let
us consider a sporadic task set comprised of 6 tasks as follows: τ1 = τ2 = τ3 = τ4 = (3,2,3),
τ5 = (6,4,6) and τ6 = (6,3,6) where the notion (T,C,D) denotes minimum arrival time (T),
worst-case execution time (C) and relative deadline (D) respectively. This task set is not schedu-
lable under any partitioned and global scheduling on a multiprocessor platform with 4 processors.
However, the same task set can be scheduled using clustered scheduling as follows: tasks τ1,τ2
and τ3 can execute on a cluster C1 comprised of 2 processors, and tasks τ4,τ5 and τ6 can execute
on another cluster C2 comprised of 2 processors. Figure 1.1 shows an example schedule of this
task set from [50], where other global scheduling algorithms like global Earliest Deadline First
(EDF) [43], EDZL [38], Least Laxity First (LLF) [46], fp-EDF [12] and US-EDF[m/2m-1] [52]
failed but clustered scheduling can meet all the task deadlines.

Figure 1.1: Example of clustered scheduling [50]

The notion of physical cluster of processors is enhanced by Shin et al. [50] using virtual
clusters. Virtual clusters are dynamically mapped into a set of available processors and it uses
hierarchical scheduling. This dynamic mapping allows virtual clusters to utilize processor time
more efficiently during run-time. Additionally, more tasks can be added to a virtual cluster
easily if the cluster has slack processor time in any of its processors. Therefore, virtual clustered
scheduling appears to be more flexible than the original physical clustering as used by Calandrino
et al. [16]. Although Easwaran et al. [25] provided a complete hierarchical scheduling framework
for implementing virtual clustering, there is no experimental implementation of it to the best of
our knowledge.

7

1.2. RELATED WORKS CHAPTER 1. INTRODUCTION

1.2 Related Works

1.2.1 Clustered Multiprocessor Scheduling
The LIT MUSRT (Linux Testbed for Multiprocessor Scheduling in Real-Time systems) [17]
project is a patch based extension of the Linux kernel with support to test different multiprocessor
real-time scheduling and synchronization protocols. This experimental platform supports the
sporadic task model and different scheduling mechanisms can be implemented as modular
plug-ins.

In LIT MUSRT , C-EDF (Clustered EDF) algorithm is implemented to compare its perfor-
mance with respect to other multiprocessor algorithms [14]. The main idea of C-EDF is to group
multiple processors that share a cache (either L2 or L3) into clusters and assign tasks to each of
them offline. Each cluster has a separate runqueue and during runtime uses a global scheduling
algorithm within the cluster. Tasks can only migrate between the processors of their cluster and
different clusters do not share processors. Indeed, this implementation of C-EDF is an example
of physical clustered scheduling in multiprocessor.

Lelli et al. [39] implemented clustered scheduling in a multiprocessor extension of the
customized Linux scheduling class SCHED_DEADLINE [26]. Their implementation of C-EDF
relies on patch based modification of the kernel via a new scheduling class which uses default
migration techniques offered by the Linux kernel. The major difference between [17] and [39] is
that the later implementation conforms more with the POSIX standard of Linux and thus requires
less modification to the original kernel.

However, the focus of our work is virtual clustered scheduling which differs from C-EDF in
several aspects. Firstly, unlike physical clusters, virtual clusters can share processors. Secondly,
instead of assigning processors to a cluster offline, virtual clusters can be assigned online using
global scheduling. Finally, the task migration is not limited to a set of processors (like clustered
processors of C-EDF) as processors assigned to a cluster can change dynamically.

1.2.2 Hierarchical Multiprocessor Scheduling
Two-level hierarchical scheduling [23] that has been introduced for uniprocessor platforms
provides a temporal isolation mechanism for different components (subsystems). This is
increasingly becoming important due to the component-based nature of systems’ software
development. There are several models to abstract the resource requirements of software
components such as the bounded delay model [47] and the periodic resource model [51].
These resource models are extended to hierarchical multiprocessor scheduling such as the
Multiprocessor Periodic Resource (MPR) model [50] and the Bounded-Delay Multipartition
(BDM) [41] model. Both the MPR and BDM models are proposed as part of a hierarchical
scheduling framework which comprises schedulabilty analysis, resource interface generation
and run-time allocation. As shown in the BDM, in the original MPR it is assumed that the
servers on different processors are synchronized. However, this assumption is relaxed in [35]. To
the best of our knowledge none of these frameworks is actually implemented in a multiprocessor
platform.

Checconi et al. [19] has an implementation of Two-level hierarchical scheduling for multi-
processors in Linux. Their implementation exploits hierarchical resource management and task
group scheduling support in Linux via cgroups [1] and throttling [3] mechanisms. However,

8

1.3. THESIS OBJECTIVE CHAPTER 1. INTRODUCTION

their implementation of hierarchical scheduling requires multiple global schedulers and each of
the subsystem has access to all the processors. Additionally, this implementation is patch based
thus requires modification of base Linux kernel.

Different implementation schemes for hierarchical scheduling in multiprocessor are analysed
in [8]. Later authors of this work [8] have implemented hierarchical scheduling for uniprocessor
using a modular scheduler framework called ExSched [9]. ExSched requires no modification of
underlying operating system and supports plug-in based development of different schedulers.
Several scheduler plug-ins supporting different scheduling schemes has been implemented for
both Linux and VxWorks. The main idea of ExSched is to use a loadable kernel-space module
to provide different real-time scheduling schemes on top of native Linux scheduling classes.
As this approach of implementation is highly configurable compared to other patch-based
approaches [19] [17], we will use it in our implementation. A detailed description of how
ExSched works can be found in the Section 3.2.

Hierarchical compositional scheduling has been realized in [53] and [37] through virtuali-
zation. However, our work is different from these papers in two aspects. Firstly, we intend to
implement the complete hierarchy of schedulers within a single operating system. Secondly,
none of the previous works [53], [37] addressed the MPR interface as the resource interface
model.

1.3 Thesis Objective

1.3.1 Aim of this Thesis
• To analyse virtual-clustered scheduling from implementation point of view and find

different design challenges related to it.

• To implement a virtual-clustered scheduler in the Linux kernel with minimal modification
to the original scheduler.

• To measure overhead of a virtual-clustered scheduler and determine scopes of optimiza-
tion.

1.3.2 State of the Art Challenges
• To the best of our knowledge this work is the first attempt to implement virtual-clustered

hierarchical scheduling in an operating system. There is no other prior implementation of
real-time multiprocessor scheduling that completely resembles our design challenges.

• To the best of our knowledge, there is only one other implementation of hierarchical
multiprocessor scheduling [19]. So this thesis is addressing a state of the art research
topic.

• Our intended implementation of the Virtual-Clustered Hierarchical Scheduling Framework
(VC-HSF) extends general uniprocessor hierarchical scheduling in two ways; firstly, VC-
HSF is for multiprocessor platforms, secondly it has extra level of hierarchy called cluster.
Given a set of periodic tasks Γ(Γ = τ

j
i |∀i = 1, ..,n) where n is the number of tasks and j

is the cluster which it belongs to, a system designer can provide the cluster configuration

9

1.4. OUTLINE OF THE REPORT CHAPTER 1. INTRODUCTION

according to the MPR model. Our VC-HSF should provide both inter-cluster scheduling
and intra-cluster scheduling. An overview of our proposed implementation of VC-HSF is
presented in the Figure 1.2. Figure 1.2 shows how two virtual clusters each having 3 tasks
can be scheduled in 4 CPUs. Each of the cluster has 2 servers, an inter-cluster scheduler
schedules these servers to CPUs. Each cluster has its own intra-cluster scheduler which
determines the task that run using the cluster budget.

CPU 0

Server 0

CPU 1

Server 1

CPU 2

Server 2

CPU 3

Server 3

Inter-cluster Scheduler

Virtual Cluster 0

Intra-cluster scheduler

Virtual Cluster 1

Intra-cluster scheduler

τ0

0
τ0

1
τ0

2
τ1

1
τ1

2
τ1

0

Cluster 0 Cluster 0 Cluster 1 Cluster 0

Figure 1.2: Overview of VC-HSF

1.4 Outline of the report
The rest of the report is organized as follows. Chapter 2 presents brief overview of the state
of the art research in real-time multiprocessor scheduling. Chapter 3 presents background
on scheduling mechanism of Linux kernel and ExSched scheduler framework. Chapter 4
presents detailed analysis of design issues and choices used in our implementation. Chapter
5 presents experimental evaluations done using our implementation. Chapter 6 concludes
this thesis with a summary and future possible extension of the work presented. Appendix
provides basic guideline for running VC-HSF and the source code of the main source file of our
implementation.

10

Chapter 2

State of the Art

In this chapter, we present the state of the art in the real-time multiprocessor scheduling research.
First we briefly introduce major important terms related to real-time scheduling that is used
throughout this chapter.

2.1 Terminology
Real-time Task: A real-time task is a task whose successful execution depends on meeting its
timing constraints. Timing constraints of a real-time task are represented by the tuple (T, C, D)
with following parameters:

• Period (T): The time interval during which a single instance of the task needs to be
executed. Each such instance of the task is termed as a job of this task.

• Worst case execution time (C): The maximum possible execution time needed by the
task during a single period.

• Relative deadline (D): The time interval relative to the start time of the period during
which the task must finish its execution. A real-time task with T = D is called an implicit-
deadline task.

There are several other important properties of a real-time task such as:

• Priority: The priority of a task that determines which task will execute in a time instant.

• Release time: The instant in time when a task job becomes ready for execution, typically
during start of the period.

• Absolute deadline: The time instant relative to release time of a job before which the job
must be finished. The real-time task that always needs to meet its absolute deadline is
called Hard real-time task. On the other hand, the real-time task which can occasionally
miss its absolute deadline is called Soft real-time task.

• Utilization: The utilization of a task is defined as the ratio of the worst case execution
time and the period of that task.

There are three different type of real-time tasks:

11

2.2. MULTIPROCESSOR SCHEDULING CHAPTER 2. STATE OF THE ART

• Periodic task: The task which is released during each start of its period.

• Sporadic task: The task which has no period but has a minimum time interval between
two successive job releases.

• Aperiodic task: The task which can be released any time, thus has no period or minimum
inter-arrival time between jobs.

Real-time task scheduling: A real-time task scheduling algorithm is said to be work-
conserving if it does not permit there to be any time at which a processor is idle and there is a
task ready to execute. There are several other important classifications of scheduling algorithms
as:

• Preemptive or nonpreemptive: In preemptive scehduling tasks can interfere each others
execution. In contrast, in nonpreemptive scheduling when a task starts executing no other
tasks can interfere it.

• Priority based scheduling: In priority based scheduling, the ready task with highest
priority executes first. Three types of priority based scheduling is available [18]:

1. Fixed task priority: Each task has a fixed priority applied to all its jobs. For example,
in the Rate Monotonic (RM) scheduling, priority of task is the inverse of its period.

2. Fixed job priority: Different jobs of a task can have different priorities but each job
has a fixed priority. For example, in the Earliest Deadline First (EDF) scheduling,
priority of a task job is fixed by its absolute deadline.

3. Dynamic job priority: Job of a task can have different priorities depending on its
execution period. For example, in the Least Laxity First (LLF) scheduling, priority
of a job depends on its laxity or remaining execution time in the execution period.

2.2 Multiprocessor Scheduling
In this section we give a brief overview of state of the art research in real-time multiprocessor
scheduling. First we present the state of the art research work in two most popular real-time
multiprocessor scheduling algorithms called partitioned scheduling and global scheduling. Then
we present the state of the art in hybrid multiprocessor scheduling approaches which combines
concepts from both partitioned and global scheduling. These hybrid approaches are semi-
partitioned and cluster based scheduling. The section ends with an overview of virtual clustered
scheduling which is the focus of our thesis.

2.2.1 Partitioned Scheduling
In partitioned scheduling, a task set is divided into multiple disjoint sets and each of these sets
is assigned to a dedicated processor. Processors have their own scheduler with a separate run
queue and no migration of task or job is allowed during run time. From a practical perspective,
the main advantage of using a partitioning approach to multiprocessor scheduling is that, once
an allocation of tasks to processors has been achieved, existing real-time scheduling techniques
and analyses for uniprocessor systems can be applied. Advantage of partitioned scheduling in

12

2.2. MULTIPROCESSOR SCHEDULING CHAPTER 2. STATE OF THE ART

the context of multiprocessor systems first introduced by Dhall and Liu [24] where they showed
that there exist task sets with total utilizations arbitrarily close to 1 that are not schedulable by
global scheduling even if there are more than one processor in the platform.

However, the reuse of existing results of uniprocessor scheduling theory comes at a price. To
obtain m simpler uniprocessor scheduling problems from a multiprocessor platform consisting of
m processors, the task set must first be partitioned, that is, each task must be statically assigned to
one of the partitions such that no processor is overloaded. Solving this task assignment problem is
analogous to the bin packing problem which is known to be NP-Hard in the strong sense [30]. The
bin-packing decision problem can be reduced to task-set partitioning in polynomial time in the
sense that an implicit-deadline task set is feasible on m processors under partitioned scheduling
if and only if there exists a packing of all tasks into m bins or processors. Furthermore, the
partitioned scheduling algorithms are limited by the performances of the partitioning algorithms
used to partition the tasks between the processors of the platform. Indeed, a bin packing or
partitioning algorithm cannot guarantee to successfully partition a task set with a total utilization
greater than (m+1)/2 on a platform composed of m processors [6]. Hence, in the worst-case, a
partitioned scheduling algorithm can use only slightly more than 50% of the processing capacity
of the platform to actually execute the tasks. For example, an implicit-deadline task system τ

with utilization Usum(τ) could require up to d2Usum(τ)−1e processors in order to be schedulable
using partitioned EDF [44]. In other words, up to half of the total available processor time can
be unused under partitioned EDF in the long run. As a consequence, partitioned schedulers
may require more processors to schedule a task system when compared to global schedulers.
This is clear from the fact that partitioned scheduling algorithms are not work-conserving, as a
processor may become idle, but cannot be used by ready tasks allocated to a different processor.

Early research into partitioned multiprocessor scheduling examined the use of common
uniprocessor scheduling algorithms such as EDF or Rate Monotonic (RM) on each processor,
combined with bin packing heuristics such as First Fit (FF), Next Fit (NF), Best Fit (BF), and
Worst Fit (WF), and task orderings such as Decreasing Utilisation (DU) for task allocation. Later
different variants of EDF and fixed priority algorithms are proposed such as EDF-Utilization
Separation (EDF-US), EDF-First Fit Increasing Deadline (EDF-FFID), etc to improve utilization
bound of the partitioned scheduling. A comprehensive view of all these work can be found in
the survey by Davis and Burns [22]. Overall, realtime multiprocessor scheduling is difficult
from practical point because of intrinsic complexity to partition the task set.

2.2.2 Global Scheduling
In global scheduling, tasks are scheduled from a single priority queue and may migrate among
processors. The main advantage of global scheduling is that it can overcome the algorithmic
complexity inherent in partitioned approach. As all the processors use a single shared ready
queue, this eliminates the need to solve the task assignment problem, which is the source of
complexity under any partitioned scheduling. Another key advantage of global scheduling is
that it typically requires fewer preemptions as the scheduler will only preempt a task if there is
no idle processor. Global scheduling is more suitable for open systems where new tasks arrive
dynamically, as a new task can be added easily to existing schedule without assigning it to a
particular partition.

However, unlike partitioned scheduling, results from uniprocessor scheduling does not fit
easily for global scheduling of multiprocessors. The problem of global scheduling of real-time

13

2.2. MULTIPROCESSOR SCHEDULING CHAPTER 2. STATE OF THE ART

tasks in multiprocessors was first considered by Dhall and Liu [24] in the context of the periodic
task model. Their result known as Dhall’s effect shows that neither RM nor EDF retains its
respective optimality property in uniprocessor when the number of processors m exceeds one.
Given these early negative results and the lack of widespread availability of shared-memory
multiprocessor platforms, interest in the global scheduling was quite limited in the first two
decades of research into real-time systems [22].

Recently, Phillips et al. [48] showed that the Dhall’s effect is more of a problem with high
utilization tasks than it is with global scheduling algorithms. This result renewed the interest
in global scheduling algorithms. Hence, this property was exploited by EDF−US[ζ] [52] and
EDF(k) [31] to overcome the restrictions of global EDF (gEDF) caused by high utilization
tasks. The scheduling algorithm EDF −US[ζ] always gives the highest priority to the jobs
released by tasks with utilizations greater than a threshold ζ. On the other hand, EDF(k) provides
the highest priority to the (k− 1) tasks with the highest utilizations. In both cases, all other
tasks are normally scheduled with gEDF. Later it was proven by Baker [11] that both of these
global scheduling algorithms have a utilization bound of (m+1)/2 when ζ = 1/2 and k is fixed
to an optimal value denoted by kmin. This result implies that the two aforementioned global
variations of EDF have the same utilization bound like partitioned EDF. Therefore, the first
designed global and partitioned extensions of EDF were not able to utilize more than 50% of
the platform capacity in the worst-case scenarios. However, partitioned EDF and the various
variations of global EDF are incomparable as there exist task sets that are schedulable with the
partitioned version but not the global scheduling extension and vice versa. There are many other
variants of global scheduling algorithms such as FPZL, FPCL, FPSL, EDZL, EDCL, etc, which
mainly improves the schedulability of task sets. In contrast to the partitioned scheduling, some
global schedulers incur no utilization loss in implicit-deadline systems. As a result, there exist
optimal global schedulers for implicit-deadline tasks, with regard to both hard and soft real-time
constraints.

The Proportionate Fair (Pfair) algorithm for implicit deadline periodic task set was introduced
by Baruah et al. [13]. Pfair is based on the idea of fluid scheduling, where each task makes
progress proportionate to its utilization. Pfair scheduling divides the timeline into equal length
quanta or slots. At each time quanta, the schedule allocates tasks to processors, such that the
accumulated processor time allocated to each task optimize the overall utilization. However, a
Pfair scheduler incurs very high overheads by making scheduling decisions at each time quanta.
Further, all processors need to synchronize on the boundary between quanta when scheduling
decisions are taken which is hard in practice. Practical implementation of Pfair scheduling [32]
on a symmetric multiprocessor showed that the synchronized rescheduling of all processors
every time quanta caused significant bus contention due to data being reloaded into cache. To
reduce this problem Holman and Anderson [32] proposed the staggered quanta approach where
instead of synchronizing at every quanta, tasks required synchronization at smaller number
of quantas. However, this approach reduces the schedulability of task sets under this Pfair
algorithm and scheduler overhead is still significant.

Using the concept of Pfair algorithm, different variants of proportionally fair algorithms are
proposed. Original Pfair algorithm is not work conserving, ERFair [5] removes this problem
by allowing quanta of a job to execute before their PFair scheduling windows provided that the
previous quanta of the same job has completed execution. PD [13], and PD2 [4]] improved on the
efficiency of Pfair by partitioning tasks into different groups based on utilization. Zhu et al. [54]
further reduced scheduling points of Pfair in the Boundary Fair (BF) algorithm by making

14

2.2. MULTIPROCESSOR SCHEDULING CHAPTER 2. STATE OF THE ART

task1

task2

task3

task4

task5

P1

P2

P3

 P1

P2

P3

0 Slice length 0

(a) (b)

Slice length

Figure 2.1: McNaughton’s algorithm

scheduling decision only at period boundaries or deadlines. This approach is valid for implicit
deadline task set, but reduces the fairness property of original Pfair algorithm. Boundary fairness
introduced the concept of slices of time for which scheduler can take scheduling decision.

All of these Pfair algorithms are built on a discrete-time model. Hence, a task is never
executed for less than one system time unit (which is based on a system tick of operating system).
Indeed, many real-time operating systems take their scheduling decisions relying on this system
tick. It is therefore quite unrealistic to schedule the execution of a task for less than one system
time unit. However, imposing to schedule tasks only for integer multiples of the system time unit
highly constrains and complicates the optimal scheduling decisions of the scheduling algorithm.
Consequently, researchers focussed on the study of continuous-time systems instead of their
discrete-time equivalents. In a continuous-time environment, task executions do not have to be
synchronized on the system tick and tasks can therefore be executed for any amount of time.
This constraint relaxation drastically eases the design of optimal scheduling algorithms for
multiprocessor platforms by increasing the flexibility on the scheduling decision points.

The continuous-time counter-part for the Boundary Fair algorithm is named the Deadline
Partitioning Fair (DP-Fair) algorithm. The main idea of DP-Fairness is that, it divides the
continuous time into slices based on deadlines (thus called deadline partitioned), during each
time slice each task is executed for a local execution time which is the product of the task’s
utilization and the length of the time slice. Then different heuristics can be used to assign tasks
to processors so as to ensure that all deadlines will be met. DP-Fairness property formalized by
Levin et al. [40] is used in many algorithms such as DP-Wrap [29], NVNLF [27], LRE-TL [28],
LLREF [20], etc. For example, DP-Wrap for periodic tasks uses a slight variation of the next
fit heuristic which was inspired by McNaughton’s wrap-around algorithm [45]. McNaughton’s
algorithm packs tasks into a time slice on processors one by one. For example five tasks can be
scheduled off-line in three processors as seen in Figure 2.1. However, this requires splitting and
migration of tasks. A task set of n periodic tasks on m processors can thus experience at most
m−1 preemptions on slice boundary and n preemptions inside the time slice. On the other hand,
there can be at most 2(m−1) migrations of tasks across processors as migration on both ways
(leaving or arriving) can happen on all processors except the one where a task meets its deadline
(or slice boundary). However, if all the tasks are periodic with implicit deadlines, then the
pattern of the schedule computed for each time slice is repeated (see Figure 2.2), only the length

15

2.2. MULTIPROCESSOR SCHEDULING CHAPTER 2. STATE OF THE ART

task1

task2

task3

task4

task5

P1

P2

P3

0 TSk

(a)

TSk+2TSk+1

P1

P2

P3

0 TSk

(b)

TSk+2TSk+1

Figure 2.2: DP-Wrap algorithm (a) without mirror (b) mirror mechanism applied

of this schedule may vary. Consequently, the same m−1 tasks migrate repeatedly in different
slices. Exploiting this property, DP-Wrap reduces the amount of preemptions and migrations
via a mirroring mechanism that keeps the tasks that were executing before the boundary T Sk,
running on the same processors after T Sk (see Figure 2.2). This technique reduces both the
number of preemptions and the migrations by m−1, but it is only applicable for the implicit
deadline periodic tasks.

There are several other global scheduling algorithms based on laxity or remaining execution
time. The Earliest Deadline until Zero Laxity (EDZL) algorithm proposed by Lee [38] is an
extension of EDF with an additional feature of raising a task priority to highest when it will
miss its deadline unless it executes for all of the remaining time up to its deadline (zero laxity).
This idea is used by Kato and Yamasaki [33] in the Earliest Deadline until Critical Laxity
(EDCL) algorithm, which increases the job priority on the basis of critical laxity at the release
or completion time of a job. Cho et al. [20] presented an optimal algorithm for implicit deadline
periodic task sets called the Largest Local Remaining Execution Time First (LLREF). LLREF
divides the timeline into sections divided by scheduling events such as task releases or deadlines.
A LLREF scheduler selects m tasks with largest local remaining execution time for execution
on m processors at the beginning of each such section.The local remaining execution time for
a task at the start of a section is the amount of execution time that the task would be allocated
during that section in a T-L (time vs laxity) schedule, which is product of length of the section

16

2.2. MULTIPROCESSOR SCHEDULING CHAPTER 2. STATE OF THE ART

and utilization of that task. The local remaining execution time decrements as a task executes
during the section. Funaoka et al. [27] extended the LLREF to work conserving algorithm by
using the unused processing time per section. However, LLREF requires large overhead due
to large number of scheduling points, task migration and accounting of task laxities. Funk and
Nadadur [28] extended the LLREF approach, forming the LRE-TL algorithm by scheduling any
task with laxity within a section. This approach greatly reduces the overhead due to migration
and LRE-TL is also extended for sporadic task set with implicit deadlines.

Despite considerable research in global multiprocessor scheduling, all the above mentioned
algorithms suffers from common disadvantages. As the number of tasks grows in the system,
it becomes hard to manage global data structures for task queues. Most of these scheduling
algorithms are subject to what is called scheduling anomalies. That is, task sets that are
schedulable by a given algorithm S on a platform P become unschedulable by S on P when they
are modified such as the reduction of the utilization of a task by increasing its period or reducing
its worst-case execution time, finishing the execution of a job earlier than initially expected,
adding processors to the platform. Period anomalies are known to exist for global fixed-task
priority scheduling of synchronous periodic task sets, and for global optimal scheduling (full
migration, dynamic priorities) of synchronous periodic task sets.

2.2.3 Semi-partitioned Scheduling
In global scheduling, the overhead of migrating tasks can be very high depending on the archi-
tecture of the multiprocessor platform. In fact delays related to cache miss and communication
loads can potentially increase the worst case execution time of a task which is undesirable in
real-time domain. On the other hand, fully partitioned algorithms suffer from waste of resource
capacity as fragmented resource in each partition remains unused. To overcome this problem,
hybrid approaches are proposed which includes semi-partitioned and clustering algorithm.

In semi-partitioned scheduling algorithm, most of the tasks are executed on only one
processor as in original partitioned approach. However, a few tasks (or jobs) are allowed to
migrate between two or more processors. The main idea of this technique is to improve the
utilization bound of partitioned scheduling by globally scheduling the tasks that cannot be
assigned to only one processor due to the limitations of the bin-packing heuristics. The tasks
that cannot be completely assigned to one processor will be split up and allocated to different
processors. The process of assigning tasks to processors is done off-line .

EKG (EDF with task splitting and k processors in a Group) is an optimal semi-partitioned
scheduling algorithm for periodic task set with implicit deadlines [7]. It is built upon a
continuous-time model and consists in a semi-partitioned approach which adheres to the Dead-
line Partitioning Fair (DP-Fair) theory. In EKG, the tasks which needed splitting is termed as
the migratory task and the other tasks which can be completely assigned to a processor are
termed as component tasks. It splits the multiprocessor platform with m processors into several
clusters based on parameter k (k ≤ m). dm

k
e clusters are assigned k processors each and a single

cluster is given m−dm
c
ek processors. A bin-packing algorithm (such as Next Fit) is then used

to partition the tasks among the clusters so that the total utilization on each cluster is not greater
than its number of constituting processors. After the partitioning of the task set among the
clusters, EKG works in two different phases, firstly, the tasks of each cluster are assigned to
the processors of its cluster. Then, the tasks are scheduled in accordance with this assignment,

17

2.2. MULTIPROCESSOR SCHEDULING CHAPTER 2. STATE OF THE ART

using a hierarchical scheduling algorithm based on both the DP-Fairness and EDF. However, it
was shown in recent studies that the division of the time in slices bounded by two successive
deadlines and the systematic execution of migratory tasks in each time slice inherent in DP-Fair
algorithms, significantly reduce the practicality of EKG.

An alternative approach developed by Bletsas and Andersson [15] first allocates tasks to
physical processors (heavy tasks first) until a task is encountered that cannot be assigned. Then
the workload assigned to each processor is restricted to periodic reserves and the spare time slots
between these reserves organized to form notional processors. Kato and Yamasaki [34] presented
another semi-partitioning algorithm called the Earliest Deadline Deferrable Portion (EDDP)
based on EDF. During the partitioning phase, EDDP places each heavy task with utilization
greater than 65% on its own processor. The light tasks are then allocated to the remaining
processors, with at most m−1 tasks split into two portions. The two portions of each split task
are prevented from executing simultaneously by deferring the execution of the portion of the task
on the lower numbered processor, while the portion on the higher numbered processor executes.

Semi-partitioning approach is also investigated for fixed priority scheduling and sporadic
tasks. Lakshmanan et al. [36] developed a semi-partitioning method based on fixed priority
scheduling of sporadic task sets with implicit or constrained deadlines. Their method, called the
Partitioned Deadline Monotonic Scheduling with Highest Priority Task Split (PDMS HPTS),
splits only a single task on each processor: the task with the highest priority. A split task may
be chosen again for splitting if it has the highest priority on another processor. PDMS HPTS
takes advantage of the fact that, under fixed-priority preemptive scheduling, the response time
of the highest-priority task on a processor is the same as its worst-case execution time, leaving
the maximum amount of the original task deadline available for the part of the task split on to
another processor.

Although, semi-partitioned algorithms increases utilization bound by using spare capacities
left by partitioning via global scheduling, it has a inherent disadvantage of off-line task splitting.
It is ongoing state of the art research to efficiently split the tasks with maximum efficiency to
reduce overhead related to migration and preemptions.

2.2.4 Cluster Based Scheduling
Cluster based scheduling can be seen as a hybrid approach combining benefits of both partitioned
and global scheduling. The main idea of the cluster based scheduling is to divide m processors
into dm

c
e sets of c processors each [16]. Both partitioned and global scheduling can be seen as

extreme cases of clustering with c = 1 and c = m respectively.
Initially the notion of clustering is thought to be similar to partitioning approach where

the task set is assigned to dedicated processors during an off-line partitioning phase. In case
of clustering, this becomes assigning tasks to a particular cluster and give each cluster a set
of processors. It simplifies the bin packing problem of partitioning mentioned earlier as now
tasks have to be distributed into clusters. Different heuristics can be applied to assign tasks to
cluster to improve the utilization, reduce overhead due to migration and response time. Each
cluster handles small number of tasks on small number of dedicated processors and thus removes
problem of long task queue experienced by the global scheduling algorithms. Clustering also
gives flexibility in the form of creating clusters for different types of tasks such as low or high
utilization tasks. Another flexibility offered by clustering is that it is possible to create clusters
with different resource capacity such as cluster with large or small number of processors, having

18

2.2. MULTIPROCESSOR SCHEDULING CHAPTER 2. STATE OF THE ART

same second level cache, etc. Shin et al. [50] further expanded this flexibility by analysing cluster
based multiprocessor scheduling for virtual clustering. In contrast to the normal clustering
approach known as physical clustering where processors are dedicated for a cluster, virtual
clustering assigns processors to cluster dynamically during runtime. Shin et al. (2008) proposed
the Multiprocessor Periodic Resource (MPR) interface to represent virtual cluster and presented
hierarchical scheduling analysis and algorithms for them on symmetric multiprocessor platform.
Easwaran et al. [25] extended this hierarchical scheduling framework with optimal algorithms
for allocating tasks to clusters. We will present more details about virtual clustering in the
following section.

2.2.5 Virtual Cluster Scheduling
The Virtual Cluster (VC) Scheduling framework [50] is a generalization of physical clustering
with a new feature of sharing processors between different clusters. Unlike physical clusters,
where processors are dedicated to a cluster off-line, VC allows allocation of physical processors
to the clusters during run-time. This dynamic allocation scheme requires an interface to capture
the execution and concurrency requirements within a cluster to use hierarchical scheduling
techniques. The interface proposed by Shin et al. [50] which is known as the MPR model is:

Definition 1. The MPR model µ =< Π,θ,m′ > where θ≤Π specifies a unit capacity, identical
multiprocessor platform with at most m′ processors can collectively supply θ units of execution
resource in every Π time units. At any time instance at most m′ processors are allocated
concurrently to µ where θ/Π denotes the bandwidth of model µ [50].

In VC scheduling framework, for each cluster Ci a MPR interface µi is generated using
schedulability analysis presented in Shin et al. [50]. Then each of this interface is transformed
into a set of implicit deadline periodic servers for inter cluster scheduling. A time-driven periodic
server [21] is defined as PSi(Qi,Pi), where Pi is the server period, and Qi is the server budget
which represents the number of CPU time units that has to be provided by the server every Pi
time units. The periodic servers idle their budget if there is no active task running inside the
server.

One example for mapping the cluster interface to periodic servers is the method proposed by
Easwaran et al. [25] which works as follows. Given an MPR interface µ j =< Π j,θ j,m′j > for

cluster C j, it creates a set of implicit deadline periodic servers PS j
1, . . . ,PS j

m′j
, where,

PS j
1 = PS j

2 = . . .= PS j
m′j−1 = (Π j,Π j) (2.1)

PS j
m′j

= (θi− (m′j−1).Π j,Π j). (2.2)

The servers PS j
1, . . . ,PSm′j−1

are full budget servers, while PSm′j
is a partial budget server.

Once all the interfaces are transformed into the periodic servers, VC uses hierarchical
scheduling to schedule servers and tasks. There are two levels of scheduling described in VC,
namely inter-cluster scheduling and intra-cluster scheduling. Here the inter-cluster scheduler
refers to the global scheduler of the hierarchical scheduling while the notion of intra-cluster
scheduler is similar to the local scheduler in hierarchical scheduling.

In hierarchical scheduling, the global scheduler schedules the servers representing the
subsystem. The same is true for the inter-cluster scheduler of VC except that each cluster can

19

2.2. MULTIPROCESSOR SCHEDULING CHAPTER 2. STATE OF THE ART

have up to m′ active servers. All the servers from all the clusters are queued according to the
global scheduling policy. However, tasks are not assigned to any particular server, rather these
only belong to a specific cluster. The intra-cluster executes tasks of the cluster by consuming the
budgets of its scheduled servers. Unlike regular hierarchical scheduling, the local or intra-cluster
scheduler also has to use a multiprocessor global scheduling algorithm as there can be multiple
active servers of a cluster. As a result, VC can be described as global scheduling in two level.
Easwaran et al. [25] mentioned different global scheduling algorithms like global EDF (gEDF)
and McNaughton’s algorithm that can be used in VC.

Now, we present an example to illustrate VC scheduling in more detail. Given a implicit dead-
line sporadic task set τ = {T1(2,3),T2(1,2),T3(1,3),T4(1,3),T5(1,3),T6(1,3),T7(1,2),T8(1,2)
,T9(1,2)} of 9 tasks where the task parameters Ti(Ci,Ti) denote execution time Ci and per-
iod Ti respectively. τ is mapped into three virtual clusters C1,C2,C3 using MPR interface
µi =< Πi,θi,m′i > for scheduling in a multiprocessor platform as Figure 2.3. The three MPR
interfaces < 6,7,2 >,< 3,4,2 >,< 2,3,2 > are calculated using the schedulability analysis
presented in Shin et al. [50].

 Periodic tasks

spare capacity
reserved capacity

 Multiprocessor Platform

Cluster C1:

 T1(2,3), T2(1,2)

Cluster C2:

T3(1,3), T4(1,3), T5(1,3), T6(1,3)

Cluster C3:

T7(1,2), T8(1,2), T9(1,2)

< 6, 7, 2 > < 2, 3, 2 >< 3, 4, 2 >

Figure 2.3: Virtual cluster mapping using MPR

Virtual clusters C1,C2 and C3 are transformed into periodic servers using 2.1 as shown by
the Table 4.1.

Table 2.1: Periodic servers for virtual clusters

Π θ m′ Servers(PS)

C1 6 7 2 PS1
1(6,6),PS1

2(1,6)

C2 3 4 2 PS2
1(3,3),PS2

2(1,3)

C3 2 3 2 PS1
1(2,2),PS1

2(1,2)

In Figure 2.4 two examples of inter cluster scheduling of the periodic servers is presented
using the McNaughton’s algorithm. In Figure 2.4 (a) a simple Next Fit approach is shown by
allocating processors to servers sorted by budget requirements and in Figure 2.4 (b) a different
schedule is shown for the same set of servers due to problem of server synchronization. It can
be seen that a server of a cluster can execute concurrently in at most m processors presented in
its MPR interface. Whenever, a server gets activated, it can look for ready tasks (not executing)
within its cluster and execute it using the server budget. Though Figure 2.4 (b) shows the
advantage of virtual clustering as different clusters can share processors, two disadvantages
of this approach is also evident from this example. Firstly, flexibility of sharing processors

20

2.2. MULTIPROCESSOR SCHEDULING CHAPTER 2. STATE OF THE ART

between clusters comes at the price of overhead related to the synchronization and migration of
the servers. For example, in Figure 2.4(b) the second job of PS3

2 releases before completion of
the first job and release of the second job of PS3

1. If the first job of PS3
1 completes before the first

job of PS2
2 then PS3

2 may need to migrate to the available processor with all its tasks. Secondly,
similar to the bottleneck of the global scheduling, large utilization servers are less flexible in the
schedule and these can effect the schedulability of a task set.

PS1
1

P1

0 6 12

P2

0 126

P3

0 6 12

P4

0 6 12

PS2
1

PS1
2

PS2
2

PS1
3

PS2
3

P1

0 6 12

P2

0 126

P3

0 6 12

P4

0 6 12

Server release Server deadline

(a) (b)

Figure 2.4: Examples of inter cluster scheduling using the McNaughton’s Algorithm

However, in our inteneded implementation of VC framework called VC-HSF, we will use
global fixed priority algorithm for both server and task scheduling. We first intend to implement
VC-HSF for periodic tasks but will allow flexible budget assignment policy to the servers of a
cluster.

21

Chapter 3

Background

In this chapter, we present background on the scheduling in Linux operating system and the
ExSched scheduler framework.

3.1 Linux Scheduling Mechanism
In this section we give a brief overview of Linux scheduler and its components [2].

The process scheduler is a component of the Linux kernel that selects which process will
run in the processor at any time instant. In a multitasking operating system like Linux, it is the
job of the scheduler to distribute processor time to multiple processes in such a way that the user
experiences execution of multiple processes simultaneously. However, multiprocessor platforms
can run multiple processes in parallel in different processors. Therefore the scheduler has to
assign runnable processes to processors and select the running process on each of the processors.

3.1.1 Scheduler Invocation
In the Linux kernel, all scheduling decisions are implemented by the schedule() procedure. Its
objective is to find a ready process suitable for execution by scheduling policy and then assign
the CPU to it. The schedule() procedure can be invoked by either directly or in a lazy way by
other kernel routines.

In direct invocation, a process invokes the scheduler directly with a call to the schedule()
procedure when it suspends (e.g., blocked for I/O operation). This call is a blocking call for the
calling process and it returns when the process is resumed again by the scheduler.

In lazy invocation, the scheduler is invoked indirectly when preemption of the currently
running process is required. This is done by setting the need_resched flag in the task_struct
structure of the running process. The kernel always checks prior to returning from an Interrupt
Service Routine (ISR), exception handler or from any system call whether this rescheduling
flag is set for the currently scheduled process. If this need_resched is set, the kernel invokes
schedule(). This is useful in a sense that rescheduling can be requested even before calling the
scheduler via setting the flag at the end of an ISR or system call. Even in case of non-preemptive
execution of a process (which can be achieved in the kernel mode via setting preempt_count),
rescheduling can be requested which will be served when a non-preemptive execution is over.
This gives flexibility to use the ISR even when the running process executes non-preemptively.

22

3.1. LINUX SCHEDULING MECHANISM CHAPTER 3. BACKGROUND

3.1.2 Tasks and RunQueue
The Linux scheduler can schedule a task on a processor as a process. It can also schedule
a group of processes to achieve hierarchical scheduling (via cgroup and throttling). All
the scheduling entities that a Linux scheduler policy can handle is defined in sched_entity
structure.

Each process in Linux is represented by a Process Control Block (PCB) called task_struct.
This structure has fields that distinguish different tasks and their requirements. Some of them
are:

• pid: a process identifier that uniquely identifies the task.

• state: it describes state of the task which can be either unrunnable, runnable or stopped.

• sched_class *sched_class: a pointer which binds the task with its scheduling class.

• cpus_allowed: a binary mask of the cpus on which the task can run, useful for multipro-
cessing.

To support both uniprocessors and multiprocessors, the Linux scheduler is organized in a
partitioned, per-processor way to ensure cache-local operations. Associated with each processor
is a data structure called runqueue (rq). It contains a sub-runqueue field for each scheduling
class, and every scheduling class can implement its runqueue in a different way. The runqueue
contains state of each scheduling class pertaining to that processor (such as a processor-local
ready queue, the current time, and scheduling statistics). A ready or runnable process belongs
to the runqueue of the processor to which it is currently assigned; when a process suspends, it
remains under management of the processor where it was last scheduled until it is resumed.

Each runqueue is protected by a spinlock which must be acquired before its state may be
modified (e.g., before processes may be enqueued or dequeued). As there are no per-process
locks in Linux to synchronize accesses to task_structs, the runqueue locks are used to serialize
process state updates. Each process is assigned to exactly one runqueue at a time, and a processor
must first acquire the lock of the assigned runqueue before it may access a task_struct. Due to
the processor-local nature of runqueues, a scheduler must acquire two (or more) locks whenever
a consistent modification of the scheduling state of multiple processes is required. For example,
during migration of a process; it must be atomically dequeued from the ready queue of the
source processor and enqueued in the ready queue of the target processor. Unless coordinated
carefully, such "double locking" could quickly result in deadlock. Therefore, Linux requires that
runqueue locks are always acquired in order of increasing memory addresses; that is, once a
processor holds the lock of a runqueue at address A1, it may only attempt to lock a runqueue at
address A2 if A1 < A2. This imposes a total order on runqueue lock requests; deadlock is hence
impossible. Consequently, a processor that needs to acquire a second, lower-address runqueue
lock must first release the lock that it already holds and then (re-)acquire both locks. As a result,
the state of either runqueue may change in between lock acquisitions.

3.1.3 Linux Modular Scheduling Framework
The Linux scheduler has been designed and implemented by a modular framework that can
be easily extended. It is organized as a hierarchy of scheduling classes, where processes of

23

3.1. LINUX SCHEDULING MECHANISM CHAPTER 3. BACKGROUND

a low priority scheduling class are only considered for execution if all of its higher-priority
scheduling classes are idle. At any given time each process belongs to exactly one scheduling
class, but can change its scheduling class at runtime via sched_setscheduler() system call.
Each of these scheduling classes implements specific scheduling policies. Presently there are
two high-priority scheduling class for real-time tasks called SCHED_RR and SCHED_FIFO and
three other low-priority scheduling class SCHED_NORMAL, SCHED_BATCH and SCHED_IDLE to
provide complete fair scheduling (Linux Kernel 3.2.40).

A Linux scheduling class is implemented through the sched_class interface. This interface
contains 22 methods which must be implemented for different scheduling classes. While
scheduling a process, this methods are called by the scheduler as these are hooked via the
sched_class structure. Some of the important hook functions are:

• enqueue_task: it enqueues a runnable task in the data structure used to keep all runnable
tasks called runqueue.

• dequeue_task: it removes a task which is no longer runnable from the runqueue.

• yield_task: yields the processor giving room to the other tasks to be run.

• check_preempt_curr: checks if a task that entered the runnable state should preempt
the currently running task.

• pick_next_task: chooses the most appropriate task eligible to be run next.

• put_prev_task: makes a running task no longer running.

• select_task_rq: chooses on which runqueue (CPU) a waking-up task has to be en-
queued.

Whenever the Linux scheduler is invoked, it traverses the scheduling class hierarchy in
order from the real-time class to the idle class by invoking the pick_next_task() method of
each class. When a scheduling class returns a non-null task_struct, the traversal is aborted
and the corresponding process is scheduled. This ensures that real-time processes always take
precedence cover non-real-time processes.

In a multiprocessor Linux kernel (configured with CONFIG_SMP) has additional fields to
support multiprocessor scheduling, such as:

• select_task_rq: called from fork, exec and wake-up routines; when a new task enters
the system or a task that is waking up the scheduler has to decide which runqueue (CPU)
is best suited for it.

• pre_schedule: called inside the main schedule routine; performs the scheduling class
related jobs to be done before the actual schedule.

• post_schedule: like the previous routine, but after the actual schedule.

• set_cpus_allowed: changes a given task’s CPU affinity; depending on the scheduling
class it could be responsible for to begin tasks migration.

24

3.1. LINUX SCHEDULING MECHANISM CHAPTER 3. BACKGROUND

A scheduling domain (sched_domain) is a set of CPUs which share properties and schedu-
ling policies, and which can be balanced against each other. Scheduling domains are hierarchical,
a multi-level system will have multiple levels of domains. A struct pointer struct sched_domain
*sd, added inside structure rq, creates the binding between a runqueue (CPU) and its scheduling
domain. Using scheduling domain information the scheduler can make good scheduling and ba-
lancing decisions. This is specially useful for partitioned and physically clustered multiprocessor
scheduling where a group of processors may share runqueues or scheduling policies.

3.1.4 Priority Based Real-time Scheduling in Linux
Linux support 140 distinct priorities to assign to a process. Of them, the lower 40 ones are
reserved for non-realtime tasks and the higher 100 priorities can be used for real-time tasks.

To implement priority based scheduling, each runqueue of a scheduling class is extended
with an array of 100 linked lists which is used to queue ready processes at each priority level.
To find a high priority process in this list easily, the runqueue contains a bitmap containing one
bit per priority level to indicate non-empty lists. This bitmap is scanned for the first non-zero
bit using special bitwise operations supported by the hardware; the head of the linked list
corresponding to the index of that bit is dequeued. Whenever the dequeue operation results in an
empty list, the corresponding bit is reset. This mechanism is commonly called O(1) scheduling
of Linux. Although this limits the number of supported priorities to 100, only four instructions
is needed in a 32 bit platform to find the highest priority non-empty list. Linux priority based
scheduling supports only FIFO and RR approach. In case of FIFO approach, it is implemented
by queuing last running task at the end of the linked list corresponding to its priority. The
RR algorithm is implemented by doing this enqueue operation when the process finishes its
execution quanta.

3.1.5 Task Migration Mechanism
In a multiprocessor platform, Linux uses on demand migration of tasks from one processor to
another. This situation arises because the scheduler can schedule a process to any processor
permitted by its affinity mask if no other higher priority process is executing on it. In fair based
scheduling, this is handled by the load balancing mechanism but real-time schedulers have to
consider this in every scheduling decision. A process migration always involves a target and
a source processor, either of which may initiate a migration: either a source processor pushes
waiting processes to other processors, or a target processor pulls processes from processors
backlogged by the higher-priority processes. Processes with processor affinity masks that allow
scheduling on only a single processor are exempt from pushing and pulling. However, this
pushing or pulling requires taking global spinlocks over two runqueues which is complicated
both in terms of synchronization and overhead. The default Linux push and pull mechanisms
are not suitable for real-time scheduling because it can cause unnecessary migrations. This is
because during the default push and pull operation an idle processor checks all the available
processors by processor index in a increasing order. As a result, low priority tasks residing in
a processor with lower index can migrate before the actual highest priority one. Due to this
undesirable effects, any implementation of the real-time multiprocessor scheduling in Linux
should implement its own task migration mechanism on top of the default migration mechanisms.

25

3.1. LINUX SCHEDULING MECHANISM CHAPTER 3. BACKGROUND

3.1.6 Hierarchical Scheduling Support in Linux
In hierarchical scheduling [23], tasks are grouped and each group of tasks or subsystem is sche-
duled individually by its own scheduler. However, each subsystem has an interface comprising
of its period, required execution budget and priority which is used by a system wide global
scheduler for global scheduling. Global scheduler distributes the available execution time to the
servers which represent the lower level subsystems. As a result, hierarchical scheduling has at
least two level of schedulers.

Current Linux versions support grouping of tasks via control group(cgroup) and sched
-rt-group. Both of these mechanisms give ability to dedicate a certain share of total execution
time to the configured group. For example, cgroup associates a set of tasks with a set of
parameters for one or more subsystems. A subsystem is typically a resource controller that
schedules a resource or applies per-cgroup limits, but it may be anything that wants to act on
a group of processes. Moreover, hierarchy is defined as a set of cgroups arranged in a tree,
so that every task in the system is exactly in one of the cgroups in the hierarchy, and a set of
subsystems; each subsystem has system-specific state attached to each cgroup in the hierarchy.
User code may create and destroy cgroups by name in an instance of the cgroup virtual file
system, may specify and query to which cgroup a task is assigned, and may list the task PIDs
assigned to a cgroup. The intention behind this facility is that different subsystems hook into the
generic cgroup support to provide new attributes for cgroups, such as accounting/limiting the
resources which processes in a cgroup can access.

The Linux kernel code already provides a rough mechanism, known as CPU Throttling,
that has been designed for the purpose of limiting the maximum CPU time that may be consumed
by individual activities on the system. It was designed so as to prevent real-time tasks to starve
the entire system forever. The original mechanism only allowed the overall time consumed
by the real-time tasks (irrespective of priority or scheduling policy) to overcome a statically
configured threshold, within a time-frame of one second. By default this value (known as
throttling runtime)is defined to be 950 ms, which is available to all real-time tasks within
each second (termed as throttling period). By combining the throttling and cgroup
mechanism coarse-grained hierarchical group scheduling can be implemented using the default
Linux kernel. In this hierarchical group scheduling, whenever a processor becomes available,
the scheduler selects the highest priority task in the system that belongs to any group that has
some execution budget available, then the execution time for which each task is scheduled
is subtracted from the budget of all the groups that it hierarchically belongs to. The budget
limitation is enforced hierarchically, in the sense that, for a task to be scheduled, all the groups
containing it, from its parent to the root group, must have some budget left in a non-decreasing
order. Together with this group scheduling, per-group-throttling mechanism can ensure
that none of the groups overrun their assigned execution budget. However, these mechanisms
have following drawbacks:

1. The budget and the period assigned initially to a group is the same on all the processors of
the system, and is selected by the user. So, in case of multiprocessors, a local server can
not be assigned budget only to a particular processor. However, actual execution of the
task/process can be limited to a processor via its cpus_allowed mask.

2. Default mechanisms of throttling or cgrouping only limits the CPU time consumed by the
tasks, it does not enforce its provisioning, nor it has a form of admission control, that is

26

3.2. EXSCHED SCHEDULER FRAMEWORK CHAPTER 3. BACKGROUND

the total sum of the actual processor utilizations can be greater than 1.

3. The default implementation enforces temporal encapsulation on the basis of a common
time granularity for all the tasks in the system, that is one second. This makes time
granularities for the tasks quite long, in the order of 1s-10s. As a result, this makes it
impossible to guarantee good performance for real-time tasks or servers that need to
exhibit sub-second activation and response times.

Although all of the above mentioned limitations can be removed but that effort requires
modification of the original Linux kernel. Checconi et al. [19] provided a patch to default Linux
throttling mechanism to overcome some of these limitations (except the limitation 1). However,
as our goal is to not to modify the default Linux kernel, we are not using any patches.

In summary, we need patch based modification of Linux kernel to implement hierarchical
real-time scheduling using cgroups. In this work, we are not using cgroups due to this practical
reason.

3.2 ExSched Scheduler Framework
ExSched [9] is a scheduler framework that can be used to implement custom schedulers as
plug-ins for different operating systems without changing the kernel of the operating system.
It consists of three major components: a core kernel module, a set of scheduler plug-ins and
a library for the user space programs. As we will use ExSched in our implementation, brief
descriptions of its different components are given in the following sections.

3.2.1 ExSched Core Module
The key component of the ExSched framework is its core module. It is a character-device
module which can be loaded into kernels which support loadable modules. The core module is
accessed by the user space programs through I/O system calls such as ioctl(). To determine
scheduling decisions for the user program, the core module invokes a set of callback functions
implemented by the specific scheduler plug-in. Finally the core module implements custom
scheduling decisions from the plug-ins via original scheduling primitives of the hosting operating
system.

For example, in Linux, the ExSched core uses SCHED_FIFO policy of the real-time scheduling
class rt_sched_class to implement scheduling decisions from the plug-ins. It uses scheduling
functions provided by the Linux kernel such as schedule(), sched_setscheduler(task,
policy,prio) and set_cpus_allowed_ptr(task, cpumask) to implement real-time sche-
duling. In case of multiprocessors, task migration is done in two ways. The migrate_task
(task,cpu) function of the core can migrate a task running in the thread context by simply
calling the set_cpus_allowed_ptr. However, in case of task running in the interrupt context,
the core module has to create a high priority real-time kernel thread to migrate the task.

To manage real-time properties, the core module has its own task descriptors with additional
fields such as release time, deadline, etc. The original Linux task descriptor is part of the core
task descriptor and plug-ins can also extend it via their own task descriptors. Linux bitmap
queues are used to handle any task queues. The core module uses the kernel timer functions such
as setup_timer and mod_timer to manage timing events. Three main internal functions namely

27

3.2. EXSCHED SCHEDULER FRAMEWORK CHAPTER 3. BACKGROUND

job_release(),job_complete() and rt_run_internal() are used to provide interface to
the scheduler plug-in to implement its scheduling policy via the core module.

3.2.2 ExSched User Space Library
ExSched framework provides a set of API functions for the real-time tasks to run using the core
module. These functions are very simple and independent of underlying scheduling mechanisms.
For example, rt_enter() and rt_exit() can be used to switch a normal task to real-time
task and vice versa. rt_set_priority(priority) can be used to assign a priority to a task,
while there are other functions to set the period, deadline, etc. A task can run in timeout mode
using rt_run(timeout) and also can wait using rt_wait_for_period(). To summarize, this
library provides a convenient way to write real-time tasks using ExSched.

3.2.3 ExSched Plug-in Developement
ExSched framework supports development of different schedulers via plug-in. To develop a
plug-in in ExSched, the designer has to implement a set of callback functions that will be used
by the core module. These are linked via the core module function pointers:

• task_run_plugin: this pointer links the plug-in function responsible for running the
task.

• task_exit_plugin: this pointer links the plug-in function responsible for removing a
real-time task from scheduling.

• job_release_plugin: this pointer links the plug-in function used in releasing task jobs.

• job_complete_plugin. this pointer links the plug-in function used when a task job is
finished.

To illustrate how this framework can be used, we now explain two examples from the
ExSched developers. These are the uniprocessor hierarchical EDF scheduling plug-in (H-EDF)
and the semi-partitioned mulitprocessor scheduling plug-in (FP-PM).

In the H-EDF plug-in, the original data structures of the ExSched framework are extended
to support hierarchical scheduling. This extension includes a new descriptor for the servers
(server_struct), new queue management (relPq) to support both server and task queues and
extension of original task descriptor of ExSched to attach it to a server. Besides new task run,
job release and job complete handlers, the H-EDF plug-in also implements the server release and
the server complete handlers. New handlers related to task jobs are modified to take the running
server into account. The handlers for server release and server exit are complex as they handle
both the server and tasks running using its budget.

In the FP-PM plug-in, very few new extensions of ExSched data structure is required com-
pared to H-EDF. The only major modification is to add information related to task migration in
the task descriptor. As this is a multiprocessor algorithm, handlers for running the task perform
most of the complex computation required to decide which processor will run the task. Task
migration is handled by the task run and the job complete handlers. However, all the handlers
have to carefully manage time as tasks can migrate from one processor to another.

28

Chapter 4

Design

In this chapter we present our design of a virtual clustered hierarchical scheduler using ExSched.
We intend to call our implementation as Virtual-Clustered Hierarchical Scheduling Framework
(VC-HSF). First we present the system model for VC-HSF, then the design issues related to its
implementation. Finally, we present the detail design of VC-HSF using ExSched.

4.1 System Model
A system contains a set Γ of n periodic real-time tasks τ1, . . . ,τn and a set C of k virtual clusters
C1, . . . ,Ck. Each periodic task τi is characterised by its relative deadline Di, worst-case-execution
time Ei and period Ti. Each periodic task τi belongs to a virtual cluster C j and has a unique
priority i within its virtual cluster. A virtual cluster C j is characterised by its period Π j, an
execution budget per period θ j, a concurrency parameter m′j and a priority s j. Each virtual
cluster has a set of periodic tasks Γ j which is a disjoint subset of Γ. Virtual cluster C j can
execute tasks of Γ j using m′j periodic servers PS j

1, . . . ,PS j
m′ . A time-driven periodic server PS j

i

of virtual cluster C j is characterised by a period Π j, an execution budget Q j
i and priority of its

cluster s j. The periodic servers idle their budget if there is no active task running in the server.

4.2 Design Issues
VC-HSF is based on VC framework presented by Shin et al. [50]. Although the authors gave
an extended account on how VC framework may work [25], there is no guideline of how to
implement it on a real operating system. Moreover recently, Lipari and Bini [41] pointed out
implicit assumption in the VC framework that all servers are synchronized at the beginning of
their period is hard to achieve in a multiprocessor environment and the proposed MPR model
does not have a worst-case situation. As a result the schedulability analysis presented in the
VC framework needs correction in estimation of worst-case supply. However, this limitation
is relaxed in [35]. Another limitation of the VC framework noted in the survey by Davis and
Burns [22] is that the number of task migration it requires may not be suitable for hard real-time
systems.

However, the focus of our work is to implement the scheduling part of the VC framework in
Linux. We don’t intend to correct or extend the schedulability analysis of the VC framework,
rather we want to implement and demonstrate its functionality which may give us valuable

29

4.2. DESIGN ISSUES CHAPTER 4. DESIGN

insights. In [55], the authors mentioned there are several multiprocessor architectures (several
x86-32, ARM and UltraSPARC64) already available with a global clock for all cores. We also
found these architectures are used in similar projects like LIT MUSRT [17] where they used a
global clock signal that is accessible to all processors in the form of cycle counter registers.
According to those implementations, as Linux bases its notion of time on this global clock
source, there is no drift among processors. Therefore synchronization of servers in different
processors is not a big hurdle in VC implementation.

As mentioned earlier, we will use the ExSched [9] scheduler framework to develop a plug-in
for VC-HSF. As a result, all subsequent discussions will be based on implementation support
already provided by the ExSched.

Before proceeding towards the design of a VC-HSF multiprocessor scheduler, we have to
take decisions about several design choices. We try to categorize them as below:

1. How to map tasks to the clusters?

2. How to map tasks to the periodic servers of the clusters?

3. How to assign the server budget to the servers of a cluster?

4. How can the schedulers at different level interact with each other?

5. How to synchronize the time events in different processors or how can we manage time?

6. How to capture real-time properties of tasks in the task, server and cluster level data
structures? How to implement and manage queues of tasks? How many types of queues
do we need?

7. How can we migrate tasks?

8. How to protect data structures that are shared by different handlers?

Now we will present some design options available for solving these queries in more detail.

4.2.1 Task to Cluster Mapping - Issue 1
In the description of the VC framework [50], [25] there is no clear guideline of how to map
a task set into several clusters. However, Easwaran et al. [25] presented a theoretical analysis
of two approaches as examples. In the first approach VC-Implicit Deadline Tasks (VC-IDT),
each task is assigned to its own cluster having a single processor. This trivial approach is similar
to the semi-partitioned and the partitioned EDF algorithms. The second approach mentioned
is based on utilization separation, where tasks with high utilization have their own cluster and
all other low utilization tasks are placed in a single cluster. However, both of these approaches
suffer from large number of possible task preemptions which is inferior to non-cluster based
approaches.

In [49], tasks are grouped into cluster based on the period-aware task allocation scheme.
Their main idea was to put tasks which have harmonic periods into same cluster. This period-
aware task allocation is shown [49] to incur low scheduler overhead if Boundary Fair (BF)
algorithm is used for scheduling the clusters. Our observation is that, this approach can be also
helpful for us as VC uses the Greatest Common Divisor (GCD) of the task periods to determine

30

4.2. DESIGN ISSUES CHAPTER 4. DESIGN

the period of MPR interface of a cluster. For example, using this scheme the task set of Figure
2.3 can be divided into two clusters having periods 2 and 3, each of which can be served by two
periodic servers.

However, we can conclude that there is no concrete technique proposed so far for task to
virtual cluster mapping and choice is open to subsystem designer. Clustering can be useful in
placing restrictions on the amount of concurrency that a group of tasks can have. For example,
suppose m tasks can thrash a L2 cache when they run concurrently. This problem can be solved
by placing these m tasks into a virtual cluster having concurrency at most m′ where m′ < m.
As a result, m tasks can not run in parallel and thus prevent them from thrashing the cache. In
our implementation of VC-HSF we assume that the subsystem designer will specify the cluster
affiliation of a real-time task during its creation. The subsystem designer can compose different
subsystems as clusters from a system.

4.2.2 Task to Server Mapping - Issue 2
At this point of our analysis, we want to distinguish general two-level hierarchical scheduling
from the virtual cluster-based hierarchical scheduling. In two-level hierarchical scheduling,
each of the subsystem can be represented by a server which ensures temporal isolation between
different subsystems. However in cluster-based scheduling, subsystems are represented by
clusters which can be either physical or virtual. The most distinct difference introduced due
to clustered subsystem is that unlike servers a cluster can simultaneously use more than one
processor. As a result, in VC-HSF framework each of the clusters can be served by multiple
servers, maximum number of servers that can be used simultaneously is bounded by the
concurrency parameter of the cluster’s MPR interface (m′). The servers within a cluster share
task queues of their cluster. Therefore, there is no need to map tasks of a cluster to its servers.

4.2.3 Server Budget Assignment - Issue 3
In [25], budgets are assigned statically to servers either for its whole period (full budget) or
remaining budget of the cluster in case the server is the last one belonging to that cluster.
However, in our case, we use a more general model of budget assignment. We assign budget to
the servers of a cluster when the cluster is released each time. A budget assignment function
assign_server_budget is called each time the server is released to update the budget of
the servers. This gives the flexibility of using different budget assignment policies in our
implementation.

Different static budget assignment policies have different consequences on the schedule.
For example, if full budget servers are used, these servers tend to occupy CPUs all the time as
their budget will get replenished at the same time when it will get expired. As a result, sharing
of CPUs can only happen in the CPU where servers running without full budget. In contrast,
server budgets can be assigned completely dynamically at each scheduling point. In it if only
one server is running, then it will receive all the budget from its cluster. When a new server of
the same cluster is released, the remaining budget of the cluster should be distributed between
the servers. However, this dynamic approach is complicated to implement in run-time.

For the implementation in this thesis we used a simple budget assignment policy that is very
similar to balanced platform of a flexible interface as proposed in [35]. The algorithm works

as follows: for m servers with total cluster budget Q, we assign bQ
m
c+1 budget to all servers

31

4.2. DESIGN ISSUES CHAPTER 4. DESIGN

except the last server, which will be assigned the remaining budget of the cluster. For example,
total budget of 20 will be assigned as (11,9) in 2 servers, where it will be assigned (7,7,6) in 3
servers.

4.2.4 Schedulers - Issue 4
As discussed in the previous Section, the VC-HSF framework represents subsystems as clusters
of tasks. There are two levels of scheduling described in VC, namely inter-cluster scheduling
and intra-cluster scheduling. Here the inter-cluster scheduler refers to the global scheduler of the
hierarchical scheduling while the notion of intra-cluster scheduler is same as the local scheduler.

In conventional hierarchical scheduling, the global scheduler schedules the servers represen-
ting the subsystem. The same is true for the inter-cluster scheduler of VC-HSF except that now
each of the subsystem can have multiple servers. All the server tasks from all the clusters are
queued according to any global scheduling policy and the single inter-cluster scheduler does
this:

1. It is invoked whenever either a server budget is expired or get replenished via activation.

2. If m processors are available in a scheduling point, it picks m most suitable (such as
highest priority ones in priority based scheduling) servers to execute on processes.

3. At each scheduling point, it has to check all the processors to find if there is a server
running with lower priority that it can preempt. In case of server preemption, it should
manage the remaining budget of the preempted server and insert it into the proper place of
the server queue.

4. It invokes the intra-cluster scheduler whenever a server of that cluster either gets a new
budget or gets preepmted or expired its budget.

5. It should manage status of the idle processors and try to schedule the preempted servers
either on a idle processor or on any processor running lower priority server.

It is evident that the inter-cluster scheduler of the VC-HSF framework is more complex than
the global scheduler of the hierarchical scheduling. Now we will look into how intra-cluster
scheduler works.

The intra-cluster scheduler in the VC-HSF framework is responsible for scheduling tasks
within the cluster into available processors for the cluster. It manages the real-time tasks similar
to the local scheduler but uses the task queues of the cluster. However, the intra-cluster scheduler
employs any global scheduling algorithm to schedule tasks into processors as there can be
more than one processors available for the cluster. Processing time received by the cluster
is represented by the periodic servers. This causes a new decision problem that needs to be
resolved. Here we present the following two situations:

Option 1: Tasks are not mapped to the servers. As a result, whenever two servers get
activated simultaneously the intra-cluster scheduler has to take the decision of which task to run
on which processor. One thing to note here is that although all the servers of a cluster have the
same period, their individual budgets may differ. Therefore it can happen that the scheduler
schedules a longer running task into a server with shorter budget when two servers with different
budget gets activated at the same time. This can cause unnecessary preemptions which can be

32

4.2. DESIGN ISSUES CHAPTER 4. DESIGN

avoided if the intra-cluster scheduler takes server budget into account while allocating tasks to
the processor (see Figure4.1). However, checking server budget while allocating tasks to that
servers processor will make the intra-cluster scheduler more complex.

Option 2: Tasks are mapped to a particular server of its cluster by the system designer. This
makes local scheduling simpler with the expense of additional data structure related cost of
task-to-server mapping. However, this idea is not presented in the original VC framework and
there is no guideline for it. So, to implement this option we need to propose additional methods
of task-to-server mapping in our VC-HSF.

Budget Q1

Budget Q2

τ1

τ2

Server 1

Server 2

Migration
 +
preepmtion

Budget Q1

Budget Q2

τ1

τ2

Server 1

Server 2

(a) (b)

Figure 4.1: Intra-cluster scheduling problem with no task-to-server mapping (a) unnecessary
migration (b) better choice by the scheduler

Both of the above mentioned problems require additional optimization of the original VC
framework. To simplify our initial implementation we adhere to the assumption in option 1 and
allow intra-cluster scheduler to run a ready task in any of the available server of its cluster.

The VC-HSF framework needs one intra-cluster (local) scheduler per cluster instead of one
local scheduler per server of the hierarchical scheduling. All the servers in a single cluster share
task queues of that cluster and the inter-cluster scheduler works in the following way:

1. It is invoked by the inter-cluster scheduler whenever one of its server either receives or
expires its server budget or gets preempted by the other servers. It is also invoked when a
new task job of the cluster becomes ready or completes its execution.

2. If n servers are available at a scheduling point, it picks n most suitable (such as highest
priority ones in priority based scheduling) tasks to execute on them.

3. It inserts or removes the task job into the runqueues of the assigned processor via the
ExSched core module functions.

4. It migrates its task to a new processor whenever server running that task is migrated by
the inter-cluster scheduler.

In the ExSched framework, schedulers are implemented by scheduler plug-in functions that
are fired when a scheduling event relevant to that function occurs. The ExSched framework
manages real-time task execution by the core module which uses Linux queues to keep all the
task structures. However, our VC-HSF framework needs cluster wise task queues and requires its
manipulation only by our defined plug-in functions. In addition, we implement our schedulers as
task, server and cluster level handler functions similar to other plug-in development of ExSched.
Unlike the other multi-core scheduling plug-ins of ExSched which uses core-wise kernel threads,

33

4.2. DESIGN ISSUES CHAPTER 4. DESIGN

all components of our inter-cluster and intra-cluster scheduler is placed in a single CPU which
also contains all the global data structures. This approach is taken to simplify the scheduler
development and synchronization between different scheduler handlers.

For the simplicity of the implementation, we use Fixed Priority (FP) scheduling in both
inter-cluster and intra-cluster scheduling. As a consequence, we assign static fixed priority to
our clusters and tasks. Server of a cluster inherits priority of its cluster.

4.2.5 Time Management - Issue 5
The ExSched framework supports event-based scheduler development. In case of Linux, time
granularity used for this event-based scheduling is the global variable jiffies. Our implemen-
tation also uses jiffies as the granularity of time. Default jiffies frequency is 100 Hz and
250 Hz (recent versions), which gives tick value of 10 ms and 4 ms respectively. However, we
recompiled our implementation kernel with 1000 Hz jiffies frequency and get tick value of 1
ms. Although jiffies is a global variable of the operating system valid for all CPUs running
under it, individual CPUs may not be in finer resolution synchronized in time. In our experience,
the effect of this timing difference is not visible upto 1 ms tick level. As a result, we are not
using any special procedure to synchronize time in all processors, rather relying on the global
jiffies to determine time events.

As we have mentioned in the previous section, ExSched scheduler development requires
implementation of a number of plug-in functions to handle the scheduling events. Timing events
are handled by timer interrupts which calls the handler function when the timer expires. The
Linux kernel provides timerlist timers to defined interrupts generated by timing events. We
summarize the timing events in the VC-HSF framework as in Table 4.1:

Table 4.1: Timing events in VC-HSF

Event Scheduler invoked Type
Cluster budget released Inter-cluster Global

Server budget expired Inter-cluster Per server

Task job released Intra-cluster Per task

As all task related timing events are handled by the ExSched core, we only need to handle
two types of timing events; events of cluster budget release and server budget expiration. To
simplify our design we use only two types of timers. We use one global timer for managing
cluster release and one timer per server to manage its budget expiration. The global timer called
event_timer is used only for cluster release events. We handle simultaneous release of the
clusters in our cluster release handler. However the timers used by the servers and ExSched can
expire at the same time as the event_timer. We need to handle such events by synchronizing
handler functions used by the timers.

4.2.6 Data Structures - Issue 6
In the VC-HSF framework, we have three types of entities, namely task, server and cluster. As a
result, we need atleast three different types of descriptors to keep all the relevant information

34

4.2. DESIGN ISSUES CHAPTER 4. DESIGN

about these entities. In addition, to manage the running status of the processors in our system
we need additional data structure which should contain whether a server of a cluster is currently
running on that CPU.

For scheduling, the scheduler needs to enqueue and dequeue the descriptors of clusters,
servers and tasks into some queues. In the cluster level, all clusters waiting to be released should
be placed in a release queue which is sorted based on absolute time of their release. When a
cluster is released but not able to run, the scheduler should to keep it in a cluster ready queue
where descriptors are sorted based on the inter-cluster scheduling policy. In case of servers, we
use release of a cluster as release of all its servers. The advantage of this approach is that we
do not need additional mechanism for releasing servers. However, all the servers of an active
cluster may not have processors available to run. These servers which are ready to run are kept
in a global server ready queue, sorted based on their priority. As the servers inherit the priority
of their cluster, a server of higher priority cluster will be always in front of a server of lower
priority cluster in the queue. In our implementation, we rely on a modified release mechanism
of ExSched for releasing task jobs. In that case, we do not require any release queue for the
tasks. However, the released task jobs should be enqueued in a task queue of its cluster. This
queue is similar to the ready queues of clusters and servers, but sorted based on the task priority.
Single queue for all released job per cluster ensures that tasks of same cluster only compete
between each other to use the cluster budget.

As we see the scheduling mechanism requires a large number of queue operations, the
efficiency of the scheduler largely depends on how we implement the queues for them. Following
original Linux task runqueue implementation and its successful use in the HSF implementation
[9], we use bitmap queues in all of our queue implementation. A bitmap queue consists of
a bitmap which is an integer variable and indexed array of linked lists (see Figure4.2). Each
bit of the bitmap represents an index of the array of linked lists which may represent different
priorities. A set bit means the corresponding linked list is not empty, a zero bit represents there
is no descriptors in the list indexed by the bit number. The advantage of using this queue is that,
the queue lookups are very fast using bitwise operations of C such as Find First Set Bit (FFS) or
Find Last Set Bit (FLS). Only limitation of this kind of queue is that size of the bitmap should
be power of two, which also depends on size of the variable used for representing the bitmap.
For example, if we use simple integer, number of priority levels will be 32. In case we want
to implement a release queue based on time, this imposes requirement of handling wrapping
around of bitmap levels. However, due to fast queue operations provided by this type of queues,
we use them in all of our queue implementation.

4.2.7 Migration of Tasks - Issue 7
In ExSched, migration of tasks is performed in two ways. The first way is to simply configuring
the cpu_mask of the Linux task and then calling the set_cpus_allowed_ptr. However, this
migration procedure calls the Linux schedule() function which is not allowed to be called from
an interrupt handler. This is only allowed for fully preemptible kernel with CONFIG_PREEMPT
option enabled. So, to use task migration from interrupt handlers, ExSched uses migration
threads. A migration thread is a kernel thread with highest priority which can migrate tasks
when the scheduler interrupt handler finishes its execution. Implementation of migration
thread depends on how global scheduling is implemented using ExSched. To simplify our
implementation, we are using the first method of preemptible kernel. We compiled our working

35

4.2. DESIGN ISSUES CHAPTER 4. DESIGN

0 1 1 0 1 0

Linked list of descriptors

Index array of nodes

bitmap

Set bit (0)

Set bit (1)

FFS() Find first set bit

FLS() Find last set bit

Figure 4.2: Structure of a bitmap queue

kernel with CONFIG_PREEMPT option which allows calling schedule() even from inside of a
interrupt handler. However, with synchronization between interrupt handlers for global data
structure access in our implementation, schedule() is called always after completion of an
interrupt handler. This is explained in the Section 4.1.8.

4.2.8 Synchronization of Access to Global Data Structures - Issue 8
As we have seen in the previous sections, in VC-HSF most of the queues and other data structures
are global. Different interrupt handlers (cluster, server or task level) should access these data
structures without race conditions. If the access to these global data structures are not protected
with locks then there can be inconsistent states which can result in a crash of the operating
system.

To protect the access to global data structure we use the native Linux spinlocks. The
spinlocks are simplified lock mechanism where the code trying to get a lock which is already
held by some other code will continue busy-waiting in the point of acquiring lock. As our
implementation is in multi-core, we use the recommended version for the SMP lock, which
is the spin_lock_irqsave and spin_unlock_irqrestore. To simplify the implementation,
we use coarse-grained locking, which means we protect the whole code of the function by
taking the spinlock at the beginning of the handler code and releasing at the end. This simple
approach gives protection over all critical and non-critical code inside our interrupt handlers
which accesses global data structures.

As mentioned earlier, we compiled our kernel with CONFIG_PREEMPT to simplify task
migration mechanism. This have an interesting consequence together with the use of spinlocks.
With CONFIG_PREEMPT enabled, the whole kernel code is preemptible which means schedule()
should be called whenever the task migration is done, even from inside of a interrupt handler.
However, when CONFIG_PREEMPT is enabled, spinlocks simply becomes preemption disable and
enable option for the portion of the protected code. As a result, even with CONFIG_PREEMPT

36

4.3. DETAIL DESIGN CHAPTER 4. DESIGN

enabled, schedule() can be only called when our interrupt handler releases the spinlock.

4.3 Detail Design
Following the discussions presented in the previous sections, now we will explain our design in
details.

4.3.1 Extension of ExSched
In original ExSched, tasks are completely managed by the core module and there is no support
for clusters. We removed these limitations by following extensions:

1. We extended the original resch_task_t data structure (task structure of ExSched) with a
field donating cluster_id of the task.

2. To assign an ExSched task to a cluster, we added an API function called api_set_cluster.

3. We introduced a new macro RESCH_VCHSF in ExSched core. When this macro is defined,
it will disable all default code portions of ExSched which handles task queuing and
execution by the core.

4.3.2 Task Execution
For running a VC-HSF task using ExSched, we utilize three plug-in function calls defined by:

• VC-HSF task run plug-in function is called from the api_run function call of the real-time
task.

• ExSched job release function should forward all responsibility of a newly released job to
VC-HSF job release plug-in function.

• When a job is finished by calling api_wait_for_next_period(), the VC-HSF job
complete plug-in function should handle the completed job.

Figure 4.3 shows how a VC-HSF task executes using the ExSched framework.

4.3.3 Descriptors
There are three main types of descriptors required in the VC-HSF scheduling framework. These
are task descriptor, server descriptor and cluster descriptor.

Task descriptor: The original task descriptor of ExSched framework defined by the structure
resch_task_t is designed with real-time tasks in mind. It has all the necessary properties
related to a general task (such as id, pid, state, timer, etc.) with additional properties for defining
a real-time task (such as priority, period, relative deadline, execution time, etc.). It also includes
processor specific information via cpu_mask and cpu_id fields. However, this default task
descriptor does not capture task migration and cluster related information. To support these we
need a new task descriptor called vctask_t on top of default resch_task_t.

In our design, we intend to keep the new vctask_t data structure as light-weight as possible.
We need only three fields in vctask_t:

37

4.3. DETAIL DESIGN CHAPTER 4. DESIGN

Start of ExSched

realtime task

 Set tasks period,

priority and cluster

api_run() ExSched task run

VC-HSF task run

plugin

Initialize VC-HSF

task

ExSched job

release

VC-HSF job

release plugin

Job queued in

cluster task queue

Job executes

api_wait for next

period()

ExSched Job

complete

VC-HSF job

complete plugin

Wait for next

period or go to

release

Figure 4.3: Execution of real-time task in VC-HSF

• resch_task_t rt: This is a pointer to the resch_task_t of the ExSched task.

• priority: This field represents the priority of the ExSched task and used in task queues.

• vctask_t next: The next pointer to be used in the task queues.

Server descriptor: Each of the servers in a cluster has its own server descriptor defined by
the structure vc_server_t. vc_server_t has the following important fields:

• vc_server_id: This is the identifier for denoting a server.

• vc_server_cpu: This indicates the cpu_id of the processor where the server is running.
The inter-cluster scheduler uses this to assign the server to processor.

38

4.3. DETAIL DESIGN CHAPTER 4. DESIGN

• vc_server_period: This is the period of the server denoted by Π parameter of the MPR
interface.

• vc_server_priority: This is the priority of the server used in inter-cluster scheduling.
In our case, we assign a server to priority of its cluster.

• vc_budget_expiration_time: The time when the budget of the server should expire.

• vc_server_budget: This field denotes the total server budget assigned to this server.

• vc_server_remain_budget: This field is used to denote the remaining budget of a server
when it gets preempted.

• vc_mycluster: This is a pointer to the cluster descriptor in which this server belongs to.
Intra-cluster scheduling can use this field to access task queues of the cluster and thus run
a task using this server.

• server_budget_timer: This is a timer that is used to detect the budget expiration when
the server is running.

• active_task: This is a pointer to the task structure of the currently running task using
the budget of this server.

• running: A flag value to indicate whether the server is running or not.

• timestamp: This field is the timestamp that is used in case of server preempetion to
calculate the remaining budget of the server.

• next: A pointer to the next element in the queue.

Cluster descriptor: Each of the clusters in the system has a cluster descriptor defined by
the structure vc_cluster_t. vc_server_t has following fields:

• vc_cluster_id: This is the unique identifier for denoting a cluster.

• vc_cluster_state: This field indicates the state of the cluster. A cluster can have one
of these three states: (1) CLUSTER_READY: means the cluster is released but none of its
server is released. In this case, the cluster is waiting in a queue, (2) CLUSTER_ACTIVE:
means the cluster is released and at least one of its servers has executed its budget and
(3)CLUSTER_EXPIRED: means the cluster expired its budget in the current period and
should not run any more servers.

• vc_ncpus: This indicates the maximum number of CPUs that are allowed to execute
concurrently for this cluster, which is the m parameter of the MPR interface. This number
also indicates the number of periodic servers used by the cluster.

• vc_period: This is the period of the virtual cluster denoted by Π parameter of the MPR
interface.

• vc_cluster_budget: This field denotes the total execution requirement of all the tasks
in the cluster equivalent to Θ parameter of the MPR interface.

39

4.3. DETAIL DESIGN CHAPTER 4. DESIGN

• vc_cluster_remain_budget: This field is used to keep track of the remaining budget
of the cluster, which is used to assign budget to the server of the cluster.

• nr_active_servers: This fields denotes how many servers of this cluster are running.

• nr_ready_servers: This fields denotes how many servers of this cluster are ready,
waiting to execute their budget.

• SERVERS: This is an array of vc_server_ts of the servers that belong to this cluster.

• READY_TASKS: This is the task priority queue of the cluster.

CPU status descriptor: To keep information about the state of the processors running the
server and the tasks, we use a data structure called cpu_resource_struct. This data structure
has the following fields:

• cpu_busy: This field has two states, CPU_IDLE will indicate no server is running in this
CPU. On the other hand, CPU_BUSY will show the there is a server running in it.

• active_server: This is the pointer to the vc_server_t of the actively running server
on this CPU. In case of CPU_IDLE, this should be NULL.

• active_cluster_priority: The priority of the cluster whose server is running in this
CPU.

Figure 4.4 shows how different main descriptors of VC-HSF are interconnected with each
other.

4.3.4 Queues
In our VC-HSF there are three different types of descriptors that require queuing mechanism
(for clusters, servers and tasks). We will now explain how we designed these queues and how
they work.

Firstly, as explained in the previous section, each of the clusters has their own cluster_t
descriptor with priority, period and budget. Clusters are released with a new budget when their
period expires and this is done using a release queue. However, it is possible that a cluster is
released but none of the processors is available for it to run. In that case, we use another queue
of cluster_t called cluster ready queue. In case, when a processor is available for that cluster to
run it is removed from the cluster ready queue. These queues are implemented as following:

• CLUSTER_RELEASE_QUEUE: This queue is implemented as a bitmap queue as used by
the original Linux. However, as it is a release queue we need to sort queue elements based
on increasing order of time. Each index of the linked list array of this queue represents a
single time unit, which in our case is a single jiffies or 1 ms. The queue is initialized
with a bitmap size larger than the largest possible period defined for any cluster in the
system. The queue implementation also needs to handle wrapping up of time values in
bitmap. To handle the wrap up, we use two bitmaps. Whenever a bitmap wraps up we
continue inserting the values to the second one. However to determine the exact position
of a wrapped up index we need to use a variable called virtual time which is initialized

40

4.3. DETAIL DESIGN CHAPTER 4. DESIGN

resch_task_t
Linux

task_struct

vctask_t vc_cluster_t

vc_server_t

contains

contains

via cluster id of resch task

active task

via mycluster pointer

in server list of cluster

Figure 4.4: Overview of main descriptors in VC-HSF

when the release queue is initialized. This virtual time is modified whenever there is a
release event and it is advanced to the next release event. Figure 4.5 shows with a simple
example how the wrapping up of time value in bitmap release queue can be handled using
virtual time. Any look up into the queue can be done in constant time because it is
equivalent to finding the index of the lowest set bit using bitmap operation. The only
limitation of this implementation is that size of the bitmap queue should be power of two.
This queue is defined as type relpq.

• CLUSTER_READY_QUEUE: The ready queue is implemented as a bitmap queue, sorted
on the priority values of the clusters that are ready. It is simpler than the release queue as
there is no need to handle time. This queue is defined as type pq.

Secondly, servers of the clusters that are ready to run need a queue. For this reason we used a
global ready queue for all the servers from all active servers. One thing to note here, by an active
cluster we mean a cluster which already is able to run at least one of its server in its current
period. This queue is:

• SERVER_READY_QUEUE: This ready queue is implemented as a bitmap queue same
as the cluster ready queue. The only major difference is that the queue elements in it are
all server descriptors. This queue is defined as type spq.

41

4.3. DETAIL DESIGN CHAPTER 4. DESIGN

1 2 3 1 2 3

Virtual time = 5

Bitmap 1 Bitmap 2Wrap around

Index on wrap around = - (bitmap size – virtual time) = -(3-5) = 2

Figure 4.5: Wrapup handling in release queue using virtual time

Finally, each of the clusters requires a queue for all the released but not running task jobs.
This cluster specific queue is a part of the cluster_t descriptor. We define it as:

• READY_TASKS: This task ready queue is also a bitmap queue with vctask_t descriptors
as elements. The queue is sorted based on task priority and defined as type tpq.

4.3.5 Scheduler Plug-in Functions
As described in the Section 4.3.2, VC-HSF needs to implement plug-in functions for job release
and job complete. These two plug-in functions are called from the ExSched job release and job
complete handlers.

Job Release Handler

The job release handler of VC-HSF tries to run the job when it is released. In case it is
not successful, the job is enqueued into the task queue of the jobs cluster. Figure 4.6 shows
operations of the VC-HSF job release handler.

Job Complete Handler

The job complete handler of VC-HSF simply tries to run a pending job of the same cluster when
a job is finished. Figure 4.7 shows operations of the VC-HSF job complete handler.

42

4.3. DETAIL DESIGN CHAPTER 4. DESIGN

Start job release

handler

Acquire global

spin lock

Check own

cluster state

Cluster has

running server

Try to run task in running servers

Enqueue task into

cluster task queue

Release global

spin lock

End job release

handler

Cluster not active

Cluster active

Yes

No

Successful

Unsuccessful

Figure 4.6: Operations of VC-HSF job release handler function

43

4.3. DETAIL DESIGN CHAPTER 4. DESIGN

Start job complete

handler

Acquire global

spin lock

Put the task of the

completed job into

sleep

dequeue ready task

from cluster task queue

Migrate and run

task

Update active task

of the server

End job complete

handler

No ready tasks

Task retrieved

Release global

spin lock

Figure 4.7: Operations of VC-HSF job complete handler function

44

4.3. DETAIL DESIGN CHAPTER 4. DESIGN

4.3.6 Scheduler Interrupt Handlers
Cluster Release Handler

This interrupt handler is independent of ExSched. Its execution is divided into two main cases.
In the first run, all clusters are ready to run, so no cluster needs to be released. In that case, this
handler will launch clusters according their priority and available processors. The second or
more general case requires release of either one or multiple cluster in a time instant. However,
same as the first run it will try to run as more number of released clusters as possible. In the
worst case, all released cluster at the release time will be able to run simultaneously. At the
end, the handler needs to update the global event_timer to the nearest possible next release
event. Different parts of the operations of the VC-HSF cluster release handler is shown in the
Figures 4.8, 4.9, 4.10 and 4.11.

Server Complete Handler

This interrupt handler is called when the budget of a server expires. If the budget expired server
has a running task, this task will try to migrate that task to another server of the same cluster
which is running a lower priority task. If it is not successful than the running task of the expired
server is enqueued back to task queue of the cluster. If the expiration of the budget causes all
the budget of the servers cluster in the current period to expire, then this handler should call the
cluster complete handler. Additionally when a server completes, this handler will first try to run
the highest priority ready server in the idle cpu. If there is no such ready server, then the handler
will try to launch ready clusters and their servers. Figure 4.12 shows operations of this server
complete handler in more detail.

4.3.7 Major Non-Interrupt Functions
There are some important functions in VC-HSF which are not interrupt handler. These are:

1. Cluster complete handler: This function is called when the budget of a cluster expires. As
this event can only happen when the budget of the last running server of the cluster expires,
cluster complete handler is always called from a server complete handler. Figure 4.13
shows the operations of the VC-HSF cluster complete handler.

2. Try to run server: This function is always called when any of the interrupt handler tries to
run a server. Figure 4.14 shows the operations of the try to run server function of VC-HSF.

3. Run server: This function is called from the try to run server to run a server in an idle
processor. Figure 4.15 shows the operations of the run server function of VC-HSF.

4. Preempt server: This function is called from the try to run server when a running server
needs to be preempted. Figure 4.16 shows the operations of the preempt server function
of VC-HSF.

5. Try to run task: This function is called when the scheduler wants to run a VC-HSF task.
Figure 4.17 shows the operations of the try to run task function of VC-HSF.

45

4.3. DETAIL DESIGN CHAPTER 4. DESIGN

4.3.8 Miscellaneous Functions and Global Variables
There are few more important functions that are used frequently by all the functions presented
above. These are:

• migrate_vchsf_task: This function migrates a task to a new cpu. It has three steps;
first its clears the cpu_mask of the task, then set the bit of destination cpu on it and finally
call the set_cpus_allowed_ptr function.

• update_lowest_cluster_prio: This function updates global variable lowest_active
_cluster_priortiy by doing a linear search on the list of all cluster descriptors. This
global variable is updated only inside handlers and the update function is called in the
handlers when either a cluster is launched or complete.

There are two other important global variables which are updated carefully and used by the
handlers as:

• idle_cpus: The number of cpus currently which are not running any server.

• lowest_active_cluster_priortiy: This value is useful when the server of a cluster
tries to preemept another lower priority server to run in its cpu. To update it, scheduler has
to do a linear search in the array of vc_cluster_ts to find out the lowest active priority
one.

46

4.3. DETAIL DESIGN CHAPTER 4. DESIGN

Start of the

handler

Acquire spinlock

1. Replenish budget of the cluster

 2. Enqueue cluster ready to launch

 3. Remove timer

First launch?

Special case 1:

Clusters launched

for the first time

Multiple

release?

More release?

Enqueue all

released for their

next release

Update highest

priority released

cluster

1. Release cluster

 2. Replenish budget of the cluster

 3. Enqueue cluster ready to launch

Handler code for

running the cluster

Yes

No

No

Yes

Yes

No

Figure 4.8: Cluster release handler beginning operations

47

4.3. DETAIL DESIGN CHAPTER 4. DESIGN

Handler code for

running the cluster

More idle cpus?

Released cluster prio >

lowest priority of cluster with server

running

Try to run server

More server?

Enqueue server to

global server

ready queue

Multiple release

happened?

 Peek priority of

highest priority

cluster

Released cluster prio >

lowest priority of cluster with server

running

Try to run server

More server?

Enqueue server to

global server

ready queue

More idle cpus?

Update and go to

the next release

configuration of

handler

NoNo

No

No

No
No

No

YesYes

Yes

Yes

Yes
Yes

Yes

Unsuccessful

Successful

Successful

Unsuccessful

Figure 4.9: Cluster release main operations

48

4.3. DETAIL DESIGN CHAPTER 4. DESIGN

Clusters launched

for the first time

Assign server

budget to all

servers of the

released cluster

Try to run server

More servers?

Enqueue server to

global server

ready queue

 More idle cpus?

Check ready

clusters?

Assign server

budget to all

servers of the

released cluster

Try to run server

More servers?

Enqueue server to

global server

ready queue

Update and go to

the next release

configuration of

handler

Yes

Yes

Yes

No

None

Available

Successful

Unsuccessful

No

Unsuccessful

Successful

Figure 4.10: Cluster release handler first run operations

49

4.3. DETAIL DESIGN CHAPTER 4. DESIGN

Configuration of

next release of the

handler

Setup global event

timer for next

release of the

cluster

Release spin lock

held by the

handler

Handler

terminates

Figure 4.11: Cluster release handler end operations

50

4.3. DETAIL DESIGN CHAPTER 4. DESIGN

Start server

complete handler

Acquire global

spin lock

Update completed

server and its

cluster info

Server has

running task

Cluster has more

active servers

Try to run

task

Put the task into

sleep and

enqueue it into

cluster ready

queue

Cluster is

complete

Call cluster

complete handler

More idle

cpus

Try to run a

ready server

More idle

cpus

Try to run server

More server?

Enqueue server to

global server

ready queue

Yes

Unsuccessful

Successful

Retrieve a ready cluster

Release global spin lock

End server

complete handler

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

Successful

Unsuccessful

Figure 4.12: Server complete handler operations

51

4.3. DETAIL DESIGN CHAPTER 4. DESIGN

Start of the cluster

complete handler

Update cluster

state, server and

budget infos

Cluster complete

 on preemption?

 More idle cpus?

Try to run a

 ready server

 More idle cpus?

Retrieve a ready

cluster

Try to run server

More server?

Enqueue server to

global server

ready queue

Yes

Successful

Unsuccessful

Handler

terminates

Successful

Unsuccessful

No

Yes

No

Yes

No

Figure 4.13: Cluster complete handler operations

52

4.3. DETAIL DESIGN CHAPTER 4. DESIGN

Start preempt

server

Update preempted

server and its

cluster status

Preempted server

has running

task?

Preempted cluster

 has other running

 server?

Try to run

preempted task in

other server

Preempted

server finishes

budget?

Enqueue

preempted server

into server ready

queue

Run preempter

server

End of preempt

server

 Enqueue

preempted task

into cluster task

queue

Yes

No

No

Yes

Successful

Yes

No

Unsuccessful

Figure 4.14: Try to run server operations

53

4.3. DETAIL DESIGN CHAPTER 4. DESIGN

Start run server

Update status of

running server

Retrieve ready

task from cluster

 task queue

Migrate and run

the task in the

server

Update server

budget timer

End of run server

No tasks ready

Task retrieved

Figure 4.15: Run server operations

54

4.3. DETAIL DESIGN CHAPTER 4. DESIGN

Start try to run

server

More idle cpus?

Fetch the idle cpu

with lowest cpu id

Run server in the

idle cpu

Check status of all

the cpu to find

lowest priority

server running

Server priority >

lowest priority

Preempt server

End of try to run

server

No

Yes

No

Yes

Figure 4.16: Preempt server operations

55

4.3. DETAIL DESIGN CHAPTER 4. DESIGN

Start try to run

task

Check status of a server

of the tasks cluster
Server is idle

Migrate and run

the task in server

 update lowest

running task

priority

More servers?

Task priority > lowest running

task priority

 Enqueue

preempted task in

cluster task queue

End try to run task

Yes

Yes

No

No

No

Yes

Figure 4.17: Try to run task operations

56

Chapter 5

Results

In this chapter we present results of the experiments using our implementation of VC-HSF.

5.1 Experimental Setup
We ran our code in a Intel Core2 Duo E6700 (2.66 GHz) machine which has 2 cpus. Our base
kernel version is Linux 2.6.32 recompiled with CONFIG_PREMEPT enabled and jiffies set to 1
ms. The kernel was tested using Ubuntu 10.04.

Using this setup, we have tested our code for configurations like 1-4 clusters, 1-8 servers
and upto 12 real-time tasks. Various configurations of cluster periods and budgets are used to
observe the effect of scheduling events like server preemption, task and server migration, etc. In
all of our experiments clusters are synchronized at the beginning, which means for the first run
they are released together. Real-time tasks are released before the first cluster release in some
tests, in other tests tasks are configured to release after the cluster is released.

5.2 Sample Run
Now we will present a sample run of our VC-HSF. This run is done for 300 jiffies (ms), by
4 real-times tasks in 4 servers of 2 clusters each sharing 2 cpus. Cluster 0 with period 12 and
budget 10 has two servers with budget 6 and 4. On the other hand, cluster 1 with period 32
and budget 20 has servers with budget 11 and 9. We assigned cluster 0 higher priority than the
cluster 1. Then we assign three real-time tasks rttask1 (36, 1, 36), rttask2 (40, 1, 40), rttask3 (36,
1, 36) to cluster 0 and rttask4 (36, 1, 36) to cluster 1. We assigned task priorities in cluster 0
as follows: priority (rttaks1) > priority (rttaks2) > priority (rttaks3). Using printk function all
scheduling events are printed in dmesg. Printed timestamp values are in jiffies, from which
we construct the Figure 5.1. As jiffies values are too large we only presented the last three
digits as time in the figure.

Some of the interesting events in the sample run are noted in the Figure 5.1. At e1, a server
is migrated from one cpu to another. At e2, a task gets preeempted due to budget expiration of
its server. Tasks also migrates to a different processor in time e3 and e4.

57

5.2. SAMPLE RUN CHAPTER 5. RESULTS

1
0

2
0

S
0

0

S
1

0

S
0

1S
1

1

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

2
0

2
0

2
0

2
0

S
0

0
S

0
0

S
0

0
S

0
0

S
1

0
S

1
0

S
1

0
S

1
0

S 0
1

S 1
1

S
0

1

S
1

1
S

0
1S
1

1

S
0

0

S
1

0

S
0

1S
1

1

S
1

0S
0

0

S 1
1

S 0
1

S
0

0
S

0
0

S
0

0
S

0
0

S
0

0
S

0
0

S
1

0
S

1
0

S
1

0
S

1
0

S
1

0
S

1
0

S
0

1S
1

1

S 1
1

S 0
1

S
0

1

S
1

1
S

0
1S

1
1

C
lu

s
te

r
0

B
u

d
g

e
t

C
lu

s
te

r
1

B
u

d
g

e
t

C
P

U
 0

S
e

rv
e

rs

C
P

U
 1

S
e

rv
e

rs

R
e

le
a

s
e

rt
ta

s
k
1

R
e

le
a

s
e

rt
ta

s
k
3

R
e

le
a

s
e

rt
ta

s
k
2

R
e

le
a

s
e

rt
ta

s
k
4

C
P

U
0

C
P

U
1

6
0

8
4

7
2

9
6

1
0

8
1

2
0

1
3

2
1

4
4

1
5

6
1

6
8

1
8

0
1

9
2

2
0

4

9
2

1
2

4
1

5
6

1
6

8

S
e

rv
e

r
0

 –
 C

lu
s
te

r
0

S
e

rv
e

r
1

 –
 C

lu
s
te

r
0

S
e

rv
e

r
0

 –
 C

lu
s
te

r
1

S
e

rv
e

r
1

 –
 C

lu
s
te

r
1

rt
ta

s
k
1

 –
 C

lu
s
te

r
0

rt
ta

s
k
2

 –
 C

lu
s
te

r
0

rt
ta

s
k
3

 –
 C

lu
s
te

r
0

rt
ta

s
k
4

 –
 C

lu
s
te

r
0

e
1

e
2

e
3

e
4

Fi
gu

re
5.

1:
Sa

m
pl

e
ru

n

58

5.3. OVERHEAD MEASUREMENT CHAPTER 5. RESULTS

5.3 Overhead Measurement
To measure the overhead of our VC-HSF scheduler we used coarse-grained overhead measu-
rement. All of the functions that are not interrupt handlers are called and used from the four
interrupt handlers of the scheduler (job release, job complete, cluster release, server complete).
For this reason, we only measure execution time of these handlers, by timestamping the begin-
ning and the end of their code. For timestamping we used the Linux function getnstimeofday
which returns current time of the system with nano second level precision. We call this function
just after taking global spinlock in the interrupt handler, and again call it before releasing that
lock. The execution time of handler is then added to our total_overhead global variable. As a
result, our measured total scheduler overhead in the whole run = overhead in job release handler
+ overhead in job complete handler + overhead in cluster release handler + overhead in server
complete handler.

We ran two configurations of clusters with increasing number of tasks. These are:

• Configuration 1: In it, we used two clusters each having 2 processors. The highest priority
cluster 0 had period 16 and budget 10, while the lowest priority cluster had period 32 and
budget 20. As the cluster periods are harmonic, this configuration will cause very few
cluster preemptions.

• Configuration 2: This configuration also used two clusters each having 2 processors.
However, the highest priority cluster 0 had period 12 and budget 10, while the lowest
priority cluster had period 32 and budget 20. This is different from the first configuration
as the non-harmonic periods of the clusters cause a number of cluster level preemptions.
This can be observed in the Figure 5.1, as we used the same cluster configuration in the
sample run.

We ran both of these configurations with different number of tasks for 300 jiffies or 300
miliseconds and recorded total overhead as presented in the Table 5.1.

Table 5.1: Overhead Measurement in VC-HSF

Nr of tasks Overhead (micro secs) configuration 1 Overhead (micro secs) configuration 2

2 1397.688 1931.848

3 1521.282 2132.633

4 1611.385 2200.346

5 1707.786 2210.893

6 1786.936 2337.634

7 1891.206 2421.915

8 2034.977 2547.566

9 2059.054 2606.388

10 2193.275 2696.545

59

5.3. OVERHEAD MEASUREMENT CHAPTER 5. RESULTS

From this coarse-grained overhead measurement, we have three simple observations:

• Preemption in the cluster level, which means the server of one cluster preempts the server
of another cluster can be costly in terms of overhead. This is evident from the data we
have, where only major difference between the configurations is that the second one
will have more cluster level preemptions than the first one. Preemption of a cluster, can
cause frequent migration of servers and tasks which may not be desirable for real-life
applications.

• We used coarse-grained locking to protect the shared data structures. As shared data
structures are accessed by the interrupt handlers in a fully preemptible manner, waiting
for locks can be long if it is used by a complex interrupt handler.

• Increasing number of tasks does not effect scheduler overhead heavily. However, frequent
task migration may effect hidden undesirable situation like "Cache thrashing".

60

Chapter 6

Conclusion

6.1 Summary
In this thesis we have presented design and implementation of a Virtual-Clustered Hierarchical
Scheduling Framework (VC-HSF) in Linux.

We concluded that, it is possible to implement a Virtual-Clustered real-time multiprocessor
scheduling algorithm in Linux without modifying the base kernel. Currently, we found no
other real-time multiprocessor scheduler implementation that completely resembles scheduling
operations of our scheduler. We consider our implementation not optimal in this stage as we
have taken many design decisions to simplify our work. However, we know the areas where we
could improve our work which will be useful for any future extension.

Our implementation can be useful in verifying extensive theoretical research done in compo-
sitional hierarchical multiprocessor scheduling [25] [35] [41] [50]. Potential application of this
research is the virtualization of processor resource in real-time embedded system. We hope that
our work will be helpful as a proof of concept in ongoing theoretical research in this area and
will help researchers to improve their findings.

6.2 Future Work
As this is the first attempt to implement any Virtual-Clustered multiprocessor algorithm, we took
many design decisions to simplify our implementation. We present some of the alternatives for
these decisions as future work here:

• Although we have used ExSched scheduling framework in this implementation, very few
of its functionalities are used. So, we believe a completely independent module based
scheduler implementation for VC-HSF will be more flexible and efficient than our current
implementation.

• We used simple task migration mechanism which requires enabling CONFIG_PREEMPT
option. However, we can investigate more efficient task migration mechanism utilizing
default Linux task migrations which may require kernel modification.

• In our code, we have used coarse-grained locking in protecting our interrupt handler
to achieve synchronization. However, fine-grained locking can be used to protect only

61

6.2. FUTURE WORK CHAPTER 6. CONCLUSION

statements that access shared resources. We expect this can reduce overhead of our
implementation.

• We measured coarse-grained overhead of our system. However, fine-grained overhead
can be measured which includes overheads of context switch, task migration and cache
related costs. We left extensive testing of our implementation to larger multiprocessor
platform with more than 2 processors as future work of this thesis.

• We can use more complex data structures like heap or binary trees in the parts of our
implementation where we required searching. However, this complex optimizations are
left for future extension.

• Finally, we can extend our implementation of Fixed Priority Scheduling to any other
Dynamic Priority scheduling algorithm for both inter-cluster and intra-cluster scheduling.

62

References

[1] Cgroups. Documentation/cgroups/cgroups.txt.

[2] Linux kernel documentation. https://www.kernel.org/doc/Documentation/.

[3] Real-time group scheduling. Documentation/scheduler/sched-rt-group.txt.

[4] J. H. Anderson and A. Srinivasan. Mixed pfair/erfair scheduling of asynchronous periodic
tasks. In Real-Time Systems, 13th Euromicro Conference on, 2001., pages 76–85.

[5] J. H. Anderson and A. Srinivasan. Pfair scheduling: beyond periodic task systems. In
Real-Time Computing Systems and Applications, 2000. Proceedings. Seventh International
Conference on, pages 297–306.

[6] B. Andersson, S. Baruah, and J. Jonsson. Static-priority scheduling on multiprocessors.
Real-Time Systems Symposium, 2001. (RTSS 2001). Proceedings. 22nd IEEE, pages 193–
202, March.

[7] B. Andersson and E. Tovar. Multiprocessor scheduling with few preemptions. Embedded
and Real-Time Computing Systems and Applications, 2006. Proceedings. 12th IEEE
International Conference on, pages 322–334, 2006.

[8] M. Asberg, T. Nolte, and S. Kato. Towards hierarchical scheduling in linux/multi-core plat-
form. In Emerging Technologies and Factory Automation (ETFA), 2010 IEEE Conference
on, pages 1–4, 2010.

[9] M. Asberg, T. Nolte, S. Kato, and R. Rajkumar. Exsched: An external cpu scheduler
framework for real-time systems. In Embedded and Real-Time Computing Systems and
Applications (RTCSA), 2012 IEEE 18th International Conference on, pages 240–249,
2012.

[10] T. P. Baker. What to make of multicore processors for reliable real-time systems? In Procee-
dings of the 15th Ada-Europe international conference on Reliable Software Technologies,
Ada-Europe’10, pages 1–18. Springer-Verlag, 2010.

[11] T. P. Baker and S. K. Baruah. Schedulability analysis of multiprocessor sporadic task
systems. In Handbook of Realtime and Embedded Systems. CRC Press, 2007.

[12] S. Baruah. Optimal utilization bounds for the fixed-priority scheduling of periodic task
systems on identical multiprocessors. Computers, IEEE Transactions on, 53(6):781–784,
2004.

63

REFERENCES REFERENCES

[13] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel. Proportionate progress: a
notion of fairness in resource allocation. In Proceedings of the twenty-fifth annual ACM
symposium on Theory of computing, STOC ’93, pages 345–354, New York, NY, USA,
1993. ACM.

[14] A. Bastoni, B. B. Brandenburg, and J. H. Anderson. An empirical comparison of global,
partitioned, and clustered multiprocessor edf schedulers. In Proceedings of the 2010 31st
IEEE Real-Time Systems Symposium, RTSS ’10, pages 14–24, Washington, DC, USA,
2010. IEEE Computer Society.

[15] K. Bletsas and B. Andersson. Notional processors: An approach for multiprocessor
scheduling. Real-Time and Embedded Technology and Applications Symposium, 2009.
RTAS 2009. 15th IEEE, pages 3–12.

[16] J. M. Calandrino, J. H. Anderson, and D. P. Baumberger. A hybrid real-time scheduling
approach for large-scale multicore platforms. Real-Time Systems, 2007. ECRTS ’07. 19th
Euromicro Conference on, pages 247–258, April.

[17] J. M. Calandrino, H. Leontyev, A. Block, U. C. Devi, and J. H. Anderson. Litmus rt: A
testbed for empirically comparing real-time multiprocessor schedulers. In Proceedings of
the 27th IEEE International Real-Time Systems Symposium, RTSS ’06, pages 111–126,
Washington, DC, USA, 2006. IEEE Computer Society.

[18] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Anderson, and S. Baruah. A categori-
zation of real-time multiprocessor scheduling problems and algorithms. In Handbook on
Scheduling Algorithms, Methods and Models. Chapman Hall/CRC, Boca, 2004.

[19] F. Checconi, T. Cucinotta, D Faggioli, and G. Lipari. Hierarchical multiprocessor cpu
reservations for linux kernel. In 5th OSPERT Workshop, July 2009.

[20] H. Cho, B. Ravindran, and E. D. Jensen. An optimal real-time scheduling algorithm
for multiprocessors. In Proceedings of the 27th IEEE International Real-Time Systems
Symposium, RTSS ’06, pages 101–110, Washington, DC, USA, 2006. IEEE Computer
Society.

[21] R. I. Davis and A. Burns. Hierarchical fixed priority pre-emptive scheduling. In 26th IEEE
Real-Time Systems Symposium (RTSS’05), pages 10–398, December 2005.

[22] R. I. Davis and A. Burns. A survey of hard real-time scheduling for multiprocessor systems.
ACM Comput. Surv., 43(4):1–44, 2011.

[23] Z. Deng and J. W. S. Liu. Scheduling real-time applications in an open environment. In
Real-Time Systems Symposium, 1997. Proceedings., The 18th IEEE, pages 308–319, Dec.

[24] S. K. Dhall and C. L. Liu. On a real-time scheduling problem. Operations Research,
26(1):pp. 127–140, 1978.

[25] A. Easwaran, I. Shin, and I. Lee. Optimal virtual cluster-based multiprocessor scheduling.
Real-Time Syst., 43(1):25–59, 2009.

64

REFERENCES REFERENCES

[26] D. Faggioli, M. Trimarchi, F. Checconi, and C. Scordino. An edf scheduling class for the
linux kernel. In Proceedings of the 11th Real-Time Workshop (RTLW), October 2009.

[27] K. Funaoka, S. Kato, and N. Yamasaki. Work-conserving optimal real-time scheduling on
multiprocessors. Real-Time Systems, 2008. ECRTS ’08. Euromicro Conference on, pages
13–22, February.

[28] S. Funk. LRE-TL: an optimal multiprocessor algorithm for sporadic task sets with uncons-
trained deadlines. Real-Time Syst., 46(3):332–359, 2010.

[29] S. Funk, G. Levin, C. Sadowski, I. Pye, and S. Brandt. DP-Fair: a unifying theory for
optimal hard real-time multiprocessor scheduling. Real-Time Syst., 47(5):389–429, 2011.

[30] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., 1979.

[31] J. Goossens, S. Funk, and S. Baruah. Priority-driven scheduling of periodic task systems
on multiprocessors. Real-Time Syst., 25(2-3):187–205, 2003.

[32] P. Holman and J. H. Anderson. Adapting pfair scheduling for symmetric multiprocessors.
J. Embedded Comput., 1(4):543–564, 2005.

[33] S. Kato and N. Yamasaki. Portioned EDF-based scheduling on multiprocessors. In
Proceedings of the 8th ACM international conference on Embedded software, pages 139–
148, Atlanta, GA, USA, 2008. ACM.

[34] S. Kato and N. Yamasaki. Semi-partitioned fixed-priority scheduling on multiprocessors.
In Proceedings of the 2009 15th IEEE Symposium on Real-Time and Embedded Technology
and Applications, RTAS ’09, pages 23–32. IEEE Computer Society, 2009.

[35] N. M. Khalilzad, M. Behnam, and T. Nolte. Exact and approximate supply bound function
for multiprocessor periodic resource model: Unsynchronized servers. In 5th International
Workshop on Compositional Theory and Technology for Real-Time Embedded Systems
(CRTS’12), pages 1–8, December 2012.

[36] K. Lakshmanan, R. Rajkumar, and J. P. Lehoczky. Partitioned fixed-priority preemp-
tive scheduling for multi-core processors. Real-Time Systems, 2009. ECRTS ’09. 21st
Euromicro Conference on, pages 239–248, January.

[37] J. Lee, S. Xi, S. Chen, L. T. X. Phan, C. Gill, I. Lee, C. Lu, and O. Sokolsky. Realizing
compositional scheduling through virtualization. In Proceedings of the 18th IEEE Real
Time and Embedded Technology and Applications Symposium (RTAS’12), pages 13–22,
April 2012.

[38] S. K. Lee. On-line multiprocessor scheduling algorithms for real-time tasks. In TEN-
CON ’94. IEEE Region 10’s Ninth Annual International Conference. Theme: Frontiers of
Computer Technology. Proceedings of 1994, pages 607–611 vol.2, Aug.

[39] J. Lelli, G. Lipari, D. Faggioli, and T. Cucinotta. An efficient and scalable implementation
of global edf in linux. In 7th OSPERT Workshop, July 2011.

65

REFERENCES REFERENCES

[40] G. Levin, S. Funk, C. Sadowski, I. Pye, and S. Brandt. DP-FAIR: a simple model for
understanding optimal multiprocessor scheduling. In Real-Time Systems (ECRTS), 2010
22nd Euromicro Conference on, pages 3–13. IEEE, 2010.

[41] G. Lipari and E. Bini. A framework for hierarchical scheduling on multiprocessors: From
application requirements to run-time allocation. In Real-Time Systems Symposium (RTSS),
2010 IEEE 31st, pages 249–258, 30 2010-Dec. 3.

[42] C. L. Liu. Scheduling Algorithms for Multiprocessors in a Hard Real-Time Environment.
JPL Space Programs Summary 37-60, II:28–31, 1969.

[43] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a hard-real-
time environment. Journal of the ACM, 20(1):46–61, January 1973.

[44] J. M. Lopez, J. L. Diaz, and D. F. Garcia. Utilization bounds for EDF scheduling on
real-time multiprocessor systems. Real-Time Syst., 28(1):39–68, 2004.

[45] R. McNaughton. Scheduling with deadlines and loss functions. Management Science,
6(1):1–12, 1959.

[46] A. K. Mok. Fundamental design problems of distributed systems for the hard-real-time
environment. Technical report, Cambridge, MA, USA, 1983.

[47] A. K. Mok, X. Feng, and C. Deji. Resource partition for real-time systems. In Proceedings
of the 7th Real-Time Technology and Applications Symposium (RTAS ’01), pages 75–84,
May 2001.

[48] C. A. Phillips, C. Stein, E. Torng, and J. Wein. Optimal time-critical scheduling via
resource augmentation (extended abstract). In Proceedings of the twenty-ninth annual
ACM symposium on Theory of computing, pages 140–149. ACM, 1997.

[49] X. Qi, D. Zhu, and H. Aydin. Cluster scheduling for real-time systems: utilization bounds
and run-time overhead. Real-Time Systems, 47:253–284, 2011.

[50] I. Shin, A. Easwaran, and I. Lee. Hierarchical scheduling framework for virtual clustering
of multiprocessors. In Proceedings of the 2008 Euromicro Conference on Real-Time
Systems, pages 181–190. IEEE Computer Society, 2008.

[51] I. Shin and I. Lee. Periodic resource model for compositional real-time guarantees. In
Proceedings of the 24th IEEE Real-Time Systems Symposium, (RTSS ’03), pages 2 – 13,
2003.

[52] A. Srinivasan and S. Baruah. Deadline-based scheduling of periodic task systems on
multiprocessors. Inf. Process. Lett., 84(2):93–98, 2002.

[53] J. Yang, H. Kim, S. Park, C. Hong, and I. Shin. Implementation of compositional scheduling
framework on virtualization. SIGBED Rev., 8(1):30–37, March 2011.

[54] D. Zhu, D. Mosse, and R. Melhem. Multiple-resource periodic scheduling problem: how
much fairness is necessary? In Real-Time Systems Symposium, 2003. RTSS 2003. 24th
IEEE, pages 142–151, Dec.

66

REFERENCES REFERENCES

[55] H. Zhu, S. Goddard, and M. B. Dwyer. Response time analysis of hierarchical scheduling:
The synchronized deferrable servers approach. In Real-Time Systems Symposium (RTSS),
2011 IEEE 32nd, pages 239–248, 2011.

67

Appendix A

VC-HSF

A.1 Guidelines for running VC-HSF
1. Compile your Linux Kernel with CONFIG_PREEMPT option enabled and jiffies set to 1

ms.

2. Follow README instructions of ExSched and compile its core module.

3. Go to cluster folder of the plugin section.

4. Configure real-time tasks that you need to run in start.sh of the tasks folder.

5. Configure clusters that you want to run in vchsf.c file.

6. Execute using vchsf-start.sh file.

7. You can find output of the run via dmesg command.

A.2 Source code listing of VC-HSF
The implementation of VC-HSF includes following major source files:

1. vchsf.c: The main file where all the handlers and functions of the scheduler are imple-
mented.

2. release-queue.c: The file where cluster release queue is defined.

3. ready-queue.c: In this file cluster ready queue and its functions are defined.

4. server-queue.c: In this file server ready queue and its functions are defined.

5. task-queue.c: In this file task ready queue and its functions are defined.

Other than that, core files of ExSched are also modified. Here we present the main file of
our implementation vchsf.c.

68

#include <linux/string.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/time.h>
#include <linux/sched.h>
#include <linux/slab.h>
//#include <../../kernels/2.6.31-20-generic-
pae/include/resch/config.h>
//#include <../../kernels/2.6.31-20-generic-pae/include/resch/core.h>
//#include </usr/src/kernels/2.6.32-38-
generic/include/resch/config.h>
//#include </usr/src/kernels/2.6.32-38-generic/include/resch/core.h>
#include </usr/src/linux-2.6.32/include/resch/config.h>
#include </usr/src/linux-2.6.32/include/resch/core.h>
//#include </usr/src/linux-headers-3.5.0-17-
generic/include/resch/config.h>
//#include </usr/src/linux-headers-3.5.0-17-
generic/include/resch/core.h>
#include <../arch/x86/include/asm/div64.h>
#include <resch/config.h>
#include <resch/core.h>

MODULE_LICENSE("Dual BSD/GPL");
MODULE_DESCRIPTION("VC-HSF Scheduler");
MODULE_AUTHOR("Jakaria Abdullah");

#define WITH_TASKS

#define SYSTEM_TIMEOUT 10000 // the whole server based scheduling
start after 10 ms

/* Bits used by our hierarchical scheduler in the hsf flag in RESCH
task control block */
#define ACTIVATE 0
#define RESCH_PREVENT_RELEASE 1
#define PREV_RELEASE_SKIPPED 2
#define PREVENT_RELEASE_AT_INIT 3

#define MAX_RELEASED_AT_SAME_TIME 20 /* Maximum nr of servers that
can be released at the same time instance */
#define MAX_NR_OF_TASKS_IN_SERVER 10
#define MAX_NR_OF_TASKS_IN_CLUSTER 10
#define MAX_NR_OF_CLUSTERS 2
#define TRUE 1
#define FALSE 0

// cluster states
#define CLUSTER_ACTIVE 1
#define CLUSTER_READY 2
#define CLUSTER_EXPIRED 3
#define CLSUTER_PREEMPTED 4

// CPU States
#define CPU_BUSY 8
#define CPU_IDLE 9

// vc-hsf parameters
#define NR_OF_SERVERS 6
#define NR_OF_CLUSTERS 2
#define MAX_NR_SERVERS_CLUSTER 3
#define RUN_JIFFIES 300

/* we have ONE central timer combined with our own timer-queue, i.e.,
release queue. */
struct timer_list event_timer; // This timer is used for invoking a
server release and also budget expirations

typedef struct vc_server_struct server_t;
typedef struct vc_cluster_struct cluster_t;
typedef struct vc_task_struct vctask_t;
typedef struct cpu_resource_struct cpu_t;

struct vc_task_struct {
resch_task_t *rt;
int priority;
vctask_t *next;

};

#include "task-queues.c" // Implementation of task queues

vctask_t vc_task[NR_RT_TASKS];

struct vc_server_struct {
 int id; // 0 to (INT_SIZE_BIT-1)
 cluster_t * mycluster; // new
 int server_cpu; // new
 int period;
 char running; // TRUE if the server is running, otherwise
FALSE
 int budget;
 int remain_budget;
 unsigned long budget_expiration_time;
 struct timer_list server_budget_timer;
 int priority;
 unsigned long timestamp;
 vctask_t *active_task;
 server_t *next;
};

#include "server-queues.c" // Implementation of server queues

struct vc_cluster_struct {
int vc_cluster_id;
int cluster_state; // running flag to indicate cluster is

running
int nr_cpus; // m
int period; // period
int budget; // theta
int priority;
int remain_budget;
int nr_active_servers;
int nr_ready_servers;
//struct timer_list cluster_period_timer;
server_t SERVERS[MAX_NR_SERVERS_CLUSTER];

 tpq READY_TASKS;
//spinlock_t lock; // lock used to access server
//vctask_t *resch_task_list[MAX_NR_OF_TASKS_IN_CLUSTER];
//resch_task_t *resch_task_list[MAX_NR_OF_TASKS_IN_CLUSTER]; //

Maximum nr of tasks per cluster...
cluster_t *next;

};

//static tpq READY_TASKS[NR_OF_CLUSTERS];

#include "ready-queue.c" // Implementation of cluster ready queue

#include "release-queue.c" // Implementation of cluster release queue

//server_t SERVERS[NR_OF_SERVERS]; // Here are the servers, they
will also reside in the server ready queue
cluster_t CLUSTERS[NR_OF_CLUSTERS];

struct cpu_resource_struct{
int cpu_busy; // status to show whether any

server of virtual cluster is running there
int active_cluster_priority;
server_t * active_server;

};

cpu_t cpu_status[NR_RT_CPUS]; // running status of cpus, 0 =
idle, 1 = busy
static int idle_cpus; // global variable for idle cpu
count
static int lowest_active_cluster_prio; // global variable for lowest
active cluster priority
static int cluster_complete_on_preemption;
unsigned long total_overhead;
//cluster_t ACTIVE_CLUSTERS[NR_OF_CLUSTERS]; // global list of
active servers
spinlock_t global_lock;

// Main structure of the release queue
static relPq CLUSTER_RELEASE_QUEUE;
// Nodes residing in the release queue which represent a specific
server
relNode RelNodes[NR_OF_CLUSTERS];

static pq CLUSTER_READY_QUEUE; // This is the instance of the server
ready queue
static spq SERVER_READY_QUEUE;

// list of function declarations
void task_run(resch_task_t *rt);
void job_release(resch_task_t *rt);
void job_complete(resch_task_t *rt);
void init_cluster(cluster_t *cluster, int c_id, int nr_cpus, int
budget_msecs, int period_msecs, int priority);
int check_idle_cpus(void);
void init_server(server_t * server, cluster_t *cluster, int id);
server_t *check_active_clusters_for_servers(void);
void server_complete_handler(unsigned long __data);
int try_to_run_task(vctask_t *preemptee_task, cluster_t *cluster);
int run_server(server_t *server, int cpu);
int preempt_server(server_t *server, int cpu);
int try_to_run_server(server_t *server);
void stop_server(server_t *server);
void update_lowest_cluster_prio(void);
void assign_server_budget(cluster_t *cluster, int nr_cpus);
void cluster_release_handler(unsigned long __data);
void cluster_complete_handler(cluster_t* complete);
void migrate_vchsf_task(resch_task_t *rt, int cpu_dst);

// function for inserting timer

/*

inline void insert_timer(struct timer_list *timer, void (*my_handler)
(unsigned long), unsigned long data, unsigned long expire_time)
{
 int timer_status = timer_pending(timer);
 struct Handler_Data *data_handler;
 data_handler = (struct Handler_Data *) data;
 data_handler->timestamp = expire_time;
 //print_int("insert_timer","timer status", timer_status);

 if(&timer->entry == NULL)
 {

//print_warning("insert_timer","timer is NULL");
//scheduling_error = -1;
return;

 }
 if(expire_time < jiffies)
 {

//print_warning("insert_timer","expire_time < jiffies");
//scheduling_error = -1;
return;

 }
 //print_long("insert_timer","setting timer to", expire_time);
 if(timer_status == 1 && timer->expires == jiffies)
 {
 // Pending
 //print_warning("insert_timer","setting timer which expires
now");
 timer->data = data;
 mod_timer(timer, expire_time);
 }
 else
 {
 setup_timer_on_stack(timer, my_handler, data);
 mod_timer(timer, expire_time);
 }
}

*/

// function for removing timer

inline void remove_timer(struct timer_list *timer)
{
// if(timer->expires == jiffies)
// {
// print_warning("remove_timer", "Error: timer expires now");
// scheduling_error = -1;
// return;
// }
 del_timer(timer);
 //del_timer_sync(timer);
}

/*
 *
 * plugin function 1
 *
 * this is called by api_run
 * 1. initialize vctask_t
 * 2. #insert vctask_t into ready queue of the cluster -NO
 * 3. other flags need to be handled
 *
 */

void task_run(resch_task_t *rt) {

//migrate_task(rt, 0); // Migrate all tasks to CPU:0 for now...
 unsigned long flags;

printk(KERN_WARNING "task_create: %d %s %d %d period:%lu wcet:%
lu (%lu)\n", rt->pid, rt->task->comm, rt->prio, rt->cpu_id, rt->
period, rt->wcet, jiffies);
 printk(KERN_WARNING "task_rid: %d (%lu)\n", rt->rid,

jiffies);

//printk(KERN_INFO "HSF: TASK_RUN!\n");
 spin_lock_irqsave(&global_lock, flags);
 //preempt_disable();

vc_task[rt->rid].rt = rt;
vc_task[rt->rid].priority = rt->prio - 68;

//insert task into ready queue of its cluster - NOT NOW
//bitmap_insert_tpq(&CLUSTERS[rt->cluster_id].READY_TASKS,

vc_task[rt->rid]);

 //preempt_enable();
 spin_unlock_irqrestore(&global_lock, flags);
}

/*
 * plugin function 2: job release
 * 1. if the job is higher priority than the current running job its
cluster preempt
 * 2. otherwise insert the job into ready queue of its cluster
 */
void job_release(resch_task_t *rt) {

//server_t *highest_prio_server;
unsigned long flags;

 int FLAG = FALSE;
 struct timespec tmp_time_start, tmp_time_end, overhead;

 //printk(KERN_WARNING "Inside job_release (%lu)!!!!",
jiffies);

spin_lock_irqsave(&global_lock, flags);
 getnstimeofday(&tmp_time_start);
 //preempt_disable();

 if(rt == NULL){
 printk(KERN_WARNING "VC-HSF: job released with empty
rt!!!!");
 //preempt_enable();
 spin_unlock_irqrestore(&global_lock, flags);
 return;
 }

if(CLUSTERS[rt->cluster_id].cluster_state == CLUSTER_ACTIVE){
// means cluster of this task is activated, so may be

server is running
if(CLUSTERS[rt->cluster_id].nr_active_servers !=0){

 if((try_to_run_task(&vc_task[rt->rid], &CLUSTERS
[rt->cluster_id]))== FALSE){

 FLAG = TRUE;
 }else{

 //vchsf_job_start(rt);
 printk(KERN_WARNING "job running in
release: %d %s %d cpu:%d server:%d cluster:%d (%lu)\n", rt->pid, rt->
task->comm, rt->prio, rt->cpu_id, rt->server_id, rt->cluster_id,
jiffies);
 }

}
}else{

 printk(KERN_WARNING "job released but cluster not active so
sleep: %d %d (%lu)\n", rt->pid, rt->cpu_id, jiffies);
 FLAG = TRUE;
 }

 if(FLAG == TRUE){ // job need to be queued into ready queue of
its cluster

 //dequeue_task(running_task->rt);
 #ifdef WITH_TASKS

 rt->task->state = TASK_UNINTERRUPTIBLE;
 //set_tsk_need_resched(rt->task);
 #endif
 bitmap_insert_tpq(&CLUSTERS[rt->cluster_id].READY_TASKS,
&vc_task[rt->rid]);

 printk(KERN_WARNING "job queued in release: %d %s %d %d %d (%
lu)\n", rt->pid, rt->task->comm, rt->prio, rt->cpu_id, rt->server_id,
jiffies);
 }

 //preempt_enable();
 getnstimeofday(&tmp_time_end);
 overhead = timespec_sub(tmp_time_end, tmp_time_start);
 total_overhead += overhead.tv_nsec + overhead.tv_sec*1000000000;
 spin_unlock_irqrestore(&global_lock, flags);

}

void migrate_vchsf_task(resch_task_t *rt, int cpu_dst){
 rt->cpu_id =cpu_dst;
 /* task migration occurs here. */

cpus_clear(rt->cpumask);
cpu_set(cpu_dst, rt->cpumask);
set_cpus_allowed_ptr(rt->task, &rt->cpumask);

}

/*
 * plugin function 3: job complete
 *
 * 1. make task dequeue from the processor
 * 2. dequeue task from cluster ready queue and try to run in the
server cpu
 * 3.
 *
 *
 */

void job_complete(resch_task_t *rt) {

// needs spinlock

vctask_t *running_task;
//vctask_t *complete_task;
resch_task_t *new_rt;

 int current_cpu;
unsigned long flags;

 struct timespec tmp_time_start, tmp_time_end, overhead;
 server_t * current_server = NULL;

 //printk(KERN_WARNING "Inside job_complete (%lu)!!!!",
jiffies);

spin_lock_irqsave(&global_lock, flags);
 getnstimeofday(&tmp_time_start);
 //preempt_disable();

 if(rt == NULL){
 printk(KERN_WARNING "VC-HSF: job complete with empty
rt!!!!");
 //preempt_enable();

 spin_unlock_irqrestore(&global_lock, flags);
 return;
 }

current_cpu = rt->cpu_id;
current_server = cpu_status[current_cpu].active_server;

 // need to dequeue the completed task and put into sleep
 #ifdef WITH_TASKS
 //dequeue_task(rt);
 rt->task->state = TASK_UNINTERRUPTIBLE;

set_tsk_need_resched(rt->task);
 #endif
 printk(KERN_WARNING "job complete: %d %s %d %d %d (%lu)\n",
rt->pid, rt->task->comm, rt->prio, rt->cpu_id, rt->server_id,
jiffies);

if((running_task = bitmap_retrieve_tpq(&CLUSTERS[rt->
cluster_id].READY_TASKS))==NULL){

// means there is no more ready task jobs in cluster task
queue so remain idle

current_server->active_task = NULL;
}else{

current_server->active_task = running_task;
new_rt = running_task->rt;

 new_rt->server_id = current_server->id;
 #ifdef WITH_TASKS
 migrate_vchsf_task(new_rt, current_cpu);
 if(new_rt->task->state != TASK_RUNNING){

 wake_up_process(new_rt->task);
 }

//migrate_task(resch_task_t *rt, int cpu_dst)
 //enqueue_task(new_rt);

//migrate_task(new_rt, current_cpu);
 //vchsf_job_start(rt);
 #endif
 printk(KERN_WARNING "job running in complete: %d %s %
d cpu:%d server:%d cluster:%d (%lu)\n", new_rt->pid, new_rt->task->
comm, new_rt->prio, new_rt->cpu_id, new_rt->server_id, new_rt->
cluster_id, jiffies);

}
 //preempt_enable();
 getnstimeofday(&tmp_time_end);
 overhead = timespec_sub(tmp_time_end, tmp_time_start);
 total_overhead += overhead.tv_nsec + overhead.tv_sec*
1000000000;

 spin_unlock_irqrestore(&global_lock, flags);
}

/*
 * 1. find the active server running lowest priority task
 * 2. if priority of that task is lower than tasks priority than
preempt that task
 */

int try_to_run_task(vctask_t *preemptee_task, cluster_t *cluster){

int i;
int min_priority, index;
vctask_t * preempted_task;
//resch_task_t * rt;
int cpu_min = 0;

index = 0;

//min_priority = preemptee_task->rt->prio;
 min_priority = preemptee_task->priority; // changed newly

for(i = 0; i < cluster->nr_cpus; i++){
if(cluster->SERVERS[i].running == TRUE){

 if(cluster->SERVERS[i].active_task == NULL){
 cluster->SERVERS[i].active_task =
preemptee_task;
 #ifdef WITH_TASKS
 preemptee_task->rt->server_id = i;
 migrate_vchsf_task(preemptee_task->rt,
cluster->SERVERS[i].server_cpu);
 if(preemptee_task->rt->task->state !=
TASK_RUNNING){

 wake_up_process(preemptee_task->rt->
task);
 }

 //enqueue_task(preemptee_task->rt);
 //migrate_task(preemptee_task->rt,cluster->
SERVERS[i].server_cpu);
 #endif
 return TRUE;
 }else{
 if(cluster->SERVERS[i].active_task->priority
> min_priority){

min_priority = cluster->SERVERS
[i].active_task->priority;

cpu_min = cluster->SERVERS[i].server_cpu;
index = i;

}
 }

}
}

if(min_priority > preemptee_task->priority){

// means our task can preempt this task
preempted_task = cluster->SERVERS[index].active_task;

 #ifdef WITH_TASKS
 //dequeue_task(preempted_task->rt);
 preempted_task->rt->task->state = TASK_UNINTERRUPTIBLE;

set_tsk_need_resched(preempted_task->rt->task);
 #endif

 bitmap_insert_tpq(&cluster->READY_TASKS,
preempted_task);
 printk(KERN_WARNING "job preempted: %d %s %d %d %d
\n", preempted_task->rt->pid, preempted_task->rt->task->comm,
preempted_task->rt->prio,preempted_task->rt->cpu_id, preempted_task->
rt->server_id);

cluster->SERVERS[index].active_task = preemptee_task;
//migrate_task(resch_task_t *rt, int cpu_dst)

 #ifdef WITH_TASKS
 preemptee_task->rt->server_id = index;
 migrate_vchsf_task(preemptee_task->rt, cpu_min);
 if(preemptee_task->rt->task->state != TASK_RUNNING){

 wake_up_process(preemptee_task->rt->task);
 }

 //enqueue_task(preemptee_task->rt);
 //migrate_task(preemptee_task->rt,cpu_min);
 #endif
 printk(KERN_WARNING "job running in try to preempt: %d
%s %d cpu:%d server:%d cluster:%d (%lu)\n", preemptee_task->rt->pid,
preemptee_task->rt->task->comm, preemptee_task->rt->prio,
preemptee_task->rt->cpu_id, preemptee_task->rt->server_id,

preemptee_task->rt->cluster_id, jiffies);
 return TRUE;

}

return FALSE;
}

/*
 * procedure which initialises a cluster data structure
 *
 */

void init_cluster(cluster_t *cluster, int c_id, int nr_cpus, int
budget_msecs, int period_msecs, int priority) {

int i;
cluster->vc_cluster_id = c_id;
cluster->cluster_state = CLUSTER_READY;
cluster->nr_cpus = nr_cpus;
cluster->period = msecs_to_jiffies(period_msecs);
cluster->budget = msecs_to_jiffies(budget_msecs);
cluster->remain_budget = cluster->budget;
cluster->nr_active_servers = 0;
cluster->nr_ready_servers = 0;
cluster->priority = priority;
//cluster->resch_task_list = NULL;
for(i=0; i < cluster->nr_cpus; i++){

init_server(&cluster->SERVERS[i],cluster, i); // now
stub

}

init_tpq(&cluster->READY_TASKS);
 printk(KERN_WARNING "VC-HSF: Cluster(%d) initialized with
budget %d remaininig budget %d (%lu) \n", cluster->vc_cluster_id,
cluster->budget, cluster->remain_budget, jiffies);
}

int check_idle_cpus(void){
int i;
for(i = 0; i < NR_RT_CPUS; i++){

if(cpu_status[i].cpu_busy == CPU_IDLE){
return i;

}
}
return FALSE; // this should be impossible cpu value that can

be returned
}

// stub
void init_server(server_t * server, cluster_t *cluster, int id){

 server->id = id; // id respective to cluster
 server->mycluster = cluster;
 server->server_cpu = 0; // by default initialized to 0
 server->period = cluster->period;
 server->running = FALSE; // TRUE if the server is running,
otherwise FALSE
 server->budget = 0; // default not assigned a budget
 server->remain_budget = 0; // default no remaining budget
 server->budget_expiration_time = 0;
 init_timer(&server->server_budget_timer);
 server->priority = cluster->priority;

 server->timestamp = 0; // this should be used with jiffies in
run_server
 server->active_task = NULL; // no active task at init
 printk(KERN_WARNING "VC-HSF: Server(%d) of cluster (%d)
initialized (%lu)\n", server->id,server->mycluster->vc_cluster_id,
jiffies);
}

// stub may be inline function can be implemented
server_t *check_active_clusters_for_servers(void){

server_t *server;
server = bitmap_retrieve_spq(&SERVER_READY_QUEUE);
if(server != NULL){

return server;
}
return NULL;

}

/*
 *
 * server complete handler is called by the budget expiration timer
 * 1. remove server from cpu
 * 2. stop running task in the server
 * 3. try to run that task in other server of the same cluster
 * 4. if cluster of the server completes than call cluster_complete
handler
 * 5. otherwise pick a new server from server ready queue and run it
on the cpu
 */

void server_complete_handler(unsigned long __data) {

// needs spinlock

 unsigned long flags;
server_t *completed = (server_t *)__data;
server_t *to_run_server;
vctask_t *running_task;
//resch_task_t *rt;
cluster_t * temp_cluster;

 struct timespec tmp_time_start, tmp_time_end, overhead;
int cpu = completed->server_cpu;
int FLAG = FALSE;
int j;

spin_lock_irqsave(&global_lock, flags);
 getnstimeofday(&tmp_time_start);
 //preempt_disable();

cpu_status[cpu].cpu_busy = CPU_IDLE;
idle_cpus++;
cpu_status[cpu].active_cluster_priority = 0; // this one can

be potential bug
cpu_status[cpu].active_server = NULL;

// make the server stopped on that processor
completed->running = FALSE;
remove_timer(&completed->server_budget_timer);
//destroy_timer_on_stack(&completed->server_budget_timer);
//server->server_cpu = cpu;

// schedule budget timer of the server
completed->budget_expiration_time = 0; // put remaining
completed->timestamp = jiffies; // Set timestamp in case of

preemption (budget accounting)

completed->mycluster->nr_active_servers--;

if(completed->active_task != NULL){ // means task is running
in that server
 running_task = completed->active_task;
 // try to run preemted task on other servers of its
cluster
 if(completed->mycluster->nr_active_servers !=0){
 // there are other servers from this cluster running
try to run there
 if((try_to_run_task(running_task, completed->
mycluster))== FALSE){
 FLAG = TRUE;
 }else{
 //vchsf_job_start(running_task->rt);
 printk(KERN_WARNING "job running in server
complete: %d %s %d cpu:%d server:%d cluster:%d (%lu)\n",
running_task->rt->pid, running_task->rt->task->comm, running_task->
rt->prio, running_task->rt->cpu_id, running_task->rt->server_id,
running_task->rt->cluster_id, jiffies);
 }
 }else{
 FLAG = TRUE;
 }
 if(FLAG == TRUE){ // means you need to dequeue that task
and put it into cluster ready_queue
 #ifdef WITH_TASKS
 //dequeue_task(running_task->rt);
 running_task->rt->task->state = TASK_UNINTERRUPTIBLE;

 set_tsk_need_resched(running_task->rt->task);
 #endif

 bitmap_insert_tpq(&completed->mycluster->
READY_TASKS, running_task);
 printk(KERN_WARNING "job queued in server
complete: %d %s %d %d %d (%lu)\n", running_task->rt->pid,
running_task->rt->task->comm, running_task->rt->prio,running_task->
rt->cpu_id, running_task->rt->server_id, jiffies);
 }

}

if((completed->mycluster->nr_active_servers == 0)&&(completed->
mycluster->nr_ready_servers == 0)){

// means the cluster has no running or active server so
it is completed

cluster_complete_handler(completed->mycluster);
}else{

// mean cluster is not completed so we need to pick a
ready server and run it

// check for a active cluster which has ready servers
 while(idle_cpus != 0){
 if((to_run_server = check_active_clusters_for_servers())

== NULL){
 break;
 }else{
 //cpu = check_idle_cpus();

if((try_to_run_server(to_run_server))== TRUE)
{ // stub

 to_run_server->running = TRUE;
 to_run_server->mycluster->

nr_active_servers++;
}

 }
 }

// this means we need to launch a ready cluster
 while(idle_cpus != 0){
 if((temp_cluster = bitmap_retrieve(&CLUSTER_READY_QUEUE))

== NULL){
 // there is no more ready clusters in the system to

launch
 printk(KERN_WARNING "NO Cluster in ready queue (%

lu)\n", jiffies);
 break;
 }else{
 temp_cluster->cluster_state = CLUSTER_ACTIVE;

 temp_cluster->remain_budget = temp_cluster->
budget;

 assign_server_budget(temp_cluster, temp_cluster->
nr_cpus);

 for(j =0; j < temp_cluster->nr_cpus; j++){
 if((try_to_run_server(&temp_cluster->SERVERS

[j]))== TRUE){
 temp_cluster->SERVERS[j].running =

TRUE;
 temp_cluster->nr_active_servers++;
 }

 if(temp_cluster->SERVERS[j].running != TRUE){
 temp_cluster->SERVERS[j].running = FALSE;
 bitmap_insert_spq(&SERVER_READY_QUEUE,

&temp_cluster->SERVERS[j]);
 temp_cluster->nr_ready_servers++;
 }
 }
 update_lowest_cluster_prio(); // updating lowest

cluster priority
 }
 }
 update_lowest_cluster_prio();
}

 printk(KERN_WARNING "server_complete: server:%d cluster:%d
cpu:%d (%lu)\n",completed->id, completed->mycluster->vc_cluster_id,
completed->server_cpu, jiffies);
 //preempt_enable();
 getnstimeofday(&tmp_time_end);
 overhead = timespec_sub(tmp_time_end, tmp_time_start);
 total_overhead += overhead.tv_nsec + overhead.tv_sec*
1000000000;

 spin_unlock_irqrestore(&global_lock, flags);
}

// stub
/*
 * this function is to run a server in a idle cpu
 * 1.change the status of the processor running server
 * 2.adjust budget of the server
 * 3.retrieve ready task from cluster task queue
 * 4.migrate task to the idle cpu to run
 * 5.enable budget timer for server completion
 *
 *
 */

int run_server(server_t *server, int cpu){

 vctask_t * running_task;

resch_task_t *rt;

 printk(KERN_WARNING "run_server idle cpus before:%d
\n",idle_cpus);

if(cpu_status[cpu].cpu_busy != CPU_IDLE){
return FALSE;

}else{
cpu_status[cpu].cpu_busy = CPU_BUSY;
idle_cpus--;
cpu_status[cpu].active_cluster_priority = server->

priority;
cpu_status[cpu].active_server = server;

// make the server running on that processor
server->running = TRUE;
server->server_cpu = cpu;

// schedule budget timer of the server
server->budget_expiration_time = jiffies+ server->

remain_budget; // put remaining
server->timestamp = jiffies; // Set timestamp in case of

preemption (budget accounting)

server->mycluster->nr_ready_servers--;
server->mycluster->nr_active_servers++;
// here we need to fetch tasks from cluster task queue

and run that task
if(server->mycluster->cluster_state != CLUSTER_ACTIVE){

server->mycluster->cluster_state = CLUSTER_ACTIVE;
}

if((running_task = bitmap_retrieve_tpq(&server->
mycluster->READY_TASKS))==NULL){

// means there is no more ready task jobs in
cluster task queue so remain idle

server->active_task = NULL;
}else{

server->active_task = running_task;
rt = running_task->rt;
//migrate_task(resch_task_t *rt, int cpu_dst)

 #ifdef WITH_TASKS
 rt->server_id = server->id;
 //enqueue_task(rt);

//migrate_task(rt, cpu);
 //vchsf_job_start(rt);

 migrate_vchsf_task(rt, cpu);
 if(rt->task->state != TASK_RUNNING){

 wake_up_process(rt->task);
 }

 #endif
 printk(KERN_WARNING "job running in run
server: %d %s %d cpu:%d server:%d cluster:%d (%lu)\n", rt->pid, rt->
task->comm, rt->prio, rt->cpu_id, rt->server_id, rt->cluster_id,
jiffies);

}

//insert_timer(&server->server_budget_timer,
server_complete_handler, (unsigned long)server, server->
budget_expiration_time);

setup_timer_on_stack(&server->server_budget_timer,
server_complete_handler, (unsigned long)server);

mod_timer(&server->server_budget_timer, server->
budget_expiration_time);

}
 printk(KERN_WARNING "run_server idle cpus after:%d
\n",idle_cpus);
 printk(KERN_WARNING "server starts running with budget:%d
remain budget:%d expiration time:(%lu) (%lu)\n",server->budget,
server->remain_budget, server->budget_expiration_time, jiffies);
 printk(KERN_WARNING "server starts running: server:%d
cluster:%d cpu:%d (%lu)\n",server->id, server->mycluster->
vc_cluster_id, server->server_cpu, jiffies);

return TRUE;
}

/*
 * stub: this function is used to stop server other than budget
comepletion
 * in our case it will be used by server preemption function
 * 1. Before calling this function preempted server has already
removed
 * 2. Just need to call cluster complete
 */

void stop_server(server_t *server){

 if((server->mycluster->nr_active_servers == 0)&&(server->
mycluster->nr_ready_servers == 0)){
 // means the cluster has no running or active server so
it is completed
 cluster_complete_on_preemption = TRUE;

cluster_complete_handler(server->mycluster);
 }
}

/*
 * stub : this function is used preempt a server which is running on
cpu
 * 1. remove preempted server from cpu, put it into server ready
queue
 * 2. if the server is running some task, fetch it and put it into
cluster task ready queue
 * 3. adjust remaining budget of the server
 * 4. adjust remaining budget of the server's cluster : not needed
may be
 * 5. change status of the server
 * 6. if needed change status of the cluster
 * 7. adjust the lowest priority cluster flag
 *
 */

int preempt_server(server_t *server, int cpu){

server_t * preempted_server;
vctask_t * preempted_task;
vctask_t * running_task;
resch_task_t * rt;
cluster_t * preempted_cluster;
int FLAG = FALSE;

 //int debug = 0;

preempted_server = cpu_status[cpu].active_server;
preempted_cluster = preempted_server->mycluster;
preempted_cluster->nr_active_servers--;

remove_timer(&preempted_server->server_budget_timer);
//destroy_timer_on_stack(&preempted_server->

server_budget_timer);
preempted_server->running = FALSE;
preempted_server->remain_budget -= (jiffies-preempted_server->

timestamp);

if(preempted_server->active_task != NULL){ // means task is
running in that server
 preempted_task = preempted_server->active_task;
 // try to run preemted task on other servers of its
cluster
 if(preempted_cluster->nr_active_servers !=0){
 // there are other servers from this cluster running
try to run there
 if((try_to_run_task(preempted_task,
preempted_cluster))== FALSE){
 FLAG = TRUE;
 }else{
 //vchsf_job_start(preempted_task->rt);
 }
 }else{
 FLAG = TRUE;
 }
 if(FLAG == TRUE){ // means you need to dequeue that task
and put it into cluster ready_queue
 #ifdef WITH_TASKS
 //dequeue_task(preempted_task->rt);
 preempted_task->rt->task->state =
TASK_UNINTERRUPTIBLE;

 set_tsk_need_resched(preempted_task->rt->task);
 #endif

 bitmap_insert_tpq(&preempted_cluster->
READY_TASKS, preempted_task);
 printk(KERN_WARNING "job queued in preempt
server: %d %s %d %d %d (%lu)\n", preempted_task->rt->pid,
preempted_task->rt->task->comm, preempted_task->rt->
prio,preempted_task->rt->cpu_id, preempted_task->rt->server_id,
jiffies);

 }

}

 if(preempted_server->remain_budget == 0){
 stop_server(preempted_server);
 printk(KERN_WARNING "server_complete: server:%d cluster:%d
cpu:%d (%lu)\n",preempted_server->id, preempted_server->mycluster->
vc_cluster_id, preempted_server->server_cpu, jiffies);
 }else{
 printk(KERN_WARNING "server_preempted: server:%d cluster:%
d remaining budget:%d cpu:%d (%lu)\n",preempted_server->id,
preempted_server->mycluster->vc_cluster_id, preempted_server->
remain_budget, preempted_server->server_cpu, jiffies);
 preempted_cluster->nr_ready_servers++; // earlier it
was common
 bitmap_insert_spq(&SERVER_READY_QUEUE,
preempted_server); // suspect
 }

server->mycluster->nr_ready_servers--;
server->mycluster->nr_active_servers++;
if(server->mycluster->cluster_state != CLUSTER_ACTIVE){

server->mycluster->cluster_state = CLUSTER_ACTIVE;
}

server->timestamp = jiffies;
server->budget_expiration_time = jiffies+ server->

remain_budget;
server->running = TRUE;

 server->server_cpu = cpu; // latest detected bug

if((running_task = bitmap_retrieve_tpq(&server->mycluster->
READY_TASKS))==NULL){
 //if((running_task = bitmap_retrieve_tpq(&READY_TASKS
[server->mycluster->vc_cluster_id]))==NULL){

// means there is no more ready task jobs in cluster task
queue so remain idle

server->active_task = NULL;
 //idle_cpus++;

}else{
server->active_task = running_task;

rt = running_task->rt;
 rt->server_id = server->id;
 #ifdef WITH_TASKS
 migrate_vchsf_task(rt, cpu);
 if(rt->task->state != TASK_RUNNING){

 wake_up_process(rt->task);
 }

//migrate_task(resch_task_t *rt, int cpu_dst)
 //rt->server_id = server->id;
 //enqueue_task(rt);

//migrate_task(rt, cpu);
 //vchsf_job_start(rt);
 #endif
 printk(KERN_WARNING "job running in preempt server: %
d %s %d cpu:%d server:%d cluster:%d (%lu)\n", rt->pid, rt->task->
comm, rt->prio, rt->cpu_id, rt->server_id, rt->cluster_id, jiffies);

}
// change cpu status
cpu_status[cpu].active_server = server;
cpu_status[cpu].active_cluster_priority = server->mycluster->

priority;
 cpu_status[cpu].cpu_busy = CPU_BUSY; // to indicate server
is running there

 //insert_timer(&server->server_budget_timer,
server_complete_handler, (unsigned long)server, server->
budget_expiration_time);

 printk(KERN_WARNING "server preemption: preempter server:%d
preempter cluster:%d cpu:%d (%lu)\n",server->id, server->mycluster->
vc_cluster_id, server->server_cpu, jiffies);

printk(KERN_WARNING "server preemption: preempted server:%d
preempted cluster:%d cpu:%d (%lu)\n",preempted_server->id,
preempted_server->mycluster->vc_cluster_id, server->server_cpu,
jiffies);
 setup_timer_on_stack(&server->server_budget_timer,
server_complete_handler, (unsigned long)server);

mod_timer(&server->server_budget_timer, server->
budget_expiration_time);

return TRUE;
}
//stub
/*
 * 1. try to run the server in a idle processor
 * 2. no idle processor, then find a processor running server from
low priority cluster
 * 3. if 2 is true then prempt that server
 * 4. server and tasks inserting
 * 5. update server and cluster status

 *
 */
int try_to_run_server(server_t *server){

int cpu,i, lowest_priority, preempted_cpu;

if(idle_cpus !=0){
 cpu = check_idle_cpus();

 if((run_server(server, cpu))== TRUE){
 return TRUE;
 }else{
 return FALSE;
 }

}else{ // try to find a server to preempt
 for(i=0; i< NR_RT_CPUS; i++){
 if(i == 0){
 lowest_priority = cpu_status[i].active_cluster_priority;
 preempted_cpu = i;
 }else if(lowest_priority < cpu_status
[i].active_cluster_priority){
 lowest_priority = cpu_status
[i].active_cluster_priority;
 preempted_cpu = i;
 }
 }
 if(lowest_priority > server->priority){
 //printk(KERN_WARNING "server preemption should be:
server:%d cpu:%d (%lu)\n",server->id, cpu, jiffies);
 //return FALSE; // extra line for debugging

 if((preempt_server(server, preempted_cpu))== TRUE){
 return TRUE;
 }else{
 return FALSE;
 }

 }else{
 return FALSE;
 }

}
// requires to program budget expiration timer
//return TRUE;

}

void update_lowest_cluster_prio(void){

int i;

for(i = 0; i < NR_OF_CLUSTERS; i++){
 if(CLUSTERS[i].cluster_state == CLUSTER_ACTIVE){
 if(CLUSTERS[i].priority > lowest_active_cluster_prio){
 lowest_active_cluster_prio = CLUSTERS[i].priority;
 }
 }

}
}

/*
 *
 * Function for assigning server budget statically to the servers of
cluster
 *
 */
void assign_server_budget(cluster_t *cluster, int nr_cpus){

int i, total_budget, assign_budget;

if(cluster->remain_budget == 0){
return; // no budget to assign

}else{
total_budget = cluster->remain_budget;

 if(nr_cpus > 1){
assign_budget = (total_budget/nr_cpus) + 1;

 }else{
 assign_budget = total_budget;
 }

for(i = 0; i < nr_cpus; i++){
 if((total_budget - assign_budget) <= 0){
 cluster->SERVERS[i].budget = total_budget;
 cluster->SERVERS[i].remain_budget = total_budget;
 printk(KERN_WARNING "server received budget:
server:%d budget:%d remain_budget:%d (%lu)\n",cluster->SERVERS[i].id,
cluster->SERVERS[i].budget, cluster->SERVERS[i].remain_budget,
jiffies);
 }else{

 cluster->SERVERS[i].budget = assign_budget;
 cluster->SERVERS[i].remain_budget =
assign_budget;

 total_budget -= assign_budget;
 }

}
}

}

/*
 *
 * Cluster release handler
 *
 */

void cluster_release_handler(unsigned long __data) {

// needs global spinlock

static int FIRST_RUN = TRUE; // static local flag variable
to indicate first run only initialised once

static unsigned long start = 0; // starting time of the system
cluster_t *released_cluster = (cluster_t *)__data;
cluster_t *temp_cluster = NULL;
cluster_t *peek = NULL;
int i,j, next_release_event, event;
int multi_release = 0; // multiple release flag

 struct timespec tmp_time_start, tmp_time_end, overhead;
relNode *node;
relNode *Released[MAX_NR_OF_CLUSTERS]; // array for

handling multiple release
unsigned long flags;

spin_lock_irqsave(&global_lock, flags);

 getnstimeofday(&tmp_time_start);
 //preempt_disable();

// there is an error in timing so quit
if ((jiffies - start) > RUN_JIFFIES && start != 0) {

//destroy_timer_on_stack(&event_timer);
remove_timer(&event_timer);

 //preempt_enable();

 //destroy_timer_on_stack(&event_timer);
spin_unlock_irqrestore(&global_lock, flags);
return;

}

if (released_cluster == NULL) { // EXTRA
printk(KERN_WARNING "(cluster_release_handler)

cluster==NULL???\n"); // EXTRA
 //preempt_enable();

spin_unlock_irqrestore(&global_lock, flags);
return; // EXTRA

}

released_cluster->remain_budget = released_cluster->budget;
released_cluster->cluster_state = CLUSTER_READY;

 printk(KERN_WARNING "cluster_release: cluster:%d
\n",released_cluster->vc_cluster_id);

// Insert cluster in ready queue...
bitmap_insert(&CLUSTER_READY_QUEUE, released_cluster);
// Deallocate the timer...
//destroy_timer_on_stack(&timer);
remove_timer(&event_timer);
//destroy_timer_on_stack(&event_timer);

 if(FIRST_RUN == TRUE){ // this is the first run by any cluster
and so 1. all processor idle 2. this is the highest prio cluster
 FIRST_RUN = FALSE;
 start = jiffies;
 idle_cpus = NR_RT_CPUS;
 released_cluster = bitmap_retrieve(&CLUSTER_READY_QUEUE);
 lowest_active_cluster_prio = released_cluster->priority;
 released_cluster->remain_budget = released_cluster->budget;
 assign_server_budget(released_cluster, released_cluster->
nr_cpus); // stub
 released_cluster->cluster_state = CLUSTER_ACTIVE;
 printk(KERN_WARNING "inside cluster released: first block
\n");
 printk(KERN_WARNING "cluster starts running: cluster:%d (%lu)
\n",released_cluster->vc_cluster_id, jiffies);
 printk(KERN_WARNING "cluster release idle cpus before:%d
\n",idle_cpus);
 for(i = 0; i < released_cluster->nr_cpus; i++){
 if((try_to_run_server(&released_cluster->SERVERS[i]))==
TRUE){
 released_cluster->SERVERS[i].running =
TRUE;
 released_cluster->nr_active_servers++;
 }else{
 released_cluster->SERVERS[i].running =
FALSE;
 bitmap_insert_spq(&SERVER_READY_QUEUE,
&released_cluster->SERVERS[i]);
 released_cluster->nr_ready_servers++;
 }
 }

 printk(KERN_WARNING "cluster_release idle cpus after:%d
\n",idle_cpus);
 if(idle_cpus != 0){ // means other clusters may run

 while(idle_cpus !=0){
 if((temp_cluster = bitmap_retrieve
(&CLUSTER_READY_QUEUE)) == NULL){
 printk(KERN_WARNING "\n No more clusters,

processors idle");
 break;
 }else{
 temp_cluster->cluster_state =
CLUSTER_ACTIVE;
 temp_cluster->remain_budget = temp_cluster->
budget;
 printk(KERN_WARNING "cluster starts running
first block extra: cluster:%d (%lu)\n",temp_cluster->vc_cluster_id,
jiffies);
 if(temp_cluster->priority >
lowest_active_cluster_prio){
 lowest_active_cluster_prio =
temp_cluster->priority;
 }
 assign_server_budget(temp_cluster,
temp_cluster->nr_cpus);
 for(j =0; j < temp_cluster->nr_cpus; j++){
 if((try_to_run_server(&temp_cluster->
SERVERS[j]))== TRUE){
 temp_cluster->SERVERS
[j].running = TRUE;
 temp_cluster->
nr_active_servers++;
 }else{
 temp_cluster->SERVERS[j].running
= FALSE;
 bitmap_insert_spq
(&SERVER_READY_QUEUE, &temp_cluster->SERVERS[j]);

 temp_cluster->
nr_ready_servers++;
 }

 }

 }
 }
 }

 // there can be other clusters which are ready to run not
necessary
 /*
 while((temp_cluster = bitmap_retrieve(&CLUSTER_READY_QUEUE))
!= NULL){
 // make servers of the clusters ready to run
 for(j =0; j < temp_cluster->nr_cpus; j++){
 temp_cluster->READY_SERVERS[j]= temp_cluster->
SERVERS[j];
 temp_cluster->nr_ready_servers++;
 }
 if(temp_cluster->cluster_state != CLUSTER_READY){
 temp_cluster->cluster_state = CLUSTER_READY;
 }
 }
 */
 // timer for next scheduling event of cluster release
 next_release_event = 0;
 relPq_retrieve(&CLUSTER_RELEASE_QUEUE, &next_release_event);
 node = relPq_retrieve(&CLUSTER_RELEASE_QUEUE,
&next_release_event); // We need the node later but...
 relPq_insert(&CLUSTER_RELEASE_QUEUE, next_release_event,
node);

 }else{ // this not the first time run

 // update the release queue for next run
 printk(KERN_WARNING "inside cluster released: later block
\n");
 event = 0;
 multi_release = 0;
 // retrieve the currently released cluster from release queue
 relPq_retrieve(&CLUSTER_RELEASE_QUEUE, &event);
 node = relPq_retrieve(&CLUSTER_RELEASE_QUEUE, &event);

relPq_peek(&CLUSTER_RELEASE_QUEUE, &i); // Check the
value of the second element in the release queue

if (i != event) { // Only one cluster to release in this
point.....

released_cluster = bitmap_retrieve
(&CLUSTER_READY_QUEUE);

// insert the currently released cluster for its
next release

relPq_insert(&CLUSTER_RELEASE_QUEUE, event+CLUSTERS
[node->index].period, node);

// Fetch next release event from other release
events in the release queue

event = 0;
relPq_retrieve(&CLUSTER_RELEASE_QUEUE, &event);
node = relPq_retrieve(&CLUSTER_RELEASE_QUEUE,

&event);
relPq_insert(&CLUSTER_RELEASE_QUEUE, event, node);

//?
next_release_event = event -

CLUSTER_RELEASE_QUEUE.virtual_time;
}
else { // More than one cluster has to be released...

//multi_release = 1;
next_release_event = event;
Released[0] = node; // means the node released

with this call
i = 1;
while (TRUE) {

event = 0;
// retrieve other release events in same time

from release queue
relPq_retrieve(&CLUSTER_RELEASE_QUEUE,

&event);
Released[i] = relPq_retrieve

(&CLUSTER_RELEASE_QUEUE, &event);
// Refill budget
CLUSTERS[Released[i]->index].cluster_state =

CLUSTER_READY;
CLUSTERS[Released[i]->index].remain_budget =

CLUSTERS[Released[i]->index].budget;
// Insert the cluster in the ready queue
bitmap_insert(&CLUSTER_READY_QUEUE, &

(CLUSTERS[Released[i]->index]));
i++;
relPq_peek(&CLUSTER_RELEASE_QUEUE, &event);
if (event != next_release_event || event < 0)

break;
}
temp_cluster = bitmap_get(&CLUSTER_READY_QUEUE); //

Now lets see who has highest prio...
 /* if(temp_cluster->priority < released_cluster->priority)
{ // one of the released cluster has higher priority
 temp_cluster = bitmap_retrieve
(&CLUSTER_READY_QUEUE);
 bitmap_insert(&CLUSTER_READY_QUEUE,
&released_cluster);

 released_cluster = temp_cluster;
 }*/

for (j = 0; j < i; j++) {
if (temp_cluster->vc_cluster_id == Released

[j]->index) { // Ok, one of the newbies is highest!
released_cluster = bitmap_retrieve

(&CLUSTER_READY_QUEUE);
break;
//special = 2;

}
}
// Now update and insert all elements in the

release queue...
for (j = 0; j < i; j++) {

relPq_insert(&CLUSTER_RELEASE_QUEUE,
next_release_event+CLUSTERS[Released[j]->index].period, Released[j]);

}

multi_release = i -1; // number of released used
later excluding the main released one

// Fetch next release event...
event = 0;
relPq_retrieve(&CLUSTER_RELEASE_QUEUE, &event);
node = relPq_retrieve(&CLUSTER_RELEASE_QUEUE,

&event);
relPq_insert(&CLUSTER_RELEASE_QUEUE, event, node);
next_release_event = event -

CLUSTER_RELEASE_QUEUE.virtual_time;
}

 if((idle_cpus > 0) || (released_cluster->priority <
lowest_active_cluster_prio)){
 released_cluster->remain_budget = released_cluster->budget;
 assign_server_budget(released_cluster, released_cluster->
nr_cpus);
 released_cluster->cluster_state = CLUSTER_ACTIVE;
 printk(KERN_WARNING "cluster starts running: cluster:%d (%
lu)\n",released_cluster->vc_cluster_id, jiffies);
 // schedule clusters on the cpus
 for(j = 0; j < released_cluster->nr_cpus; j++){
 if((try_to_run_server(&released_cluster->SERVERS
[j]))== TRUE){
 released_cluster->SERVERS[j].running =
TRUE;
 released_cluster->nr_active_servers++;
 }
 if(released_cluster->SERVERS[j].running != TRUE)
{
 released_cluster->SERVERS[j].running =
FALSE;
 bitmap_insert_spq(&SERVER_READY_QUEUE,
&released_cluster->SERVERS[j]);
 released_cluster->nr_ready_servers++;
 }
 }

 if(released_cluster->priority >
lowest_active_cluster_prio){

 lowest_active_cluster_prio = temp_cluster->
priority;

 }else{
 update_lowest_cluster_prio(); // this means there

is a prememption of cluster
 }

 }else{ // cluster remains ready in ready queue
 bitmap_insert(&CLUSTER_READY_QUEUE, released_cluster);

 }

 if(multi_release > 0){ // there is more than one cluster
released which can run
 while(multi_release !=0){ // wrong here needs
to be corrected should be same as earlier idle_cpus
 peek = bitmap_get(&CLUSTER_READY_QUEUE);
 if((idle_cpus !=0) ||(peek->priority <
lowest_active_cluster_prio)){
 if((temp_cluster = bitmap_retrieve
(&CLUSTER_READY_QUEUE)) == NULL){
 printk(KERN_WARNING "\n No more clusters,
processors idle (%lu)", jiffies);
 break;
 }else{
 temp_cluster->cluster_state =
CLUSTER_ACTIVE;
 temp_cluster->remain_budget = temp_cluster->
budget;
 assign_server_budget(temp_cluster,
temp_cluster->nr_cpus);
 printk(KERN_WARNING "cluster starts running:
cluster:%d (%lu)\n",temp_cluster->vc_cluster_id, jiffies);
 for(j =0; j < temp_cluster->nr_cpus; j++){
 if((try_to_run_server
(&temp_cluster->SERVERS[j]))== TRUE){
 temp_cluster->SERVERS[j].running
= TRUE;
 temp_cluster->
nr_active_servers++;
 }
 if(temp_cluster->SERVERS[j].running !=
TRUE){
 temp_cluster->SERVERS[j].running =
FALSE;
 bitmap_insert_spq
(&SERVER_READY_QUEUE, &temp_cluster->SERVERS[j]);
 temp_cluster->nr_ready_servers++;
 }
 }
 update_lowest_cluster_prio();
 multi_release--; // release of the cluster
complete
 } // end of else

 }else{
 break;
 }

 } // end of while
 }
 }

 // next release evet should be scheduled here
 // insert_timer(&event_timer, cluster_release_handler, (unsigned
long)&CLUSTERS[node->index], (jiffies+next_release_event));
 setup_timer_on_stack(&event_timer, cluster_release_handler,
(unsigned long)&CLUSTERS[node->index]);
 mod_timer(&event_timer, (jiffies+next_release_event));

 CLUSTER_RELEASE_QUEUE.virtual_time =
CLUSTER_RELEASE_QUEUE.virtual_time + next_release_event;
 //preempt_enable();
 getnstimeofday(&tmp_time_end);
 overhead = timespec_sub(tmp_time_end, tmp_time_start);
 total_overhead += overhead.tv_nsec + overhead.tv_sec*1000000000;
 spin_unlock_irqrestore(&global_lock, flags);

}

/*
 * THis is the handler called when a cluster completes its allocated
budget in a peiord
 * this one is not related to timer, called by the server complete
handler when the number of
 * active server in the cluster becomes zero
 *
 */

void cluster_complete_handler(cluster_t* complete){

server_t *to_run_server;
cluster_t *temp_cluster;
int j;

// cluster_t should be cleared
complete->cluster_state = CLUSTER_EXPIRED; // running flag to

indicate cluster is running
if(complete->nr_active_servers != 0){

printk(KERN_WARNING "\n Servers are not released
properly");

//complete->nr_active_servers = 0;
}
if(complete->nr_ready_servers != 0){

printk(KERN_WARNING "\n Servers are not handled
properly");

}
if(complete->remain_budget != 0){

printk(KERN_WARNING "\n Server budget not consumed
properly");

}
/*
if(bitmap_get(&complete->ACTIVE_SERVERS)!= NULL){

printk(KERN_WARNING "\n Still active servers in the
cluster");

return;
}

if(bitmap_get(&complete->READY_SERVERS)!= NULL){
printk(KERN_WARNING "\n Still ready servers in the

cluster");
return;

}
*/
complete->nr_active_servers = 0;
complete->nr_ready_servers = 0;
complete->remain_budget = 0;

 printk(KERN_WARNING "cluster_complete: cluster:%d (%lu)
\n",complete->vc_cluster_id, jiffies);

 if(cluster_complete_on_preemption == TRUE){
 cluster_complete_on_preemption = FALSE;
 update_lowest_cluster_prio();
 return;
 }

// here idle cpu count should !=0
// check for a active cluster which has ready servers

 while(idle_cpus != 0){
 if((to_run_server = check_active_clusters_for_servers()) ==
NULL){
 break;

 }else{
if((try_to_run_server(to_run_server))== TRUE){

 temp_cluster = to_run_server->mycluster;
 to_run_server->running = TRUE;

 temp_cluster->nr_active_servers++;
}

 }
 }

// check for a ready cluster and launch its servers
 while(idle_cpus != 0){
 if((temp_cluster = bitmap_retrieve(&CLUSTER_READY_QUEUE)) ==
NULL){
 // there is no more ready clusters in the system to
launch
 printk(KERN_WARNING "NO Cluster in ready queue\n");
 break;
 }else{
 temp_cluster->cluster_state = CLUSTER_ACTIVE;
 temp_cluster->remain_budget = temp_cluster->budget;
 assign_server_budget(temp_cluster, temp_cluster->
nr_cpus);
 printk(KERN_WARNING "cluster starts running: cluster:%d
(%lu)\n",temp_cluster->vc_cluster_id, jiffies);
 for(j =0; j < temp_cluster->nr_cpus; j++){
 if((try_to_run_server(&temp_cluster->SERVERS
[j]))== TRUE){
 temp_cluster->SERVERS[j].running = TRUE;

 temp_cluster->nr_active_servers++;
 }

 if(temp_cluster->SERVERS[j].running != TRUE){
 temp_cluster->SERVERS[j].running = FALSE;
 bitmap_insert_spq(&SERVER_READY_QUEUE,
&temp_cluster->SERVERS[j]);
 temp_cluster->nr_ready_servers++;

 }
 }
 update_lowest_cluster_prio(); // updating lowest
cluster priority
 }
 }
 update_lowest_cluster_prio();

}

static int __init vchsf_init(void)
{

cluster_t *highest_prio_cluster; // number of servers that
ready to run initially

int i;

 spin_lock_init(&global_lock);
 total_overhead = 0;

init_timer(&event_timer);
init_pq(&CLUSTER_READY_QUEUE);
init_spq(&SERVER_READY_QUEUE);

 cluster_complete_on_preemption = FALSE;

 printk(KERN_INFO "VC-HSF: HELLO!\n");

 // initialiasing global list of cpus status as idle
for(i =0; i < NR_RT_CPUS; i++){

cpu_status[i].cpu_busy = CPU_IDLE;
cpu_status[i].active_cluster_priority = 0;
cpu_status[i].active_server = NULL;

 }

// initialize cluster with cluster_t ,c_id, nr_servers,
budget_msecs, period_msecs, priority

//init_cluster(&CLUSTERS[0],0, 2, 10, 16, 0);
//init_cluster(&CLUSTERS[1],1, 1, 20, 32 , 1);

 init_cluster(&CLUSTERS[0],0, 2, 10, 12, 0);
 init_cluster(&CLUSTERS[1],1, 2, 20, 32, 1);

/**************** Put the all the clusters in the cluster ready
queue ****************/

for (i = 0; i < NR_OF_CLUSTERS; i++) {
bitmap_insert(&CLUSTER_READY_QUEUE, &CLUSTERS[i]);

}

if ((highest_prio_cluster = bitmap_retrieve
(&CLUSTER_READY_QUEUE)) == NULL) {

printk(KERN_WARNING "VC-HSF (hsf_init): Server ready
queue empty!!!\n");

return 0;
}

// Initialize nodes that will reside in the cluster release
queue structure...

for (i = 0; i < NR_OF_CLUSTERS; i++) {
RelNodes[i].index = i;
RelNodes[i].next = NULL;

}

// Initialize cluster release queue
if ((relPq_init(&CLUSTER_RELEASE_QUEUE, find_largest_period

(CLUSTERS, NR_OF_CLUSTERS))) < 0) {
printk(KERN_WARNING "'relPq_init' failed!!!\n");
return 0;

}

// Insert the cluster release queue nodes...
for (i = 0; i < NR_OF_CLUSTERS; i++) {

relPq_insert(&CLUSTER_RELEASE_QUEUE, CLUSTERS[i].period,
&RelNodes[i]);

}

setup_timer_on_stack(&event_timer, cluster_release_handler,
(unsigned long)highest_prio_cluster);

mod_timer(&event_timer, (jiffies+msecs_to_jiffies
(SYSTEM_TIMEOUT))); // Start in 10 seconds...

//insert_timer(&event_timer, cluster_release_handler, (unsigned
long)highest_prio_cluster, (jiffies+msecs_to_jiffies
(SYSTEM_TIMEOUT)));

printk(KERN_WARNING "VC-HSF: HELLO! (%lu)\n",
(jiffies+msecs_to_jiffies(SYSTEM_TIMEOUT)));

// Install our plugins...
install_scheduler(task_run, NULL, job_release, job_complete);

// these corresponds to task run, job release and job complete plugin
of core

return 0;
}

static void __exit vchsf_exit(void)
{
 printk("total overhead(nano_sec): %lu\n", total_overhead);

printk(KERN_INFO "VC-HSF: GOODBYE!\n");
uninstall_scheduler();

}

module_init(vchsf_init);
module_exit(vchsf_exit);

	Content.pdf
	vchsf

