
MEMORAX, a precise and sound tool for automatic
fence insertion under TSO ?

Parosh Aziz Abdulla1, Mohamed Faouzi Atig1, Yu-Fang Chen2, Carl Leonardsson1,
and Ahmed Rezine3

1 Uppsala University, Sweden
2 Academia Sinica, Taiwan

3 Linköping University, Sweden

Abstract. We introduce MEMORAX, a tool for the verification of control state
reachability (i.e., safety properties) of concurrent programs manipulating finite
range and integer variables and running on top of weak memory models. The
verification task is non-trivial as it involves exploring state spaces of arbitrary or
even infinite sizes. Even for programs that only manipulate finite range variables,
the sizes of the store buffers could grow unboundedly, and hence the state spaces
that need to be explored could be of infinite size. In addition, MEMORAX in-
corporates an interpolation based CEGAR loop to make possible the verification
of control state reachability for concurrent programs involving integer variables.
The reachability procedure is used to automatically compute possible memory
fence placements that guarantee the unreachability of bad control states under
TSO. In fact, for programs only involving finite range variables and running on
TSO, the fence insertion functionality is complete, i.e., it will find all minimal
sets of memory fence placements (minimal in the sense that removing any fence
would result in the reachability of the bad control states). This makes MEMORAX

the first freely available, open source, push-button verification and fence insertion
tool for programs running under TSO with integer variables.

1 Introduction

We introduce MEMORAX, the first freely available, open source (https://github.
com/memorax/memorax), push-button verification and fence insertion tool that can han-
dle integer variables and that is both sound and complete under TSO for all programs
that only involve finite range variables. Modern concurrent processor architectures al-
low weak (relaxed) memory models, in which certain memory operations may overtake
each other. The use of weak memory models makes reasoning about behaviours of
concurrent programs challenging, even for skilled developers. This is for instance wit-
nessed by the lively debate among developers on the Linux Kernel Mailing list about
the correctness on x86 of the “Linux Ticket Lock” protocol. (See the mail thread start-
ing with https://lkml.org/lkml/1999/11/20/76.) In fact, several synchronisation
algorithms, such as mutual exclusion and producer-consumer protocols, turn out to be

? This research was in part funded by the Uppsala Programming for Multicore Architectures
Research Center (UPMARC), the National Science Council of Taiwan project no. NSC-101-
2221-E-001-007, and the CENIIT research organization (project 12.04).

incorrect if run without modification on weak memories [5]. MEMORAX is based on
the techniques developed in [4] and extended in [3]. Not only does our tool turn this
verification task into a push-button exercise, it also automatically inserts fences in or-
der to ensure correctness of programs that were made incorrect by the weak memory
relaxation. More precisely:

• MEMORAX is an open source [2] push-button tool that comes with a graphical user
interface and a simple low level language with a well defined semantics.

• it is sound for concurrent programs running on the TSO memory model (i.e., x86
and SPARC platforms) and involving variables with finite or integer ranges.

• it performs reachability on infinite state spaces to verify control state reachability.
• it provides users with concrete counter-examples, useful for debugging, that take

the program from an initial configuration to a specified bad control state.
• it is complete, using an intricate encoding based on the theory of well-quasi-order-

ing, for the reachability problem of programs on TSO, provided that they only have
finite range variables.

• it uses an off-the-shelf SMT solver (MathSAT [1]) to incorporate an interpolation
based CEGAR loop to handle integer variables.

• it automatically finds (sets of) fences to ensure a safety property is respected if the
property does hold on SC.

• it finds all minimal sets of fences for programs with finite range variables and run-
ning on TSO.

Targeted user base We see three potential groups of users for MEMORAX :

1. Computer science researchers can use the open source code of MEMORAX to com-
pare with other approaches for the verification of programs running on top of weak
memory models, to improve and optimise the implemented techniques (e.g. by in-
terfacing with other SMT solvers or by improving the used data structures or the
symbolic representations), or to target new platforms and programs (e.g. add sound-
ness for RMO or PSO, or scale for heap manipulating programs)

2. Teachers of architecture and concurrent programming classes can use (and aug-
ment) MEMORAX with its simple user interface in order to familiarise their stu-
dents with weak memory models. In particular the precision and counter example
capabilities of MEMORAX can concretely illustrate the effects of relaxed memory.

3. Software developers working on complex and low level, lock-free code can use
MEMORAX to easily check the effects of TSO on their tentative solutions. The
generated error traces are also possible on weaker memory models and can conve-
niently help to highlight possible problems.

Related tools and approaches As far as we know, MEMORAX is the first available
open source verification and fence insertion tool that is sound on TSO, that can handle
integer variables, and that is complete for programs with finite range variables under
TSO. There exists several very conservative approaches that restrict to SC executions
by establishing “triangular race freedom” [12] or by inserting fences using “delay set

analysis” [13]. We will not further elaborate on those techniques, but will instead focus
on a number of tools and approaches more similar to our own.

CheckFence [6] is a SAT-based tool that tests correctness of fence placements by
considering finite executions on different relaxed memory models. The tool cannot ver-
ify programs that result in buffers of arbitrary size like the ones MEMORAX handles
since it unrolls loops and checks correctness of the resulting finite executions.

Fender [8, 9] combines model checking with abstraction in order to perform reacha-
bility analysis on finite over-approximations. It considers different memory models and
uses the reachability analysis to justify fence placements. The analysis is not exact and
cannot guarantee to show absence of errors for correct programs. As a result, the tool
lacks the precision that would allow it to find minimal sets of fence placements. Unfor-
tunately, we were not able to find the tool which is, as far as we know, not open source.
Finally, the tool does not handle programs with integer variables.

mmchecker [7] performs explicit model-checking for the .NET memory model. It
explores the (possibly infinite) state space and inserts fences in order to forbid be-
haviours that are not possible under SC. The tool cannot prove correctness of programs
that generate infinite state spaces but do not require fences. Also the tool cannot soundly
handle integer variables like MEMORAX does on TSO.

Automata based accelerations [10, 11] computes under-approximations of the gen-
erated infinite state space on different relaxed memory models. When the analysis ter-
minates, it answers exactly whether the property is violated or not, and it allows to
deduce minimal sets of fence placements, even for programs that may generate buffers
of arbitrary sizes. The approach targets systems that manipulate finite variables. It nei-
ther can handle integer variables nor does it guarantee termination. We were not able to
get hold of the tool or of its source code.

1 forbidden
2 CS CS
3

4 data
5 t u r n = ∗ : [0 : 1]
6 x = 0 : [0 : 1]
7 y = 0 : [0 : 1]

9 process
10 registers
11 $r0 = ∗ : [0 : 1]
12 $r1 = ∗ : [0 : 1]
13 text
14 L0 : w r i t e : x := 1 ;
15 w r i t e : t u r n := 1 ;
16 L1 : r e a d : $ r0 := y ;
17 r e a d : $ r1 := t u r n ;
18 i f $r0 = 1 && $r1 = 1 then
19 goto L1 ;
20 CS : w r i t e : x := 0 ;
21 goto L0

23 process
24 registers
25 $r0 = ∗ : [0 : 1]
26 $r1 = ∗ : [0 : 1]
27 text
28 L0 : w r i t e : y := 1 ;
29 w r i t e : t u r n := 0 ;
30 L1 : r e a d : $ r0 := x ;
31 r e a d : $ r1 := t u r n ;
32 i f $r0 = 1 && $r1 = 0 then
33 goto L1 ;
34 CS : w r i t e : y := 0 ;
35 goto L0

Fig. 1. Peterson’s mutual exclusion protocol.

2 Using the tool

2.1 The RMM language
Programs to be tested with MEMORAX are written in the special purpose language
RMM. For reasoning about programs under relaxed memory, detailed knowledge about

how variables are stored and used is necessary. RMM is designed to unambiguously
describe that aspect by making memory accesses and register use explicit.

As an example, Figure 1 shows an RMM model of the Peterson mutual exclusion
protocol. Lines 1-2 are of particular interest, since they specify the safety criterion: It
is forbidden for the processes (henceforth called P0 and P1) to simultaneously be in the
control states labelled CS (i.e. line 20 for P0 and line 34 for P1).

2.2 Usage through the Graphical Interface

The GUI is a python script (memorax-gui) wrapping around the CLI. The GUI window
consists of three main parts: The command input area, the code area and the output area.
The command input area provides the commands “Reachability”, “Fence insertion” and
“Draw automata”, and options for the commands. All commands apply to the code in
the code area, and print their output (and possibly errors) to the output area.

A typical work flow would be the following: First write the RMM code for the
protocol you want to analyse. Then use the “Draw automata” command to produce a
PDF file showing the automata for the defined processes. This is useful for asserting that
the RMM code specifies what you intended. Next use the “Reachability” command to
check whether the protocol is safe from the start. If not, then use the “Fence insertion”
command to receive sets of fences that will make the protocol safe.

Reachability The Reachability command is used to analyse whether there is some
configuration which violates the safety specification, but is reachable from some initial
configuration. If there is such a configuration, then an error trace will be supplied.

There are currently two reachability methods (“abstractions”) available in MEM-
ORAX: SB (“Single Buffer”) and PB (“Predicate abstraction and buffer Bounding”),
corresponding respectively to our works in [4] and [3]. The PB method is an over-
approximation and allows for CEGAR abstraction refinement.

Protocols can be automatically rewritten to “Register Free Form” before being anal-
ysed. This encodes register values in control states, and can often improve analysis
performance.

Fence insertion The fence insertion command will repeatedly execute reachability
queries, while gradually adding fences to the analysed protocol in order to guarantee
satisfaction of the safety criterion. The available options for fence insertion are the
same as for reachability, and apply to the repeated reachability queries.

Interpreting the Output: If we apply the fence insertion command to the program in
Figure 1, we will get output describing the results of the reachability queries. There
will be a description of the result at the end of the output:
Found 1 fence set:
Fence set #0:

L15 P0: write: turn := 1
L29 P1: write: turn := 0

Here MEMORAX has found exactly one minimal
and sufficient set of fences, namely the one corre-
sponding to locking the writes at line 15 and 29.
Other possible outcomes include the empty set -

meaning the program is already correct, and no sets - meaning the program cannot be
corrected with fences.

3 Implementation

MEMORAX is implemented in C++ with the intent of being easy to extend with new
memory models and analysis methods.

Reachability optimisations. We mention some of the techniques we use to combat the
state space explosion problem:

• Light-Weight Pre-Analysis. Before the reachability analysis is started, we apply a
light-weight, per-thread, over-approximating analysis. This allows us to collect a
rough invariant about the buffer contents that are possible per control state and
process. We use the invariant to efficiently reduce the explored state space.
• Update Restriction. We soundly limit store buffer updating to only take place after

a read instruction by the same process. The rationale is that it is only relevant to
delay a write instruction by buffering if it is delayed past a read instruction. Other
delays can be simulated under SC.

• Partial Order Reduction for TSO. In addition to the above update limitation, MEM-
ORAX uses a partial order reduction technique based on the principle that an in-
struction reordering that does not participate in a conflict cycle, as defined in [13],
can be simulated by an appropriate scheduling under SC. Thus instruction reorder-
ings that do not participate in conflict cycles need not be analysed.

Fence insertion. The fence insertion algorithm relies on the underlying reachability
analysis when evaluating each fence set placement. It is therefore desirable to keep the
number of tried fence sets as small as possible.

• Fence Placement Restriction. We restrict the number of possibilities, by only con-
sidering fences that can be added by locking some write instruction. For example,
changing write: x := 1 into locked write: x := 1 adds a fence after write:
x := 1. This guarantees finding minimal and sufficient fence sets (if they exist).
Their size can however be larger than a smallest sufficient set.

• Multiple Fence Extraction. We perform an extensive analysis to capture fences that
need to be added in order to avoid a given error trace. By identifying the conflict
cycles (as described by [13]) that a particular reordering (a→ b) participates in, it
is sometimes possible to deduce the existence of another, similar error trace where
a and b occur in program order, but another pair (c→ d) is reordered, yielding the
same conflict cycle. In such cases a fence between c and d is equally necessary as a
fence between a and b. Thus the fence insertion algorithm can infer more than one
fence at a time, and the number of reachability queries can be decreased.

4 Experimental Results

Table 1 displays the results of running MEMORAX on several classical examples. For
each of the examples, we give the total time for finding all minimal, sufficient sets
of fences, using the methods SB and PB, with and without transforming the program

to register free form. In the table, “not-applicable” denotes that the corresponding ap-
proach is not applicable to the example. These correspond to applying a finite domain
technique (SB and RFF) to an infinite domain program. Furthermore, out-of-mem is
used to denote that the experiment failed to finish before consuming all available mem-
ory of the host computer. All examples were run on a laptop with a 2.27 GHz processor
and 4 GB of memory.

Size Total time Fences
Proc./States/ seconds necessary
Var./Trans. SB SB(rff) PB PB(rff) (smallest set)

Simple Dekker 2/6/2/6 0.0 0.0 0.0 0.0 1 per proc
Full Dekker 2/22/3/28 0.4 0.2 0.1 0.1 1 per proc
Peterson 2/12/3/14 1.9 1.0 3.5 0.4 1 per proc
Lamport Bakery (bounded) 2/18/4/20 out-of-mem 61.2 152.7 17.9 2 per proc
Lamport Fast 2/24/4/34 233.7 223.4 2.7 2.5 2 per proc
CLH Queue Lock 2/30/4/42 out-of-mem 15.4 out-of-mem out-of-mem 0
Sense Reversing Barrier 2/4/2/4 0.3 0.2 0.1 0.0 0
Burns 2/8/2/9 0.0 0.0 0.0 0.0 1 per proc
Dijkstra 2/22/3/28 out-of-mem 0.4 1.0 2.0 1 per proc
Lamport Bakery (unbounded) 2/18/4/20 not-applicable not-applicable 166.2 not-applicable 2 per proc
Linux Ticket Lock (unbounded) 2/4/2/4 not-applicable not-applicable 0.4 not-applicable 0

Table 1. Experimental Results

References
1. MathSAT4. http://mathsat4.disi.unitn.it/.
2. P. A. Abdulla, M. F. Atig, Y.-F. Chen, C. Leonardsson, and A. Rezine. https://github.

com/memorax/memorax.
3. P. A. Abdulla, M. F. Atig, Y.-F. Chen, C. Leonardsson, and A. Rezine. Automatic fence

insertion in integer programs via predicate abstraction. In SAS, pages 164–180, 2012.
4. P. A. Abdulla, M. F. Atig, Y.-F. Chen, C. Leonardsson, and A. Rezine. Counter-example

guided fence insertion under tso. In TACAS, 2012.
5. S. Adve and K. Gharachorloo. Shared memory consistency models: a tutorial. Computer,

29(12), 1996.
6. S. Burckhardt, R. Alur, and M. Martin. CheckFence: Checking consistency of concurrent

data types on relaxed memory models. In PLDI, 2007.
7. T. Huynh and A. Roychoudhury. A memory model sensitive checker for C#. In Formal

Methods (FM), LNCS 4085. Springer, 2006.
8. M. Kuperstein, M. Vechev, and E. Yahav. Automatic inference of memory fences. In FM-

CAD, 2011.
9. M. Kuperstein, M. Vechev, and E. Yahav. Partial-coherence abstractions for relaxed memory

models. In PLDI, 2011.
10. A. Linden and P. Wolper. An automata-based symbolic approach for verifying programs on

relaxed memory models. In SPIN, 2010.
11. A. Linden and P. Wolper. A verification-based approach to memory fence insertion in relaxed

memory systems. In SPIN, 2011.
12. S. Owens. Reasoning about the implementation of concurrency abstractions on x86-tso. In

ECOOP. 2010.
13. D. Shasha and M. Snir. Efficient and correct execution of parallel programs that share mem-

ory. In Transactions on Programming Languages and Systems, volume 10, pages 282–312.
ACM, 1988.

