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Abstract

Vehicular communication is currently seen as a key technology for enabling safer and
more comfortable driving. In the general effort to reduce the number of casualties and
improve the traffic flow despite an increasing number of vehicles, this field has a promising
future. IEEE 802.11p has been chosen as the standard for the Physical Layer (PHY)
design for wireless vehicular communication. However, the channels encountered in
such situations pose several challenges for reliable communications. Time and frequency
selectivity caused by dispersive environments and high mobility lead to doubly-selective
channels. The systems are expected to conduct proper operation, in spite of these
disturbances.

In this thesis, we focus on the design of receivers working on the PHY layer, with an
emphasis on limited complexity. This poses high constraints on the algorithms, which
already have to cope with the limited amount of information provided by the training
sequences. The solutions considered all involve joint channel estimation and decoding,
characterized by the use of an iterative structure. Such structures allow the channel
estimation to benefit from the knowledge brought by the decoder, which ultimately de-
creases the error rate. Following a previous work, we use algorithms based on Minimum
Mean Square Error (MMSE) or Maximum A Posteriori (MAP) estimation. These re-
ceivers were modified to operate on full frames instead of individual subcarriers, and
various improvements were studied. We provide a detailed analysis of the complexity
of the proposed designs, along with an evaluation of their decoding performance. The
trade-offs between these two parameters are also discussed. A part of these analyses is
used in [10]. Finally, we give an insight into some considerations which may arise when
implementing the algorithms on testbeds.
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Number of hypotheses for PDP support.
Number of hypotheses for DSD support.
Dimension of the dominant subspace of the
submatrix representing hypothese a.
Dimension of the dominant subspace of the
covariance matrix.

Energy per bit.

Energy per symbol.

Sampling frequency.

Probabilistic bound for the adaptive MMSE
hypothesis test.

Channel coefficient.

Zero-th order Bessel function of the first kind.
Normalization factor for mapping.

Number of paths.

Length of the OFDM cyclic prefix.
Constraint length of the convolutional en-
coder.

Number of constellation symbols.

Noise spectral density.

Number of quantized amplitudes.

Number of data bits in the frame.

Number of shift registers.

Number of OFDM symbols.

Number of coded bits per subcarrier.
Number of coded bits per OFDM symbol.
Number of constellation symbols in the frame.
Number of iterations for the iterative algo-
rithms.

Number of quantized phases.

Number of data subcarriers.

Number of pilot subcarriers.

Number of used subcarriers (for data or pi-
lots).

Number of OFDM subcarriers.

Bit rate.

Symbol rate.

Code rate.

State of the convolutional encoder.

Sampling interval.
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OFDM symbol duration.

PDP support region.

DSD support region.

Forward recursion metric in the BCJR algo-
rithm.

Backward recursion metric in the BCJR algo-
rithm.

Eigenvalue submatrix for the adaptive MMSE
filter.

Tracy-Singh product of column-wise parti-
tioned matrices.

Branch metric in the BCJR algorithm.
Estimate of the vector h.

Floor function; that is, the largest integer not
exceeding the parameter.

Autocorrelation matrix for the Wiener filter.
Eigenvector matrix or submatrix for the adap-
tive MMSE filter.

Soft estimate of the vector d.

Hermitian transpose of the vector d.
Transpose of the vector d.

Wiener filter tap vector.

Transition set based on encoder output bits.
Transition set based on encoder input bits.
Symbol alphabet.

Diagonal matrix with the elements of d.
Kronecker product.

Noise variance.

Complex conjugation.

Forward recursion metric in the log BCJR al-
gorithm.

Backward recursion metric in the log BCJR
algorithm.

Information bit.

Coded bit.

Carrier frequency.

Maximum Doppler shift.

Branch metric in the log BCJR algorithm.
Number of bits per constellation symbol.
Quantized channel coefficient for the MAP re-
ceiver.

Data error.

Symbol sent.

Received signal.

Reconstruction error.

Noise coefficient.
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Acronyms

16-QAM
64-QAM

AWGN

BER
BPSK

CLS
CPp

DFT
DPSS
DS
DSD

FDMA
FER
FFT

ICI
IFFT
ISI
ITS
ITU

JCED

LLR
LS

MAP
MMSE

OFDM
PAPR

PDF
PDP

16 Quadrature Amplitude Modulation.
64 Quadrature Amplitude Modulation.

Additive White Gaussian Noise.

Bit Error Rate.
Binary Phase-Shift Keying.

Comb Least Squares.
Cyclic Prefix.

Discrete Fourier Transform.

Discrete Prolate Spheroidal Sequences.
Delay Spread.

Doppler power Spectral Density.

Frequency Division Multiple Access.
Frame Error Rate.
Fast Fourier Transform.

InterCarrier Interference.

Inverse Fast Fourier Transform.
InterSymbol Interference.

Intelligent Transportation Systems.
International Telecommunication Union.

Joint Channel Estimation and Decoding.

Log-Likelihood Ratio.
Least Squares.

Maximum A Posteriori.
Minimum Mean Square Error.

Orthogonal Frequency Division Multiplexing.
Peak-to-Average Power Ratio.

Probability Density Function.
Power Delay Profile.
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PHY
QPSK

SISO
SNR

Physical Layer.
Quadrature Phase-Shift Keying.

Soft-Input Soft-Output.
Signal-to-Noise Ratio.

Acronyms
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Chapter 1

Introduction

This thesis deals with vehicular communication systems. In this chapter, we present
some of the scenarios and specifications considered in this field. The current problems
motivating this work will also be reviewed prior to introducing the structure and contents
of this report.

1.1 An Overview of Vehicular Communication

As of today, vehicles are equipped with a whole range of systems and sensors aimed at
improving the safety and comfort of their passengers. However, their field of action is
mostly limited to the surrounding of the car. Distant events, such as crashes or traffic
jams, can only be announced to the driver through road signs or specific FM channels -
when this infrastructure exists. Vehicular communication aims to fill this gap, by making
it possible to exchange data between vehicles without the need of such an infrastructure.
They are therefore seen as a key part of Intelligent Transportation Systems (ITS).

The biggest interest of such systems lies in improving the safety in various situations
where the knowledge of the sole close vicinity of the car would not be sufficient. For
example, a safe lane change requires a careful assessment of the speed of arriving vehicles,
but blind spots can make this difficult. When approaching an intersection with large
objects hiding the other road, the risk of collision is increased. In the case of traffic
congestions, the last vehicles should use their warning lights to inform incoming drivers;
if not, accidents are more likely due to the lack of visual indications. Other scenarios
are e.g. emergency vehicle warning, hazardous location notification, wrong-way driving
warning, cooperative merging assistance or slow vehicle warning [13].

Another interest for vehicular communication would be to allow in-car entertainment
more easily, although 4G networks could also be serious candidates for such uses. Access
to the Internet, in-vehicle television or tourist information are some of the possibilities.

These use cases put several constraints on the underlying system. Safety-related
scenarios require low latencies and low error rates to be able to efficiently play their role
of avoiding accidents. On the other hand, applications such as television need high data
rates. Thus, challenges appear on different levels, from a networking point of view, to
the physical layer design. The biggest obstacle for the physical layer is to be able to
simultaneously fulfill the requirements on data and error rates. This is made especially
difficult by the nature of the wireless channel, as will be seen in Section 1.3.
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1.2 IEEE 802.11p Specifications

Frequency Band ITS applications are to use a T0MHz spectrum at 5.9GHz, split in
seven 10MHz channels. One is meant to be a control channel, while the others will be
used for data transmission. It is interesting to note that in order to achieve higher data
rates, some of these channels can be merged.

Frame Structure An Orthogonal Frequency Division Multiplexing (OFDM) system
has been chosen as the modulation scheme. 64 subcarriers are defined, but only 52
are used for data transmission. The DC subcarrier is set to null to avoid dealing with
a DC component at the receiver side. The remaining 11 subcarriers serve as guard
bands to prevent frequency leakage. From the 52 subcarriers left, 48 actually transmit
the data; the four others send pilot symbols called comb pilots to track the phase and
frequency for the whole frame duration. A long preamble made of two pilot symbols,
called block pilots, is also prepended to all subcarriers. A short preamble dedicated to
coarse frequency synchronization and timing is sent before it on some subcarriers [3];
this will however not be considered in the simulations, because these symbols cannot be
used for channel estimation. The resulting frame structure is summarized in Figure 1.1.
While pilot symbols always use Binary Phase-Shift Keying (BPSK) [!], data symbols
can be modulated with BPSK, Quadrature Phase-Shift Keying (QPSK), 16 Quadrature
Amplitude Modulation (16-QAM) or 64 Quadrature Amplitude Modulation (64-QAM).
Before that, the information bits are encoded with a convolutional code of rate 1/2. This
rate is adjustable using two different puncturing patterns, which by dropping some of
the bits leads to coding rates 1/2, 2/3 and 3/4.

frequency

time

Figure 1.1: Structure of an OFDM frame. Pilots are in gray, data is plain white and
null subcarriers are hatched.

Differences with 802.11a Despite being based on 802.11a, 802.11p includes some
differences. While systems based on 802.11a communicate over 20MHz bands with a
symbol duration of 4 us, 802.11p uses 10MHz bands with a doubled symbol duration.
Using a larger symbol duration makes 802.11p more robust against fading, but divides
the achievable transmission rates by a factor of two. The different theoretical rates
available are summarized in Table 1.1.
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Modulation | Coding rate | Data rate (Mbps)
BPSK 1/2 3
BPSK 3/4 45
QPSK 1/2 6
QPSK 3/4 9
16-QAM 1/2 12
16-QAM 3/4 18
64-QAM 2/3 24
64-QAM 3/4 27

Table 1.1: Theoretical rates for 802.11p.

1.3 Current Issues

Since vehicles are by definition mobile, vehicular communications occur in time-varying
fast-fading channels. Such channels are said to be doubly-selective, because they involve a
spread both in time and frequency. It is therefore important to take these characteristics
in account when designing a standard.

Thanks to the use of OFDM, the InterSymbol Interference (ISI) can be suppressed.
Each subcarrier can then be seen as frequency-flat.

Vehicular communication systems also have to deal with fast variations of the chan-
nel. The classical approach for channel estimation consists of using block pilots to esti-
mate the channel realization during the whole frame, for example with the average Least
Squares method. While this gives good results for 802.11a, it works poorly for 802.11p
[16], especially at high speeds and/or when using long frames. This loss of performance
is due to the unsufficient density of pilot symbols. Consequently, more complex systems
based on iterative designs and Joint Channel Estimation and Decoding (JCED) have
been suggested to compensate this lack of information, such as [9]. This approach gives
better results at the expense of much higher execution times.

1.4 Methodology

This thesis aims at improving and extending the work from [9]. In this previous work, a
802.11p transmitter has been implemented and three receiver designs (classical, MMSE
and MAP) have been proposed, implemented and assessed with respect to their relative
error performance. However, the codes were mostly limited to a single carrier scenario,
and complexity was only partly analyzed through execution times.

In this work, the receivers were modified to operate on full frames, and the simpli-
fications for the MAP receiver suggested in [J] have been added and tested. Since we
aim at achieving a complexity efficient decoding, the theoretical complexity of the exist-
ing algorithms has been evaluated. New MMSE and MAP designs were then proposed
along with other initialization methods and their complexities were investigated before
implementation. Simulations were carried out using MATLAB.

1.5 Thesis Outline

This report is organized as follows.
In Chapter 2, the OFDM transmitter and the channel model used in the simulations
are presented.
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In Chapter 3, several receiver designs and the corresponding underlying theories are
provided. We introduce and discuss the improvements made when applicable.

In Chapter 4, some elements on algorithm complexity are recalled. We subsequently
apply them to the analysis of the receivers detailed in the previous chapter. Especially,
analysis of the channel estimation parts can also be found in [10].

In Chapter 5, we assess the performance of the proposed algorithms, with respect to
both achieved error rates and execution times [10]. We also compare our findings with
previous works.

Finally, in Chapter 6 we draw some conclusions on the results and suggest areas of
research for future work.



Chapter 2

Channel and Signal Model

In this chapter, we introduce the models which will subsequently be used in our numerical
simulations. The characteristics of the vehicular channels are presented. The building
blocks of the 802.11p transmitter are finally described.

2.1 Channel

In this section, the channel model will be discussed. In communication systems, the
channel is responsible for various impairments to the original signal which must be ac-
counted for at the receiver side. These impairments have to be reflected in the model
by the simulated channel impulse response.

In the specific case of vehicular communications, three phenomena are altering the
signal. Firstly, electronics in the device produce noise. Secondly, reflections on various
objects lead to frequency selectivity. Finally, relative motion between the transmitter
and the receiver make the channel time-varying. Taking in account these characteristics
will eventually allow us to derive a model for the OFDM subcarriers.

2.1.1 Additive White Gaussian Noise

Gaussian random variables often arise in communication systems. This can be explained
by the central limit theorem, which states that the sum of a sufficiently large number
of independent and identically distributed random variables is well approximated as a
Gaussian random variable. Here, it will be used to represent the electronic noise in the
model. Since the number of electrons involved is high, the assumption of the theorem
holds.

The chosen model is an additive white noise, i.e., an additional component with a
constant spectral density and a Gaussian amplitude (hence the name of Additive White
Gaussian Noise (AWGN)). The received signal can then be written as

r(t) = x(t) + z(t), (2.1)

where x(t) is the transmitted signal and z(¢) the noise component. In the complex
case, the real and imaginary parts of the noise are considered independent and Gaus-
sian distributed with variance ¢2/2. The complex noise consequently follows a circular
symmetric complex normal distribution, with zero mean and variance o2, denoted by
z ~ CN(0,0%). The corresponding Probability Density Function (PDF) is
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However, we will not deal directly with noise variances. Instead, a common measure
is the Signal-to-Noise Ratio (SNR), especially in its normalized form: Ejp/Ny, where Ej,
is the energy per bit and Ny is the noise spectral density. The relation between the SNR
and the noise variance is

E
ol= (2.2)

Ey
Ri
m N

lin
where m is the number of bits per constellation symbol, R is the code rate and Fj is the
energy per symbol.

SNRs are usually expressed in decibels (dB). For completeness, we recall here the
relation between linear and dB values:

Ey

2.1.2 Multipath Channel

The channels encountered during vehicular communication will typically present a high
number of scatterers: other vehicles, surrounding buildings, road infrastructure. .. The
receiver then observes several copies of the original signal, each one with its own delay,
phase and amplitude, as shown in Figure 2.1. These copies will interfere with each
other, causing either constructive or destructive interference at the receiver side. This
phenomenon accounts for the frequency selectivity of the channel. Such a channel is
called time dispersive.

h(t)

1

C
C4
t 11
k—— T1 t

k—————— 79

3
A T3

3 T4

Figure 2.1: Multipath delay profile. Each tap models a different path with its attenuation
and delay.

The impulse response of a multipath channel can be represented by a sum of impulses,
called a tap delay line:

Len—1
h(t,m) = Y a(t)d(r —7(t)).
i=0
We can notice that the complex coefficients and the delays of this impulse response
will vary with time, due to the motion of the different components of the system. The
time for which the channel can be considered constant is the coherence time. The number
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of coefficients used in the impulse response depends on what is seen as a significant level.
Hence, an important metric of time dispersive channels is the Delay Spread (DS), which
is defined as the maximum delay after which the received signal becomes negligible. A
channel with a large delay spread will be modeled using more paths than a channel with
a short delay spread.

The transmitted signal will go through a linear time-varying filter, which is

Lo, —1
r(t) = (h*s)(t) = Z ci(t)s(t — 7(1)). (2.3)

=0
Following the choices of [16] and [9], we will use for the simulations the International

Telecommunication Union (ITU) channel model, especially the Vehicular A and B [11].
It is part of a set of empirical channel models specified for three different environments:
indoor office, outdoor-to-indoor pedestrian and vehicular. Using the same models will
make comparisons of the results much easier. The parameters of the tap delay line for
this empirical model are given in Table 2.1.

Tap Channel A Channel B
Delay (ns) | Average power (dB) | Delay (ns) | Average power (dB)

1 0 0.0 0 -2.5
2 310 -1.0 300 0.0

3 710 -9.0 8900 -12.8
4 1090 -10.0 12900 -10.0
S 1730 -15.0 17100 -25.2
6 2510 -20.0 20000 -16.0

Table 2.1: ITU Vehicular channel models [11].

It clearly appears that both ITU models have a delay spread which is higher than the
length of the cyclic prefix (refer to 2.2.4 for more details). ISI can therefore be expected
in the simulations.

Another remark is that delays for Channel A do not exactly fit the sampling grid of
the simulation, which uses Ts = 100ns. Some methods to counter this are suggested in
[16]: here, we choose to align the taps to the nearest point on the sampling grid.

This is not the only existing model when dealing with vehicular environments. In
2007, a set of six empirical channel models was proposed in [2], based on measurements
collected near Atlanta, USA. In this article, the authors recommend to use the VIV
Expressway Oncoming model because it has the highest frame error rate among the six.

Unlike the ITU models, all models from [2] have a delay spread below the length of the
cyclic prefix, which according to [3] seems to be a more realistic assumption. However,
a drawback of these models is that they do not take in account the non-stationarity of
real channels. Consequently, in the remainder of this thesis, we will restrict ourselves to
the I'TU Vehicular channel model A.

2.1.3 Doppler Shift

When scatterers, the receiver or the transmitter are in motion, the frequency undergoes
a shift called the Doppler shift. The maximum Doppler shift is given by
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(%

fd:X:fc'E’ (2'4)

where f. is the carrier frequency, v the relative speed between the nodes, A the wave-
length and ¢ the speed of light.

<

Considering the order of magnitude of the speeds, the Doppler shifts are relatively
small. For example, we can take an extreme situation of two vehicles coming in opposite
directions, each one driving at v = 200 km/h, trying to communicate with each other
[23]. With f. = 5.9 GHz, this leads to f; = 2.18 kHz, which is small compared to the
carrier frequency. Consequently, InterCarrier Interference (ICI) is not an issue. However,
the Doppler shifting will introduce fading, which is a phenomenon that cannot be ne-
glected. Furthermore, the different paths are likely to be affected by different frequency
shifts. These mismatches cannot be totally suppressed by the carrier synchronization
system [12].

The time-varying impulse response of the channel h[n] can be modeled by Jakes
spectrum, derived from the classical model by Clarke and whose formula for the discrete-
time case is

Lch
(cos fB; + jsin B3;) cos(2m fyTsn cos a; + 6;), (2.5)

i=1

hin] =

Lch

where:
e L. is the number of paths,

e «; is the angle of arrival from the scatterers,

Bi is a random variable introduced to ensure that the I and Q components are
uncorrelated and of equal power,

; is the initial phase of the i-th path,
e T, is the sampling time,
e f;is the maximum Doppler shift as in 2.4.

This is the spectrum which applies to all the taps in the ITU Vehicular channel models
[11]. It corresponds to a frequency-flat Rayleigh fading process. In such situations, the
autocorrelation function of the channel is found to be

R(7) = Jo(27 faT),

where Jy(-) denotes the zero-th order Bessel function of the first kind.

2.1.4 Modeling of the Channel

Discrete-time models will be used in the remainder of this thesis. The discrete-time time
invariant channel impulse response, h[m/|, is such that hlm| = 0 if m < 0 or m > L.
For the time varying case, we obtain

hin,m] = h[m] - h[n]. (2.6)
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Using Equation (2.6) to lead the discrete-time counterpart of Equation (2.3), we
obtain

Lep—1
r[n] = h[n,m| x s[n] = 2_: s[n — mlh[n, m]. (2.7)

Adding the noise coefficient forms the following model

r[n] = hln,m| *x s[n] + z[n]. (2.8)

2.2 Transmitted Signal

In this section, the different components of the transmitter are described. They comply
with the standard which was already partly described in Section 1.2. The transmitter is
structured as follows.

First, the information bits are randomized by means of a scrambler. The scrambled
data then goes through a convolutional encoder of rate 1/2, adaptable through punc-
turing. The coded bits are then interleaved, and the resulting sequence is subsequently
mapped to constellations symbols, namely BPSK, QPSK, 16-QAM and 64-QAM. These
symbols are assembled to produce OFDM symbols, and the pilot symbols are added.
Finally, an Inverse Fast Fourier Transform (IFFT) is applied to perform pulse shaping.
A complete description of an 802.11p-compliant receiver can also be found in [16].

2.2.1 Source

In order to make the transmitted bits appear equally likely, a scrambler is used. However,
since this work focuses on the physical layer without any specific requirements on the
type of data transmitted, randomly-generated bits are used in the simulations. This
makes scrambling unnecessary.

The number of bits NV}, to be generated depends on several parameters. Two formulas
are possible, depending on whether termination or truncation (to be explained later in
this section) are chosen. They are given respectively in Equations (2.9) and (2.10)

Nb = RmNSCst - (L - 1), (29)

N, = RmN,eqNs, (2.10)

where N is the number of OFDM symbols, N4 the number of data subcarriers and L
the constraint length of the encoder.

The bits can take the values "1" or "0". They are generated by a sequence of N,
values drawn from a uniform distribution on [0,1]: values larger than 0.5 are mapped to
"1", while values lower than 0.5 are mapped to "0".

These bits are subsequently passed through a convolutional encoder in order to add
some redundancy. This is especially important, because this additional information is
not only used to detect and correct errors, but also to refine channel estimates in iterative
receiver designs, such as the ones presented in Chapter 3.

A convolutional encoder can be represented with a series of shift registers, each one
corresponding to a time delay. At each time index, the encoder takes n data bits as
an input and generates k coded bits at the output, leading to a coding rate of n/k. In
the standard, n = 1 and k = 2. Output bits are computed by modulo-2 addition of the
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values from a specific set of shift registers. The constraint length of the code is defined as
L = N,+1, with N, the number of shift registers. It represents the number of bits taken
in account to compute a coded bit. The higher it is, the better the code will perform,
at the expense of a higher complexity.

For 802.11p, the generator polynomials are gy = 1335 = [01011011]3 and g1 = 1713 =
[01111001]5. Their binary representations show which shift registers are connected to the
modulo-2 adders: a "1" denotes a connection between the shift register and the modulo-2
adder, while a "0" signifies the absence of connection. They also tell us that this encoder
uses N, = 6 shift registers. The resulting diagram is Figure 2.2.

c1[n]
()

_i_\

N5

Figure 2.2: Convolutional encoder.

ca[n]

While convolutional encoders typically work with continuous streams of bits, the
system defined in the standard uses frames, which are blocks of data. Converting a
convolutional code into a block code can be done in two ways: truncation or termination.

Truncation consists of splitting the sequence of data bits into blocks of length N.
These blocks are then fed to the receiver, which is reset to the all-zero state between
each block. The main drawback of this method is that the last bits are less protected,
since they will influence less output bits (or none).

Termination solves this issue by appending a sequence of N, bits to the block of N
data bits, so that the encoder is back to the all-zero state after encoding the sequence.
For non-recursive codes such as the one used for 802.11p, N, zeros will always satisfy
this criterion. In this thesis, termination will be used since it leads to a more reliable
decoding.

The IEEE 802.11p standard defines a base code of rate 1/2, described above, along
with rates 2/3 and 3/4 achieved by puncturing after the encoding. Puncturing consists
of transmitting only certain bits according to a pattern. This method relies on the
error-correcting ability of the decoder. The puncturing vectors specified in the standard
are po = [1110] and p; = [110110], where a "0" indicates a deleted bit. With the first
pattern, every fourth bit is not transmitted and with the second pattern, every third bit
is not sent, eventually leading to code rates 2/3 and 3/4.

2.2.2 Interleaving

In wireless communications, errors typically come in bursts. Unfortunately, long runs
of erroneous bits can have disastrous consequences, especially when convolution codes
are being employed. Shuffling the coded bits allows to spread errors in a more uniform
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manner. In a multi-carrier system, interleaving across subcarriers also helps mitigate
the effect of strong noise or fading on some of them.

IEEE 802.11p uses a block interleaving scheme. It consists of two permutations:
the first one ensures that adjacent coded bits are mapped onto nonadjacent subcarriers,
while the second ensures that adjacent coded bits are mapped alternately onto less and
more significant bits of the constellation symbols [1].

The block size is the number of coded bits per OFDM symbol, Ny, which is com-
puted as follows:

Ncbps = MmNseq, (211)

with Ng.4 the number of data subcarriers in the frame.

In the following formulas, k denotes the index of the bit before any permutation, 7
its index after the first and j its index after the second permutation, when it is ready
for mapping. The first permutation is defined as

N, k
i == (k mod 16) + {J L k=0,1,..., Naps — 1, (2.12)
16 16
where | -] represents the largest integer not exceeding the parameter. It is equivalent to
defining a matrix with 16 columns and a number of rows depending on the modulation
scheme used; the matrix is filled row by row by the input bits and read column by
column. The second permutation is

. 16 -4
j:s'VJ—i-(i—i—Ncbps—{ 6 ZJ)mods, i =0,1,..., Nepps — 1. (2.13)
S Ncbps

The value of s depends on the number of coded bits per subcarrier, Ny, according
to

$ = max <N"2psc, 1> . (2.14)

At this point, it can be noted that the second permutation will leave the bits un-
changed when using BPSK or QPSK.

2.2.3 Mapping

In order to achieve a high bandwidth efficiency and high transmission rates, the coded
bits are mapped to symbols which are usually non-binary. These symbols are chosen
from an M-element symbol alphabet, denoted by X. Each symbol can carry m bits,
with m = logy(M). It is noteworthy that the symbol rate Ry is limited by the available
channel bandwidth, while the bit rate R, = m R4 can be arbitrarily increased by adjusting
m. In practice, noise and available power at the transmitter tend to restrict the possible
values for m.

The complex symbols correspond to the complex baseband signal. The set of points
representing them in the complex plane is called the signal constellation. The design
of the constellation aims to keep a low mean signal power, while maintaining a suffi-
cient distance between symbols to minimize the error rate. These error rate concerns
motivate the choice of Gray mapping. In this case, neighboring symbols differ by ex-
actly one bit. Since choosing a neighboring symbol instead of the proper one is the most
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probable error, we ensure that, in most cases, a symbol error will lead to a single bit error.

The IEEE 802.11p standard defines four possible constellations: BPSK, QPSK, 16-
QAM and 64-QAM, shown in Figure 2.3. In order to achieve equal average symbol power
for all these constellations, a normalization factor K is applied. It is defined as

1 1
K~
zeX

with P, the power of the symbol x. The resulting normalization factors are provided in
Table 2.2.

Modulation | K
BPSK %
QPSK ?

16-QAM @
64-QAM \/E

Table 2.2: Normalization factors for constellations from [1].

2.2.4 The OFDM frame

IEEE 802.11p uses Orthogonal Frequency-Division Multiplexing, a multicarrier trans-
mission technique which suppresses ISI over frequency-selective channels.

Principle The total bandwidth is divided into Ng. = 64 sub-bands, called subcarriers.
Their bandwidth is chosen to be narrow enough so that the channel can be considered
frequency-flat on each. This concept of bandwidth division is also used in Frequency
Division Multiple Access (FDMA). However, while FDMA requires guard frequency in-
tervals between the sub-bands to guarantee carrier independence, OFDM uses orthogonal
and overlapping carriers, making it much more bandwidth efficient.

OFDM subcarriers are chosen among the eigenvectors of the channel, which ensures
that they will remain orthogonal during the transfer through the channel. The complex
exponential waveforms e/2™/t always match this criterion [12].

There is an infinite number of such waveforms, defined over an infinite time horizon.
For practical reasons, we will only consider a finite number of time-limited complex
exponentials. The frequency and time spacing must be carefully chosen to maintain the
eigenvector property and the orthogonality between the waveforms. These requirements
will be only approximately met, due to the limits set on frequency and time. The first
requirement will be fulfilled if the symbol period T is large compared to the channel
DS. The second one will be met if the Ng. subcarrier frequencies are spaced apart by an
integer multiple of 1/T', that is (f, — fi)T = k, Y(n, m) with k a non-zero integer.

The transmitted complex baseband signal is then given by

RN '
u(t) = S[n]e?? /T t), 2.15
0= 75 2 S M) (2.15)

where S[n| is the n-th transmitted modulated constellation symbol.
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Discrete-time Model Since most implementations (and computer simulations) are
based on discrete-time baseband processing, we have to obtain a description of the
considered signal in discrete time. The bandwidth of the transmitted OFDM signal
u(t) is approximately Ng./T. In baseband representation, it is in fact spread between
Ngo/2T and Ng./2T. According to the Nyquist-Shannon theorem, which states that a
signal can be perfectly reconstructed when it is sampled at a frequency greater than
twice its maximum frequency, we can sample u(t) at a frequency Fys = Ng./T without
losing information. Ts = 1/Fs consequently denotes the sampling interval. The sampled
version of the transmitted signal is therefore given by

1 Ngc—1 )
u(kTy) = —~ S S[nje 2/ Nac, (2.16)
5C n=0

This can be recognized as the inverse Discrete Fourier Transform (DFT) of the symbol
sequence S[n]. We can write this

Nge—1

> S[ned?mrk/Nec, (2.17)
\% SC n=0

If N, is a power of 2, this operation can be efficiently performed with an IFFT. The
receiver can then do the inverse operation (namely, a Fast Fourier Transform (FFT)),
which is written as follows:

slk] = u(kTs)

1 Nge—1 )
ST r[klem a2k Nac, (2.18)
VNse (=

The mapped symbols S[n] are considered to be in the frequency domain and the
transmitted samples s[k] to be in the time domain. S[n] is broken into Ny, parallel low
rate streams before generating s[k]. Similarly, at the receiver, r[n] is broken into Nj.
parallel low rate streams.

R[n] =

OFDM and Multipath Channels The signal encounters multipath channels. The
channel can be modeled using a Finite Impulse Response (FIR) filter of length L., (see
also Equation (2.7)). After filtering, the sampled noiseless received signal is given by

rlm] = (h*b)[m] = Z h[l]sm —1]. (2.19)

The Nge-point DFT of the channel impulse response, H, is

1 chl

Vil Z h[lje=72mm/ Noc, (2.20)

If we replaced the linear convolution in Equation (2.19) by a circular one, defined as

H[n

Ngc—1
#lm] = (h®s)[m] = > k[l mod Ny]s[(m — 1) mod N, (2.21)
=0

we would obtain

R[n] = H[n]S|n], (2.22)
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where it is clear that each subcarrier would be affected by a single channel coefficient.
However, a linear convolution is equivalent to a circular convolution only if the signals
have an infinite time horizon or if one of the signals is periodic; neither condition is
verified here. We can nevertheless emulate a periodic signal (and satisfy the second
condition) by appending a Cyclic Prefix (CP). It consists of sending the samples

S[k] = S[NSC+k]7 k - _(ch - 1),...7—17

before s[0], ..., s[INs.—1], or, in other words, appending a copy of the last L.,—1 samples
of the OFDM symbol to its beginning. The receiver will discard the CP. In order to
be able to generate the CP and efficiently avoid ISI, it clearly appears that L., must
be smaller than N,; this influences the choice of the number of subcarriers. Moreover,
adding a CP introduces an overhead of (L., — 1)/N., which is reduced by choosing a
high value for Ng.. More detailed descriptions of OFDM systems can be found in [12].

Advantages and Drawbacks OFDM has a high spectral efficiency. The narrow
subcarrier frequency bands also make it especially relevant for dispersive channels, and
the CP make it able to suppress ISI. Moreover, efficient solutions based on FFT and IFFT
allow to implement it when using time-discrete processing, solutions which also have the
benefit of distributing the complexity equally between the transmitter and the receiver.
For classical receivers, complexity gains are even higher, because the complex equalizers
commonly used to mitigate ISI can now be replaced by simple one-tap equalizers.
OFDM has also a few disadvantages: a high Peak-to-Average Power Ratio (PAPR)
and possible ICI. ICI can be caused by improper carrier synchronization. To alleviate
this issue, a certain number of carriers are dedicated to carrier synchronization. ICI may
also be caused by time-varying channels, but this is unlikely to happen for vehicular
communications because relative speeds would need to be higher than 1440 km/h [21].
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Figure 2.3: Non-normalized constellations for 802.11p from [1].
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Chapter 3

Receiver Design

In this chapter, we turn to the design of the receivers proposed in this work. In Sec-
tion 3.1, both classical and iterative receivers are presented. Two initialization methods
are provided. In Section 3.2, the MMSE designs from [9] and [23] are recalled, and our
modifications are explained. Finally, Section 3.3 introduces the MAP designs studied.
Especially, we justify the modifications that were made to the receiver from [9].

3.1 Receiver Types

In this section, we present the two categories of receivers which are used in this work:
classical receivers and iterative receivers. The initialization methods we propose are also
provided.

3.1.1 Classical Receivers and Initializations

Classical receivers use a non-iterative algorithm. First, the channel is estimated using
pilots. The resulting channel coefficients are then used by the equalizer, and the output
is fed to a decoder after being demapped and deinterleaved. This design is summarized
in Figure 3.1. Due to its poor performance with 802.11p [1(], this receiver is mainly
implemented for comparison purposes. Two initialization methods, using different parts
of the frame pilots, are used: block LS (implemented in [9]) and comb LS with linear
interpolation, as mentioned in [7].

Y Channel estimation}{EqualizationHDemapping}{Deinterleaving]ﬁ{Decoding}
i}

Figure 3.1: Structure of a classical receiver.

Block Pilots

The chosen frame structure adds a preamble made of two pilot symbols at the beginning
of each subcarrier. In classical receivers, such as the ones used for 802.11a, these symbols
are used to obtain the channel estimation for the subcarrier for the whole frame.

If we consider the subcarriers to be orthogonal and neglect any intersymbol inter-
ference, each subcarrier can be seen as a Gaussian channel. This leads to the following
model for the n-th symbol on the k-th subcarrier [16]

17
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yr[n] = Hg[n|zk[n] + zk[n)]. (3.1)

The Least Squares (LS) estimate of the channel realization is then given by

(3.2)

It may then be advantageous to use both pilots symbols: this can be done with, for
example, the average least squares method [16]. In this method, we first independently
compute estimates for the two pilots according to Equation (3.2). To obtain the final
channel estimate, we average the two estimates, leading to

Hi[1] + I:Ik[Q]‘

H. =
k 9

(3.3)

This channel coefficient will subsequently be used to equalize the whole subcarrier.

Comb Pilots

In 802.11, the subcarriers entirely dedicated to pilots, referred to as comb pilots, are
initially provided to help estimating the phase throughout the frame. The use of these
pilots for channel estimation with 802.11p is evaluated in [7], where several initialization
schemes using block and/or comb pilots are compared. According to the authors, comb
pilots give good results at high SNR for moderate complexity, although their frequency
spacing violates the sampling theorem.

We chose in our work the scheme called CLS-linear in [7], as it had a low com-
plexity and was shown to outperform all other schemes for error rates at high SNR.
In this scheme, least square estimates of the channel coefficients are first computed for
all comb pilot symbols according to Equation (3.2). The channel coefficients for the
other subcarriers are then obtained by linear interpolation on each OFDM symbol. In
the remainder of this thesis, this scheme will be referred to as Comb Least Squares (CLS).

3.1.2 Iterative Receivers

Iterative receivers have been suggested as a way to refine channel estimations, and there-
fore improve the error rates. The main concept behind them is to exchange information
between the decoder and the channel estimator. More precisely, it allows channel es-
timation to benefit from the error-correcting capacities of the convolutional code, by
making it use the decoded data as soft pilots after the first iteration. In the case of
vehicular communications, this ability becomes especially interesting to tackle the lack
of information in the channel estimator, due to the unsufficient number of pilot symbols.

This receiver design is sometimes referred to as JCED, Joint Channel Estimation and
Decoding. In the following sections, three methods are investigated and developed. Two
use a MMSE estimation of the channel, while the third performs MAP estimation. In all
cases (including classical receivers), channel estimation is done subcarrier by subcarrier,
to take advantage of the OFDM ability to suppress ISI. The complete system will however
operate on whole frames.
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3.2 Iterative Receivers and MMSE Estimation

A MMSE design based on Wiener filtering was already implemented in [9] for a single
subcarrier, based on the work in [20]. Tt used block pilots for its first iteration. In this
work, this design was extended to a whole frame, and it was made compatible with both
initialization methods detailed in Section 3.1.1. Furthermore, another receiver detailed
in [23] was developed.

3.2.1 Wiener Filtering

( 7
Y Channel estimation
- J
( J’ 7
Equalization
. J
s J’ N ' N
Demapping Insert pilots
. J . J
e l R e T )
Remove pilots Mapping
- J S J
( J’ N e T ™
Deinterleaving Interleaving
. J . J
( J 7
Decoding
. J

Figure 3.2: Structure of the MMSE receiver from [9].

Receiver Structure

For the time index n on the k-th subcarrier, we use the received signal model from
Equation (3.1). The complete structure of the receiver is depicted in Figure 3.2. The
channel estimator provides the estimated channel coefficients Hj, [n]. Each received sam-
ple yx[n] is processed by the demapper, which will output for the m coded bits of the
transmitted symbol a Log-Likelihood Ratio (LLR) reflecting soft information on these
bits and defined as

Ll(ci,)n(y) ~ log (P(Ci = 0|yk,n)> ~ log <P(yk,n|0i = 0)) ’ (3.4)

P(Ci = 1|yk,n) P(yk’,n Ci = 1)
for i =1,...,m. For example, using BPSK modulation, m =1 and
2v/ EsRe(yr[n|Hf [n
Laty) = - /BRG]

where * denotes complex conjugation, o2 is the noise variance and E, the energy per
symbol.



20 CHAPTER 3. RECEIVER DESIGN

The BCJR decoder produces soft information on information bits b to make the
decisions b, and on coded bits ¢, which is used for the next iteration of the decoding
algorithm. It is defined as a LLR feedback given by [9]

(i) P(c; = 0))
L =1 —). :
O (35)
From this feedback, the probabilities for the coded bit ¢; are written as
1
Pl¢;=0)= —————,
L% (e)
1+e 7Em
L9 (¢) (3.6)
e k,n
P(CZ‘ = 1) = 7[/@) )
1+ e Lunle

Based on these probabilities, the mapper produces soft symbol estimates defined as
Zpn = E{Xyn}. In the BPSK case, they are defined as [9]

fjk,n - E{Xk,n}
= Z - P(Xp,=2)

ze{—-1,1}
= (=1 P(erpn =0) + (1) - Plcpn = 1)
_r® (3.7)
1 e brn(©)
= (-1 + (1
R Oy R W T

For the other modulation schemes, such expressions are much more complex. First,
we provide an equation for coded bits similar to Equation (3.7) which can subsequently
be used for all constellations, as follows.

=)o
| 4o Lin©
L0 (o

k,
e 2 7
= )
Lk,n(c>
l+e 272 (3.8)
{0
B 1 1 1—e" 2
2 o
1+e 232

N

(1 — tanh (LE%(C))) .

Now that we have the a posteriori expectation on the coded bits, it becomes possible
to express soft symbols for all constellations as functions of these expectations. Con-
sidering the mapping given in Section 2.2.3, we derive for 16-QAM and 64-QAM the
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following equations. The equation for QPSK [21] is also provided. For clarity, we drop
the indices k,n and shorten E {c,(jzl} as ¢,

ﬂ”ﬁK::JE(%#J—1+j(%#>—1>> (3.9)

imQA”[:ao(65”«+2é@)—45”6@)—3—%j(65$-+26ﬂ)—45$6M)—3>> (3.10)

@MQAM._22(86”@9%@>—12&”é@>—4&”é@>—4dﬂé@>+14é”+4%@>+25@-—7
+5(86Wel)e® — 1266® — 48D — 46P)E0) 4 146 4 6e®) 4 260 — 7))

(3.11)

Note that the formulas above produce symbols normalized by the K factors from
Table 2.2.

Channel Estimation

In [9], a derivation of a channel estimator was made in the case of BPSK modulation.
The signal model was modified, leading to, for a given sample [20]

y’:y-x:H-xz—i-z'x:H—i—Z', (312)

exploiting the fact that 22 = 1 with BPSK. However, this is not the case with other
modulations; consequently, another model is proposed in this work, defined as

M=%=H+§=H+J, (3.13)

which holds for all constellation choices. Before we proceed with the actual channel
estimation, we need to check the statistical properties of the noise terms 2’ and z” of the
new models. In both cases, the mean value of z (namely, 0) is left unchanged. However,
the variances are modified: we have E{z"?} = |z|?0? and E{2"?} = ¢%/(|z|?). Tt becomes
clear that with QAM constellations, the noise variance will be different for each sample,
since the symbols may have different amplitudes. If the noise process has a time-varying
variance, it can no longer be considered as Wide-Sense Stationary. Since the theory of
the Wiener filter assumes stationary processes, this means we cannot use QAM mod-
ulations with this system. Consequently, the only constellations left for use with this
algorithm are BPSK and QPSK. Since the first model only holds with BPSK, we will
choose for this work the second model and use only PSK modulations.

The goal is to compute ﬁk,m the MMSE estimate of Hy, ,. With the chosen model,
the problem reduces to the estimation of a signal (the channel coefficients) in noise. It
is possible to compute H kn as the Wiener filter estimate of Hy, ,. First, we define some
notation. The whole frame (including null and guard subcarriers) will be vectorized
as y”, where yj/ Neo(n—1) corresponds to the sample on the k-th subcarrier of the n-th
OFDM symbol. This notation will be applied similarly to the transmitted symbols x.
We have
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ﬁk,n = WTYZ@
L
= Z wlngrNsc(nfl)fl
=1L (3.14)

Yk+Nse(n—1)—1
w———

I=—1L xk—&-Nsc(n—l)—l

where w = [w_p,w_r41,...,wr]’ and Yin = [yg'i‘Nsc(n—l)'i‘L’ yZ+Nsc(n—1)+L—17 cey
Yy S+ Nao(n—1)— L]T. For samples corresponding to null subcarriers, the division is not feasi-
ble; hence, we set the corresponding coefficients in y” to zero. The tap vector w should
minimize the quadratic error, which reads [9]

9 o2
%E{|Hkn — Hypl"} =0
9g (Hyn — Hyn)™ (Hpo — Hi )} =0
o A Hin = Hien) " (Hyop = Hin)} = (3.15)

E{—2(Hpyp — Wy} )yil} =0
E{Y Y Y in )W = E{Hy nyiin}

The left part of the equation can be written [20]

E{yL,.vit} =R+ o™, (3.16)

where R denotes the (2K + 1) x (2K + 1) autocorrelation matrix such that R;; =
[r(li — j1)]-L<ij<r with (k) = Jo(2m f4kTs). r is essentially the discrete-time version of
the autocorrelation function provided for the frequency-flat Rayleigh fading channel in
Section 2.1.3. I denotes the (2K + 1) x (2K + 1) identity matrix. The right side of the
last equation in 3.15 can be expressed as

E{Hynyin} =P, (3.17)

with P = [r(L),...,r(1),7(0),7(1),...,7(L)]* , the cross correlation vector [20]. w is
the solution of the Wiener-Hopf equations [20]

w = (R +o’I)"'P. (3.18)

For initialization, the two methods detailed in Section 3.1.1 can be used on a sub-
carrier basis. More precisely, the block pilot scheme employs the "closest" estimated
channel coefficient for each symbol on a given subcarrier [20], which is the one from the
first pilot symbol for this first symbol and the one from the second block pilot for the
rest of the subcarrier [9]. With the comb pilot scheme, linearly interpolated coefficients
based on the ones computed for the pilot subcarriers are used for all symbols in each
subcarrier - including the block pilots. In both cases, the estimated coefficients in the
subsequent iterations (say, the i-th) will be computed as

L
A (i Z Yk+Noe(n—1)—1

I==L  TgyN,(n—1)-1
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Figure 3.3: Structure of the MMSE receiver from [23].

3.2.2 Adaptive Reduced Rank Filter

An iterative MMSE receiver design using the Discrete Prolate Spheroidal Sequences
(DPSS) [17] was proposed for 802.11p in [21]. A refinement, using a subspace adapta-
tion in order to reduce complexity and accelerate the convergence, was first proposed in
[22] and applied to vehicular communications in [23]. In this work, we implement this
last algorithm, motivated by the interesting complexity and the low error rates achieved.
Its structure is given in Figure 3.3.

Like the other MMSE design previously presented, [23] relies on a Wiener filter for
channel estimation.

Notations

Before introducing the key parts of the algorithm, we need to define some notation.
The Kronecker product will be denoted by ®, while the Tracy-Singh product [1&] of
column-wise partitioned matrices will use the ¢ symbol. A coefficient ¢ related to the
n-th OFDM symbol on the k-th subcarrier will be written c[n, k], and the corresponding
vector c is defined as

c=[c[1,1],...,¢c[l,Nsc), .., ¢[Ng+ Np, 1], .., c[Ns + Np, NyJ]”.

We apply this definition to the symbol d, the channel coefficients h, received data y
and noise z. Soft estimates of a coefficient ¢ will be denoted ¢&; in particular, the symbol
vector d contains pilot symbols and soft data symbols.

The signal model is defined as



24 CHAPTER 3. RECEIVER DESIGN

y = Dh + z, (3.20)
where D = diag(d).

Wiener Filter Definition

A Wiener filter is used for channel estimation. The starting point for the developments
made in [23] is

N o (= = 1

b= R,D" (DR, D" + A+ 0%Ly,n,.) v, (3.21)
where Rj, = E{hh*’} is the covariance matrix of h, and the diagonal matrix A is such
that [23]

~ 2
[AlniNokns Nk = [RiJng Nkt Nk <1 — |d[n, #] > : (3.22)

The matrix which needs to be inverted has a size of NgN., which would make its
inversion particularly costly. This motivates the authors to find the dominant subspace
of the covariance matrix and develop a reduced-rank implementation to decrease the
complexity.

However, this matrix is not known at the receiver side. Ry, will therefore be approx-
imated by Ry, which assumes a delay-Doppler scattering function prototype with flat
spectrum in a region defined as [23]

W = Wt X Wf = [—I/D7 VD] X [0, 9]:1], (323)

where W; defines the support region of the Doppler power Spectral Density (DSD) with
0 < vp < VDmax, and Wy the support region of the Power Delay Profile (PDP) with
0 < 0p < Oppmaz- In these inequalities, vpmaee is the one-sided maximum normalized
Doppler bandwidth, that is vpmaz = fomazl, and @ppg, is the maximum normalized
path delay such that 0pya: = Timaz/(TsNse)-

The process is observed on a finite index set

T=1IxIf=[0,...,Ny—1] X [~Necu/2, Nocu/2 — 1]. (3.24)

I; is the observation interval in the time domain, and Iy its counterpart in the
frequency domain.

Factorization

The covariance matrix Ry, can now be factorized as [23]

Ry, = R(Wy, ) @ R(Wy, 1), (3.25)
where R(W, I) has elements
1
ROV, D)t = ClE W] (3.26)

at its k-th line and I-th column, with k,1 € T and W = [vq, 1»] with
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. 1 . .
Clk — j2mkv dy = j2rkve _ j2mkvy
[k W] /we V= ok )
1

= ok ¢
_ L ok T2THW /272K W /2 _ o =g2mk|W]/2)
j2mk

, W
sin (27Tk%)

7k

j2mkvi (ej27rl<:|W| o 1)

(3.27)

. vi+vo
_ eJ27rkT )

The eigenvector decomposition of Ry, can now be performed. Since this matrix
has a high condition number, specific algorithms will be used, as follows. They take
advantage of the factorization given in Equation (3.25). The eigenvectors of R(W, I) are
the generalized DPSS u;[m, W, I], i € I for the band limit W and time-limited to the
observation interval m € I [17]. They verify the identity

R(W, Iu,(W,I) =X (W, I)u;(W, I), (3.28)
where w;(W, I) = [u;(0, W, I),...,u;(J]I| — 1,W,I)]T. If we denote by U(W,I) the ma-
trix whose columns are given by the generalized DPSS u;(W, ), and by o(W,I) the
eigenvalue matrix with diagonal elements \;(W, I), we can write

R(W,I) = UW, I)a (W, )UW, ). (3.29)

In order to solve this eigenvalue problem, [23] uses a result given in [17]. It states
that the N x N tridiagonal matrix S, defined as

1
ii(N—z'), j=i—-1
N -1 2
( —i) cos2nW, j =1
2 (3.30)
1
§(i+1)(N—1—i), j=1+1

O’ |] - Z| > ]-7

with 4,7 =0,1,..., N — 1, has the same eigenvectors (namely, the DPSS) as the N x N

matrix p with elements

sin 27 W (k — 1)
w(k —1)

According to Equations (3.26) and (3.27), the matrices R(W, I) have coefficients

p(N, W)y = , k,1=0,1,...,N—1. (3.31)

. w
1 sin (27’[’(k - l)%) ej27r(k—l)¥.

RW, )i, = 3.32

(W, D)y Wi Py (3.32)

The DSD support region, Wy, is symmetric, which means v + vo = 0. The exponen-
tial then equals 1, and it becomes possible to use [17] if taking care of the multiplicative

constant 1/|W|. On the contrary, the PDP support is asymmetric, and the exponential
term is different for each matrix coefficient (due to the presence of the (k — ) term).
For this reason, we believe that in this case the result in [17] cannot be applied. Conse-
quently, our implementations will call MATLAB’s eigensolver for these matrices.



26 CHAPTER 3. RECEIVER DESIGN

The aim is to obtain an eigenvector decomposition of Ry, defined as [23]
R, = UXUY. (3.33)
Based on Equation (3.25), the eigenvector matrix U is factorized as [23]
U =UW,T) = I(UW,, 1) o UWy, I})) (3.34)
and the diagonal eigenvalue matrix 3 can be written [23]

¥ = (W, T) = I(diag(a (Wi, I) @ o(Wy, I7))). (3.35)

The permutation operator II(+) is chosen such that the eigenvalues in ¥ - and the
corresponding columns in U - are sorted according to A\g(W,Z) > \\(W,Z) > --- >
Airj-1y W, Z).

Low-Complexity Reduced Rank Filter

To reduce the rank, we will only consider the D dominant eigenvectors to approximate
the covariance matrix Ry, as Ry, which reads [23]

R, ~R;, = UpEZpUE, (3.36)
where Up and X p contain the first D columns of U and X respectively. The dimension
D = D(W,T) minimizing the Mean Square Error for a given noise variance o? is,
according to [22] and [17],

IZ|-1
D = argmin AW, T) + —a , (3.37)
Defl,...|T]} |I’ Z |Z|
where the two summands represent the square bias and the variance term. Compared to
Equation (30) in [23], a factor 1/|W]| is missing in front of the first summand. Considering
the original formula in [15] and the subsequent derivations made in [22], this factor is

in fact not needed if we consider, as it is the case here, that the \;(W,Z) are the
eigenvalues of the R(W, I') matrices and not of the C' matrix whose coefficients are given
in Equation (3.27).

Inserting (3.36) into (3.21), and applying the matrix inversion lemma, the expression
for the reduced-rank Wiener filter is found to be [23]

A ~ ~ —1 ~
h=Up (UEDH\IﬂDUD + 251) UlD"wly, (3.38)

where ¥ = A + 0’21NSNSC.

Subspace Selection

First, finite sets of hypotheses are defined for the DSD support {W;(1),...,W;(A)} and
for the PDP support {Wy(1),...,Ws(A’)}. These different hypotheses will be tested for
each received frame.

They are respectively defined as [23]

a a
Wt(a) = (_AVDmaza AVDma:Jc) (3.39)

and
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/
Wf(a/) = <O) jl,era:r:) ) (340)

witha € {1,..., A} and d’ € {1,..., A"}

Each hypothesis is represented by a subspace spanned by the columns of U(W;(a), I})
in the first case or U(Wy(a'), If) in the second case. These matrices are precomputed
and stored.

Once the hypotheses are set up, they need to be tested to choose the correct subspace.
This test will be made on a subset of the pilot symbols of the frame. For this purpose,
a signal model for channel estimation only at the pilot positions is defined as follows

yP) — DPIL(P) 4 4(P), (3.41)

where the different elements are defined as in Equation (3.20), except that they only con-
tain the elements at pilot positions in the same order as in y. The channel observations
at pilot positions are therefore given by [23]

WP Z D Y(P) Z h(P) L DI ,(P) _ h(P) | (P, (3.42)

where z/") ~ CN (0,0°I;p|) has the same statistics as z(P) (recall that pilot symbols are
BPSK modulated, so their amplitude always equals one, which leaves the noise variance
unchanged).

In [23], the authors state that the subspace spanned by the observations in the vector
h(®) is also spanned by the eigenvectors of the covariance matrix

Ry, = E{h®hP" . (3.43)

Due to the pilot pattern, a time-frequency factorization such as the one which was
discussed for the whole covariance matrix is not possible. Instead, the pilots are split
into two parts which enable a factorization: comb pilots and block pilots.

More precisely, the comb pilots index set is defined as 7" = I; X Ip,, where Ip, =
{k1, ko, ks, k4} is the set of comb pilots subcarrier frequencies. The corresponding signal
model is given by Equations (3.42) and (3.43) by replacing (P) by (7). The subspace
spanned by h(7) is also spanned by the columns of the matrix U(W, T).

The block pilots index set is defined similarly as F = Ip, x Iy, where I'p, = {n1,ns2}.
The subspace spanned by h(*) will also be spanned by the columns of the matrix
UW,F). It should be noted at this point that in [23], the time indexes considered
are not the two block pilots specified by the standard at the beginning of the frame,
but the first of these two and an additional block at the end of the frame. This modifi-
cation, commonly referred to as a "postamble", is not part of the IEEE 802.11p standard.

We now want to find the best hypothesis for the DSD support from {W;(a),a €
{1,...,A}} and for the PDP support from {Wy(a'),a’ € {1,..., A’'}}. At first glance,
this would require the test of AA" hypotheses. Consequently, the authors propose in [23]
a reduced complexity algorithm which needs to test only A+ A’ different hypotheses, as
follows.

First, the DSD support is tested on the subcarrier index set 7. The PDP is assumed
to have maximum support Wy(A’). As previously mentioned, the subspace spanned
by the values of h(7) can be approximated by the columns of the matrix U(W;(a) x
We(A"), I x Ip,). Once generated from the precomputed U hypothesis matrices, its
columns are sorted by means of the permutation II used in Equation (3.34). The first
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Dy = D(Wi(a) x Wy(A'), It x Ip,) columns are then collected in matrix Ug, while the
remaining columns make the V, matrix. With U,, a € {1,..., A}, we can obtain A
reduced-rank maximum likelihood channel estimates

h, = U, Uw(T) (3.44)
testing all A hypotheses. The data error is expressed as [23]

1 ~
= — |wT) —hy,|? 3.45
Lq all - .

The metric to be minimized is instead the reconstruction error

o= T =l = g (o[ v ) e

which is unknown at the receiver side since we cannot directly observe z(7). Knowing

a4, We are interested in obtaining a probabilistic upper bound on z,, such that z, <
Za(xg, p1,p2), which only depends on x, and two constant probabilities, p; and ps. This
bound allows to select the best hypothesis W;(a), defined as

4 = arg min z, (zq, p1, p2), (3.47)
a

which minimizes the reconstruction error. The detailed computation algorithm is pre-
sented in the next subsection.

Once a has been obtained, the PDP support is tested using the block pilot index
set F. Again, the subspace spanned by the values of h¥) can be approximated by
the columns of the matrix U(Wy(a) x Wy(d'),Ip, x If). The first Dy = D(Wi(a) x
Wy(a'), Ip, x If) columns are then collected in matrix U, and the remaining ones in
matrix V. The algorithms proceed as previously explained, replacing 7 by F and a
with @’ to finally lead

a' = argmin zy (z4r, p1, p2)- (3.48)
a/

As previously pointed out, the PDP support test relies on a non-standard pilot
pattern. Since we aim at designing standard-compliant receivers, this test will be skipped
in our simulations, and the maximum PDP will always be assumed.

Hypothesis Testing

In this subsection, we introduce the algorithm used in [23] to compute the upper bounds
presented above, when running it with comb pilots. A more complete explanation of the
underlying theories and hypotheses can also be found in [0].

The reconstruction error z, is near its mean with probability p;, which reads

P(|za — E{z4}| < Go) = p1. (3.49)

It is afterwards assumed that the term (1/|7)|[VZh(T)||? is known. From Equa-
tion (3.49), z, is bounded with probability p; according to z}(p1) < za < 2 (p1) where
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Da ‘
|T| "7

Dot o LIVIND[ 4 ot 351)

The term G, is calculated by solving numerically [23]

2 (p1) = B{za} — Galp1,0,2D,) = VIR H — Gu(p1,0,2D,)  (3.50)

Zié(pl) - E{Za} + Ga(pla g, 2D )

p1=F <2Da + 2G, ‘T‘ ,2D ) F <2Da —2G, |T| ,2D ) (3.52)

where F(x,i) denotes the Chi—square cumulative distribution function with ¢ degrees of
freedom, and D, is the subspace dimension introduced in the last subsection. It appears
that G, is in fact independent of the channel realization. For real implementations, it
should therefore be precomputed for each hypothesis matrix (due to the dependence on
D,) using an appropriate quantization of o?.

Now, x, will be used to obtain a probabilistic bound on (1/|7])[[VEn(T)|?, the
square bias term, which was assumed to be known for the first step. If 2(|7| — D) is
sufficiently large, the central limit theorem lets us approximate x, as a Gaussian random
variable. The square bias term is bounded with probability po, which can be written as

Bu(tarp2) < = IVERD |2 < By (0, p2). (3.53)

7]

Let us now define m, = (1 — D,/|T|)o?. We are interested in the upper bound for
the square bias term, By (zq4,p2), which is [23]

a20,2 a? 2

E(waapQ) =Xq — Mg+ = \/2’77_\/ Ma 2’7-’

where « is defined below. Finally, by 1nsert1ng Equation (3.54) into (3.51), we obtain an
expression for the upper bound Z, (x4, p1,p2) > 2, (p1):

(3.54)

D,
Za(Za, p1,02) = mff + Bo(%q,p2) + Ga(p1,0,2D,). (3.55)

So far, we have not defined pi, p2 or a. The probabilities p; and p, mentioned above
are defined such that p; = Q(f) and p2 = Q(«a), with

« 1 $2
Qo) :/ ——e 2 dx.
- 2
In [6], the authors recommend to choose p; and po as close to one as possible, but
advise to keep a/v/P small and 3/P small as well, with P the number of pilot symbols
considered in the test. Our first choice was then to take p; = 0.99 (which gives § = 2.6)
and a = 1.6 (leading to p2 = 0.89). However, better results were noticed when following
the choices made in [22], namely p; = 0.68 and o = 8, although such choices clearly go
against the previously mentioned recommendations.

Once both hypothesis tests have been done, @ and @’ are known. The corresponding
precalculated matrices U(Wy(a), I;) and U(Wy(a'), I) can then be selected, along with
their corresponding o matrices. We can subsequently obtain U with Equation (3.34)
and o. Once the dimension D has been computed with Equation (3.37), we are now
able to obtain the reduced-rank channel estimates using Equation (3.38).
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3.3 Iterative Receivers and MAP Estimation

In the previous section, we dealt with receivers whose criterion was the minimization of
the mean square error. In this section, we present algorithms which aim to maximize
a posteriori probabilities, which represent the probability of having sent a certain bit
given the received signal.

3.3.1 Factor Graphs

A receiver design using the framework of factor graphs is depicted in detail in [19]. Factor
graphs are a way to express in a more graphical manner inference problems, and can
thus be applied to situations which are not limited to signal processing. The theoretical
bases behind them are Bayes’ theorem and the law of total probabilities. Once the
problem has been turned into a graph, marginal probabilities are computed using the
sum-product algorithm on each node. PDFs of random variables are exchanged.

Although it served as an inspiration for the MAP receiver developed in Section 3.3.2,
it was not used directly in [9]. Consequently, we tried in this work to investigate whether
using the full factor graph formalism could lead to complexity improvements. Two
designs were considered: the generic one from [19] and a design applied to OFDM using
the 3GPP standard as presented in [1].

None of them were chosen for implementation in this work. It appeared that the
design in [19] had a complexity which was too close to the one of the existing MAP design
to expect any improvements. Regarding [1], channel estimation would have required at
each iteration in the graph to invert matrices whose size was the number of constellation
symbols in the considered frame. Although the authors claim that this inversion could
in fact be avoided, such a costly operation is very unlikely to be efficiently performed in
a hardware implementation.

3.3.2 MAP

A MAP-based iterative receiver was the main topic developed in [9]. The different parts
and interactions between them are summarized in Figure 3.4. Since it is not the key
point of the present work, we will only mention the relevant parts needed to introduce
the simplifications or the justifications of complexity.

The receiver works as follows. First, for each received frame, likelihoods p(y|q, z) are
computed for all the symbols, all possible channel coefficients ¢ and all possible constel-
lations symbols in the modulation scheme chosen for the frame. This step is done only
once, and its results are subsequently used by the mapper and demapper. Then the iter-
ative part starts by the mapper, which outputs p(y|q). The channel estimator operates
separately on each subcarrier, producing extrinsic data on channel coefficients pgx7(q).
The demapper follows, which gives conditional probabilities on the coded bits p(y|c).
Finally, the BCJR decoder lets us obtain a posteriori probabilities on the coded bits
p(cly), the input bits p(bly) along with extrinsic information on the coded bits pgxr(c)
to be used for the next iteration.

One of the characteristics of this MAP design is that it uses a Markov chain to
model the channel. Channel coefficients are distributed as zero-mean complex Gaussian
variables. When written in exponential form, ae”, this results in a uniform distribution
on [0,2x] for the phase # and a Rayleigh distribution for the amplitude a. Clearly,
there exists an infinity of possible channel coefficients with such a model, which makes
it problematic for an implementation as a Markov chain.
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Figure 3.4: Structure of the multicarrier MAP receiver from [9].

 Maper |

Consequently, both amplitude and phase were quantized respectively in IV, and Ny,

values, chosen as N, = 4 and N, = 8 for the simulations in [9]. The transition matrix
was furthermore built to only allow jumps to neighbouring amplitudes, but the phase
changes were not constrained. Following a suggestion in [J], whose correctness was

shown by numerical simulations, the model was modified to limit jumps to neighbouring
phases and amplitudes. Subsequent trials showed no noticeable influence on error rates
or on algorithmic complexity. However, the algorithm total running time was divided
by a factor of three, mainly due to the reduced number of possible transitions in the
BCJR channel estimators. Unless otherwise mentioned, this "simplified" version is the
one which will be used in the remainder of this work.
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Chapter 4

Theoretical Complexity

Now that the different receiver designs have been presented in Chapter 3, we can now
proceed to the comparison of their algorithmic complexity. After a quick reminder on the
underlying theory, we present the results of this theoretical assessment for the various
building parts of each family of designs.

4.1 Complexity Theory

We will be interested here in comparing different designs both in term of error perfor-
mance and complexity. Complexity analysis aims at evaluating the number of operations
performed by an algorithm as a function of the size of its inputs. It is also possible to
consider the memory usage, but this will not be done in this thesis. However, a precise
evaluation of the total number of operations is often either not possible or difficult. In-
stead, a common practice is to give an approximation of this number using Landau’s O
notation, whose definition - restricted to our algorithmic case - is given below [8].

Landau’s O Notation For two functions f and g of an integer value n,
f(n)=0(g9(n)) <= INeN,CeN,Vn>N,0< f(n) <Cg(n). (4.1)

Unlike most of the usual algorithms studied in complexity courses (such as sorting
algorithms), the different parts of the receivers depend on multiple factors. For this
reason, approximations given in the following subsections will try to reflect all the de-
pendencies of each function, instead of keeping only the one with the biggest value or
the biggest exponent.

At this point, we can introduce some notation which will be used extensively in this
chapter. Let us denote by Ncs¢ the number of constellation symbols (PSK or QAM) in
the frame (not to be confused with N, the number of OFDM symbols in the frame). We
also define Ny, the number of subcarriers used for data or pilots, Ng.g the number of
data subcarriers and N, = 4, the number of pilot subcarriers, with Ngcy = Ngcq + Nep-
Hence, we can write Negip as N - Nycy.

4.2 Elements Common to All Designs

In this section, we present the receiver subroutines which are shared by many of the
algorithms presented so far in this work. The number of calls to these functions varies
slightly among the different designs; this will be investigated in Section 4.5.

33
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Fast Fourier Transform

Recall from Section 2.2.4 that the receiver needs to perform a FFT on the time-domain
samples before we can proceed with the decoding. This has to be done once per frame,
each OFDM symbol at a time. The complexity of the FFT for an input of length n is
known to be O(nlogyn) [3]. In this case, we get for the whole frame

|O (N, - Ny logy(Ne)) | (4.2)

Transitions

The BCJR decoder requires a list of all possible transitions in the convolutional code.
Since the convolutional code is a part of the standard and is very unlikely to change,
transitions are computed once at the beginning of each simulation. In a real implemen-
tation, this would simply be stored in the receiver. Consequently, the complexity of this
part of the algorithms is not relevant and will not be computed.

Interleaver and Deinterleaver

Interleaving and deinterleaving bits only consists of swapping bits. Such operations are
not considered in complexity evaluation. However, generating the required indices is
done using Equations (2.12)-(2.14) for the interleaver, which require some operations.
More precisely, the two consecutive permutations will assign a new index to each bit
within the interleaved block, which according to Equation (2.11) has a size of N, bits.
The pattern is the same for all the OFDM symbols in a frame, so it needs to be computed
only once. This will therefore have a cost of

O(mNyeq) | (4.3)

where we replaced Ny by its expression. The value of N4 is indeed specified by the
standard, as well as the four modulation schemes available (see Section 2.2.3) which give
four possible values for m. Real implementations are likely to have the corresponding
interleaving patterns already saved in memory.

The deinterleaver works similarly, and the corresponding equations can be found in
[1]. Since the block size is the same for the interleaver and the deinterleaver, the same
complexity applies.

Least-Square Initializations

For the block pilots scheme, estimates for the two pilots are being made, then averaged
and used for the rest of the subcarrier according to Equations (3.2) and (3.3). This will
be repeated for each data subcarrier. Hence, the operations are made on a subcarrier
basis, which leads for a full frame to a complexity of

O(Noea) | (4.4)

For the comb pilots scheme, we estimate channel coefficients on each constellation
symbol on the four comb pilot subcarriers, then perform a linear interpolation within
each OFDM symbol to obtain channel estimates for the remaining modulated symbols
on the data subcarriers. Hence, one computation is needed for each constellation symbol
in the frame. This is made with Equation (3.2) for the comb pilot symbols, or with a
linear interpolation of the channel coefficients of the two closest comb pilots for data
symbols. This can be written as
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O(Nesif) | (4.5)

Mapper and Demapper

The equations used by the mapping routines have been presented in Section 3.2 as
Equations (3.7) and (3.9)-(3.11). If at first glance it may be tempting to say that the
mapper has a linear complexity with respect to the number of constellation symbols it
has to generate, a closer study of the required number of operations for each symbol to
map (additions and multiplications) shows that their number also follows linearly the
number of possible symbols in the chosen constellation. The associated complexity is
therefore

Similarly, the demapper complexity depends linearly on the number of symbols to
demap. Again, looking closely to the exact number of operations required gives a linear
dependency on the number of possible symbols. Hence, the complexity of the demapper
is the same as the mapper complexity.

The demapper is required at each iteration. The mapper is only needed by iterative
algorithms so that the feedback from the decoder can be used by the channel estimation
part; hence, it is called at each iteration except the last one for which no feedback has
to be produced.

BCJR Decoder

In Chapter 2, we introduced the convolutional encoder specified by the standard. It
defines a rate 1/2 code with a constraint length L = 7. Iterative receivers require that
information from the decoder can be subsequently fed to the channel estimator. Conse-
quently, we need a Soft-Input Soft-Output (SISO) decoder, such as the BCJR. In order
to justify our complexity analysis, we briefly describe it here. More detailed explanations
can be found in [12] or in the original article [5].

First, we consider a sequence of N, input bits sent. Let us denote by, for n =
1,2,..., Ny,
e b,, the n-th input bit;

cg) and 07(12), the corresponding output bits;

oy and y?

, the received samples and

S, the current state of the encoder. With N, = 6, there are 2Ny — 64 possible
states {Si}OSiSQNT—l‘

In this subsection, we also note y,, the observation vector [yg),yg)]T for one input

bit and y the vector of all observations of size 2/NV,. The transition between a state s,
and a state sy, caused by an input bit b, s and producing coded bits ch) and cfg, will

be written (s,, ss). With these notations, we can now define the following sets

e S is the transition set for which the encoder input bit is 1;

e S_ is the transition set for which the encoder input bit is 0;
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o S Si) is the transition set for which the i** coded bit is 1 (with i = 1,2);
° S’@ is the transition set for which the i** coded bit is 0.

We want to compute the a posteriori probabilities on bits, which are, for ¢ = 1, 2,

p(bn = 1‘}’) = Z p(Sn—l = 8,5 = Ssb’)

(sr,ss)ES+
p(bn = 0ly) = Z p(Sn-1 = 8r, Sn = ssly)
(sr,85)ES—
pe =1y) = > p(Su-1= 1555 = sly)
(sr,ss)GS’(j)
ple) =0ly) = > p(Su-1= 51,5 = sily).

(sr,85)€S'™

For the remainder of this subsection, we will write p(S,, = s;-) as p(s,) for conciseness.
The previous equations all require the state transition probabilities given the observation,
p(sr, ssly). Using Bayes’ rule, we have

p (Sra Ss) Y)
ply)
p(y) does not depend on the states, and can be seen as a scaling factor. Now, we have

to split the observations in three parts: y = [y, , ¥n, yf{]T, which respectively represent

the samples received before, at, and after time index n. With such notation, p(s,, s,¥)
can also be split, leading to [7]

p(sr, 8sly) = (4.7)

P(8ry85,Y) = P(8r, ¥, )D(Ss, Yn’*sr)p(yr—t |55). (4.8)
In [5], the factors of the right part are denoted as

an—l(sr) :p(sﬁy;)a (49)
/Bn(ss) = p(YZ’Ss% (4.10)
’Yn(sryss) :p(SSaYn’3r>- (4.11)

This lets us rewrite Equation (4.8) as

P(8rs85,Y) = An—1(81)Yn(8r, 85)Bn(ss)- (4.12)

an—1(sy) represents the probability of being in state s, at time index n — 1, knowing
the previous observations y,, . It can be computed recursively [5]:

2Nr 1
an—1(sy) = Z n—2(8i)Yn—1(8i, Ss)- (4.13)
i=0

With the code used, there are only two transitions available from each state (since
the input bit can only take two values, 0 or 1). This means that some transitions are not
possible, so some terms in the previous sum equal zero. This computation is performed
during the forward phase. For initialization, we know that the encoder always starts in

state sg, which reads [7]
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ag(si) = {(1) zig (4.14)

Bn(ss) is the probability of being in state s; at time index n, based on the future
observations y,". Like «, B can be computed recursively during the backward phase,
according to [5]

oNr 1

Bulss) = Y Burr(si)ymri(ss, si). (4.15)

1=0

If termination is used, the last state is sg and the recursion can be started with [5]

0, i#0,

4.16
1, i=0. (4.16)

/BNb (32) = {

However, when truncation is used, the final state of the encoder is unknown, so we
need to initialize By, (s;) as 1/2"" for all values of i.

In the previous equations, a factor v appeared. v,(s,, ss) is the probability to observe
the transition (s, ss) based on the current time observation y,. It is computed as follows.

Y (87, 85) = p(bn = bys)p(yiP | D)p(y{P]c). (4.17)

Once the terms p(s,, ss,y) have been obtained, p(s,, ss|y) can be inferred from Equa-
tion (4.7) if we define p(y) = >, p(sr, 8s,y). This in turn allows the computation of
the a posteriori probabilities on bits.

To avoid the numerical instability created by multiplications of small numbers, the
logarithmic version of the BCJR algorithm is used. This also reduces the computational
costs of multiplications by replacing them by additions.

The logarithmic versions of the variables a, 5 and 7 are [12]

anfl(sr) - log anfl(sr)a
bn(ss) = log /Bn(ss)a
gn(8r, 85) = log n(sy, 8s).

From (4.13), (4.15) and (4.17), we have
2Nr 1
an—1(sr) = log Z exp(an—2(8i) + gn—1(5i, 55)),
i=0
oNr 1
bu(ss) =log > exp(bpr1(si) + gnt1(ss: 50)),
=0
gn(sr, 8s) =1og p(bn = by.s) +log p(y M |ct) + log p(yP|c?).

At this point, we introduce a new function, known as the Jacobian logarithm, to
compute sums of exponentials. It is defined as

max (a1, as, . ..,ay) = log(e™ + ... + ™), (4.18)

which for N = 2 can also be written as
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max(a, b) = max(a, b) + log(1 + e~1a=0). (4.19)

This formula can be extended to any number of terms. For example, with N = 3:

max(a, b, ¢) = max(max(a, b), c). (4.20)

The Jacobian logarithm will be used for computations of the forward and backward
recursions. In the case of the log BCJR algorithm, dealing with LLRs instead of prob-
abilities is more convenient, especially in the case of binary variables because one value
is stored instead of two.

Now that we have presented the algorithm, we can turn to its complexity analysis.
Each frame carries mN,; ¢ bits. However, these bits are the result of an encoding by the
convolutional encoder of rate 1/2, sometimes followed by puncturing (see Section 2.2.1).
For the bits which are input to the BCJR decoder, puncturing is however not relevant
since the removed bits would have been replaced by zeros at this stage. Consequently,
the frame payload always represents for the decoder a block of mN.g R input bits
subsequently encoded with a code rate 1/2.

For each of the input bits, we need to compute the 128 v metrics corresponding to the
available transitions (64 encoder states, each having two transitions depending on the
value of the input bit). Then, the forward and the backward recursion are performed.
Finally, we obtain the LLRs for the input bit and the two coded bits by taking Jacobian
logarithms based on the logarithmic version of p(s,, ss,¥).

Since the number of transitions (128) is a constant of the code, it will not appear in
the final complexity which becomes

The decoder is required at each iteration of the presented receivers, or once for the
non-iterative design.

Decision

Recall from the previous subsection that the BCJR algorithm outputs soft decisions.
However, the upper network layers need bits, which require hard decisions. Consequently,
we use a threshold to take hard decisions based on the LLRs. Considering the definition
given in Equation (3.5), values above 0 will denote a "0", while negative values denote a
"1". A decision has to be taken for all the m N, R input bits of the frame. The cost of
this comparison operation is

O(mNuifR) | (4.22)

Decisions are taken once all the other subroutines, iterated if applicable, are finished.
This step consequently occurs once per frame for all the receivers presented.

4.3 Elements Specific to MMSE Designs

In this section, we turn to algorithms used in the MMSE receivers. Especially, the
building blocks presented in [23] will be considered.
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Wiener filter

This part is specific to the MMSE receiver developed in [9]. First, we need to compute
R, the (2K + 1) x (2K + 1) autocorrelation matrix with KX = 10 [20] presented in
Equation (3.16). According to the definitions given in Section 3.2.1, it is a symmetric
Toeplitz matrix; hence, we only need to compute 2K + 1 coefficients, which are values
of the zeroth order Bessel function of the first kind. We also need the cross-correlation
vector P, but since its coefficients are the same as the values previously computed for
the matrix (although in a different order), no additional operations are required. Solving
the matrix equation (3.18) for the Wiener tap vector w has a complexity of

O (2K +1)%)| (4.23)

Since K has a fixed value, the equation above only contains constants. Hence, com-
plexity theory tells us that it has to be reduced to O(1).

The tap vector will then be used to perform filtering of the sample sequence and
obtain channel estimates, as in Equation (3.19). This filtering operation will be done at
each iteration of the algorithm. The complexity of such a computation is

O(Nesif) | (4.24)

At this point, we need to mention that the correlation coefficients depend on the
relative speed between the transmitter and the receiver through the Doppler shift. This
value is fixed for each frame, so the tap vector of the filter does not have to be computed
iteratively. However, we need to choose between computing the filter once for each
frame (as was done in our simulations), or using a quantization of the speed to rely on
precomputed values stored in the memory of the receiver.

Subspace Hypothesis Matrices

The subspace selection algorithm in [23] chooses the best fit among a number of hy-
potheses A on the DSD and A’ on the PDP. These numbers are fixed at the beginning
of the computations and would also be constants in a real implementation.

Each hypothesis is represented by a matrix of eigenvectors and eigenvalues, which are
computed either using the method in [17] for the DSD hypothesis or MATLAB eigensolver
for the PDP. Such computations are costly, but they need to be performed only once.
This allows the subspace hypothesis matrices to be generated on a computer and then
stored, for instance in the memory of a receiver or for further use by subsequent numerical
simulations.

Subspace Selector

In [23], the complexity of the subspace selection algorithm for a single frame is given as
A A
Css = Z |T|DZ + Z ‘}—|Dc2w
a=1 a’'=1

where the first term accounts for the DSD and the second for the PDP. D, represents
the dimension of the dominant subspace for the a-th hypothesis matrix, computed with
Equation (3.37).

Since our frames do not have any postamble, the PDP support test could only be
run on the two block pilots at the beginning of the frame. Simulations showed that this
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approach underestimates the dimension of the subspace, leading to a mismatched filter
and very low performance. Consequently, we do not perform the test for the PDP and
always take the maximum support.

Following [23], we take A = 10. From the definition of 7, |7 is found to be Ny -
(Ns + 2). The expression for the complexity of the subspace selection algorithm now
becomes

A 10
Css = Z |T|Dc21 = Nscp(Ns + 2) ZDg < NSCP -10- <N3 + 2) ’ D%O
a=1

a=1

The last inequality comes from the fact that the submatrix dimension will increase
with an increasing DSD support. We found the values of Djg to be 10, 29 and 35
respectively for frame lengths of 36, 72 and 136 symbols. This leads to the final expression

O(Ngep - A- N |. (4.25)

Here, one may wonder why the computations of the U matrices and their associated
dimensions are not taken in account in the previous analysis. Recall from the previ-
ous subsection that the submatrices associated with each DSD or PDP hypothesis are
generated only once and stored for future use. This allows precomputation of the U
matrices (which directly depend on the hypothesis submatrices), and in turn sorting of
their eigenvalues and computation of their D,. Hence, these costly computations do not
need to be performed at runtime.

As far as the term G, is concerned, it can also be precomputed by using an appropri-
ate quantization of the noise variance o [23] and solving the equations for the different
values of D,, since they also appear in the computation.

Following [23], the subspace selection is only performed once, as the authors claim
that making this selection at each iteration of the receiver does not improve the perfor-
mances.

Channel Estimation

An assessment of the number of operations required for producing the channel estimates
is provided in [23]. We reproduce it here, adapted to the notations of the thesis.

8
Cch.est, ~ 8]\730]\73132 + §D3

At this point, the complexity of this algorithm may look linear with respect to the
number of OFDM symbols. However, [21] and [23] give example values for D: 36 for
Ng; = 38 and 75 in the worst case for Ny = 73, which suggest a linear dependency
between D and N,;. We also performed simulations for different frame lengths, whose
results confirmed this linear dependency. The final expression for the complexity of the
channel estimator becomes

O(Ny. - N3)|. (4.26)

As in the case of the non-adaptive MMSE receiver, channel estimation has to be
performed for each iteration of the algorithm [23].
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LMMSE Detector

The LMMSE detector performs equalization on a symbol basis, according to [21]

(4.27)

For a complete frame, this formula has to be repeated for its N,y constellation
symbols, which leads to a complexity of

O(Nesif) | (4.28)

4.4 Elements Specific to the MAP Design

In this section, we discuss the parts specific to the MAP design proposed in [9]. We will
only introduce here the main lines of the algorithms and the elements needed to justify
our complexity estimations. A more rigorous approach of the theory can be found in
Chapter 3 of [9].

Mapper and Demapper

Unlike the ones in Section 4.2 which operate on complex symbols, the mapper and
demapper used in the MAP design work with conditional probabilities, as follows.

The mapping routine operates with probabilities on coded bits P(c = 1) provided by
the interleaver. It also takes as input P(y|q, z), which are the probabilities of observing
a received signal y given a channel coefficient ¢ and a symbol sent x, provided by the
channel likelihoods function. It outputs P(y|q), which is a matrix of size Ny - Npp - Nesif-
Computation of each of these coefficients requires O(m - M) operations, since we need
to compute probabilities for the m coded bits forming the symbols. These probabilities
are based on the values the coded bits can take for the M symbols in the constellation
and on the input provided by the interleaver. In the end, the complexity is

O(Ncsif'Na'Nph'M'm) - (429)

The demapper outputs LLRs on the m - Ngs coded bits, based on P(y|h,z) and
P(h). According to Bayes’ rule, summing the products of P(y|h,z) and P(h) for the
Ng - Ny, possible values of h gives P(y|z). Obtaining P(y|c) for a given value of ¢ (0
or 1) is made by summing the P(y|x) of the corresponding symbol x on all its possible
M /2 values (fixed by the modulation) for which the bit ¢ will have the required value 0
or 1. Such summations will be repeated for all coded bits. This leads to a complexity of

O(Ncsif'Na'Nph'M'm) - (4.30)

Note that as in the non-probabilistic case, both the mapper and the demapper have
the same complexity. These two subroutines are called at each iteration. If for the
demapper this is similar to the other receivers, the difference for the mapper comes from
the fact that the MAP receiver starts each iteration by a call to the mapper (see the
description in Section 3.3.2), while the other iterative receivers only call the mapper
when subsequent iterations are needed. Consequently, the MAP receiver will require the
mapper for the last iteration, unlike the MMSE designs.
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BCJR Channel Estimation

The algorithm is essentially the same as the decoder version, which was already pre-
sented. The only difference is the type of data computed: while the decoder deals with
bits and states of the convolutional encoder, the channel estimator deals with channel
estimates, quantized coefficients and non uniform transition probabilities. However, the
number of states and available transitions are not fixed by the standard, and need to be
taken in account in the analysis.

Recall from Section 3.3.2 that there are N,NNp, different quantized channel coeffi-
cients, representing the different states available in the Markov model. Thanks to the
limitations on the possible jumps, it is only possible to reach from a given state states
with neighbouring phases and/or amplitudes. It is also possible to keep the same phase
and/or amplitude. This gives a choice of 3 different amplitudes (or 2 if we already are
at the lowest or highest amplitude available), and 3 phases, which gives 9 (or 6) possible
transitions from a given state. Consequently, there are O(NN,Npp,) possible transitions
in total. This subroutine operates separately on each subcarrier; for a Ng-symbol long
subcarrier, O(N;N,Npp) are therefore required. Since the receiver deals with frames, the
process has to be repeated for each subcarrier. The complexity of the channel estimation
for a complete frame is

O(Nesis - (Na- Non)) | (4.31)

Channel estimation is required at each iteration.

Channel Transitions

Just like we had to specify the available transitions for the convolutional encoder states,
we need to define the possibilities of jumps between different channel quantized coefhi-
cients. We already saw in the description made in the previous chapter that the number
of quantized amplitudes N, and of quantized phases N, were fixed at the beginning.
Furthermore, transitions are only allowed between coefficients of neighbouring ampli-
tudes and/or phases. Consequently, it becomes possible to compute these transitions
only once, and store them for future use.

Transition Matrix

The Markov chain model requires a transition matrix to store the probabilities for each
jump. Since the amplitude and the phase are independent, we can compute the corre-
sponding transition matrices separately and obtain the complete matrix by multiplying.
Taking in account the fact that jumps are only possible between adjacent amplitudes
and adjacent phases (due to the simplifications introduced in Section 3.3.2), O(N,) com-
putations are needed for amplitudes and O(Np;) for phases. The complete transition
matrix stores the probabilities for each of the theoretically possible jumps between the
Ny Ny, states of the Markov chain, which are here channel coefficients. This makes a
total of (N,Npn)? probabilities in the matrix, although most of them are zeros due to
the previously introduced limitations. O ((NaNph)Q) products are required to generate
the final matrix. The final complexity is

O ((No - Non)?) | (4.32)

Note that this algorithm takes in account the Doppler shift; hence, it would have to
be either called for each frame, or run once for different quantized values of the speed
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and stored for subsequent use. Our simulations choose the first approach. The transition
matrix has to be produced (or fetched from memory) once per frame.

Channel Likelihoods

Recall from Section 3.3.2 that the first block of the MAP estimator is dedicated to the
computation of the likelihood of each of the N,V possible quantized channel coeffi-
cients, and this has to be done for the N, constellation symbols in the frame. However,
since the constellation symbols which have been sent are still unknown to the receiver
when this algorithm is called, it needs to perform these likelihood computations for each
of the M possible symbols which could have been sent.

This leads to a complexity of

O(Nesis - (Na - Nop) - M) (4.33)

As already mentioned in the description of the receiver in Section 3.3.2, this subrou-
tine is called once per frame before starting the iterations.

4.5 Summary

Now that the complexity of each part of the design has been assessed, it would be
interesting to see how many times each building block is called during the decoding of
a single frame. In this section, iterative algorithms will perform N iterations on each
frame. For the classical and MMSE algorithms, we do not make separate tables for the
two initialization methods.

We start with the non-iterative case, described in Table 4.1.

Algorithm Complexity in O | Number of calls
FFT (NsNs.)logy(Nse) 1
Channel estimation 1

with block pilots or Noed

with comb pilots Nesiy

Demapping and equalization’ M Negif 1
Decoding MNegip R 1
Decision MNesif R 1

Table 4.1: Complexity breakdown for the classical receiver.

It can be seen from the data in Table 4.1 that the overall complexity of the algorithm
is linear with respect to the frame length.

We can now turn to iterative designs. Complexities associated with the MMSE
receiver in [9] are presented in Table 4.2.

Again, linear dependencies on both frame lengths and number of iterations appear.
The MMSE design in [23] is presented in Table 4.3.

Here, the two algorithms specific to this MMSE design (namely, the subspace selec-
tion and the channel estimator) prove to have a cubic dependency on the number of
OFDM symbols, which is very poor [10]. Although using a reduced dimension D for the
Wiener filter offers significant computational gains compared to the full rank filter, this

!Both are made simultaneously in our implementations.
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Algorithm Complexity in O | Number of calls
FFT (NsNs.)logy(Nge) 1
Initial channel estimation 1
with block pilots or Ned

with comb pilots Nesiy

Wiener tap vector computation 1 1
Wiener filtering Nesif N;
Demapping and equalization M Neg;f N;
Decoding MNesif R N;
Mapping MNcsif Ny —1
Decision MNesif R 1

Table 4.2: Complexity breakdown for the MMSE receiver [9].

Algorithm Complexity in O | Number of calls
FFT (NsNge) logg(Nse) 1
Subspace selection Nyep AN, 3 1
Channel estimation NNg3 Ny
Equalization Nesif N;
Demapping M Neg;f N;
Decoding (max-log BCJR) M Nesip R N;
Mapping MNcsif Ny —1
Decision MNesif R 1

Table 4.3: Complexity breakdown for the adaptive MMSE receiver [23].

algorithm will have a consequent weight in the overall complexity of this design.

Finally, we can turn to the MAP design, whose complexity was already partly as-

sessed in [9]. Our results are presented in Table 4.4.

Algorithm Complexity in O | Number of calls
FFT (NsNge) logs(Nse) 1
Transition matrix (NoNpp)* 1
Channel likelihoods NesigNoNpp M 1
Mapping NcsifNaNphMm Nit
Channel estimation Nesit(NoNpp) N;
Demapping and equalization Nesif NoNpp Mm N;
Decoding MNesif R Niy
Decision MNesif R 1

Table 4.4: Complexity breakdown for the MAP receiver.

At this point, it is interesting to compare the findings expressed in Table 4.4 to the
data provided in [9]. First, an expression similar to Equation (4.1) in [9] can be derived
from our results. Then, there is a linear dependency on the frame length, as shown in
Figures 4.15 and 4.16 of [9]. The quadratic dependence on the number of quantized
levels NoNpyp, (referred to as Ny in [9]) no longer appears in the channel estimation part
due to the simplifications made. However, for the non simplified algorithm used in [9],
a quadratic dependence on the number of phases N,;, would have been found.
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However, while the complexity assessment in this work indicates an influence of the
size of the constellation M as Mm = M log,(M), previous results based on execution
times only showed a linear relation [9]. Although the repartition of the total execution
time among subroutines will be treated in the next chapter, we believe it to be the ex-
planation of this difference. Indeed, the subroutines showing the quasilinear complexity
have very low computation times, while the channel likelihoods exhibiting the linear
complexity in M accounts for a large part (30 to 50%) of the total running time.

Finally, if we compare the complexity of subroutines serving the same purpose be-
tween the MAP and the MMSE design, MAP algorithms show an increase by a factor of
Ny Npp,, which can account for the gap in execution times showed in Figure 4.15 in [9].
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Chapter 5

Performance Analysis

In this chapter, the data from the simulations is presented. Section 5.1 gives the achieved
error rates for each algorithm, and draws some comparisons. In Section 5.2, we provide
the execution times which validate and extend the estimates in Section 4. Section 5.3
tries to sort the receivers proposed so far by taking simultaneously in account the error
rates and the complexity. Finally, Section 5.4 addresses some of the concerns which may
arise when implementing the receivers on testbeds.

5.1 BER and FER Performance

In this section, we introduce the results of the implemented algorithms in terms of error
rates. The first rate is the Bit Error Rate (BER). Usually expressed as a function of
the SNR in the form Ej/Ny, it represents an interesting measure from the theoretical
point of view. However, the systems considered in this work are frame-based. For this
reason, we will also consider the Frame Error Rate (FER), where a frame is said to be
in error if at least one of its bits is wrongly decoded. It can be noticed here that the
FER will not only depend on the overall BER, but also on the spreading of erroneous
bits. Consider for example a batch of 100 frames, where 100 bits in total are in error.
It is straightforward that although the BER will not change, the FER will experience
large variations if one bit is wrong in each frame or if the 100 wrong bits are within a
single frame.

In the remainder of this section, we use the same SNR range as in [9], namely from
—4 to 28 dB. Similarly, BPSK modulation is used, and we consider a relative speed of
v = 100 km/h. We simulated frame lengths of 36, 72 and 136 OFDM symbols (excluding
pilots) as in [9] and previously [21], corresponding to lengths of 100, 200 and 400 bytes
with BPSK. Unless otherwise mentioned, simulations run over 500 frames for each SNR
value.

5.1.1 Classical Receivers

First, we present in Figure 5.1 and 5.2 the results for the classical receiver, with the two
initialization methods mentioned in Chapter 3.

It can be seen that with the chosen channel model, comb pilots offer improved per-
formance at high SNRs and allow to go beyond the error floor occuring with block-based
receivers at 10 dB. Interestingly, the ability to have pilots for the whole length of the
frame make the performance of this design almost independent of the frame length.
On the contrary, the block-based systems is affected by a decreased performance when

47
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Figure 5.1: Comparison of the BER performance of the classical receiver for LS and CLS
initializations and different frame lengths.
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Figure 5.2: Comparison of the FER performance of the classical receiver for LS and CLS
initializations and different frame lengths.
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the frame length is increased: the BER is almost doubled each time the frame length
doubles, reaching a floor at 40% for the longest 136-symbol frames.

When dealing with the FER, the comb-based receiver still performs better than its
block-based counterpart. However, performance degrades with longer frames. The FER
threshold of 107! mentioned in [2] and [23] would never be reached by the block-based
receivers, while it would require a minimum SNR of 16, 20 and 26 dB for respective
lengths of 36, 72 and 136 symbols with the comb-based designs.

5.1.2 MMSE Receivers

We now turn to the MMSE designs. Again, the two initialization methods are used for
the design from [9]. The results are given in Figure 5.3 and 5.4.
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Figure 5.3: Comparison of the BER performance of the MMSE receivers for LS and CLS
initializations and different frame lengths.

From the simulations, we see that the difference of behaviour between comb-based
and block-based initializations observed for the classical receiver also applies here: comb
pilots make the BER performance almost independent of the frame length, and overcome
an error floor. FER curves are also very similar. Especially, the FER threshold of 10~}
is never reached by the block-based receivers, while it would require a minimum SNR
of 17, 22 and 27 dB for respective lengths of 36, 72 and 136 symbols. This is 1 dB
more than for classical receivers. Compared to the results in [9] where the MMSE design
performed better than the classical receiver, this finding was not expected.

One may notice that the results provided here for the MMSE design in [23] do not
exactly match the curves in [23]. Several factors can account for these differences. First,
the channel model used here has a longer DS: 2.5 us against 1.6, which creates ISI.
Then, Zemen et al. consider a frame which has a higher number of pilots due to its
postamble, which is not implemented in our simulation because it is not part of the
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Figure 5.4: Comparison of the FER performance of the MMSE receivers for LS and CLS
initializations and different frame lengths.

standard. These extra pilots were however shown, for example in [21], to dramatically
improve the performance of the receivers. Such improvements were also noted in [9]
with the MAP design for the subcarrier case. Finally, the formula for the computation
of noise variance is different.

It can also be seen that the algorithm from Zemen et al. [23] suffers from a perfor-
mance loss at high SNRs (above 16 dB). This may be caused by incorrectly demapped
symbols which are nevertheless considered correct by the algorithm. The fact that no
error rate curve in the corresponding literature is plotted for SNR values above 14 dB
tends to suggest that this particularity was also known to the authors.

5.1.3 Comparison

The complete results of our simulations, summarizing the two previous subsections and
adding the MAP design are presented in Figure 5.5 and 5.6. For each SNR value, 500
frames were simulated, except for [23] and MAP algorithms with a frame length of 72
symbols for which only 200 frames were simulated. This reduction was motivated by time
considerations (see next section for more details on the execution times). Due to the high
number of curves, the legend is split between the BER and FER plots. Furthermore, the
curves representing the MMSE algorithm with comb initializations were not added for
clarity, as they match very closely the corresponding curves obtained with the classical
receiver.

In [9], the MAP design was shown to outperform the other designs in terms of error
rates for the subcarrier case. From the results given here, we can see that this design is
much less adapted to the multicarrier case, having only a small advantage for SNR values
up to 10 dB for BER values before being outperformed by the MMSE design using comb
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Figure 5.5: Comparison of the BER performance of all the studied receivers for three
different frame lengths.
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Figure 5.6: Comparison of the FER performance of all the studied receivers for three
different frame lengths.

pilots. This difference of performance is likely to come from the inner design of the MAP
algorithm, which performs channel estimation separately on each subcarrier without
taking in account the whole frame. However, for the FER, the advantage lasts up to 18
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dB; afterwards, MAP and MMSE designs with comb pilots offer similar performances.
This would tend to indicate that errors are more "concentrated" with the MAP receiver
than with its MMSE counterpart.

For algorithms run with either block or comb pilots used for initialization, we see
that block-based estimators perform slightly better at low SNR values, while comb pilots
provide the best error rates for high SNRs. This was already noticed in [7]. Another
advantage of comb pilots is that they allow to reach lower error rates at high SNRs,
where the same algorithms would experience an error floor when using block pilots.

5.2 Complexity and Execution Times

Theoretical complexity assessments have been presented in Chapter 4. If they are a
valuable tool to evaluate the total number of operations as well as the dependencies on
different parameters, they do not necessarily reflect the real performance of the algo-
rithms. Hence, we give in this section another measure of complexity through execution
times. It should be noted that the execution times provided in this thesis have been
obtained through MATLAB simulations, and are dependent on several factors such as
the load of the computer used.

Table 5.1 present the execution times per frame for the proposed algorithms of this
work. The evaluations were performed at the same SNR value using BPSK modulation
and with similar computer loads. They were averaged over several frames, and did not
make use of MATLAB’s profiler. This tool indeed gives detailed timings, but at the cost
of a large overhead which does not reflect the execution times achieved during normal
operation. Iterative algorithms made N; = 5 iterations. This value was indeed shown
in [9] to be sufficient for the algorithms to converge when dealing with short frames, and
this observation was subsequently confirmed for all receivers by our simulations. We also
chose to apply this value to long frames so that we could focus on the influence of the
other parameters.

Algorithm | N; | Time (s)
36 2
Classic 72 4
136 8
36 11
MMSE 72 20
136 39
36 25
MMSE [23] [ 72 171
136 1104
36 60
MAP 72 134
136 249

Table 5.1: Execution time per frame for the proposed algorithms

These execution times confirm the dependency on the frame lengths, which was found
analytically in Chapter 4 (and previously in [9]) to be linear for all algorithms, except
[23] for which it is cubic [10]. For the classical and MMSE design, we did not separate
LS and comb LS (CLS) initializations, as they proved to lead to similar execution times.
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5.2.1 Repartition of the Execution Times

For further optimizations, it is interesting to know how the total execution time is split
between the different parts. Hence, we present in this section the breakdown for all
the algorithms implemented, operating on full frames. We use BPSK modulation and
Ng = 36 symbols. Iterative algorithms perform Ny = 5 iterations.

Other

BCJR

(a) Classical (b) MMSE

Figure 5.7: Repartition of the execution time for the classical and MMSE receivers.

It is clear that for these two algorithms, the BCJR decoder represents by far the
largest part of the execution time. Hence, being able to optimize this part would lead
to considerable computational savings. One of the most popular optimizations for the
BCJR is discussed in Section 5.4.

We now turn to the receiver design of [23].

Estimator

BCJR
Hypothesis testing

Figure 5.8: Repartition of the execution time for the MMSE receiver [23].

Here, the total time is dominated by the channel estimation process. This can explain
the fact that the total execution time reflects the cubic dependency on the frame length
of the estimator. Unlike the two previous receivers, the BCJR only plays a minor role,
which is not only due to the estimator but also to the optimization mentioned earlier,
which is implemented in this decoder.

To conclude this section, we provide the MAP design performance, both with and
without the BCJR optimization. Recall that the MAP receiver used in this work features
some simplifications which were not implemented in [9], and that the BCJR algorithm
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contributes both to channel estimation and to decoding. Like in [9], the channel coeffi-
cients can take up to 32 different quantized values.

Likelihoods

Other

Decoder

Estimator
(a) max®™ BCJR

Other
Decoder

Estimator

Likelihoods

(b) max-log BCJR

Figure 5.9: Repartition of the execution time for the MAP decoder.

From Figure 5.9, we can see that the likelihood computation, although occuring
only once per frame, accounts for a large part of the execution time, as mentioned in
Section 4.5. This is especially true when using the max-log version of the BCJR, which
decreases the time spent by the estimator and decoder. It should be noted that the total
time for the max BCJR case is halved compared to the max* BCJR case.

In [9], a similar diagram was provided in Figure 4.19 for a subcarrier basis, for
the non-simplified design. The percentages were found to be 8% for the likelihood
computation, 77% for the channel estimator and 15% for the decoder. If the percentage
representing the decoder is very similar to our results, we were not able to reproduce a
situation in which the channel estimator would be the dominant algorithm.

5.3 Overall Performance

The last two sections presented separately the results of the algorithms in terms of error
rates and complexity. In this section, we try to give an insight on the overall performance
of our receivers by simultaneously taking in account both parameters.

We proceed as follows. First, we use for all algorithms the same frame length (36
OFDM symbols), relative speed (v = 100 km/h), modulation (BPSK) and channel model
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(ITU Vehicular A). We also choose a SNR value, namely Ej,/Ny = 20dB. This choice is
explained by the fact that the receivers show high performance differences for this value.
In Figure 5.10, we present for each algorithm the BER achieved for this SNR value, and
the associated execution time.

_— : _— : _—
60 7 o Classic LS
a Classic CLS
50 - + MMSE LS | |
© x MMSE CLS
2 40 |- o MMSE [23] | |
2 o MAP
El |
?3 o
% 20 i
3
10 * - -
0 | lA | | . | | | | | | | |
1073 1072 1071 10°
BER

Figure 5.10: BER/complexity tradeoff for the implemented receivers.

On Figure 5.10, an ideal design (low execution time and low bit error rates) would
be in the bottom left-hand corner. However, in real situations it is often not possible
to have both advantages simultaneously, and tradeoffs are required. We believe that
this diagram is a good tool if one needs to make such decisions. However, it is only a
snapshot of a given error rate for a given situation (frame length, speed, modulation,
SNR value), so the parameters have to be carefully chosen.

With the channel model used, we see that comb initializations give the best perfor-
mance, both for the MMSE and classical receivers. The MAP receiver features a very
high execution time but for a limited performance.

5.4 A Note Regarding Hardware Implementation

The final goal is to have the receiver designs implemented on testbeds so they can be
evaluated in real use conditions. Consequently, in this section we provide some elements
which would have to be specifically taken in account when dealing with such systems.
Following the guidelines provided in [14], we focus on the required numerical precision
and the number of operations. Memory footprints will also be discussed.

5.4.1 The Max-Log Approximation

It can be seen from Section 5.2.1 that for the classical and MMSE designs, the most
time-consuming part is the BCJR decoding. More precisely, the Jacobian logarithm
operation introduced in Section 4.2 is intensively called by this algorithm and accounts
for approximately two thirds of its running time. It would therefore be interesting to
improve the computation of this operation.
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Recall from Equation (4.19) that the Jacobian logarithm formula consists of the sum
of two parts: a max operation and a logarithm with an exponential in its argument. One
possibility is to quantize the values taken by the logarithmic part and use a table look-up
to pick the closest match. This introduces errors, but since the values of the logarithmic
part lie between 0 and log 2, these errors are limited. This observation leads to a second
approximation, known as the max-log approximation. In this second case, the Jacobian
logarithm equals to a max operation. By dropping the log and exp computations, it
makes the algorithms much faster thanks to the reduced number of operations, although
the theoretical overall complexity of the BCJR decoder remains unchanged.

We were interested in the influence of this second approximation on the error rates.
For this purpose, we took two "extreme" cases: the classical design, for which a BCJR is
only used for decoding, and the iterative MAP design which uses BCJR both for decoding
and channel estimation. The data was gathered with the single subcarrier version of the
MAP and the frame version of the classical design, using BPSK modulation and with
frames of 36 OFDM symbols. 100 frames were simulated for each SNR value, which can
account for the lack of smoothness of the presented curves.

109
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Figure 5.11: Influence of the max-log approximation on the classical and MAP receivers
on the BER.

From Figure 5.11, we see that in the case of the classical receiver, the performance
is very similar for both cases, while for the MAP receiver, the error rate can sometimes
be doubled. Such a simplification would therefore not be desirable in all cases; instead,
it clearly requires a trade-off between execution time and accuracy. As an example, we
run the classical receiver using MATLAB’s profiler. We obtain a running time for the
conventional BCJR of 3.57 s when the approximation gives a running time of 140 ms.
This suggests that the max-log approximation would be especially interesting to reduce
computation times of non iterative receivers. It should be noted here that following the



54. A NOTE REGARDING HARDWARE IMPLEMENTATION 57

100

1071
[aef
[£3)
I
1072
—+— Classic max* BCJR
| |—— Classic max BCJR
| | —— MAP max* BCJR
—<— MAP max BCJR
10—3 | | | | | | | | | | | | | | |
-4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

Ey/ Ny (dB)

Figure 5.12: Influence of the max-log approximation on the classical and MAP receivers
on the FER.

description in [23], the design of Zemen et al. was only simulated with the max-log
version of the BCJR.

5.4.2 Comparison of the Algorithms

The MAP receiver requires for initialization channel likelihoods and the channel tran-
sition probability matrix. These two parts perform several function integrations, which
account for most of the running time of the likelihood computations. Therefore, the
loss of precision due to fixed-point systems should be carefully considered. Further-
more, a lot of data needs to be stored at runtime, such as M N, N,; N, ¢ likelihoods and
NoNppNegir probabilities from the mapper. The BCJR channel estimation will also have
a high memory footprint due to the quadratic dependency on the number of possible
channel coefficients.

The algorithm in [23] uses a specific matrix factorization because of the poor con-
ditioning of the matrix. In one of the simulations, the eigenvalues had an order of
magnitude ranging from 102 to 1073°. Consequently, trying to set a precision limit to
accomodate the fixed-point architecture of testbeds [14] would prove to be difficult. The
other problem of this algorithm is that, in order to prevent excessively costly computa-
tions, several values have to be stored: A+ A’ hypothesis submatrices split in eigenvectors
and eigenvalues, A+ A’ submatrices used solely for the hypothesis test process, and val-
ues of GG, for quantized noise variances for each possible submatrix for the test. The
size of the matrices involved in Equation (3.38) can not be neglected either: typically,
a short 36-symbol frame requires a 2432 x 2432 matrix of complex numbers. Finally,
this receiver requires matrix inversions, which are especially costly both in storage and



o8 CHAPTER 5. PERFORMANCE ANALYSIS

number of operations. All these factors make this algorithm particularly unsuitable for
an embedded system.

Based on the results found in this chapter, we would recommend for implementation
the classical receiver with comb linear interpolation, because it is fast, efficient and works
for all constellations in the standard. However, these results would have to be verified
with other scenarios, involving different channel models and/or implementation for use
in real conditions.
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Conclusions

Wireless vehicular communication is a key technology to enable ITS, which will allow
for more safety on the roads and better traffic management. Standards are currently in
place, and the corresponding frequency bands are allocated. Unfortunately, the channels
usually encountered with vehicular communication pose challenges both regarding the
scale of the network and the high mobility of the nodes. Several research projects,
also involving car equipment manufacturers, are ongoing in order to deal with these
issues. Especially, the time-varying and dispersive nature of the channel impedes link
robustness. In this thesis, we dealt with receivers able to reach an acceptable performance
over such channels.

To ensure interoperability, we restricted ourselves to fully 802.11p compliant frames.
Following a previous work, we used a standard-compliant transmitter, and a channel
model which took into account the noise and selectivities of real channels. For systems
operating in such poor conditions, a crucial point is the channel estimation step. How-
ever, the standard only specifies two pilot symbols at the beginning of each subcarrier,
and four pilot subcarriers whose frequency spacing is too large to allow for proper chan-
nel estimation. Our first step was to make the existing algorithms (classical, MMSE and
MAP) operate on complete frames. The MMSE receiver uses a Wiener filter, and takes
in account the autocorrelation of the channel. The MAP receiver relies on a Markov
modeling of the channel. These two designs are iterative, which means they refine their
channel estimates by taking in account the extra information provided by the decoder.
Motivated by the promising results previously obtained, we also implemented another
MMSE algorithm from the literature for comparison purposes. It used a subspace se-
lection to adapt itself as precisely as possible to the exact delay and Doppler spread
induced by the channel, instead of always supposing the maximum values. Finally, we
gave the classical and MMSE receivers the ability to initialize themselves either with
block pilots or with comb subcarriers.

We were interested both in the error rates and complexities of the implemented
designs. The complexity was measured by approximating the theoretically required
number of operations, and through execution times in order to give a more practical
overview. It turned out that the MAP decoder, which outperformed all the others on the
subcarrier case, is still the best in terms of FER, but at the cost of a very high complexity.
The adaptive receiver design in [23], despite promising results in the literature, was
shown to achieve much worse error rates without the extra “postamble” at the end of
the frame. Furthermore, its computational costs were found to be unacceptably high [10],
especially when dealing with long frames. For the classical and MMSE designs, comb
pilots improved the performance, especially at high SNRs, by suppressing the error floor
encountered while using block pilots. MMSE had a small advantage; unfortunately,
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this design only works with PSK modulations. It appears that a design matching all
constellations with an acceptable performance and complexity is not available yet. One
of the biggest difficulties was to compare designs with the existing literature, since there
is no common channel model between all the articles.

Future Work As far as entertainment is concerned, recent news from car manufac-
turers currently show a preference for 4G networks'. For safety-related uses, it would
be of much interest to slightly modify the protocol in order to add a postamble, as it
can lead to high performance improvements with only minor changes to existing algo-
rithms. Using the pilots of the next frame could have been an interesting workaround,
but the delay between frames for security functions is too high for this scheme to work
effectively [23]. Another suggestion would be to use diversity through a MIMO system.
In this work, estimation of the noise variance from measurements has not been taken in
account, although it would be required in real receivers. A possibility would then be to
implement several decoding algorithms, each one with its optimal SNR domain, and call
at runtime the most efficient one given the estimated SNR. Finally, hardware implemen-
tations clearly appear as compulsory for performance evaluation, given the high number
of different channel models and parameters used in the literature. They would not only
provide an insight on performance in real conditions, but also weigh in favour of (or
against) some of the channel models currently in use for vehicular scenarios. In the long
run, this would ideally reduce the number of models chosen for numerical simulations,
hence allowing easier comparison of the results.

'For example, General Motors announced in February 2013 that their new 2014 models would have
an embedded 4G connection for such purposes, at least in the US. http://www.usatoday.com/story/
money/cars/2013/02/25/gm-general-motors-4g-att-onstar/1939583/


http://www.usatoday.com/story/money/cars/2013/02/25/gm-general-motors-4g-att-onstar/1939583/
http://www.usatoday.com/story/money/cars/2013/02/25/gm-general-motors-4g-att-onstar/1939583/
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