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Abstract

In this project the possibility of using a network of magnetometers sensing a
permanent magnet for tracking has been investigated. Both the orientation and
the position of the magnet have been considered. A dipole approximation of the
magnetic field is used to develop two models. One of the models parametrizes
the orientation with the magnetic moment vector, while the other parametrizes
the orientation with a unit quaternion. An extended Kalman filter have been
used to estimate position and orientation.

Several calibration algorithms have been developed to calibrate for sensor errors,
differences in sensor coordinate frame orientations and also for the estimation
of the magnetic moment norm of a permanent magnet. The models have been
tested using an optical reference system for position and orientation estimation.
Initial results are ambiguous and further testing is necessary. One conclusion is
that the model using the magnetic moment vector as orientation parametrization
is less sensitive to the accuracy of the initial guesses of the filter recursions and
also less sensitive to possible model errors.

A mathematical result of the possibility of using a non stationary sensor network
to track the magnet is also given.

Sammanfattning

Ett sensornätverk med magnetometrar har använts för estimering av position och
orientering av en permanent magnet. En dipolapproximation av det magnetiska
fältet från magneten har använts för att härleda två modeller för detta ändamål.
En av modellerna parametriserar orienteringen med magnetens magnetiska mo-
mentvektor. Den andra använder en enhetskvaternion för att representera mag-
netens orientering.

Kalibreringsrutiner har utvecklats som kalibrerar för sensorfel, skillnader i ori-
entering hos sensorerna och även för estimering av normen hos magnetens mag-
netiska momentvektor. Ett optiskt referenssystem för estimering av position och
orientering har använts för att validera modellerna. Resultaten är inte entydiga
och det är tydligt att fler tester behöver göras. En slutsats är att modellen som pa-
rametriserar orienteringen med den magnetiska momentvektorn är mindre käns-
lig för fel i mätdata och startgissningar för filtret. Ett matematiskt resultat om
möjligheten att använda ett rörligt sensornätverk för att estimera position och
orientering hos magneten ges också.
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1
Introduction

Systems for tracking human movement are used for several purposes such as
entertainment, systems like Microsoft Kinect and the Wii gaming console are ex-
amples of this, surveillance and virtual reality. Human motion tracking is also
of interest in many scientific disciplines such as sports science and biomechan-
ics. Human motion is also of particular interest for the field of medicine and
biomedical engineering. There are a lot of pathologies where the moving pattern
of patients are of interest; knowing such patterns alleviates diagnosis, makes it
possible to monitor the condition of a patient to see if it is deteriorating and
also to gain insight in how the pathology affects the dexterity and balance of the
subject. Real-time knowledge of the movement of a patient can also be used for
example to design routines for efficient rehabilitation.

Human motion tracking has traditionally been done using optical measurement
systems. Such systems tend to be expensive and complex, and they require line-
of-sight to the target. Optical systems such as Vicon or Optotrak are considered
to be the golden reference standard of human motion tracking.

More recently magnetic and inertial sensing have been used to track ambulatory
motion in a statistical signal processing framework [Schepers, 2009, Roetenberg,
2006]. Inertial sensing has traditionally been used by the navigation community
for orientation and position estimation for aircraft and ships. The sensors for
such applications are often expensive and unwieldy. With the development of
micro-machined electromechanical system (MEMS) technology however, inertial
and magnetic sensors have become so small and cheap that they are now used in
plenty of products intended for the consumer market such as smart phones and
video game consoles. This development for inertial sensors has made the use of
inertial and magnetic sensing viable for ambulatory applications.
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6 1 Introduction

An inertial measurement unit (IMU) consists of a three dimensional (3D) ac-
celerometer, a 3D gyro and sometimes also a 3D magnetometer. For strap-down
navigation the IMU are strapped to a body. The gyro and the accelerometer of
the IMU can then be used to get the angular velocity and the linear acceleration
of the body. Ostensibly the orientation and the position can then be acquired by
integrating the angular velocity and double-integrating the linear acceleration re-
spectively. When an estimate is integrated the estimation error is integrated with
it however, giving increasingly larger errors leading to so called integration drift.
This is especially a problem for the estimation of position using acceleration mea-
surements since the acceleration signal needs to be integrated twice.

The inertial measurement units used for this work are the Xsens MTw’s shown in
Figure 1.1. Primarily the magnetometers in the sensors have been used. The gyro
and the accelerometer have only been used for the position calibration detailed
in Section 4.3

Figure 1.1: Xsens MTw sensor

1.1 Project Description

In this work a novel approach is used to get reliable position and orientation
(pose) estimates from a moving target. This is done by measuring the magnetic
field from a permanent magnet with a sensor network of magnetometers. By
describing the magnetic field of the magnet as a magnetic dipole field it is pos-
sible to relate the relative position and orientation of the magnet with respect
to the magnetometer network to the magnetometer measurements. The relative
position and the orientation of the magnet can then be reconstructed solving the
inverse problem for example using a statistical filter.
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Two different models of varying complexity are constructed for pose estimation
using a permanent magnet with a sensor network of magnetometers. The models
are validated using an optical reference system. Some calibration routines are
also developed to shape the measurements so that they fit as closely to the models
as possible.

The models are firstly constructed for the setting where the sensor network is sta-
tionary and the coordinate frame of the sensor network is oriented according to
the world coordinate system. Some mathematical results are then proved regard-
ing the possibility of using the same models for a sensor network with a frame
oriented differently than the world frame, and possibly also moving. The moving
tracking system is not tested in practice due to time constraints, and practical
constraints of the optical validation system.

The developed models are intended to be used in the application of human mo-
tion tracking. By fastening the magnet to the hand it is possible to use the models
to track the movement of the hand in a tracking volume around the stationary sen-
sor network. By strapping the sensor network to the chest it should be possible
to track the movement of the hand in an ambulatory setting.

1.2 Related Work

A vast literature exist in the field of human motion analysis see [Zhou and Hu,
2008] for a survey. For an example of a typical modern approach to orientation
estimation of human limbs using both inertial and magnetic measurements with
an extended Kalman filter see [Yun and Bachmann, 2006] and [Roetenberg et al.,
2005]. In [Roetenberg et al., 2007a] a portable position and orientation tracker
is developed. An electric coil is used for the magnetic signal, requiring extra
hardware and access to energy, limiting the time the system can be used however
and to make sense of the magnetic field of the earth in the moving sensor frame
orientation measurements from an IMU are used. In [Roetenberg et al., 2007b]
a sensor network of IMUs is used with the magnetic coil system as an aid to
minimize the energy requirements of the system and still get accurate position
and orientation estimation. The tracking system in [Roetenberg et al., 2007a,b]
models the actuated magnetic source as a dipole, but it does not incorporate a
description of the measurement noise and does not utilize an optimal filtering
framework. It also involves three actuated orthogonally mounted source coils
adding to the complexity of system.

Building on this work in [Schepers and Veltink, 2010, Schepers et al., 2010] some
of these issues are addressed. In [Schepers and Veltink, 2010] a stochastic mag-
netic measurement model is developed for use in an optimal filtering framework
with just one active magnetic source coil. In [Schepers et al., 2010] a system that
fuses inertial and magnetic measurements using optimal filtering is developed
with the model from [Schepers and Veltink, 2010]. Moreover it addresses the en-
ergy problem by minimizing the amount of magnetic actuations needed using an
adaptive actuation framework.
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The idea of using a dipole model for the magnetic field of a permanent magnet
for localization and tracking appears in [Birsan, 2003], where the application is
to detect and track ships in shallow waters and near shores where traditional
acoustic methods for this purpose is not as applicable. Several nonlinear filters
are evaluated for the tracking of a permanent magnet but only on data simulated
from a dipole model with added noise. In [Callmer et al., 2010] a dipole model
is used for sensor localization under water. A dipole model of a ferromagnetic
object is also used in [Wahlström, 2013] for the detection and tracking of metallic
targets, particularly cars. Included there is also a discussion of the validity of the
model for a static sensor network; one conclusion is that at least two sensors are
needed for full observability of both position and orientation of the permanent
magnet.

1.3 Comments

The orientation estimation of the filters developed in this project is not tested
with ground truth measurements due to time limitations. Such ground truth
measurements are available however and such a comparison could be made in the
future. Also note that the position calibration algorithm of the sensors outlined
in Section 4.3 is wholly the work of one of my supervisors Henk Kortier. Both
the idea and the implementation are his. A future publication of the algorithm is
planned.



2
Theoretical Preliminaries

Target tracking is usually done using a statistical filter. A statistical filter is a
recursive algorithm that uses information about the physical behaviour of a sys-
tem and the measurements of the system to reconstruct its underlying physical
quantities. The information of the behaviour of the system can often be described
mathematically as a state space model. A state space model is an abstract descrip-
tion of a system consisting of two equations relating the input, the noise, and the
output of the system with its underlying physical variables, traditionally called
states. One equation describes the dynamics of the system, how the states change
in time, by a first order differential equation where the derivative of the state vec-
tor is related to the state vector, the input and the system noise; this relation is
called the dynamical equation, or the system equation. The other equation relates
the output to the states and possible measurement noise; this equation is called
the measurement equation. Considering only cases where the two equations have
explicit expressions a continuous state space model is written

ẋ(t) = f (x(t), w(t), u(t), θ, t) (2.1a)

y(t) = h(x(t), e(t), u(t), θ, t) (2.1b)

where x(t) is a vector of the state variables, w(t) and e(t) are independent stochas-
tic variables describing the system noise and the measurement noise respectively,
u(t) is a known input, θ is a vector of parameters and t as usual denotes time.

In filtering applications physical quantities of the system are measured by sen-
sors. In this setting the measurement equation (2.1b) describes how the actual
physical measurements are related to the states of the system. The filter then
uses this relation to reconstruct the states by predicting the measurements and
then comparing these predictions with the actual measurements. In a practical
situation the sensors usually collect samples of some quantities of the system, i.e.
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they work in discrete time. The dynamical equation is often given in continu-
ous time and thus needs to be discretized to discrete time for use in a computer-
implemented filter. In most applications the filtering problem can be greatly
simplified by assuming that the system and measurement noise is additive and
Gaussian. Also for the purposes of tracking the inputs to the system is usually un-
known and modelled as Gaussian stochastic processes and the time dependency
of the system and measurement equations can be dropped. Considering all this
the typical state space model for a tracking-problem is on the form

xk+1 = f (xk) + Gkwk , wk ∈ N (0, Q) (2.2a)

yk = h(xk) + ek , ek ∈ N (0, R) (2.2b)

where f ( ) and h( ) are nonlinear functions and Gk is a possibly time-varying
matrix.

2.1 Motion Models for Tracking

The typical states for a tracking system are position, linear velocity, linear acceler-
ation, orientation and angular velocity. In this work only position, linear velocity,
orientation and angular velocity are used. Denote position by p(t) and linear ve-
locity by v(t). Nothing is known about the velocity of the system so the dynamics
of the velocity is modelled as random walk. This give the following dynamic
model (

ṗ
v̇

)
=

(
0 I
0 0

)
︸ ︷︷ ︸

A

(
p
v

)
+

(
0
1

)
︸︷︷︸
B

wv(t), wv(t) ∈ N (0, Qv) (2.3)

Note that An = 0, n ≥ 2. It is well known, see for example [Gustafsson, 2010,
Törnqvist, 2008], that the discrete time counterpart of this continuous dynamical
system, assuming zero order hold (ZOH) sampling i.e. that the noise-input is
constant over a sampling interval t = kT < τ < t + T = (k + 1)T , is given by(

pk+1
vk+1

)
= F

(
pk
vk

)
+ Gwk , wvk ∈ N (0, Qv) (2.4)

where

F = exp(AT ) = I + AT +
(AT )2

2!
+

(AT )3

3!
+ · · · = I + AT =

=
(
I T I
0 I

)
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and

G =

T∫
0

exp(Aτ)B dτ =
(
IT +

AT 2

2!
+
A2T 3

3!
+ · · ·

)
B =

=
(
IT +

AT 2

2!

)
B =

(
IT IT 2/2
0 IT

) (
0
1

)
=

(
IT 2/2
IT

)
This kind of motion model is called a constant velocity model. Let m be a state
with dynamics modelled as random walk, i.e.

ṁ = wm(t), wm(t) ∈ N (0, Qm) (2.5)

Analogously to the above calculations the discrete time model using ZOH is given
by

mk+1 = mk + T wmk , wmk ∈ N (0, Qm) (2.6)

2.2 Linear Estimation

The filtering problem is to find the best estimate of the state xk at the time k
based on all measurements up to and including the time-instant k, y1:k . Denote
the estimate of the state at time k given measurements up until the time instantm
by x̂k|m. Similarly denote the covariance of this estimate Pk|m. There exist only a
few analytical solutions for the filtering problem. The most important analytical
solution is the linear filter that gives the estimate x̂k|k with the minimum variance
for a linear time-discrete Gaussian system with Gaussian prior

xk+1 = Fkxk + Gu,kuk + Gw,kwk , wk ∈ N (0, Qk)

yk = Hkxk + Dkuk + ek , ek ∈ N (0, Rk)

x0 ∈ N (x̂1|0, P1|0)

where, wk and ek are uncorrelated and uk is the system input as usual. The so-
lution to the linear filtering problem for this system is the well-known Kalman
filter given in Algorithm 1. For more information see for example [Gustafsson,
2010, Kailath et al., 2000] The minimum-variance linear filter has an analytical
solution for a linear Gaussian state space model because a linear combination of
Gaussian variables is also a Gaussian variable, see [Gut, 2009] for further infor-
mation.

2.3 The Extended Kalman Filter

For the nonlinear model 2.2 there is no analytical solution to the optimal filtering
problem. A common solution is to linearize the model using a first order Taylor
expansion and then use the Kalman filter. Given an estimate x̂ of the state the
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Algorithm 1 The Kalman Filter
Initialize

x̂1|0 = E(x0)

P1|0 = Cov(x0)
Measurement update

Sk = HkPk|k−1H
T
k + Rk (2.7a)

Kk = Pk|k−1H
T
k S
−1
k (2.7b)

εk = yk − Hk x̂k|k−1 − Dkuk (2.7c)

x̂k|k = xk|k−1 + Kkεk (2.7d)

Time update
x̂k+1|k = Fk x̂k|k + Gu,kuk (2.7e)

Pk+1|k = FkPk|kF
T
k + Gv,kQkG

T
v,k (2.7f)

first order Taylor expansion of the model is given by

xk+1 ≈ f (x̂k) + f ′(x̂k)(xk − x̂k) + Gkwk = (2.8a)

= f ′(x̂k)xk + f (x̂k) − f ′(x̂k)x̂k + Gkwk (2.8b)

yk ≈ h(x̂k) + h′(x̂k)(xk − x̂k) + ek = h′(x̂k)xk + h(x̂k) − h′(x̂k)x̂k + ek (2.8c)

where h′ and f ′ denotes the Jacobians of the functions f and h respectively and
wk ∈ N (0, Q) and ek ∈ N (0, R) are uncorrelated. The extended Kalman filter is
obtained by linearizing in the recursion around the current estimate, x̂k|k for the
time-update and x̂k|k−1 for the measurement update. The constant terms f (x̂k|k)−
f ′(x̂k|k)x̂k|k and h(x̂k|k−1)− h′(x̂k|k−1)x̂k|k−1 can be seen as inputs to the system. The
resulting recursions are given in Algorithm 2.

Algorithm 2 The Extended-Kalman Filter
Initialize

x̂1|0 = E(x0)

P1|0 = Cov(x0)
Measurement update

Sk = h′(x̂k|k)Pk|k−1h
′(x̂k|k)

T + Rk (2.9a)

Kk = Pk|k−1h
′(x̂k|k)

T S−1
k (2.9b)

εk = yk − h′(x̂k|k)x̂k|k−1 − (h(x̂k|k−1) − h′(x̂k|k−1)x̂k|k−1) = (2.9c)

= yk − h(x̂k|k−1) (2.9d)

x̂k|k = xk|k−1 + Kkεk (2.9e)

Time update
x̂k+1|k = f ′(x̂k|k)x̂k|k + f (x̂k|k) − f ′(x̂k|k)x̂k|k = f (x̂k|k) (2.9f)

Pk+1|k = f ′(x̂k|k)Pk|kf
′(x̂k|k)

T + GkQkG
T
k (2.9g)
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The first order Taylor expansions in 2.8 neglect a second order rest-term. This
approximation works well as long as either the model is almost linear, so that
the Hessians of the functions f and h are close to zero, or if the model is very
accurate, the initial guesses are good and the signal-to-noise ratio is high. The
extended Kalman filter is more or less an ad-hoc solution. Very few results about
convergence or theoretical bounds on the performance of the filter exists. For
more details on this see for example [Gustafsson, 2010, Kailath et al., 2000].

2.4 A Brief Note on 3D Orientation

In tracking problems it is often needed to find a parametrization that describes
the relation between a vector given in two different coordinate systems. Denote
the vector v given in the coordinate frame Ψ a by va. Let Ψ b be another frame
with the same origin as Ψ a. Let Rab be a transformation such that

va = Rabvb (2.10)

The transformation Rab represents the orientation of the frame Ψ b with respect
to the frame Ψ a. The question is how to best parametrize this transformation. If
the orientation of the b-frame with respect to the a-frame is changing in time the
complexity of the kinematics of the parametrization also needs to be considered.
A first attempt to represent the orientation could be to use a rotation matrix, i.e.
a matrix in the special orthogonal group Rab ∈ SO3, where

SO3 ∈ {R ∈ R3×3 : RRT = I ∧ det(R) = 1}

To parametrize a rotation matrix at least six parameters are needed. This fact
along with the need to ensure the orthogonality constraints makes this parametriza-
tion practically infeasible. A more convenient parametrization is given by the fact
that any rotation matrix can be factorized to three matrices where each matrix
represents how one of the principal axes of the b-frame is rotated with respect
to the principal axis of the a-frame. Such a matrix is a function of the rotation
angles; the so called Euler angles. For example a rotation taken first an angle ψ
around the z-axis, then an angle θ around the y-axis and lastly an angle φ around
the x-axis gives the so called aerospace sequence

Rab = R(xb, φ)R(yb, θ)R(zb, ψ)

For complete derivations and explicit expressions of the matrices see [Kuipers,
2002]. This parametrization uses three parameters and the kinematic equations
are relatively simple. The kinematic equations do have singularities at θ = ±π2 ,
see [Gustafsson, 2010], however making also this parametrization impractical.

The standard parametrization is to use the so-called quaternions. A quaternion
can be represented by a four component vector q = ( q0 q1 q2 q3 )T . The key idea
is that a rotation of a vector vb can be written as the ’sandwich’-product between
the quaternion representation of the vector v̄ = ( 0 v )T and a unit quaternion

qab v̄(qab)∗ (2.11)
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where q∗ is the conjugate quaternion of q and qT q = 1. For more information
and the proper definition of the quaternion and operations on quaternions see
[Kuipers, 2002] as a standard reference. By using the definition for quaternion
multiplication (2.11) can be written as an orientation matrix in the quaternion
qab, let for simplicity qab = q,

Rab(q) =


q2

0 + q2
1 − q

2
2 − q

2
3 2q1q2 + 2q0q3 2q1q3 − 2q0q2

2q1q2 − 2q0q3 q2
0 − q

2
1 + q2

2 − q
2
3 2q2q3 + 2q0q1

2q1q3 + 2q0q2 2q2q3 − 2q0q1 q2
0 − q

2
1 − q

2
2 + q2

3

 (2.12)

Let ωbab = ( ωx ωy ωz ) be the angular velocity of orientation between the b-frame
and the a-frame given in the b-frame. The dynamics of the quaternion is then
given by

q̇ab =
1
2


0 −ωx −ωy −ωz
ωx 0 ωz −ωy
ωy −ωz 0 ωx
ωz ωy −ωx 0

︸                          ︷︷                          ︸
S(ωbab)


q0
q2
q2
q3

 = (2.13a)

=
1
2

−q1 −q2 −q3
q0 −q3 q2
−q2 q1 q0

︸                ︷︷                ︸
S̄(qab)

ωxωy
ωz

 (2.13b)

A closed form discretized version of this differential equation can be found using
ZOH sampling, see for example [Törnqvist, 2008].



3
Modelling

To get an estimation of the pose of the magnet a state space model modelling both
the dynamics of the magnet and the measurements of the magnetic field done by
the magnetometers is needed. The magnetic field of the magnet can be approxi-
mated with a dipole field if the distance from the magnet to the magnetometers
is far enough [Wahlström, 2013]. In Definition 3.1 a needed help function is de-
fined
3.1 Definition.

J (r) ,
1
||r ||5

(
3rrT − ||r ||2I

)
Let r̃ i be the relative position of the magnet and the ith magnetometer and m the
magnetic moment of the magnet at one instance. The dipole field measured from
the ith magnetometer at that instance is then given by

J(r̃ i)m (3.1)

The actual magnetic field sensed by the magnetometer is a superposition of this
field and a static field consisting of the magnetic field of earth possibly disturbed
by magnetic materials in the vicinity of the magnetometer. If measurements are
done indoors such disturbances will always be present. Denote this static field
by B. The measurement y ik from the ith sensor at time k is given by (3.1) along
with the additive bias term

y ik = B + J(r̃ ik)mk (3.2)

The magnetic moment vector m of the magnet is only dependent on the orien-
tation of the magnet. The orientation can thus be parametrized by the moment
vector. The dipole field is invariant to rotation around the axis of this moment

15
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vector, so only 2 degrees of freedom DoF are observable. In [Wahlström, 2013]
it is showed that to have full observability of position, linear velocity and the
two DoF of the orientation of the magnet at least two magnetometers are needed.
Magnetometers have a threshold for how strong a magnetic field they can mea-
sure before they are saturated. Therefore to ensure full observability and to make
sure that the system can handle tracking of the magnet even when the magnet is
close to the sensor network four magnetometers are used. In this way the filter
can just discard measurements from a magnetometer if the magnet is too close to
it and still have observability.

3.1 The Relaxed Model

A sketch of the situation to be modelled is shown in Figure 3.1. Nothing is known
about the velocity of the magnet so a constant velocity model as outlined in Sec-
tion 2.1 is used for the position and linear velocity of the magnet. In this model
orientation is parametrized with the moment vector. The dynamics of the mo-
ment vector is modelled as random walk. Introduce the state vector

xk =
(
rTk vTk mTk BTk

)T
(3.3)

where rk is the position and vk is the linear velocity of the magnet, mk is the
magnetic moment vector of the magnet and Bk is the additive bias field. The

Ψ s

mk

rk

Figure 3.1: The sensor network with defined frame and the magnet

motion model in this case is linear and, using (2.4) and (2.6), is given by

xk+1 =


I T I 0 0
0 I 0 0
0 0 I 0
0 0 0 I

︸             ︷︷             ︸
F

xk +


T 2

2 I 0 0
T I 0 0
0 T I 0
0 0 T I

︸              ︷︷              ︸
G


wvk
wmk
wBk

 (3.4)
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where T is the sampling time, wvk ∈ N (0, Qv), wmk ∈ N (0, Qm) and wBk ∈ N (0, QB)
are all uncorrelated and belonging to the linear velocity, magnetic moment and
static field states respectively. If the sensor board is stationary the variance of the
noise should be zero; or very close to zero for computational purposes.

For the case of a stationary sensor network the coordinate system of the sensor
board, call it Ψ s, can be seen as the world frame. The position of one of the
magnetometers is defined as the origin and the position of the others are given
related to this magnetometer. Let the position of the ith magnetometer in the
coordinate system Ψ s be θi . Using (3.2) the measurement model then becomes

y ik = Bk + J(rk − θi)mk︸                ︷︷                ︸
hi (xk )

+eik i = 1 . . . 4, eik ∈ N (0, Qi) (3.5)

The measurement model is nonlinear so no analytical optimal filtering solution
exists. Thus the extended Kalman filter given in Algorithm 2 is used. The dy-
namic model is already linear so

d(xk+1)
dxk

= F (3.6)

For the Jacobian of the measurement function the following derivatives are needed
see [Wahlström, 2013], as before let r̃k = rk − θi

∂hi(xk)
∂rk

=
3
||r̃k ||5

(
(r̃k ·mk)I + r̃km

T
k − ||r̃k ||m

T
k + mk r̃

T
k − 5

(r̃k ·m)
||r̃k ||2

)
(3.7a)

∂hi(xk)
∂vk

= 0 (3.7b)

∂hi(xk)
∂mk

= J(rk) (3.7c)

∂hi(xk)
∂Bk

= I (3.7d)

The Jacobian for hi(xk) is given by

∂hi(xk)
∂xk

=
(
∂hi (xk )
∂rk

∂hi (xk )
∂vk

∂hi (xk )
∂mk

∂hi (xk )
∂Bk

)
(3.8)

Finally the Jacobian of the measurement function needed for Algorithm 2 is given
by

h′(xk) =



∂h1(xk )
∂xk

∂h2(xk )
∂xk

∂h3(xk )
∂xk

∂h4(xk )
∂xk


(3.9)
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3.2 The Constrained Model

The relaxed model does not use all the information there is about the system.
The norm of the magnetic moment of the permanent magnet is constant. The
only change in the value of the moment vector mk depends on the orientation
of the magnet. Define a magnet frame Ψm where the z-axis is pointing in the
direction of the moment vector. The magnetic moment vector in this frame is
then given by

mm = ||m||

0
0
1

 (3.10)

Using (2.10) the moment vector in the sensor frame is given by

ms = Rsmmm = ||m||Rsm
0
0
1

 (3.11)

where Rsm is the orientation of the m-frame with respect to the s-frame. Fol-
lowing the discussion in Section 2.4 this orientation is parametrized with a unit
quaternion q : ||q|| = 1. The relation in (3.11) then becomes

ms = ||m||Rsm(q)

0
0
1

 (3.12)

where Rsm(q) is given by (2.12). The situation is illustrated in Figure 3.2. Note
that for a stationary and level sensor network ms is the same quantity as m in
Section 3.1. The state vector used for this model is

Ψm

mm

Ψ s
r(t)

Figure 3.2: The sensor network with defined sensor board frame and magnet
frame
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x(t) =
(
r(t)T v(t)T B(t)T q(t)T ω(t)T

)T
(3.13)

where r(t), v(t) and B(t) are the continuous counterparts to the states in (3.3), q(t)
is the quaternion describing the orientation of the magnet frame with respect to
the sensor board frame and ω is the angular velocity of this orientation. Note that
the states have to be continuous at this point so that (2.13a) can be used. Thus
the continuous version of the constant velocity model, found in (2.3), has to be
used on position and linear velocity, while the continuous random walk model,
found in (2.5), is used on the static field vector B(t) and the angular velocity ω.
Collecting all these models in a continuous state space model finally yields

ẋ =


0 I 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1

2S(ω) 0
0 0 0 0 0

 x︸                          ︷︷                          ︸
f (x)

+


0 0 0
I 0 0
0 I 0
0 0 0
0 0 I

︸      ︷︷      ︸
B

w
v(t)

wB(t)
wω(t)

︸   ︷︷   ︸
w

(3.14)

where wv(t) ∈ N (0, Qv), wB(t) ∈ N (0, QB) and ww(t) ∈ N (0, Qw) are all uncorre-
lated. Note that the input noise matrix B should not be confused with the bias
magnetic field state B(t).

This model is nonlinear and continuous so to use it in a computer implemented
filter it needs to be discretized and linearized. Optimally the discretization should
be done first. This can only be done if there exists a solution to the sampling prob-
lem, discussed in Section 2.1, however, and to the best of the authors knowledge
such a solution does not exist for this model. Thus the model is linearized and
then discretized. The problem with this is that the linearization error is propa-
gated in the state update as well as the covariance matrix update. For a discussion
on this see [Gustafsson and Isaksson, 1996].

Using (2.13) the following derivatives can be found

∂q̇

∂q
=

1
2
S(ω) (3.15)

∂q̇

∂ω
=

1
2
S̄(q) (3.16)

Using this, and the fact that the linear part of the Jacobian is not affected by
differentiation, the Jacobian of f ( ) is found to be

f ′(x̂) =


0 I 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1

2S(ω̂) 1
2 S̄(q̂)

0 0 0 0 0

 (3.17)
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A first order Taylor expansion of (3.14) around some estimate gives the linearized
model

ẋ ≈ f (x̂) + f ′(x̂)(x − x̂) + Bw = f ′(x̂)︸︷︷︸
F

x + f (x̂) − f ′(x̂)x̂︸          ︷︷          ︸
u

+Bw(t) (3.18)

The constant part is treated as a known system input and is given by

u = f (x̂) − f ′(x̂)x̂ =


0
0
0
0

1
2 S̄(q̂)ω̂

 (3.19)

The discrete model is now given by following the discretization procedure in
Section 2.1

xk+1 = Fkxk + G̃ku + Gkwk , wk ∈ N (0, Q) (3.20)

where

Fk = exp (f ′(x̂)T ) (3.21)

G̃k =

T∫
0

exp (f ′(x̂)τ) dτ (3.22)

and

G = G̃kB (3.23)

The matrices Fk and G̃k can be computed conveniently by using the fact that

exp
(
f ′(x̂)T IT

0 0

)
=

(
Fk G̃k
0 I

)
(3.24)

The linearization is done in the Kalman filter loop so x̂ = x̂k|k . Let as before θi
be the position of the ith sensor in the coordinate frame Ψ s. Let qk = q for conve-
nience. Considering the relation given in (3.12), and using (2.12), a measurement
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at time k is given by

y ik = Bk + J(rk − θi)Rsm(q)||m||

0
0
1

 + eik = (3.25)

= Bk + ||m||J(rk − θi)

 2q1q3 − 2q0q2
2q2q3 + 2q0q1
q2

0 − q
2
1 − q

2
2 + q2

3

︸                  ︷︷                  ︸
D

= (3.26)

= Bk + ||m||J(rk − θi)D︸                    ︷︷                    ︸
hi (xk )

+eik , i = 1 . . . 4 eik ∈ N (0, Ri) (3.27)

where ek is uncorrelated with wk . The Jacobian of the measurement function with
respect to position rk is essentially the same as in (3.7a) if mk is substituted with
D. The derivative of hi with respect to ω is obviously zero. The derivative of
hi(xk) with respect to the quaternion is given by

∂hi(xk)
∂q

= J(rk − θi)

−2q2 2q3 −2q0 2q1
2q1 2q0 2q3 2q2
2q0 −2q1 −2q2 2q3

 (3.28)

The Jacobian to be used in Algorithm 2 can now be constructed analogously to
(3.8) and (3.9).

To represent a rotation the quaternion must be a unit quaternion as noted in
Section 2.4. This constraint is included as a hard constraint in the measurement
update so that

q
f
k|k =

q
f
k|k

||qfk|k ||
(3.29)

where qfk|k is the filter estimate of the quaternion. The constraint can also be
implemented as a soft constraint using an additional measurement equation

q∗ = ||q||2 + e∗i , e∗i ∈ N (0,diag(r)) (3.30)

The pseudo measurement q∗ = 1 is then used. The good thing about this is that
the constraint is included in the covariance update, the bad thing is that the con-
straint is not guaranteed at all times.

3.3 Toward a Non Stationary Sensor Network

The models in the past sections have all assumed a stationary sensor network, so
that the sensor frame Ψ s aligned with the world frame Ψw. Relation (3.2) is only
valid if this assumption is correct. If this assumption is not correct the sensor i
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will at time k measure a rotated field

y ik = Rsw

B + J(rwk,i)R
wm

 0
0
||m||


 + eik , eik ∈ N (0, Ri) (3.31)

where rk,i = rk − θi . To proceed the following lemma is needed

3.2 Lemma. Given two coordinate frames Ψ a and Ψ b sharing origin, and the
rotation matrix Rab between the two frames, the following holds:

J(ra)Rab = RabJ(r
b) (3.32)

Proof: The rotation matrix Rab is orthogonal, i.e. it satisfies

RTabRab = I3 (3.33)

The rotation matrix will therefore also preserve norms. The position vector can
be transformed between the frames according to Rabrb = ra. Using these relations
the left hand side of equation 3.32 can be rewritten as

J(ra)Rab = J(Rabr
b)Rab = {isometric transformations preserve norms} =

=
1
||rb ||5

(
3Rabr

b
(
Rabr

b
)T
− ||rb ||2I3

)
Rab

=
1
||rb ||5

(
3Rabr

b(rb)T RTabRab − ||r
b ||2Rab

)
= {equation 3.33} =

= Rab
1
||rb ||5

(
3rb(rb)T − ||rb ||2I3

)
= RabJ

(
rb

)

Now (3.31) can be manipulated as follows

y ik = Rsw

Bw + J(rwk,i)R
wm

 0
0
||m||


 + eik = {B̃ = RswBw} = (3.34)

= B̃ + RswJ(rwk,i)R
wm

 0
0
||m||

 + eik = {Lemma 3.2} = (3.35)

= B̃ + J(rsk,i)R
swRwm

 0
0
||m||

 + eik = (3.36)

= B̃ + J(rsk,i)R
sm

 0
0
||m||

 + eik , eik ∈ N (0, Ri) (3.37)

where the well-known relation RswRwm = Rsm has been used. Equation (3.37)
implies that the models in Section 3.1 and 3.2 can be used in the non stationary
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case, but the orientation and position of the magnet will then be given relative
the moving sensor board frame.

For a non stationary network B̃k is used in the state vector instead of Bk . Unlike
Bk the state B̃k is time-varying since the static field is measured from different
orientations when the sensor board is moving around. This means that the sys-
tem noise input must have a larger covariance compared to the state Bk for the
stationary network so that B̃k is allowed to change.





4
Calibration

The models developed in Chapter 3 assumes that the bias field B is exactly the
same viewed from the different magnetometers. Normally the magnetometers
will measure different values for the field due to various imperfections in the
sensing. There are numerous reasons for why the magnetometers would give
different values of the same measured quantity. Therefore it is imperative that
the magnetometers are calibrated before the measurements are used. In this work
several different anomalies in the sensor measurements will be corrected for.

Errors in the sensor readings The sensors can have physical errors that are spe-
cific to each sensor. These errors include

• Non-orthogonality of the sensor axes

• Differences in sensitivity between the sensor axes

• Zero bias in the sensor readings.

Gain errors between the sensors The sensors could have a difference in gain
reading with respect to each other for various reasons.

Difference in orientation of the sensor frames The measurement models only
make sense if the orientation of the sensor frames are aligned.

4.1 Gain and Sensor Reading Errors

The problem of calibrating for gain and sensor errors are treated extensively in
[Hol, 2011] and [Kok et al., 2012]. The calibration for the magnetometers in this
work basically follows the calibration in [Kok et al., 2012] up until the involve-
ment of alignment between magnetometer and accelerometer frames.

25
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If the sensor board is rotated without any permanent magnets present the mea-
sured magnetic moment from one of the sensors given in the sensor frame, ms,
should be related to the magnetic moment in the world frame, call it mw, as

ms = Rswmw (4.1)

A data set measured from a rotated sensor network should be given by {ysm,k}
K
k=1 =

{msk}
K
k=1. If this is indeed the case equation (4.1) implies that this data set is lying

on a sphere with a radius of the norm of the magnetic moment in the w-frame.
Errors in gain and sensor readings can be modelled as an affine transformation
of the magnetic moment:

ysk = Dmbk + o + ek (4.2)

where D ∈ R3×3 and the noise ek ∈ N (0, R) is included for the sake of complete-
ness. This means that the measurements from the rotated sensor platform will
be situated on an ellipse instead of a sphere. The calibration procedure consist
of finding an estimate of {D, o} and doing the inverse affine transformation on
the measurements. This is done by finding the optimal mapping from the ellipse
to the aforementioned sphere using a least-squares method. For further details
consult [Kok et al., 2012] and [Hol, 2011].

4.2 Frame Differences

If measurement noise is not considered any differences that possibly still exist
between the readings of the sensors can be modelled as a general transformation
between the measurements from the various sensors, and the difference in orien-
tation between the sensors can be modelled as a rotation between the measured
values, i.e. the values from the jth sensor can be written in terms of the values of
the ith sensor according to

yj = D̃Rjiyi , Gjiyi (4.3)

Consider the transformation from the ith sensor to the first sensor. Let the 9
parameters in the G1i matrix be represented by the vector θi . Using the well-
known formula

vec(ABC) = (CT ⊗ A) vec(B) (4.4)

equation (4.3) for i = 1 can be written

y1 = G1iyi = IG1iyi = {vec operator does not change vectors} = (4.5)

= vec(IG1iyi) = {equation 4.4} = (yTi ⊗ I3) vec(G1i) = (yTi ⊗ I3)θi (4.6)

For k samples consider the matrices of samples

Y1 =
(
y1

1 · · · y1
k

)
Yi =

(
y i1 · · · y ik

)
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Using these matrices the relation corresponding to (4.6) for k samples can be
written

vec(Y1) = (Y Ti ⊗ I3)︸     ︷︷     ︸
H

θi

and the parameters of the transformation matrix can be found using the normal
equations

θi = (HTH)−1HT vec(Y1)

normally solved using matrix factorization methods. After the matrices G1i has
been acquired all data sets can be transformed to the frame orientation of the
first sensor by transforming the data with the inverse operators. An example of
measurement data prior to calibration can be found in Figure 4.1. The same data
after calibration is shown in Figure 4.2. Note that especially sensor 3 has a null
shift prior to calibration. This null shift is gone after the calibration.

Figure 4.1: Projection to the xy-plane of measurement data with a rotated
sensor board without a magnet present prior to calibration

4.3 Position Calibration

For a good filter performance it is important to have the positions of the sensors
in the sensor frame with good accuracy. The magnetometers used for the mea-
surements in this work are just one component of an inertial measurement unit,
i.e. they come bundled with a gyro and an accelerometer. The gyro measure angu-
lar velocity, usually with some bias, while the accelerometer measure the linear
acceleration. In this work these measurements are only used to calibrate for sen-
sor positions. Consider two of the sensors with measurement frames Ψ s1 and Ψ s2
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Figure 4.2: Projection to the xy-plane of measurement data with a rotated
sensor board without a magnet present after calibration

respectively. The two sensors are fixed on the sensor board, i.e. they are placed
on a rigid body. Let ω and α be the angular velocity and angular acceleration
of the rigid body. Furthermore let as1 and as2 be the linear acceleration of the
two sensors, Rs1s2 the rotation matrix between the two frames as usual and r the
relative position of the sensors. Calibrating for the relative position between the
two sensors can then be done by using the formula for acceleration of two points
fixed on a rigid body

as1 = Rs1s2as2 + Rs1s2 ((ω) × (ω × r)) + α × r (4.7)

The quantities as1 and as2 are measured by the accelerometer of the respective
sensor whileω is measured by the gyro of both sensors. Numerical differentiation
of ω gives α and then p and Rs1s2 can be solved for using for example a Gauss-
Newton algorithm. This procedure can be repeated to get the relative position
from one of the sensors with respect to all the others. The position of this sensor
can then be treated as the origin in the sensor network. Note that the possible
gyro bias has to be accounted for beforehand and that (4.7) assumes that the
accelerometer and the gyro of the sensors share origin.

4.4 Magnetic Moment Norm

To use the model developed in Section 3.2 the value of the norm of the magnetic
moment of the permanent magnet is needed. In some cases this value is tabu-
lated and thus easily obtainable, but in other cases it needs to be measured from
the magnet. One way of acquiring the value of the magnetic moment norm is to
use a modified version of the model detailed in Section 3.2 where as many DoF
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as possible are removed. To this end an experiment was performed where the
magnet was moved around on a table to remove one DoF in the z-direction and
two DoF for the orientation. The height variable was still included as a state but
with a very small noise input variance, in the order of the machine constant. The
magnet was positioned on the table so that the magnetic moment norm, and thus
the z-axis of the magnet frame, was pointing upwards. Therefore the substitution
Rsm(q) = I could be made in (3.25). Also the bias field was measured individu-
ally for each sensor and then subtracted from the measurements with the magnet
present eliminating the need for the bias state and sensor calibration. Consid-
ering all this and using random walk, with a very small input noise covariance,
on the magnetic moment norm ||m|| the following 7-dimensional state vector was
used

xk =
(
rTk vTk ||m||

)T
(4.8)

along with the state space model

xk+1 =

I T I 0
0 I 0
0 0 1

 xk +


T 2

2 I 0
T I 0
0 T


(
wvk
wmk

)
(4.9)

y ik = ||m||J(rk − θi)

0
0
1

 + eik , eik ∈ N (0, Ri) (4.10)

where as usual wvk ∈ N (0, Qv), wmk ∈ N (0, Qm) and eik are uncorrelated.

4.5 Sensor Covariance Estimation

The noise distribution eik of the sensors is assumed to be zero mean white Gaus-
sian noise and therefore fully described by its covariance matrix, i.e. eik ∈ N (0, Ri).
The covariance matrix of the ith sensor can be estimated from measurements
{y ik}

K
k=1 done without any magnet present by the sample covariance

R̂i =
1

K − 1

K∑
k=1

(
y ik − ȳ

i
) (
y ik − ȳ

i
)T

ȳ i =
1
K

K∑
k=1

y ik
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This was done for each experiment since the same 4 sensors were not always used.
One of the estimated covariance matrices is given in (4.11).

10−5



0.2051 −0.0215 0.0064 0.0419 −0.0129 0.0223 0.0387 −0.0158 0.0270 0.0471 −0.0158 0.0178
−0.0215 0.1440 −0.0036 −0.0130 0.0162 −0.0014 −0.0142 0.0207 −0.0077 −0.0116 0.0156 −0.0056
0.0064 −0.0036 0.2928 0.0220 0.0026 0.0234 0.0306 0.0000 0.0071 0.0176 0.0003 0.0206
0.0419 −0.0130 0.0220 0.1989 −0.0171 0.0021 0.0388 −0.0142 0.0279 0.0453 −0.0126 0.0195
−0.0129 0.0162 0.0026 −0.0171 0.1473 −0.0026 −0.0139 0.0170 −0.0087 −0.0139 0.0086 −0.0034
0.0223 −0.0014 0.0234 0.0021 −0.0026 0.4886 0.0274 0.0067 0.0264 0.0277 −0.0091 0.0204
0.0387 −0.0142 0.0306 0.0388 −0.0139 0.0274 0.1967 −0.0244 −0.0019 0.0383 −0.0128 0.0169
−0.0158 0.0207 0.0000 −0.0142 0.0170 0.0067 −0.0244 0.1649 −0.0183 −0.0159 0.0124 0.0001
0.0270 −0.0077 0.0071 0.0279 −0.0087 0.0264 −0.0019 −0.0183 0.4226 0.0241 −0.0045 0.0082
0.0471 −0.0116 0.0176 0.0453 −0.0139 0.0277 0.0383 −0.0159 0.0241 0.2223 −0.0200 −0.0012
−0.0158 0.0156 0.0003 −0.0126 0.0086 −0.0091 −0.0128 0.0124 −0.0045 −0.0200 0.1489 −0.0096
0.0178 −0.0056 0.0206 0.0195 −0.0034 0.0204 0.0169 0.0001 0.0082 −0.0012 −0.0096 0.3063



(4.11)
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Validation

When designing a pose estimation system meant for practical use it is impera-
tive to have a measure of the accuracy and performance of the system. To get
such a measure ground truth data is needed, i.e. the actual correct position
and orientation of the target, in this case the permanent magnet. Ground truth
measurements can be acquired using an optical 3D-image system such as the vi-
sualEyez system shown in Figure 5.1. This chapter will show the results from
such a ground truth experiment and also give a detailed explanation of how the
data was gathered and processed.

Figure 5.1: Three visualEyez system cameras
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5.1 Acquiring Ground Truth Measurements

The visualEyez system consists of one or multiple 3D-cameras sensing light-emitting
led markers. The system tracks the position of the led markers. By having three
or more markers a frame can be constructed, where subtracted position mea-
surements become basis vectors in the frame. The experiment is performed by
putting the magnet on a separate board. The markers are placed on this board so
that they define a frame for the board. Call this frame of the magnet board Ψmb.
Markers are also placed on the sensor board such that another frame is defined,
call this frame of the sensor board Ψ sb. The situation is illustrated in Figure 5.2.
The position estimates from the visualEyez system is given in the frame of the

Ψ sb

Ψmb

Figure 5.2: The magnet-board and sensor board with markers and corre-
sponding frames defined

cameras. Consider the situation in Figure 5.3. The various quantities one imme-
diately gets from the visualEyez system is summarized in Table 5.1 The estimate
given by the magnetic tracking system is the position of the magnet in the sensor-
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pcammb Position of the magnet-board given in the camera frame
pcamsb Position of the sensor board given in the camera frame
Rcammb Orientation of the magnet-board frame with respect to the camera frame
Rcamsb Orientation of the sensor board frame with respect to the camera frame

Table 5.1: Data given by the visual system

frame psm. Given that the position of the magnet in the frame of the magnet board,
pmbm , and that the position of the origin of the sensor frame Ψ s in the frame of the
sensor board, psbs are both known vectors, the position of the magnet and the
sensors are given by

pcamm = pcammb + Rcammbpmbm
and

pcams = pcamsb + Rcamsbpsbs
respectively. The position of the magnet in the sensor frame can now be acquired
by

psm = Rssb
(
(Rcamsb)T (pcamm − pcams )

)
The three cameras were calibrated with respect to each other using a calibration

Ψm

Ψmb

pmbm

psbsΨ s

Ψ sb

psm

Ψ cam

pcammb

pcamsb

Figure 5.3: The various frames involved in the experiment

device and proprietary software.



34 5 Validation

5.2 Tracking Comparison for the Relaxed Model

An extended Kalman filter was used together with the relaxed model outlined in
Section 3.1 to estimate the magnet trajectory. The same trajectory was simultane-
ously measured by the visualEyez system. The results of this validation experi-
ment is shown in Figure 5.4, 5.5 and 5.6 respectively. Note that the sampling
time is T = 1

75 [s].
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Figure 5.4: x-component of magnet trajectory using an extended Kalman
filter and the relaxed model

For comparison the same magnet trajectory was also estimated using a simpler
model where the bias field was measured prior to deploying the magnet and then
subsequently subtracted from the measurements with the magnet present. This
was done individually for each sensor so the assumption that the field has to
be the same for all sensors was no longer needed. Since the magnetic calibration
routines mostly were designed to ensure the assumption of the same bias field for
all sensors the calibration was not used in this case. The result for this estimation,
also done using an extended Kalman filter, is shown in Figure 5.7, 5.8 and 5.9.

5.3 Proof of Concept for the Constrained Model

The constrained model is more sensitive to the accuracy of the initial guesses and
the quality of the measurements, a possible explanation to this is given in Sec-
tion 5.4. Unfortunately due to the complexity of acquiring both magnetic mea-
surements and optical measurements simultaneously, and also due to restricted
lab access and time constraints, no ground truth experimental data was measured
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Figure 5.5: y-component of magnet trajectory using an extended Kalman
filter and the relaxed model

that the constrained model was able to reconstruct. The magnet trajectory recon-
struction for the constrained model diverges using the data set in Section 5.2. As
a proof of concept for the model a reconstruction of the data used to estimate the
magnetic moment norm is provided. This experiment, discussed in Section 4.4,
was controlled more diligently and initial guesses close to the actual ones are
given to the filter. The positions estimates of the magnet can be found in Fig-
ure 5.10, 5.11 and 5.12 respectively, while a 3D-image of the reconstruction along
with the reconstructed orientation of the magnet is shown in Figure 5.13. Some
points on the trajectory and the orientation of the magnet frame with respect
to the sensor board frame at those points are shown in the image. The magnet
was moved around approximately like the trajectory shows. Also note that the
magnet was sliding on a table in this experiment so the z-direction of the magnet
frame was always pointing upwards. This is indeed the case in the reconstruction
as well. Also note that the other two principal axes wander randomly. This is due
to the unobservability of the rotation around the magnets own axis discussed in
Chapter 3.

5.4 Discussion

As noted in Section 2.3 the extended Kalman filter is a more or less ad hoc solu-
tion to the nonlinear filtering problem. It has worked remarkably well in many
applications but there is no guarantee that it will work for all cases. For the lin-
ear filtering problem however the Kalman filter indeed gives an optimal unbiased
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Figure 5.6: z-component of magnet trajectory using an extended Kalman
filter and the relaxed model

solution to the estimation problem in the minimum variance sense. An interpre-
tation is that the Kalman filter is a solution to the a convex optimization problem
and thus a global solution, see [Schon et al., 2003]. A reasonable idea is that the
more nonlinear a problem is the more nonconvex it becomes making it harder to
find the correct solution. The relaxed model has gotten its name from the fact
that not all information about the system is included. It lacks the constraint that
the magnetic moment vector should always be on a sphere with the radius being
the constant magnetic moment vector norm. The model does include all vectors
in this sphere as a possible solution, but it does not force the moment vector to
satisfy the constraint. Thus it can be interpreted as a relaxation of the physical
situation giving a more convex problem in that the dynamic model now is linear.
A more linear model is less sensitive to perturbations in measuring conditions
and to the accuracy of input noise magnitudes and starting guesses. The fully
constrained model developed in Section 3.2 is indeed more sensitive and more
prone to divergence than the relaxed model. It works in many cases but a slight
change in initial guess or input noise can make it diverge. An additional explana-
tion for this behaviour of the constrained model could be that one of the angles
is unobservable. This angle is included in the quaternion state and wanders er-
ratically. The erratic behaviour of the unobserved angle is also propagated to the
angular rate state.

The results from the ground truth experiments were not satisfactory. It seems
like there is a bias and a time shift between the filter trajectory estimation and the
estimate from the optical system. The poor performance is even more surprising
considering that a model closely related to the one used in Figure 5.7, 5.8 and 5.7,
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Figure 5.7: x-component of magnet trajectory using an extended Kalman
filter and simplified model without bias state

where the bias state is not included and the bias field is measured separately by all
the sensors and subsequently removed from the measurements with the magnet
present, has been tested before by the sensor fusion group in Linköping and the
results were much more accurate than here. How can this be? Well, firstly the
sensors were different. In this work xsens MTw inertial measurement units were
used. These include a gyro, an accelerometer and a magnetometer. For the usual
orientation estimation approach done by IMUs the magnetometer is perhaps the
least vital component so the magnetometer is possibly not the component of the
highest quality.

The exact position of the magnetometer inside the MTw shown in Figure 1.1 is
unknown. This is not crucial to filter performance since the exact position of
the accelerometer is known due to the position calibration detailed in Section 4.3
and it can be assumed that the relative position of the accelerometer and the mag-
netometer is the same for all sensors. A translation of sensor positions does not
affect filter performance since it is the relative position between the sensors that
define the sensor coordinate frame. The exact position of the magnetometer is
crucial when a ground truth comparison is to be made however since the coordi-
nate frames of the reference system has to be aligned with the filter coordinate
frame.

In an experiment done where the static magnetic field was measured at the same
location by the sensors used it was found that some of the sensors had a large
nullshift. This could possibly be explained by the fact that the MTw’s can be
calibrated for a disturbed magnetic environment such that the calibration is hard
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Figure 5.8: y-component of magnet trajectory using an extended Kalman
filter and simplified model without bias state

coded into the firmware. This calibration could at the time of this work not be
reset due to limitations in the proprietary software. This was fixed just as the
project was over. There is also a small problem with the sensors causing the
battery to act as an actuated magnet when MTw’s are used wirelessly. The extent
of this problem is not known so it is unclear how it could have affected the filter
estimate.

Errors in the comparison arise also due to the difficulty of getting the LEDs ex-
actly aligned with the sensors and the magnet. Furthermore, even given an opti-
mal measuring situation, there is of course an uncertainty in the optical system
position estimation. This uncertainty should be very small however.

A problem with optical systems, noted in Chapter 1, is that they need line of
sight at all times to the target. To ensure this one can use multiple cameras. The
cameras have to be calibrated toward each other however and it was difficult to
get a good calibration. Often the position estimates suddenly jumped several cen-
timetres when the cameras switched. Also, even with several cameras it is not
guaranteed that there always is clear line of sight. For some of the LED marker
measurements in the ground truth experiment as many as 20 % of the samples
were missing. The missing values are given by interpolation increasing the uncer-
tainty in the estimate.
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Figure 5.9: z-component of magnet trajectory using an extended Kalman
filter and simplified model without bias state
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Figure 5.10: x-component of the sliding magnet experiment, reconstructed
by the constrained model
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Figure 5.11: y-component of the sliding magnet experiment, reconstructed
by the constrained model
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Figure 5.12: z-component of the sliding magnet experiment, reconstructed
by the constrained model
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Figure 5.13: Position and orientation estimates of the sliding magnet exper-
iment by the constrained model. Note that the x-axis of the magnet frame
orientation at a certain point is shown in blue, the y-axis is shown in green
and the z-axis is shown in red





6
Conclusions

A system for drift free pose estimation has been created. This was done using
a network of magnetometers sensing the magnetic field of a permanent magnet.
The system estimates the position and orientation of the magnet with respect to
the sensor network. A small neodymium super magnet can be used to have a
tracking volume with a radius of about half a metre per sensor. The magnet can
be placed at locations whose position and orientation is of interest, for example
a human limb for motion tracking. Two models have been developed for the pur-
pose of pose estimation of the magnet. Both model the magnetic field from the
magnet as a field from a magnetic dipole. One of the models parametrizes the
orientation of the magnet with the dipole moment vector and does not use the
fact that the norm of this vector should be constant. Call this model the relaxed
model. The other model include the constraint on the magnetic dipole moment
vector and parametrizes the orientation using quaternions; this model also in-
cludes the angular rate as a state. Call this model the constrained model. The
dipole field is invariant to rotation around its own axis. Therefore the constrained
model includes an unobservable angle in the state. The constrained model is also
nonlinear both in the measurement equation and the dynamic equation while the
relaxed model is nonlinear only in the measurement equation.

Several calibration routines have been developed for the sensor network. The
field measured by the sensors is a superposition of the earth’s magnetic field, pos-
sibly disturbed by metallic fixtures in the local environment, and the dipole field.
An assumption for both models is that the measured earth’s magnetic field is the
same for all sensors. It was especially to ensure this assumption that calibration
was necessary.

Pose estimation was done using an extended Kalman filter. The models were
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tested by comparing their reconstruction of the magnet trajectory with the recon-
struction of the magnet trajectory from an optical reference system. The recon-
struction for the data set measured during this experiment could not be recon-
structed with the constrained model, possibly due to the larger nonlinearity of
this model compared to the relaxed model or the effects of the unobservability
of one of the angles. The reconstruction of the data set could be done with the
relaxed model. The comparison between this trajectory and the trajectory esti-
mated by the reference system shows that further improvements can be done,
both for the model and the experimental setup. A magnet trajectory from a dif-
ferent more controlled experiment where some degrees of freedom have been
removed is reconstructed using the constrained model for a proof of concept.

6.1 Further work

Further testing of the algorithms detailed in this report needs to be done. Using a
system of dedicated magnetometers with known magnetometer origin should be
a first step. It would be interesting to first test the models in a undisturbed mag-
netic environment with accurate sensors and than gradually increase the mag-
netic disturbances to see how much of an impact the disturbances make. This
would test how crucial it is that the assumption of the same bias field for all mag-
netometers is. It is probably primarily this assumption that limits the capability
of the system in an ambulatory setting.

Another interesting thing would be to try to fuse the orientation and position
estimate given by the system with the estimates given by the usual IMU approach.
At first glance it could seem that the fact that the bias field is needed for the
IMU estimation and that field is superpositioned on the dipole field from the
permanent magnet rendering the usual IMU approach problematic. The static
field is provided by the permanent magnet filter however and can be used in the
IMU filter as a pseudo measurement.
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