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Abstract. One important aspect of the quality of programming languages is 
the effort required by a programmer to understand code written in the language. 
A historical case where this issue was at the forefront was in the debate between 
the proponents of high-level languages (HLL) and Assembly languages, where 
the main argument for HLLs were that they were easier for people to 
understand.  

Being one out of a series of articles arguing for a unified theory for software 
engineering, this article proposes the use of a specific theoretical model from 
the discipline of cognitive psychology as a tool for predicting language 
comprehension effort. Describing human problem solving faculties, the ACT-R 
model [Anderson and Lebiere 1998] predicts that the effort of understanding a 
program written in C is only 36,5% of the effort of understanding a comparable 
program written in Assembly.  

In order to validate the theory, an experiment was performed where a number 
of engineering students were exposed to tasks of program comprehension. This 
empirical assessment demonstrated that the effort of understanding a program 
written in C is 32,5% of the effort of understanding a comparable program 
written in Assembly. Comparing the results of the theoretical predictions and 
the empirical assessments of program comprehension effort, we find that the 
theoretical model performs surprisingly well. The prediction error for the 
execution of an Assembly program was 5,1% while the error for C was 6,8%. 
The prediction error for the ratio between the two program languages amounted 
to 12,6%.  

Keywords. ACT-R, Programming Language, C, Assembly, HLL, Unified 
Theory of Software Engineering, Program Comprehension. 
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1 INTRODUCTION 

1.1 Assembly versus HLL 

A couple of decades ago, a heated debate raged over the pros and cons of high-
level languages on the one hand and Assembly languages on the other. 
Proponents of high-level languages claimed that these were much better suited 
to the problem-solving involved in program development while the advocates of 
Assembly maintained that high-level languages were less efficient than 
Assembly. Although high-level languages have won the day in the eyes of most 
beholders, there are still those who defend the relevance of Assembly 
programming. 

1.2 Dimensions of Program Language Quality 

In the debate of programming language quality several arguments are normally 
put forth. Figure 1 outlines different lines of argumentation. Firstly, there are 
arguments concerning the suitability of programming languages with respect to 
the machines that in the end will execute the programs. These arguments are 
mostly concerned with issues such as the expressiveness of programming 
languages, i.e. what applications written in the languages can do, machine 
efficiency, i.e. how rapidly they can do them, and how easily they can be 
manipulated by other applications, such as compilers.  

Secondly, there are arguments concerning the suitability of programming 
languages with respect to the human mind. These arguments normally focus on 
issues such as program comprehension, i.e. how difficult it is for a programmer 
to understand a given program, program language learnability, i.e. how difficult 
it is for a programmer to learn the language, and programmer efficiency, i.e. 
with what effort a programmer can accomplish a given task with the 
programming language.  

Thirdly, there are arguments concerning the suitability of programming 
languages with respect to software developing organizations. Among these 
arguments, one states that certain languages provide code modularization 
mechanisms that facilitate division of labor by reducing the required amount of 
communication between programmers. Related arguments concern the extent to 
which the interfaces of such modules support distributed development. 
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Figure 1. Outline of the argumentation for and against HLLs.  

1.3 Purpose 

In this article, we report on the shaded boxes in Figure 1, i.e. arguments 
concerning the effort required by the human mind to understand programming 
languages.  

The article presents theoretical predictions of the effort of program execution 
with respect to two programming languages; C (a version developed by [B 
Knudsen Data, 2005]) and an Assembly programming language (a version 
developed by [Microchip Technologies, 2002] [Microchip Technologies, 2002]). 
The predictions are experimentally validated. 

1.4 A Unified Theory of Software Engineering 

This article is one in a series of publications arguing for the need of a unified 
theory of software engineering. Looking at other academic disciplines, the 
history of successful science is written in terms of its unified theories. In 1687, 
Sir Isaac Newton proposed a unified theory of mechanics in order to explain 
and predict all earthly and heavenly motion [Newton, 1687]. In 1803, John 
Dalton revived a unified theory of matter, the atomic theory, explaining the 
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nature of all matter [Dalton, 1808]. In 1839, Matthias Schleiden and Theodor 
Schwann developed the theory of the cell, explaining the fundamental structure 
of living organisms [Schwann, 1839]. In 1859, Charles Darwin proposed a 
unified theory of evolution by natural selection in order to explain all variability 
of the living [Darwin 1859]. In 1869, Dmitri Ivanovich Mendeleev presented the 
periodic system, a unified theory explaining the properties of all the chemical 
elements [Mendeleev 1869]. In 1990, Allen Newell proposed a unified theory of 
cognition in order to explain and predict all human problem-solving [Newell 
1990]. 

Software engineering, however, only uses a large set of micro-theories that lack a 
common ground. Thus we are hampered by the shortage of the powerful 
conceptual vehicle of scientific thought that is found in a unified theory. 
Arguments for the benefits and viability of a unified theory of software 
engineering are presented in [Johnson and Ekstedt, 2005b]. A proposal for a 
unified theory of software engineering is detailed in [Johnson and Ekstedt, 
2005a]. In this paper, one part of this proposed unified theory is corroborated 
by an empirical validation of its predictive capacity.  

1.5 Outline 

Section two outlines the experiment measuring language comprehension in 
terms of cognitive effort of executing computer programs. Section three delves 
into the details of the theory that is used for predicting the execution effort. 
Furthermore, the section presents the actual predictions. In section four the 
experimental setup and results are described. A detailed analysis and comparison 
of the theoretical predictions and experimental results are found in section five. 
Finally, the paper is concluded in section six. 

2 PROGRAM LANGUAGE COMPREHENSION 
MEASURED BY EXECUTION EFFORT  

Program comprehension is an established interest area within software 
engineering [Brooks 1983] [Soloway and Ehrlich, 1984] [Robson et al., 1991] 
[Paul et al., 1991]. One of the pioneers in the discipline, Schneiderman, views 
program comprehension as consisting of three levels [Schneiderman, 1980]: 
low-level comprehension of the function of each line of code, mid-level 
comprehension of the nature of the algorithms and data, and high-level 
comprehension of overall program function. Much of the work in the discipline 
has been conducted on Schneiderman’s higher levels, where the overall function 
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and purpose of the program is focus. In this article, however, only the lowest 
level of comprehension is addressed. With respect to this level of program 
comprehension, a reasonable measure of the difficulty for the human mind to 
understand a program is the time it takes for the mind to execute that program. 
The mind thus acts as if it where a processor, interpreting the program 
instruction by instruction.  

In order to determine the difference in ease of understanding between two 
different programming languages, we can employ the above measure, comparing 
the effort of executing a program in each language. Of course, the two programs 
in the two languages must be comparable. In this paper, we consider a program 
in Assembly versus a program in C, both performing a functionally identical 
task, namely to sort a list of integers according to the “bubble sort” algorithm, 
cf. Figure 2. The complete C program is presented in Figure 3, and the 
Assembly program is presented in Figure 4.  
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Figure 2.  The execution time for the ACT-R mind interpreting Assembly, 
tAssembly is compared to the execution time for the mind interpreting C, tC. 
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Figure 3. Bubble Sort program in C. 

void main() { 
  int i[9]; 
  int x, y, h, l; 
 
  i[0]=9; 
  i[1]=8; 
  i[2]=7; 
  i[3]=6; 
  i[4]=5; 
  i[5]=4; 
  i[6]=3; 
  i[7]=2; 
  i[8]=1; 
  for(x = 0; x < 3; x++) { 
    for(y = 0; y < 2; y++) { 
      h = i[y+1]; 
      l = i[y]; 
      if(l > h) { 
        i[y] = h; 
        i[y+1] = l; 
      } 
   } 
  } 
} 
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Figure 4. Bubble Sort program in Assembly. 

3 THEORETICAL PREDICTION OF 
EXECUTION EFFORT  

3.1 The ACT-R Model of the Mind 

As described in [Johnson and Ekstedt, 2005a], the unified theory of software 
engineering proposed by the authors incorporates a model of the human mind, 
ACT-R, developed by Anderson et al. at the Carnegie Mellon University 
[Anderson, 1983] [Anderson and Lebiere, 1998]. In this model, it is possible to 
describe the concrete steps performed by a mind when executing an Assembly 
instruction or a C statement.  

The ACT-R model of the mind is not unlike the von Neumann computer 
architecture. Recall that the von Neumann computer features a central 

MOVLW .9 
MOVWF i 
MOVLW .8 
MOVWF i+1 
MOVLW .7 
MOVWF i+2 
MOVLW .6 
MOVWF i+3 
MOVLW .5 
MOVWF i+4 
MOVLW .4 
MOVWF i+5 
MOVLW .3 
MOVWF i+6 
MOVLW .2 
MOVWF i+7 
MOVLW .1 
MOVWF i+8 
CLRF  x 
MOVLW .3 
SUBWF x,W 
BTFSC 0x03,Carry 
GOTO  m007 
CLRF  y 
MOVLW .2 
SUBWF y,W 
BTFSC 0x03,Carry 

GOTO  m006 
MOVLW .i+1 
ADDWF y,W 
MOVWF FSR 
MOVF  INDF,W 
MOVWF h 
MOVLW .i 
ADDWF y,W 
MOVWF FSR 
MOVF  INDF,W 
MOVWF l 
SUBWF h,W 
BTFSC 0x03,Carry 
GOTO  m005 
MOVF  h,W 
MOVWF INDF 
MOVLW .1 
ADDWF y,W 
MOVWF FSR 
MOVF  l,W 
MOVWF INDF 
INCF  y,1 
GOTO  m003 
INCF  x,1 
GOTO  m001 
SLEEP 
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processing unit (an executor), a memory for both programs and data, and an 
input and an output system.   

Comparing the ACT-R model of the mind to the von Neumann computer, we 
find many similarities: there is an executor, and there is an input and output system 
(Figure 5). There is also memory in both the mind and the machine. On a high 
level, we might make an analogy between that part of the mind called the 
procedural memory system, and the machine’s program memory. Both store 
instructions that can be executed by the executor. An analogy may also be made 
between the part of the mind’s memory called the declarative memory system and 
the machine’s data memory. Both these systems store knowledge that can be 
evaluated and manipulated by the program instructions or production rules.  

The analogy, however, ends there. A main feature of the mind is that it is goal-
driven; it has goals and these goals influence its behaviour. The mind will choose 
what instruction to execute depending on its current goal. The executed 
instruction will in turn modify the goal of the mind. Since the goal has been 
modified, the subsequent instruction will be different from the previous one. So 
the execution of the mind may be represented as a constant transformation of 
goals. In this process of goal transformations, there are side effects that may 
exhibit themselves as, for instance, external behaviour (like speech or 
movement).  

 

Figure 5. The ACT-R model of the mind. 

The compositional units of the declarative memory are called chunks. Chunks 
store knowledge, like the name of a person, the fact that three plus four equals 
seven, etc. The goals are represented as residing in their own memory system, 
the goal memory system, which contains a special kind of chunks; goal chunks. A 
mind may have several goals, but only one can be active at any one time. It is 
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often convenient to view goals as stored in a stack, where new goals can be 
pushed and attained goals popped.  

 
The compositional units of the procedural memory are called production rules. 
These are the analogues to the instructions of a von Neumann machine. A 
production rule has the following general form: 

 

IF goal_condition (+ chunk_retrieval)  
THEN goal_transformation (+ action). 
 

The procedural memory system contains a large amount of different production 
rules in no particular order. What production rule is selected for execution 
depends on the left-hand side of the equation, and the result of the production 
rule execution is given by the right-hand side. The parentheses mean that 
“chunk retrieval” and “action” are optional. The drivers of the mind are thus a 
sequence of goal transformations; the goal (and optionally some other chunk) 
determines whether the production rule is executed, and the result of the 
execution is a transformation of the goal (and optionally some action). 

The memory of the mind, be it procedural, declarative or goal memory, differs 
from the memory of the von Neumann machine in not only its structure, but 
also in its persistence; people have a hard time learning and remembering things.  

In addition to the memory systems and the executor, the mind also features an 
input and an output system. The input system continually presents chunks that 
may or may not be considered by the executor. These chunks represent the 
external stimuli that the person is experiencing. They might, for instance, be a 
sequence of words as the person reads a text. Chunks are on a fairly high level 
of abstraction, where many interpretations are performed directly by the input 
system (as, e.g., the interpretation of certain patterns of black ink on a paper as a 
word in English).  

The output system is manipulated by the executor in line with the production 
rules that are being executed. Also the output system provides a high-level 
interface to the executor (so that one action could be the writing of a word on a 
paper).  

Summarizing, according to the ACT-R, the mind has an executor, an input and 
an output system, and three different memory systems. The procedural memory 
contains executable production rules, the declarative memory contains chunks, 
and the goal memory contains the goals that guide the mind’s behaviour. 
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3.2 Theoretical Setup 

This section presents the manner in which the ACT-R model was employed in 
order to predict the effort of program comprehension.  

In order to make the prediction as precise as possible, our instantiation of the 
model is closely matched to the experimental setup employed to validate the 
prediction. We assume that the person executing the statement is positioned in 
front of a computer with two windows open. In one window, the program text 
is presented while in the other window, the states of the relevant variables are 
located (cf. the experimental setup in FiguresFigure 9 and Figure 10). The 
person can manipulate the states of the variables by pressing various keys on the 
keyboard.  

ACT-R allows for several levels of detail in the workings of the mind. In this 
prediction, we will use the least detailed level, which is called the symbolic level. 
On this level, a fairly simple set of production rules and the input and output 
systems are employed. The so called sub-symbolic level, treating issues such as 
learning and forgetting, conflicting production rules, is thereby ignored.  

Figure 6 presents the production rules required to execute the various Assembly 
instructions. As an example, let us consider MOVF x,W. The instruction states 
that the value of the variable x should be copied to the working register W. In 
this example, the mind first selects the working register (by manipulating a 
development environment user interface), then reads the current value of the 
variable x (this value is presented in the user interface), and finally writes that 
value to the previously selected working register (by pressing the appropriate key 
on the keyboard). This instruction is thus coded in three ACT-R production 
rules. These productions in turn specify the reading of three chunks (“MOVF”, 
“x” and “3”) and the performing of two motor functions (selecting the working 
register and writing “3”). In Figure 7, all the C statements are expressed in terms 
of production rules required for their execution. 

In relation to Schneiderman’s program comprehension levels, it can be noted 
that in order to predict the understanding on the higher levels, a different set of 
production rules, chunks, and goal chunks have to be specified in ACT-R. 
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Figure 6. Production rule set for executing Assembly instructions (cont.). 

MOVLW .3 
IF the goal is to execute the next instruction AND “MOVLW” is read  
THEN set goal to read parameter AND select the Working Register 
IF the goal is to read the parameter AND “.3” is read 
THEN set goal to execute the next instruction AND write “3”  
 
INCF x,1 
IF the goal is to execute the next instruction AND “INCF” is read  
THEN set goal to read parameter 
IF the goal is to read the parameter AND “x” is read 
THEN set goal to read the value of “x” AND select the “x” variable 
IF the goal is to read the value of “x” AND “3” is read 
THEN set goal to retrieve 3+1  
IF the goal is to retrieve 3+1 AND “4” is retrieved 
THEN set goal to execute the next instruction AND write “4”  
 
CLRF x 
IF the goal is to execute the next instruction AND “INCF” is read  
THEN set goal to read parameter 
IF the goal is to read the parameter AND “x” is read 
THEN set the goal to clear the parameter AND select the “x” variable  
IF the goal is to clear the parameter 
THEN set goal to execute the next instruction AND write “0”  
 
MOVWF h 
IF the goal is to execute the next instruction AND “MOVWF” is read  
THEN set goal to read parameter 
IF the goal is to read the parameter AND “h” is read 
THEN set the goal to read the Working Register AND write “h” 
IF the goal is to read the Working Register AND “3” is read 
THEN set goal to execute the next instruction AND write “3” 
 
MOVWF INDF 
IF the goal is to execute the next instruction AND “MOVWF” is read  
THEN set goal to read parameter 
IF the goal is to read the parameter AND “INDF” is read 
THEN set the goal to read the File Select Register AND write “i” 
IF the goal is to read the File Select Register AND “2” is read 
THEN set the goal to read the Working Register AND write “2” 
IF the goal is to read the Working Register AND “4” is read 
THEN set goal to execute the next instruction AND write “4” 
 
MOVF x,W 
IF the goal is to execute an instruction AND “MOVF” is read  
THEN set goal to read parameter AND select the Working Register 
IF the goal is to read the parameter AND “x” is read 
THEN set goal to read the value of “x” 
IF the goal is to read the value of “x” AND “3” is read 
THEN set goal to execute the next instruction AND write “3”  
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 Figure 6. (Cont.) Production rule set for executing Assembly instructions. 

MOVF INDF,W  
IF the goal is to execute the next instruction AND “MOVF” is read  
THEN set goal to read parameter AND select the Working Register 
IF the goal is to read the parameter AND “INDF” is read 
THEN set goal to read the File Select Register 
IF the goal is to read the File Select Register AND “3” is read 
THEN set goal to read the value of i[3] 
IF the goal is to read the value of i[3] AND “6” is read 
THEN set goal to execute the next instruction AND write “6”  
 
ADDWF y,W 
IF the goal is to execute the next instruction AND “ADDWF” is read  
THEN set goal to read parameter AND select the Working Register 
IF the goal is to read the parameter AND “y” is read 
THEN set goal to read the value of “y” 
IF the goal is to read the value of “y” AND “2” is read 
THEN set goal to read the Working Register 
IF the goal is to read the Working Register AND “1” is read 
THEN set goal to retrieve “2+1” 
IF the goal is to retrieve “2+1” AND “3” is retrieved 
THEN set the goal to execute the next instruction AND write “3” 
 
SUBWF x,W 
IF the goal is to execute the next instruction AND “SUBWF” is read  
THEN set goal to read parameter AND select the Working Register 
IF the goal is to read the parameter AND “x” is read 
THEN set goal to read the value of “x” 
IF the goal is to read the value of “x” AND “2” is read 
THEN set goal to read the Working Register 
IF the goal is to read the Working Register AND “1” is read 
THEN set goal to retrieve “2-1” 

IF the goal is to retrieve “2-1” AND “1” is retrieved 
THEN set the goal to select the Carry Bit AND write “1” 
IF the goal is to select the Carry Bit 
THEN set the goal to set the Carry Bit AND select the Carry Bit 
IF the goal is to set the Carry Bit 
THEN set the goal to execute the next instruction AND write “1” 

 
BTFSC 0x03,Carry 
IF the goal is to execute the next instruction AND “BTFSC” is read  
THEN set goal to read the Carry Bit 

IF the goal is to read the Carry Bit AND “1” is read 
THEN set the goal to execute the next instruction 
IF the goal is to read the Carry Bit AND “0” is read 
THEN set the goal to execute the next-next instruction 

 
GOTO m002 
IF the goal is to execute the next instruction AND “GOTO” is read  
THEN set goal to read parameter  
IF the goal is to read the parameter AND “m002” is read 
THEN set the goal to execute the instruction at m002 
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Figure 7. Production rule set for executing C statements (cont.). 

i[3]=4
IF the goal is to execute the next statement AND “i[..]=” is read  
THEN set goal to read the index AND write “i” 
IF the goal is to read the index AND “3” is read 
THEN set goal to read the constant AND write “3” 
IF the goal is to read the constant AND “4” is read 
THEN set goal to execute the next instruction AND write “4”  
 
for(x=0;x<4;x=x+1) 
IF the goal is to execute the next statement AND “for(…)” is read  
THEN set goal to read the variable AND 
IF the goal is to read the variable AND “x” is read 
THEN set goal to read the value of “x” AND write “x” 
 IF the goal is to read the value of “x” AND first pass 

THEN set the goal to check the condition AND write “0” 
IF the goal is to read the value of “x” AND other pass  

AND “2” is read 
THEN set goal to retrieve “2+1” 

IF the goal is to retrieve “2+1” AND “3” is retrieved 
THEN set the goal to check the condition AND write “3” 

IF the goal is to check the condition AND “<4” is read 
THEN set goal to execute the first clause statement 
IF the goal is to check the condition AND “<3” is read 
THEN set goal to execute the first statement after the clause 
 

h=i[y] 
IF the goal is to execute the next statement AND “h=” is read  
THEN set goal to read the array AND write “h” 
IF the goal is to read the array AND “i” is read 
THEN set goal to read the index 
IF the goal is to read the index AND “y” is read 
THEN set goal to read the vale of “y” 
IF the goal is to read the value of “y” AND “3” is read 
THEN set goal to read the value of “i[3]” 
IF the goal is to read the value of “i[3]” AND “4” is read 
THEN set goal to execute the next instruction AND write “4”  
 
h=i[y+1] 
IF the goal is to execute the next statement AND “h=” is read  
THEN set goal to read the array AND write “h” 
IF the goal is to read the array AND “i” is read 
THEN set goal to read the index 
IF the goal is to read the index AND “..+1” is read 
THEN set the goal to read the indexvariable 
IF the goal is to read the indexvariable AND “y” is read 
THEN set goal to read the value of “y” 
IF the goal is to read the value of “y” AND “3” is read 
THEN set the goal to retrieve “3+1” 
IF the goal is to retrieve “3+1” AND “4” is read 
THEN set goal to read the value of “i[4]” 
IF the goal is to read the value of “i[4]” AND “2” is read 
THEN set goal to execute the next instruction AND write “2”  
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Figure 7. (Cont.) Production rule set for executing C statements. 

In order to use the above production rules for predicting the effort of executing 
Assembly and C code, their latencies must be specified. The time to fire an 
ordinary production is normally set to 50 milliseconds [Anderson and Lebiere, 
1998]. The latencies associated with reading and writing depend to a large extent 
on the particular user interface (the layout of text and symbols on the computer 
screen, and the mouse and keyboard configurations) and the normal procedure 

i[y]=l  
IF the goal is to execute the next statement AND “i[..]=” is read  
THEN set goal to read the index AND write “i” 
IF the goal is to read the index AND “y” is read 
THEN set goal to read the value of “y” 
IF the goal is to read the value of “y” AND “3” is read 
THEN set the goal to read the variable AND write “3” 
IF the goal is to read the variable AND “l” is read 
THEN set the goal to read the value of “l” 
IF the goal is to read the value of “l” AND “4” is read 
THEN set goal to execute the next instruction AND write “4”  

 
i[y+1]=l  
IF the goal is to execute the next statement AND “i[..]=” is read  
THEN set goal to read the index AND write “i” 
IF the goal is to read the index AND “..+1” is read 
THEN set the goal to read the indexvariable 
IF the goal is to read the indexvariable AND “y” is read 
THEN set goal to read the value of “y” 
IF the goal is to read the index AND “y” is read 
THEN set goal to read the value of “y” 
IF the goal is to read the value of “y” AND “3” is read 
THEN set the goal to read the variable AND write “3” 
IF the goal is to read the variable AND “l” is read 
THEN set the goal to read the value of “l” 
IF the goal is to read the value of “l” AND “4” is read 
THEN set goal to execute the next instruction AND write “4”  
 
if(l>h) 
IF the goal is to execute the next statement AND “if(..)” is read  
THEN set goal to read the expression 
IF the goal is to read the expression AND “..>..” is read 
THEN set the goal to read the first variable 
IF the goal is to read the first variable and “l” is read 
THEN set the goal to read to value of “l” 
IF the goal is to read the value of “l” AND “3” is read 
THEN set the goal to read the second variable 
IF the goal is to read the second variable and “h” is read 
THEN set the goal to read to value of “h” 
IF the goal is to read the value of “h” AND “2” is read 
THEN set the goal to retrieve “3>2” 

IF the goal is to retrieve “3>2” AND “true” is read 
THEN set the goal to execute the first clause statement 
IF the goal is to retrieve “3>4” AND “false” is read 
THEN set goal to execute the first statement after the clause 
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is consequently to fit it to empirical data. In this experiment the time required 
for reading a parameter is estimated to 0,7 seconds while the time for writing is 
set to 0,8 seconds.  

3.3 Theoretical Results 

The prediction of execution effort for some Assembly instructions and C 
statements are presented in Figure 8. As an example, the CLRF instruction 
requires three productions, two read operations and two write operations, which 
amounts to an effort of 3*0,05s+2*0,7s+2*0,8s=3,15s. 
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Figure 8. Predicted latencies for various Assembly instructions and C 
statements.  

4 EXPERIMENTAL ASSESSMENT OF 
EXECUTION EFFORT  

A theory may be corroborated by comparison to empirical observations. Here 
we do so with respect to the predictions presented in the previous section 
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4.1 Experimental Setup 

The empirical observations were gathered during an experiment performed on a 
group of five engineering students. The students were subjected to the task of 
executing the same Assembly and C programs as presented above. The subjects 
performed the experiment in a software application where the appropriate 
latencies were recorded.  

The graphical user interface of the software application is presented in Figure 9 
and Figure 10. There are two windows, where one presents the program text 
and the other presents the state of the program variables. The subjects were 
instructed to manipulate the variables in the state window according to the text 
in the program window. For example, the MOVLW .3 instruction requires that 
the working register, variable W, is set to 3. This is accomplished by the subject 
by first pressing the W key on the keyboard and subsequently pressing the key 3.  

The latencies for all key presses were recorded in the application. After the 
completion of the experiment, the key presses were mapped to the executed 
program instructions as detailed in Figures 6 and 7. The latencies for the 
complete execution of various instructions could then be aggregated. For 
instance, for the above MOVLW .3 instruction, the total latency was calculated 
as the time between the last key press of the previous statement and the last key 
press of the MOVLW .3 instruction, namely the key 3.  

Some program instructions do, however, not end with a key press, thus leaving 
their latencies undetermined. For instance, the C statement if(h>l) does not 
require any key presses at all, since no variable changes value at the execution of 
the statement. In order to obtain latencies for these statements, they were 
calculated from groups of statements that did contain key presses. 

The prediction of the previous section assumes a person who is trained in 
executing these languages efficiently. The production rules are optimized so that 
no unnecessary tasks are performed. In order to obtain such data from the 
empirical assessment, the subjects were first trained in the code execution task. 
They spent approximately one hour practicing before conducting the actual test. 
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Figure 9. The graphical user interface for the Assembly experiment. 

One undesirable possibility was that the subjects would deduce the ulterior 
purpose of the program and thus would be able to employ more efficient 
production rules to manipulate the state variables. For example, if the subjects 
understood that the program sorted a list according to some algorithm, they 
would not need to read every instruction carefully, but rather manipulate the 
state variables according to the algorithm. In order to avoid this, the programs 
employed were nonsense programs with no apparent rationality in their design. 
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Figure 10. The graphical user interface for the C experiment. 

Occasionally, the subjects became tired, confused or reengaged in learning 
activity, thus producing longer latencies than otherwise. In order to avoid taking 
such experimental data into account, the lowest 25% of the data set of a given 
individual was chosen (Figure 11) for further analysis.  
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Figure 11. The diagram presents latency data from one experiment subject 
executing the Assembly instruction MOVWF. The line represents the lowest 
25% latency number extracted for further analysis. 

It also happened that the subjects committed errors. This was detected in two 
ways. Firstly, if the subject himself noted that an instruction had been 
incorrectly interpreted, a special key (Escape) could be pressed to record this 
event. Secondly, in the treatment of the execution traces, key presses that did 
not correspond to the program were detected. All latency data surrounding such 
errors was disqualified for further analysis, since it would be unrepresentative.  

4.2 Empirical Results 

The aggregated results are reported in Figure 12. The black line represents the 
experimentally assessed execution times, while the grey line denotes the 
theoretical prediction from Section 3.3. 
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Figure 12. The black line represents experimentally measured latencies for 
various Assembly instructions and C statements. The gray line represents the 
theoretical predictions from Figure 8. 

5 ANALYSIS 

The above results may be further analyzed. In order to account for the fact that 
an Assembly program performing a certain task is typically longer than a C 
program performing the same task (counting lines of code), we calculate the 
total time required for performing a certain task.  

In Section 2, Figure 3 and Figure 4 present two programs, in C and Assembly 
respectively, that functionally perform the same task, namely that of sorting an 
array of numbers according to the Bubble Sort algorithm.  

By executing the two programs, we obtain execution traces. These traces 
provide the instruction distribution of Table 1 and Table 2. According to these 
tables, the same list sorting activity requires the execution of 46 statements if 
performed in C, and 179 statements if performed in Assembly. 
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Instruction Population 
in Bubble 

Sort 

Empirical 
Latency 

(s) 

Theoretical 
Latency (s) 

ADDWF y, W 15 5,790 4,65 

BTFSC 19 0,320 1,5 

CLRF 4 3,425 3,15 

GOTO 16 0,654 1,5 

INCF 9 3,503 3,9 

MOVF 6 4,815 3,85 

MOVF INDF 12 5,630 4,6 

MOVLW 37 2,989 3,1 

MOVWF 36 4,356 3,85 

MOVWF INDF 6 4,539 5,4 

SUBWF x, W 19 7,851 6,3 

Table 1. The second column presents the distribution of Assembly instructions 
in trace of Bubble Sort program execution. The third and fourth columns 
present the experimentally and theoretically derivedlatencies respectively. 

Statement Population 
in Bubble 

Sort 

Empirical 
Latency 

(s) 

Theoretical 
Latency (s) 

array[const]=const 9 2,699 4,65 

array[expr(var,const)]=var 3 8,090 6,95 

array[var]=var 3 7,046 6,15 

endfor : for 9 3,441 4,65 

for 4 2,870 3,85 

if 6 5,903 4,55 

var=array[expr(var,const)] 6 6,555 6,85 

var=array[var] 6 6,131 5,35 

Table 2. The second column presents the distribution of C statements in trace 
of Bubble Sort program execution. The third and fourth columns present the 
experimentally and theoretically derivedlatencies respectively. 

Considering the accuracy of the theoretical prediction of the effort required for 
a human mind to execute the Bubble Sort algorithm in C and Assembly, we find 
the following. With respect to Assembly, the theoretical model predicted an 
execution effort of 10 minutes and 54 seconds. The experiment assessed the 
effort to 11 minutes and 29 seconds, resulting in a prediction error of 5,1%. 
With respect to C, the theoretical model predicted an execution effort of 3 
minutes and 59 seconds, while the experiment assessed the effort to 3 minutes 
and 44 seconds. This resulted in a prediction error of 6,8%. Finally, with respect 
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to the relative execution effort between C and Assembly, the theoretical model 
predicted that the Bubble Sort program written in the C programming language 
would require 36,5% of the effort of that written in Assembly. The empirical 
assessment resulted in a effort ratio of 32,5%. The prediction error thus landed 
on 12,6%. 

6 CONCLUSIONS 

This article is part of a series of articles arguing for a unified theory of software 
engineering [Johnson and Ekstedt, 2005a] [Johnson and Ekstedt, 2005b]. A 
model of the human mind, ACT-R [Anderson and Lebiere 1998] has been 
employed in order to predict the effort required for a person to understand a 
problem in a given programming language. Programs written in the languages 
Assembly and C were used as examples. The theoretical model predicted that 
the effort associated with understanding a C program was 36,5% of the effort of 
understanding the corresponding Assembly program.  

In order to validate the theoretical model, a group of engineering students were 
subjected to an experiment designed to determine their factual effort of 
understanding with respect to the two programming languages. The experiment 
assessed the effort ratio to 32,5%. The prediction error thus became 12,6%. 

The results demonstrate the viability of the approach. It is reasonable to believe 
that the theoretical model of the human mind may be used in the assessment of 
a great many issues in software engineering. In addition to the issue of 
programming language quality, also the quality of other software engineering 
artifacts could be assessed, such as application program interfaces, software 
design languages, and formal specifications.  
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