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Efficient Computation of Pareto Optimal
Beamforming Vectors for the MISO Interference

Channel with Successive Interference Cancellation
Johannes Lindblom,Student Member, IEEE,Eleftherios Karipidis,Member, IEEE,

and Erik G. Larsson,Senior Member, IEEE

Abstract—We study the two-user multiple-input single-output
(MISO) Gaussian interference channel where the transmitters
have perfect channel state information and employ single-stream
beamforming. The receivers are capable of performing successive
interference cancellation, so when the interfering signalis strong
enough, it can be decoded, treating the desired signal as noise,
and subtracted from the received signal, before the desiredsignal
is decoded. We propose efficient methods to compute the Pareto-
optimal rate points and corresponding beamforming vector pairs,
by maximizing the rate of one link given the rate of the other link.
We do so by splitting the original problem into four subproblems
corresponding to the combinations of the receivers’ decoding
strategies - either decode the interference or treat it as additive
noise. We utilize recently proposed parameterizations of the
optimal beamforming vectors to equivalently reformulate each
subproblem as a quasi-concave problem, which we solve very
efficiently either analytically or via scalar numerical optimization.
The computational complexity of the proposed methods is several
orders-of-magnitude less than the complexity of the state-of-the-
art methods. We use the proposed methods to illustrate the effect
of the strength and spatial correlation of the channels on the
shape of the rate region.

Index Terms—Beamforming, interference channel, interference
cancellation, multiple-input single-output (MISO), Pareto bound-
ary, Pareto optimality, rate region.

I. I NTRODUCTION

We study a wireless system where two adjacent transmitter
(TX) – receiver (RX) pairs, or links, operate simultaneously
in the same frequency band and interfere with each other.
Each TX employsnT > 1 antennas, whereas each RX
is equipped with a single antenna. Hence, the system is
modeled as the so-called multiple-input single-output (MISO)
interference channel (IC) [3]. We assume that the TXs have
perfect knowledge of the local channels to both RXs and use
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Technology (ELLIIT). This work has been performed in the framework of
the European research project SAPHYRE, which was partly funded by the
European Union under its FP7 ICT Objective 1.1 - The Network of the Future.
Preliminary versions of parts of the material in this paper were presented at
ICASSP’11 [1] and CAMSAP’11 [2].

J. Lindblom and E. G. Larsson are with the Communication Systems
Division, Department of Electrical Engineering (ISY), Linköping University,
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scalar Gaussian codes followed by single-stream beamform-
ing. Also, we assume that the RXs are capable to perform
successive interference cancellation (SIC) [4]. That is, when
the interfering signal is strong enough1, a RX can decode it
and subtract it from the received signal before decoding the
desired signal. The decoding is done independently, since the
RXs are located apart and there is no coordination amongst
them. SIC capability is an important assumption because in
principle it leads to higher achievable rates than in case where
the RXs treat interference as noise. Note that the SIC rate
region is a superset of the region achieved when interference is
treated as noise, since the latter is a special case of the former.
We see this by noting that the optimal decoding process
might be to directly decode the intended signal treating the
interference as noise. Once the intended signal is decoded,
the RXs are not interested in decoding the interference. The
resulting achievable rate region is defined by the so-called
Pareto boundary, which is the set of points where the rate of
one link cannot increase without decreasing the rate of the
other.

The objective of this paper is to propose computationally
efficient methods for finding, in a centralized way, the Pareto-
optimal (PO) pairs of beamforming vectors which yield operat-
ing points on this Pareto boundary. These methods are impor-
tant because they enable a fast computation of the rate region.
Hence, we can use them to illustrate how different channel
realizations affect the shape of the rate region or in the context
of large-scale simulation studies of interference networks.
Moreover, they provide valuable insight on the beamforming
design and inspiration for practical implementations.

The capacity region of the IC is in general unknown, but
it is known for certain cases. For strong interference, the
capacity region coincides with the capacity region for the
case where both RXs decode both messages, i.e., it is the
intersection of the capacity regions of two multiple-access
channels, see [5]–[7]. For weak interference it is optimal to
treat it as noise, see [8] for the single-antenna IC and [9] for
the multi-antenna IC. For the MISO IC, various achievable
rate regions have been proposed and studied, e.g., in [10]–[14].
Especially, the case of treating interference as noise has been
the subject of intense studies, e.g., in [13]–[20]. In [17],it was
shown that single-stream beamforming is optimal for Gaussian
codes. In [13], a parameterization of the PO beamforming

1In Sec. III, we explain what mean by strong enough in the current context.
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vectors was proposed based on the properties that they use full
transmit power and lie in the subspace spanned by the local
channels. Alternative parameterizations were proposed in[15]
and [14], using the concepts of virtual signal-to-interference-
plus-noise ratio (SINR) and gain regions, respectively. In[21],
the rate region for the related scenario of cooperative multicell
precoding was characterized. The parameterizations for the
two-user MISO IC illustrate that for any number of transmit
antennas, it can be reduced to an equivalent MISO IC where
each TX has two antennas [9].

The MISO IC with SIC-capable RXs was investigated in
[22] where the gain potential of SIC over treating interference
as noise was illustrated in terms of average rate at a Nash
equilibrium. Later, in [11], the achievable rate region forSIC-
capable RXs was formalized and in [12] a parameterization
for the PO beamforming vectors was proposed, extending the
respective result of [13]. A related work appears in [10], where
a simplified version of the Han-Kobayashi region [6] was
studied and semidefinite relaxation was used to propose power
control schemes and compute the corresponding rate region.

The parameterizations in [13] and [12] are useful analytical
tools and they enable a better intuitive understanding of the
properties of the PO beamforming vectors. When the RXs
treat interference as noise, the PO beamforming vectors are
obtained by trading off between the conflicting objectives of
maximizing the desired signal power and minimizing the in-
terference [13]. For SIC capable RXs, the trade-off is between
maximization of the desired signal power and maximization
of the interference, to enable SIC [12]. Another merit of
these parameterizations is that they substantially decrease
the dimension of the search space for a PO beamforming
vector, fromnT complex variables to one or two nonnegative
real variables. However, besides the dimensionality reduction,
these parameterizations do not directly provide a method for
efficient computation of the Pareto boundary. The reason is
that they only constitutenecessaryconditions that the beam-
forming vector of each TX has toseparatelyfulfill, whereas it
is pairsof beamforming vectors that yield PO operating points.
The state-of-the-art use of the parameterizations has beento
sample the parameters, consider all possible combinationsto
generate a large number of achievable rate pairs, and perform
a brute-force search amongst them to find the ones comprising
the Pareto boundary, e.g., see [13].

It is desirable to devise a method which directly and effi-
ciently computes PO points. Joint optimization of the beam-
forming vectors is required for this purpose. As shown in [18],
the problem of jointly maximizing a common utility function
and of finding PO points is NP-hard in general. Nevertheless,
several methods have been recently proposed, e.g., [16] and
[23], which apply successive convex optimization techniques
on the vector space of the beamforming vectors to find the
Pareto boundary when the RXs treat interference as noise.
The methods proposed herein achieve much higher computa-
tional efficiency by optimizing instead on the parameter space
which characterizes the PO beamforming vectors of the SIC
region. For the case of treating interference as noise, thiswas
attempted in [24], where monotonic optimization was used to
find specific PO points, e.g., the maximum sum-rate point. The

method proposed therein was faster than a brute-force search,
but far less efficient than the methods we propose.

A. Contributions and Organization

In Sec. II, we give the system model. In Sec. III, we define
the SIC achievable rate region and formulate the optimization
problem that yields an arbitrary point on the Pareto boundary,
as a maximization of the rate of one link given the rate
achieved by the other link. In Sec. IV–VI, we propose very
efficient methods to solve this problem, by combining, unify-
ing, and improving the preliminary approaches that appeared
in our conference contributions [1] and [2]. The common de-
nominator of these methods is to exploit the parameterizations
and equivalently recast the maximization problem so that it
can be solved analytically or via scalar optimization. The
proposed method is applied on the following regions, whose
union constitutes the SIC region:

1) In Sec. IV, we propose two methods to find the region
where both RXs treat the interference as noise. In the first
method, we equivalently formulate the originally non-concave
rate maximization problem as a scalar quasi-concave problem,
which we solve optimally with a gradient search approach.
To find the Pareto boundary, we repeat this optimization for
various choices of the input rate. This method is novel and
improves the one in [23] in two ways: a) we reduce the feasible
set significantly from the set of beamforming vectors to the
parameter set defined in [13] and b) we solve a single quasi-
concave optimization problem instead of a sequence of convex
feasibility problems. In the second method, we use the KKT
conditions to derive a closed-form relation that couples the
parameters of the TXs yielding a PO pair. To find the Pareto
boundary, we repeatedly solve the cubic equation resulting
from various choices for one of the parameters. This method
was presented in [1]; herein we give in addition a formal proof
of global optimality of all solutions to the KKT conditions.
A similar result was independently derived in [19] and later
extended in [20]. However, [19] and [20] did not prove that
all feasible solutions to the corresponding cubic equationare
global optima and potentially they discard optimal solutions.

2) In Sec. V, we find the two regions where one RX decodes
the interference, before decoding the desired signal, while the
other treats the interference as noise. We use the parameter-
ization of [11] to equivalently recast the rate maximization
problem as a quasi-concave problem of three real variables
and determine the solution in closed-form. This method was
presented in [2]; herein, we give in addition a more detailed
derivation of the result.

3) In Sec. VI, we find the region where both RXs decode
the interference. We use the parameterization of [11] and split
the rate maximization problem in two quasi-concave scalar
subproblems. This method improves the corresponding one in
[2] in two ways: a) the number of variables is decreased from
four real variables to a single one and b) a single instance of
each of the two quasi-concave subproblems needs to be solved
instead of a sequence of convex feasibility problems.

In Sec. VII, we provide illustrations of the rate regions
for different channel properties and a complexity analysis. In
Sec. VIII, we make some concluding remarks.
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The source code that implements the proposed methods and
generates the illustrations in Sec. VII is available at http://urn.
kb.se/resolve?urn=urn:nbn:se:liu:diva-93845.

B. Notation

Boldface lowercase letters, e.g.,x, denote column vectors.
{·}H denotes the Hermitian (complex conjugate) transpose of
a vector. The Euclidean norm of a vectorx is denoted‖x‖.
By x ∼ CN (0, σ2) we say thatx is a zero-mean complex-
symmetric Gaussian random variable with varianceσ2. We
denote the orthogonal projection onto the space spanned by
the vectorx asΠx , xxH/ ‖x‖2. The orthogonal projection
onto the orthogonal complement ofx is Π

⊥
x , I−Πx,where

I is the identity matrix. Note that for a vectory, we have

‖y‖2 = ‖Πxy‖2 +
∥

∥

∥Π
⊥
xy

∥

∥

∥

2

. We letf ′(x) andf ′′(x) denote
the first and second derivatives, respectively, of a function
f(x). We define[x]xx , max{x,min{x, x}}.

II. SYSTEM MODEL

We assume that the transmissions consist of scalar coding
followed by single-stream (rank-1) beamforming and that all
propagation channels are frequency-flat. The matched-filtered
symbol-sampled complex baseband signal received by RXi is
then modeled as

yi = hH
iiwisi + hH

jiwjsj + ei, i, j ∈ {1, 2}, j 6= i. (1)

In (1), hji ∈ CnT is the (conjugated) channel vector for
the link TXj → RXi. We assume that TXi perfectly knows
the direct and crosstalk channels,hii and hij , respectively,
and that these are neither co-linear nor orthogonal. Also,
wi ∈ CnT is the beamforming vector employed by TXi,
si ∼ CN (0, 1) is the transmitted symbol of TXi, and
ei ∼ CN (0, σ2

i ) models the thermal noise at RXi. The TXs
have power constraints that we, without loss of generality,set
to 1 and define the set of feasible beamforming vectors as
W , {w ∈ CnT | ‖w‖2 ≤ 1}. The achievable rate for RXi
depends on the received powers

pi(wi) , |hH
iiwi|2 and qi(wj) , |hH

jiwj |2 (2)

over the direct and crosstalk channel, respectively.
In order to simplify the subsequent notation, we define the

following channel-dependent constants. We definegij , ‖hij‖
and κi , |hH

ijhii|/(‖hij‖ ‖hii‖), j 6= i. The latter is the
cosine of the Hermitian angle betweenhii and hij . When
κ1 = 1 or κ1 = 0 the channels are parallel or orthogonal,
respectively. Then, using these constants, we define

αi ,
∥

∥Πhij
hii

∥

∥ = giiκi, j 6= i, (3)

α̃i ,

∥

∥

∥Π
⊥
hij

hii

∥

∥

∥ =
√

g2ii − α2
i = gii

√

1− κ2
i , j 6= i, (4)

βi , ‖Πhii
hij‖ = gijκi, j 6= i, (5)

β̃i ,

∥

∥

∥Π
⊥
hii

hij

∥

∥

∥ =
√

g2ij − β2
i = gij

√

1− κ2
i , j 6= i. (6)

III. A CHIEVABLE RATE REGION OFSIC CAPABLE RXS

In this section, we give, for completeness, the definition of
the achievable rate region for the described scenario [12],[13].

We also denote the core optimization problem that we need
to solve to find a point on the Pareto boundary.

Each pair of beamforming vectors(w1,w2) and combi-
nation of decoding strategies (decode the interference (d) or
treat it as noise (n)) is associated with a pair of maximum
achievable rates. We denote byRxy

i (w1,w2) the rate of
link i = 1, 2, in bits per channel use (bpcu), wherex andy are
the decoding strategies (n or d) of RX1 and RX2, respectively.
For each pair of decoding strategies, we obtain a rate region
by taking the union over all 1ible beamforming vectors, i.e.,

Rxy ,
⋃

(w1,w2)∈W2

(Rxy
1 (w1,w2), R

xy
2 (w1,w2)). (7)

The achievable rate region:The rate region for the MISO
IC with SIC capability is obtained as the union of the regions
corresponding to all decoding scenarios, i.e.,R = Rnn∪Rdn∪
Rnd ∪ Rdd. Next, for each decoding scenario and a given
pair of beamforming vectors(w1,w2), we give the maximum
achievable rates [12], [13].
Rnn - Both RXs treat the interference as noise:When

both RXs treat the interference as noise, the maximum achiev-
able rates of the links are [22]

Rnn
1 (w1,w2) = log2

(

1 +
p1(w1)

q1(w2) + σ2
1

)

and

Rnn
2 (w1,w2) = log2

(

1 +
p2(w2)

q2(w1) + σ2
2

)

.
(8)

Rdn - RX1 decodes the interference, RX2 treats it
as additive noise: Since RX1 decodes and subtracts the
interference caused by TX2, it experiences an interference-free
signal and the maximum achievable rate for link 1 is

Rdn
1 (w1) = log2

(

1 + p1(w1)/σ
2
1

)

. (9)

RX1 is able to decode the interference from TX2, considering
its own signal as noise, if the rate of link 2 is upper bounded
by log2

(

1 + q1(w2)/(p1(w1) + σ2
1)
)

. Since RX2 does not
decode the interference, the rate of link 2 is also upper
bounded by log2

(

1 + p2(w2)/(q2(w1) + σ2
2)
)

. Hence the
maximum achievable rate for link 2 is given by

Rdn
2 (w1,w2)

= log2

(

1 + min

{

q1(w2)

p1(w1) + σ2
1

,
p2(w2)

q2(w1) + σ2
2

})

, (10)

where we have used the fact that the logarithm is a
monotonously increasing function.

For link 2, we note that the rate is not necessarily selected to
fully utilize the signal-to-interference-plus-noise (SINR) ratio
at RX2. Actually, link 2 might hold back on its rate to enable
RX1 to decode the interfering signal.2

Rnd - RX2 decodes the interference, RX1 treats it
as additive noise:This case is identical toRdn, but with
interchanged indices.
Rdd - Both RXs decode the interference:Both RXs

decode the interference before decoding their desired signals.
Since RX1 decodes the interference from TX2, the rate of

2This fact was not exploited in [22, Prop. 6 a)], so the description there led
to an over-restrictive condition, hence, to a smaller achievable rate region.
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link 1 is upper bounded bylog2(1 + p1(w1)/σ
2
1). RX2 can

decode the interference caused by TX1 if the rate of link 1 is
upper bounded bylog2

(

1 + q2(w1)/(p2(w2) + σ2
2)
)

. Then,
the maximum achievable rate for link 1 is

Rdd
1 (w1,w2) = log2

(

1 + min

{

p1(w1)

σ2
1

,
q2(w1)

p2(w2) + σ2
2

})

.

(11)
By symmetry, the maximum achievable rate of link 2 is

Rdd
2 (w1,w2) = log2

(

1 + min

{

p2(w2)

σ2
2

,
q1(w2)

p1(w1) + σ2
1

})

.

(12)
The problem of interest is to find the so-called Pareto

boundary of the regionR, which consists of PO rate pairs.

Definition 1. A point (R⋆
1, R

⋆
2) ∈ R is (weakly) Pareto-

optimal if there is no other point(R1, R2) ∈ R with R1 > R⋆
1

andR2 > R⋆
2.

Graphically, the Pareto boundary is the north-east boundary
of the region and due to Def. 1 it also includes the horizontal
and vertical segments. In order to find the Pareto boundary
of R, we first find the Pareto boundaries ofRnn, Rdn, Rnd,
andRdd. Second, we consider as boundary ofR the boundary
of the union of the fourRxy regions. We denote byBxy the
boundary ofRxy and byB the boundary ofR. In [25, Lem.
1.2], it is proven thatRnn is compact and normal under the
assumptions in Sec. II. It is straightforward to extend thisproof
to includeRnd,Rdn, andRdd as well. Therefore, we conclude
that the Pareto boundariesBnn, Bdn, Bnd, andBdd are closed.

We can find a point(R⋆
1, R

⋆
2) on Bxy when the rate of

one communication link, e.g.,R⋆
1, is given [26, Prop. 6.2].

The other rate,R⋆
2, is the maximum one we simultaneously

achieve, e.g., see the dashed lines in Fig. 3 forRnn, and we
find it by the following rate optimization problem3

maximize
(w1,w2)∈W2

Rxy
2 (w1,w2) (13)

subject toRxy
1 (w1,w2) = R⋆

1. (14)

The optimization (13)–(14) accepts as input the coordinate
R⋆

1 of the sought PO rate pair and yields as optimal value the
other coordinateR⋆

2 and as optimal solution the enabling PO
pair of beamforming vectors(w⋆

1,w
⋆
2). The choice of using

R⋆
1 as input to the optimization is arbitrary. By the symmetry

of the problem, we can chooseR⋆
2 as input and haveR⋆

1 as
the optimal value. In the next sections, we derive efficient
methods for solving (13)–(14) for all SIC-constituent regions.
Since the logarithm is monotonic, we use the equivalent
reformulation of (13)–(14) as an SINR optimization, where
the input parameter isγ⋆

1 , i.e., the SINR (or the SNR after
interference cancellation) required to achieveR⋆

1.

IV. B OTH RXS TREAT THE INTERFERENCE ASNOISE

In this section, we compute the boundaryBnn. We let
R

nn

1 denote the maximum rate of link 1, achieved when TX1

operates “selfishly” by using its maximum-ratio (MR) trans-
mit beamforming vectorwMR

1 = argmaxw1∈W p1(w1) =

3Note that the optimization is only over the set of beamforming vectors
satisfying the power constraints included in the setW2.

h11/ ‖h11‖ and TX2 operates “altruistically” by using its
zero-forcing (ZF) transmit beamforming vectorwZF

2 =

argmax w2∈W
q1(w2)=0

p2(w2) = Π
⊥
h21

h22/
∥

∥

∥Π
⊥
h21

h22

∥

∥

∥ [22].

This combination of transmit strategies yields the PO point
(R

nn

1 , Rnn
2 ) ,

(

Rnn
1 (wMR

1 ,wZF
2 ), Rnn

2 (wMR
1 ,wZF

2 )
)

where

R
nn

1 =log2

(

1 +
‖h11‖2
σ2
1

)

=log2

(

1 +
g211
σ2
1

)

and (15)

Rnn
2 =log2






1 +

∥

∥

∥Π
⊥
h21

h22

∥

∥

∥

2

‖Πh11
h12‖2 + σ2

2






=log2

(

1 +
α2
2

β2
1 + σ2

2

)

.

(16)

The rate in (16) is the lowest strongly PO rate of link 2
[22]. Interchanging the indices in (15)–(16) we get the
point (Rnn

1 , R
nn

2 ). As illustrated by the example in Fig. 3,
these points splitBnn into three segments. The weakly
PO horizontal (vertical) segment[(0, R

nn

2 ), (Rnn
1 , R

nn

2 )]
(

[(R
nn

1 , 0), (R
nn

1 , Rnn
2 )]

)

is achieved when TX1 (TX2) uses
the MR beamforming vector and TX2 (TX1) uses the ZF
beamforming vector, adapting the transmit power in[0, 1].

The remainder of this section focuses on the strongly
PO segment between(Rnn

1 , R
nn

2 ) and (R
nn

1 , Rnn
2 ). Inserting

(8) into (13)–(14) and equivalently reformulating the rate
maximization to SINR maximization, we obtain

maximize
(w1,w2)∈W2

p2(w2)

q2(w1) + σ2
2

(17)

subject to
p1(w1)

q1(w2) + σ2
1

= γ⋆
1 . (18)

From (15), we see that constraint (18), hence the optimization,
is feasible whenγ⋆

1 ≤ g211/σ
2
1 . The formulation (17)–(18) is

non-convex since the objective function (17) and the equality
constraint (18) consist of fractions of quadratics.

In Secs. IV-A and IV-B, we propose two methods to find
very efficiently the global optimal solution. The main differ-
ence between these methods is the input required to yield the
entire boundary; in the first method it is different choices for
one of the PO SINR values, whereas in the second method it is
different choices for one of the PO beamforming vectors. Both
methods have computational complexity that is constant in the
number of transmit antennas. The method in Sec. IV-A can
be interpreted as solving an underlay cognitive radio problem
where the secondary user, here link 2, maximizes its rate under
various quality-of-service constraints for the primary user, here
link 1. Also, this method can be used to determine if a rate
point (R1, R2) is feasible. LetR⋆

1 = R1 be the input to (17)–
(18). Then, ifR⋆

2 ≥ R2, we can conclude that(R1, R2) is
feasible. The interpretation of the method in Sec. IV-B is that
TX1 fixes its beamforming strategy and TX2 seeks the best-
response strategy to end up at a PO point.

A. Numerical Method

The numerical method proposed in this section is a two-
fold improvement of the one we presented in [23]. First,
we exploit the parameterization [13] of the PO beamforming
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vectors to reduce, without loss of optimality, the feasibleset
fromW2, i.e., a bounded convex set inR4nT , to the bounded
positive quadrant. Second, we equivalently reformulate the
optimization problem to further reduce the feasible set to a
line segment inR. The resulting problem is a scalar quasi-
concave problem that needs to be solved once to yield a PO
point, whereas the parameterized convex formulation in [23]
required several iterations of the bisection method.

From [13, Corollary 1], we know that the PO beamforming
vectors of theRnn region can be parameterized as

wi(xi) = xi

Πhij
hii

∥

∥Πhij
hii

∥

∥

+
√

1− x2
i

Π
⊥
hij

hii
∥

∥Π
⊥
hij

hii

∥

∥

, (19)

where 0 ≤ xi ≤ 1 for i, j = 1, 2 and j 6= i. Note
that (19) consists of a single nonnegative real parameter per
beamforming vector. Inserting (19) into (2), we get

pi(wi) =

(

xi

∥

∥Πhij
hii

∥

∥+
√

1− x2
i

∥

∥Π
⊥
hij

hii

∥

∥

)2

=

(

αixi + α̃i

√

1− x2
i

)2

, (20)

qj(wi) = x2
i

|hH
ijhii|2

∥

∥Πhij
hii

∥

∥

2 = g2ijx
2
i . (21)

From [19], we know that, for PO points,xi ≤ αi/gii = κi.
This value maximizes (20) and corresponds to the MR transmit
beamforming vector. Further increase ofxi will just increase
the interference and decrease the desired signal power.

Inserting (20) and (21) into (17)–(18) and performing
straightforward algebraic manipulations, including taking the
square root, we get the equivalent reformulation

maximize
0≤x1,x2≤1

α2x2 + α̃2

√

1− x2
2

√

g212x
2
1 + σ2

2

(22)

subject to
α1x1 + α̃1

√

1− x2
1

√

g221x
2
2 + σ2

1

=
√

γ⋆
1 , (23)

where the constantsα1, α̃1, α2, α̃2, g12, g21 are all positive, as
defined in Sec. II. We further simplify the notation defining

ui(xi) , αixi + α̃i

√

1− x2
i i = 1, 2 and (24)

vi(xj) ,
√

g2jix
2
j + σ2

i i, j = 1, 2, j 6= i. (25)

It is straightforward to verify thatui(xi) is concave and non-
decreasing forxi ≤ κi. Moreover, sincevi(xj) is a norm, it is
a convex and non-decreasing function inxj . Then, we make
the following observation:

Lemma 1. The objective function(22) and the left-hand-side
(LHS) of the constraint(23) are quasi-concave functions.

Proof: Note that ui(xi)/vi(xj) ≥ c is equivalent to
cvi(xj)−ui(xi) ≤ 0 sincevi(xi) > 0. Sincecvi(xj) is convex
for all c ≥ 0 andui(xi) is concave,cvi(xj)− ui(xi) ≤ 0 de-
fines a convex set. Hence, we conclude that the objective (22)
and the LHS of constraint (23) are quasi-concave functions
[27, Ch. 3].

Due to the equality in (23), the problem (22)–(23) is not

quasi-concave as it stands [28], but in the following we
equivalently reformulate it into a quasi-concave problem in
one scalar variable. We solve equation (23) forx2, keeping
the positive root, as

x2 =

√

u2
1(x1)− γ⋆

1σ
2
1

g221γ
⋆
1

, w(x1). (26)

Since a function of the form
√
t2 − a is concave and non-

decreasing fort ≥ √a, a ≥ 0 andu1(x1) is concave and non-
decreasing forx1 ≤ κ1, we conclude thatw(x1) is a concave
and non-decreasing function ofx1 ≤ κ1 [27, Ch. 3.2].

The constraints0 ≤ x2 ≤ κ2 introduce lower and upper
bounds onx1. Since x2 ≥ 0, it follows from (26) that
u1(x1) ≥

√

γ⋆
1σ

2
1 . Then, from (24) andx1 ≥ 0, it follows

that we must havex1 ≥ x1, where

x1 , max

{

0, κ1

√

γ⋆
1

γnn
1

−
√

1− κ2
1

√

1− γ⋆
1

γnn
1

}

. (27)

Note thatx1 is real for γ⋆
1 ≤ γnn

1 , 2R
nn

1 − 1 = g211/σ
2
1 .

Furthermore, for the upper limits we must havex2 = w(x1) ≤
κ2 andx1 ≤ κ1, which imply x1 ≤ x1, where

x1 ,







κ1

√

γ⋆
1

γMR
1

−
√

1− κ2
1

√

1− γ⋆
1

γMR , γ⋆
1 ≤ γMR

1 ,

κ1, γ⋆
1 > γMR

1 ,
(28)

and whereγMR
1 , g211/(g

2
21κ

2
1+σ2

1) is the SINR of link 1 when
both TXs use the MR beamforming vectors, which yield the
so-called Nash Equilibrium [22]. Note thatγMR

1 < γnn
1 , where

the latter is the SNR of RX1 at the single-user point of the
rate region. It can be verified thatx1 ≥ 0 sinceγ⋆

1 ≥ γnn
1

,

2R
nn
1 − 1.

Inserting (26) in (22), along with the lower and upper
bounds (27) and (28), respectively, yields the scalar optimiza-
tion problem

maximize
x
1
≤x1≤x1

u2 (w(x1))

v2(x1)
, s(x1). (29)

Note that the objective function corresponds to the square root
of the SINR of link 2, i.e,s(x1) =

√
γ2. Next, we study its

properties and prove that it is quasi-concave.

Lemma 2. The functions(x1) is quasi-concave forx1 < x1 <
x1.

Proof: First, we observe thats(x1) is at least twice
continuously differentiable forx1 < x < x1. Second, we show
that s′(x1) = 0 implies thats′′(x1) < 0 and it follows that
s(x1) is quasi-concave [27, Ch. 3.4.3].

The first derivative ofs(x1) is

s′(x1) =
w′(x1)u

′
2(w(x1))v2(x1)− u2(w(x1))v

′
2(x1)

v22(x1)
(30)

and the second derivative is

s′′(x1) =
1

v22(x1)

(

w′′(x1)u
′
2(w(x1))v2(x1)+

+ (w′(x1))
2u′′

2(w(x1))v2(x1)− u2(w(x1))v
′′
2 (x1)

)

. (31)
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We know that w(x1) is concave and non-decreasing for
x1 ≤ κ1, v2(x1) is convex and non-decreasing andu2(x2)
is concave.4 Therefore, we conclude that the second and third
terms of (31) are non-positive. Also, we note that the second
term is zero only ifx1 = κ1 and the third term is zero only if
x1 = 0. Hence, we conclude that the sum of the second and
third terms in (31) is always negative. It remains to show that
the first term in (31) is non-positive for a stationary pointx⋆

1.
We know thatw′′(x⋆

1) ≤ 0 andv2(x⋆
1) > 0, so we must show

thatu′
2(w(x

⋆
1)) ≥ 0. For a stationary point, the first derivative

is zero, so from (30) it follows that

u′
2(w(x

⋆
1)) =

u2(w(x
⋆
1))v

′
2(x

⋆
1)

w′(x⋆
1)v2(x

⋆
1)

≥ 0 (32)

since u2(w(x1)), v′2(x1), w′(x1), and v2(x1) all are non-
negative forx1 ≤ κ1. Sinces′(x1) = 0 implies s′′(x1) < 0,
we conclude thats(x1) is quasi-concave, [27, Ch. 3.4.3]

Since problem (29) has a single real variable and the
objective function is quasi-concave, the optimum solution
can be found very efficiently. Since the objective function is
monotonously increasing (decreasing) to the left (right) of the
stationary point, a gradient method can be used. In Tab. I,
we propose a method that computes strongly PO points of
Rnn. As input, the method requires the channel constants, the
noise variances, and the numberM of requested boundary
points. The output is stored in the vectorsr1, r2 ∈ RM . The
rates inr1 are obtained by uniform sampling over the interval
[Rnn

1 , R
nn

1 ]. In line 4, we compute the end point(Rnn
1 , R

nn

2 ).
For each boundary point, we compute the lower and upper
boundsx1 andx1, respectively, and ensure that the solution
lies in the interval[x1, x1]. In line 8, thex⋆

1 corresponding to
the previously computed point is used as initial value for the
next point on the boundary. The reason is that we expect that
the solution will not change significantly for two nearby points.
In lines 10–14, we find the optimal solutionx⋆

1 by a gradient
ascend method. In each repetition, we compute the derivative
s′(x1) and then find a step lengtht, by backtracking line search
[27, Ch. 9.2]. This is repeated until the improvement from the
previous iteration is smaller than some predefined tolerance
ǫ. Since s(x1) is quasi-concave, its derivative can be small
without being close to the optimum. Hence,ǫ has to be chosen
very small. In line 20, the end point(R

nn

1 , Rnn
2 ) is computed.

B. Closed-Form Parameterization

In this section, we use the Karush-Kuhn-Tucker (KKT)
conditions of the optimization problem (22)–(23) in order to
derive a closed-form relation between the parameters of the
beamforming vectors that jointly yield a PO rate point. A pre-
liminary version of this method was presented in [1]; herein,
we elaborate the derivations and provide a proof of global
optimality. The latter is achieved using the parameterization
(19), whereas a different parameterization was used in [1].

In general, the KKT conditions only provide necessary
conditions for global optimality. However, we show that for

4We could have used the fact theu2(w(x1)) is also non-decreasing for
x1 ≤ x1, to obtain a simpler proof. However, in Sec VI, we need this more
general case.

1: Input: gij , κi, σ
2
i , i, j = 1, 2, M, andǫ

2: Output: Bnn given by vectorsr1, r2 ∈ R
M

3: r1 =
[

Rnn
1 : (R

nn

1 −Rnn
1 )/(M − 1) : R

nn

1

]

4: r2(1) = R
nn

2 , x⋆
1 = 0

5: for k = 2 : M − 1

6: γ⋆
1 = 2r1(k) − 1

7: Computex1 andx1 using (27) and (28)

8: x
(0)
1 = [x⋆

1]
x1

x
1

9: l = 0
10: repeat
11: Computes′(x(l)

1 ) and determine step sizet

12: x
(l+1)
1 = [x

(l)
1 + ts′(x

(l)
1 )]x1

x
1

13: l← l + 1

14: until
∣

∣s(x
(l)
1 )− s(x

(l−1)
1 )

∣

∣ < ǫ

15: x⋆
1 = x

(l)
1

16: Computex⋆
2 = w(x⋆

1) using (26)
17: Computew⋆

i = wi(x
⋆
i ) using (19)

18: Computer2(k) = R⋆
2 = Rnn

2 (w⋆
1,w

⋆
2) using (8)

19: end
20: r2(M) = Rnn

2 , x⋆
1 = κ1, x

⋆
2 = 0

TABLE I
NUMERICAL METHOD TO COMPUTEBnn

this specific problem, the KKT conditions are also sufficient.
Towards this direction, we relax the equality constraint (23) to
a lower-bound inequality.5 Then, due to Lem. 1, the relaxed
optimization problem (22)–(23) falls into the class of quasi-
concave problems [28]. Th. 1 in [28] gives a number of
sufficient conditions for global optimality of the solutionto
the KKT conditions of a constrained quasi-concave program.
It suffices that one of these conditions is satisfied. Condition
a) is that the gradient of the objective function should have
at least one negative component for a solution that satisfies
the KKT conditions. By simple inspection of the objective
function (22), it follows that:

Lemma 3. The objective(22) is decreasing withx1 ≥ 0, for
fixedx2.

Hence, due to Lem. 3, the relaxed version of the problem
(22)–(23) satisfies condition a) of Th. 1 in [28]. Then, from
Lem. 1, Lem. 3, and [28, Th. 1], we have the following result:

Proposition 1. The KKT conditions of the relaxed problem
(22)–(23) are sufficient conditions for global optimality.

For notational convenience, we make the bounding con-
straints onxi implicit, i.e., we declare a solution of the
KKT conditions feasible only if it adheres to the bounding

5By contradiction, we can show that this relaxation is tight at the optimum.
Assume that the optimal solution meets (23) by strict inequality. Then there is
room to increasex2 or decreasex1 in order to make the objective (22) larger.
This is illustrated by the dashed lines in Fig. 3. Hence the relaxed problem
is equivalent to the original one.
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constraints. The Lagrange function of the relaxed (22)–(23) is

L(x1, x2, µ) =
u2(x2)

v2(x1)
+ µ

(

u1(x1)

v1(x2)
−
√

γ⋆
1

)

, (33)

where the Lagrange multiplierµ is non-negative. Hence, the
KKT conditions are [27]

µ

(

u1(x1)

v1(x2)
−
√

γ⋆
1

)

= 0, (34)

∂L
∂x1

= −v′2(x1)u2(x2)

v22(x1)
+ µ

u′
1(x1)

v1(x2)
= 0, (35)

∂L
∂x2

=
u′
2(x2)

v2(x1)
− µ

v′1(x2)u1(x1)

v21(x2)
= 0. (36)

In (34)–(36), we avoided explicitly including the primal fea-
sibility constraints, since (22)–(23) is always feasible if we
chooseγ⋆

1 ≤ g211/σ
2
1 . Also, it is straightforward to verify that

the corresponding Lagrange multipliers must be zero. We use
the KKT conditions to find a relation between the parameters
x1 and x2 that jointly yield PO points. Since we are not
looking for a specific PO point, we can disregard condition
(34). Once we have found a pair(x⋆

1, x
⋆
2) that solves (35)–

(36) for someµ⋆, we insert the triplet(x⋆
1, x

⋆
2, µ

⋆) into (34)
to find γ⋆

1 . Clearly (x⋆
1, x

⋆
2, γ

⋆
1 , µ

⋆) solves the KKT conditions
(34)–(36).

Whenx1 > 0, we can verify from (35) thatµ > 0. Then,
we use (35) and (36) to solve forµ. Equating the solutions,
we get the relation

u′
2(x2)v

2
1(x2)

v′1(x2)v2(x1)u1(x1)
=

v′2(x1)v1(x2)u2(x2)

u′
1(x1)v22(x1)

. (37)

By collecting all functions ofx1 andx2 in the LHS and RHS,
respectively, we equivalently rewrite (37) as

f(x1),
u′
1(x1)v

2
2(x1)

v′2(x1)v2(x1)u1(x1)
=

v′1(x2)v1(x2)u2(x2)

u′
2(x2)v21(x2)

,g(x2).

(38)
The LHS and RHS of (38) are functions of onlyx1 andx2, re-
spectively, which we denote asf(x1) andg(x2), respectively.
In order to find a PO point, we fixx1 at a specific valuex⋆

1

and then solveg(x2) = f(x⋆
1) to getx⋆

2.

Due to the square roots, it is complicated to solve forx2

as it stands. Instead, we use the alternative parameterization,
that the PO beamforming vectors are linear combinations of
the MR and ZF beamforming vectors [13, Corollary 2], i.e.,

wPO
i (λi) =

λiw
MR
i + (1 − λi)w

ZF
i

∥

∥λiw
MR
i + (1 − λi)wZF

i

∥

∥

, (39)

whereλi ∈ [0, 1]. To go from the parameterization in (19) to
that in (39), we use the mapping

xi = φi(λi) ,
κiλi

∥

∥λiw
MR
i + (1 − λi)wZF

i

∥

∥

=
κiλi

√

2ρiλ2
i − 2ρiλi + 1

, (40)

whereρi , 1−
√

1− κ2
i . Since0 < κi < 1, we have

dφi

dλi
=

κi(1− ρiλi)

(2ρλ2
i − 2ρiλi + 1)3/2

> 0. (41)

Hence, it follows that (40) is a one-to-one mapping betweenxi

andλi and the problem of solvingg(x2) = f(x⋆
1) with respect

to x2 is equivalent to that of solvingg(φ2(λ2)) = f(φ1(λ
⋆
1))

with respect toλ2. By inserting (40) into (38), we equivalently
write g(φ2(λ2)) = f(φ1(λ

⋆
1)) as

λ2(1 − ρ2λ2)(ρ2λ2 + (1 − ρ2))

(1 − λ2)(ρ2(2− ρ2 + 2ζ2)λ2
2 − 2ρ2ζ2λ2 + ζ2)

= f(φ1(λ
⋆
1)),

(42)
whereζi , σ2

j /g
2
ij, i, j = 1, 2, j 6= i. In (42), we see that

g(φ2(λ2)) is a fraction of cubic polynomials. Sincef(φ1(λ
⋆
1))

is a constant, we write (42) as the cubic equation

c3λ
3
2 + c2λ

2
2 + c1λ2 + c0 = 0. (43)

The coefficients of the cubic equation (43) are














c0 , −ζ2f(λ⋆
1),

c1 , (1 + 2ρ2)ζ2f(λ
⋆
1) + (1− ρ2),

c2 , −ρ2(2 − ρ2 + 4ζ2)f(φ1(λ
⋆
1)) + ρ22,

c3 , ρ2(2− ρ2 + 2ζ2)f(φ1(λ
⋆
1))− ρ22.

(44)

Cubic equations can be solved in closed form [29]. The roots
of (43) are three candidates forλ⋆

2.6 Since λ⋆
1 ∈ [0, 1], we

have the following three cases.

• λ⋆
1 = 0: From (16) and (39) we know thatλ⋆

2 = 1.
• 0 < λ⋆

1 < 1: We find the roots of (43) and keep the roots
that satisfy the constraint0 ≤ λ2 ≤ 1. We can potentially
have more than one feasible root, but from Prop. 1, we
know that all feasible roots yield a PO solution.7

• λ⋆
1 = 1: Again, from (16) and (39) we see thatλ⋆

2 = 0.

The overall method to compute the entireBnn is summa-
rized in Tab. II. By uniform sampling ofλ⋆

1 over the interval
[0, 1], we will cover the entire interval[Rnn, R

nn
]. Once

we have found the coefficients in Sec. II, the complexity is
constant in the number of antennas.

1: Input and output: same as in Tab. I
2: for λ⋆

1
= [0 : 1/(M − 1) : 1]

3: Computef(φ1(λ⋆

1
)) according to (38) and (40)

4: λ⋆

2
= roots of cubic equation (43) that are in[0, 1]

5: Compute the rate point(s) using (8), (19), and (40)
6: end

TABLE II
CLOSED-FORM METHOD TO COMPUTEBnn

V. ONLY ONE RX DECODES THEINTERFERENCE

In this section, we computeBdn on closed form. A con-
densed description of this method was given in [2].

Inserting the rate expressions (9) and (10) in the optimiza-
tion problem (13)–(14) and equivalently reformulating therate
maximization to SINR maximization, we obtain

maximize
(w1,w2)∈W2

min

{

q1(w2)

p1(w1) + σ2
1

,
p2(w2)

q2(w1) + σ2
2

}

(45)

subject to p1(w1)/σ
2
1 = γ⋆

1 . (46)

6Note that any other choice ofλ⋆

1
gives us a point in the interior ofRnn.

7In [19] and [20], it was not made clear whether all feasible solutions to
the corresponding cubic equation are optimal or not. Especially, equation (25)
in [19] provides only necessary conditions for Pareto optimality [26, Ch. 6].
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As with (17)–(18), we see that (45)–(46) is feasible whenγ⋆
1 ≤

g211/σ
2
1 . The formulation (45)–(46) is nonconvex, because the

objective (45) is the minimum of two fractions of quadratic
functions and (46) is a quadratic equality constraint.

In [12], it was shown that the PO beamforming vectors of
theRdn region can be parameterized as

w1(x1, y1) = x1
Πh12

h11

‖Πh12
h11‖

+ y1
Π

⊥
h12

h11
∥

∥Π
⊥
h12

h11

∥

∥

, (47)

w2(x2) = x2
Πh22

h21

‖Πh22
h21‖

+
√

1− x2
2

Π
⊥
h22

h21
∥

∥Π
⊥
h22

h21

∥

∥

, (48)

where(x1, y1) ∈ Q , {(x, y)|x, y ≥ 0, x2+y2 ≤ 1} andx2 ∈
[0, 1]. Note that this parameterization is different from (19)
and (39) ofRnn. An interpretation stemming from (47)-(48)
is that on the Pareto boundary TX2 uses full power, whereas
TX1 may not. Inserting (47)–(48) into (2), we get

p1(w1) =
(

x1 ‖Πh12
h11‖+ y1

∥

∥Π
⊥
h12

h11

∥

∥

)2

= (α1x1 + α̃1y1)
2, (49)

q2(w1) = x2
1

|hH
12h11|2

‖Πh12
h11‖2

= g212x
2
1, (50)

p2(w2) = x2
2

|hH
22h21|2

‖Πh22
h21‖2

= g222x
2
2, (51)

q1(w2) =

(

x2 ‖Πh22
h21‖+

√

1− x2
2

∥

∥Π
⊥
h22

h21

∥

∥

)2

=

(

β2x2 + β̃2

√

1− x2
2

)2

, (52)

where the parametersα1, α̃1, β1, β̃1, g12, g22 are positive, as
defined in Sec. II. Whenx1 increases, both the power of the
desired signal (49) and the interference (50) increase, whereas
y1 only increases the power of the desired signal. Whenx2

increases, the desired signal power (51) increases.
Inserting (49)–(52) in (45)–(46), replacing the constraint

(46) in the denominator of the first fraction of (45), and taking
the square root, we equivalently obtain

maximize
(x1,y1)∈Q

x2∈[0,1]

min

{

β2x2 + β̃2

√

1− x2
2

√

σ2
1(γ

⋆
1 + 1)

,
g22x2

√

g212x
2
1 + σ2

2

}

(53)

subject to α1x1 + α̃1y1 =
√

γ⋆
1σ

2
1 . (54)

By Lem. 1, we see that the two fractions in the objective
function (53) are quasi-concave. Since the minimum of two
quasi-concave functions is quasi-concave and (54) is linear, it
follows that (53)–(54) is a quasi-concave problem.

We solve (53)–(54) in two steps. First we solve for(x1, y1)
and then forx2. We note thatx1 appears only in the second
fraction of (53) and in (54), whereasy1 appears only in (54).
The second fraction of (53) is monotonously decreasing with
x1, for fixedx2, so we maximize it by minimizingx1, subject
to the constraint (54), i.e.,

minimize
(x1,y1)∈Q

x1 (55)

0
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1

1
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Fig. 1. Illustration of the three different cases in the proof of Prop. 2. The
optimal solution is marked with a star. (a):a = 1, b = 1.2, c = 0.9, (b):
a = 1.5, b = 1.2, c = 0.9, (c): a = 2.5, b = 1.2, c = 0.9.

subject to y1 = −α1

α̃1
x1 +

√

γ⋆
1σ

2
1

α̃1
. (56)

The solution of this problem can be found by inspection,
noting that the feasible set is the segment of the line (56)
in Q. When

√

γ⋆
1σ

2
1/α̃1 ≤ 1, this line segment does not

intersect the unit-radius circle; hence, the optimum valueis
x⋆
1 = 0. The interpretation of this solution is that TX1 uses

the ZF beamforming vector, but contrary to theRnn case,
it may not use full power in order to make interference
cancellation possible. When

√

γ⋆
1σ

2
1/α̃1 > 1, the line segment

intersects the unit circle in two points; hence, the leftmost
is the optimum. Inserting (56) into the quadratic equation
of the unit circle, it is straightforward to determine that
x⋆
1 =

(

α1

√

gamma⋆1σ
2
1 − α̃1

√

g211 − γ⋆
1σ

2
1

)

/g211, where we

have used the fact thatg211 = α2
1 + α̃2

1. The interpretation of
this solution is that TX1 uses full power in this case.

Given the optimalx⋆
1, the optimaly⋆1 is determined by (56),

and the problem (53)–(54) only depends onx2, i.e.,

maximize
0≤x2≤1

min

{

β2x2 + β̃2

√

1− x2
2

√

(γ⋆
1 + 1)σ2

1

,
g22x2

√

g212(x
⋆
1)

2 + σ2
2

}

.

(57)
In order to simplify the notation, we define the constants
a , g22/

√

(x⋆
1)

2g212 + σ2
2 , b , β2/

√

σ2
1(γ

⋆
1 + 1), and c ,

β̃2/
√

σ2
1(γ

⋆
1 + 1). Using these constants, we write (57) as

maximize
0≤x2≤1

min

{

bx2 + c
√

1− x2
2, ax2

}

. (58)

Depending on the values ofa, b, andc, we get three different
cases for the objective functions in (58), as depicted in Fig. 1.
In Fig. 1 (a), we havea ≤ b and it is clear that the optimum
is at x⋆

2 = 1. The interpretation is that TX2 uses the MR
beamforming vector. The difference between the cases in Fig.
1 (b) and Fig. 1 (c) is whether the intersection of the curve
with the straight line is to the left or right of the maximum
of the curve. The curvebx2 + c

√

1− x2
2 is maximized for

x2 = b/
√
b2 + c2. The intersection ofbx2 + c

√

1− x2
2 with

ax2 happens forx2 = c/
√

c2 + (a− b)2. In Fig. 1 (b), the
intersection is to the right of curve’s maximum; hence,

c
√

c2 + (a− b)2
≥ b√

b2 + c2
⇔ ab ≤ b2 + c2. (59)

From Fig. 1 (b), we see that the optimum is at the intersection.



9

Hence, we havex⋆
2 = c/

√

c2 + (a− b)2. For the case in Fig.
1 (c), we see that the optimum is atx⋆

2 = b/
√
b2 + c2 =

β/g21. For the cases depicted in Figs. 1 (a) and (b), we have
ab ≤ b2 + c2 and the solution lies on the lineax2. Therefore,
we haveγ⋆

2 = (ax⋆
2)

2. In Fig. 1 (c), we haveab > b2+c2 and
the optimum lies on the curvebx2 + c

√

1− x2
2. Therefore,

we haveγ⋆
2 = b2 + c2. The interpretation is that TX2 uses a

beamforming vector in the direction of the crosstalk channel.
Note that in Fig. 1, we depicted the scenario ofb > c. The
above analysis does not change ifb ≤ c. We summarize the
solutions of (55)–(56) and (57) in the following proposition.

Proposition 2. The optimal solution(x⋆
1, y

⋆
1) of (55)–(56) is

x⋆
1 = max

{

0,
α1

g211

√

γ⋆
1σ

2
1 −

α̃1

g211

√

g211 − γ⋆
1σ

2
1

}

, (60)

y⋆1 =

(

√

γ⋆
1σ

2
1 − α1x

⋆
1

)

/α̃1. (61)

Then, the optimal value of(45) is given as

γ⋆
2 =















g222(x
⋆
2)

2

(x⋆
1g12)

2 + σ2
2

, a ≤ b+ c2/b,

g221
σ2
1(γ

⋆
1 + 1)

, a > b+ c2/b
(62)

for

x⋆
2 =











1, a ≤ b,

c/
√

c2 + (a− b)2, b < a ≤ b+ c2/b,

β2/g21, a > b+ c2/b,

(63)

The optimal(w⋆
1,w

⋆
2) is obtained by inserting(60)–(61) and

(63) into (47)–(48).

Prop. 2 provides a scheme for finding in closed-form a point
on the Pareto boundaryBdn, by providingγ⋆

2 as an explicit
function ofγ⋆

1 . In Tab. III, we summarize the proposed method
for computing the entireBdn.

Contrary to theRnn case, we can obtain the weak, i.e.,
vertical and horizontal, parts ofBdn by using the method in
Tab. III. The reason is that by using the parameterization (47)–
(48), we can setpi(wi) = 0, which is not possible forRnn.
Moreover, it is of interest to analyze the largest value,γdn

2 ,
thatγ⋆

2 can assume, i.e., whenγ⋆
1 = 0, since this brings some

insight toRdn. At this point we havea = g22/σ2, b = β2/σ1,
andc = β̃2/σ1. Therefore, forγ⋆

1 = 0 we have,

γdn
2 =































g222
σ2
2

,
g22
σ2
≤ β2

σ1
,

β̃2
2g

2
22

β̃2
2σ

2
2 + (g22σ1 − β2σ2)

2 ,
β2
σ1

<
g22
σ2
≤ g21

κ2σ1
,

g221
σ2
1

,
g22
σ2

>
g21
κ2σ1

.

(64)
Sinceβ2 = κ2g21, the first case of (64) corresponds to the
scenario where the crosstalk channelh21 is strong compared
to the direct channelh22 and the spatial correlation between
h21 andh22 is large. For this scenario, it is optimal for TX2
to use the MR beamforming vector. The third case of (64)
corresponds to the scenario whereh21 is weak compared to
h22, and the spatial correlation betweenh21 andh22 is large.

For this case, TX2 has to prioritize the SINR at RX1 and it
uses a beamforming vector in the direction ofh21. The second
case of (64) is somewhere in between the previous extreme
cases. For this case, TX2 chooses its beamforming vector such
that both the RXs get the same SINR. To conclude, the highest
rate link 2 can achieve inRdn is R

dn

2 = log2(1 + γdn
2 ).

1: Input and output: same as in Tab. I

2: r1 =
[

0 : R
dn

1 /(M − 1) : R
dn

1

]

3: for k = 1 : M

4: γ⋆
1 = 2r1(k) − 1

5: Computex⋆
1 andy⋆1 using (60) and (61)

6: Computex⋆
2 using (63)

7: Computew⋆
1 andw⋆

2 using (47) and (48)
8: Computeγ⋆

2 using (62)
9: r2(k) = R⋆

2 = log2(1 + γ⋆
2 )

10: end

TABLE III
CLOSED-FORM METHOD TO COMPUTEBdn

VI. B OTH RXS DECODE THEINTERFERENCE

In this section, we propose a computationally efficient
numerical method to computeBdd which is similar in logic
to the one given in Sec. IV-A forBnn and also utilizes
intermediate results from the method in Sec. V forBdn. The
method proposed herein improves the corresponding one of
[2] in two ways: a) the number of variables is decreased from
four real variables to a single one and b) a single instance of
two quasi-concave subproblems needs to be solved instead of
a sequence of convex feasibility problems.

Inserting the rate expressions (11) and (12) in the optimiza-
tion problem (13)–(14) and equivalently reformulating therate
maximization to SINR maximization problem, we obtain

maximize
(w1,w2)∈W2

min

{

p2(w2)

σ2
2

,
q1(w2)

p1(w1) + σ2
1

}

(65)

subject to p1(w1)/σ
2
1 ≥ γ⋆

1 , (66)

q2(w1)

p2(w2) + σ2
2

≥ γ⋆
1 , (67)

where (66)–(67) follow from the epigraph formulation of (11),
see [27, Ch. 3]. The formulation (65)–(67) is nonconvex, since
the constraints are fractions of quadratic functions.

In [11], it was shown that the PO beamforming vectors of
theRdd region can be parameterized as

wi(xi, yi) = xi
Πhii

hij

‖Πhii
hij‖

+ yi
Π

⊥
hii

hij
∥

∥Π
⊥
hii

hij

∥

∥

(68)

for i, j = 1, 2 and j 6= i, where(xi, yi) ∈ Q. Note that this
parameterization is different from (19) and (39) ofRnn and
(47)–(48) ofRdn. Inserting (68) into (2), we get

pi(wi) = x2
i

|hH
iihij |2

‖Πhii
hij‖2

= g2iix
2
i , (69)

qi(wj) =
(

xj

∥

∥Πhjj
hji

∥

∥+ yj
∥

∥Π
⊥
hjj

hji

∥

∥

)2
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=
(

βjxj + β̃jyj

)2

, . (70)

where the parametersgii, βi, β̃j are defined in Sec. II. From
(68), we see that the PO beamforming vectors of both TXs
do not necessarily use all available power. However, without
loss of optimality, we can assume that full power is used
at optimum. This is so because increasingyi increases the
interference (70) but does not affect the desired signal power
(69). The effect of increasingyi, beyond the optimal solution
y⋆i , is to only make the constraint (67) looser at optimum,
without decreasing the objective value (65). The interpretation
is that we can increase the interference arbitrarily, sinceit will
be canceled by the RXs. Hence, we can increase it until the
power constraint is met with equality, i.e., setyi =

√

1− x2
i .

Inserting (69)–(70) in (65)–(67), taking the square root
of objective and constraints, and introducing the nonnegative
auxiliary variablez, we equivalently obtain

maximize
0≤x1,x2≤1, z≥0

z (71)

subject to g22x2/σ2 ≥ z, (72)

β2x2 + β̃2

√

1− x2
2

√

g211x
2
1 + σ2

1

≥ z, (73)

g11x1/σ1 ≥
√

γ⋆
1 , (74)

β1x1 + β̃1

√

1− x2
1

√

g222x
2
2 + σ2

2

≥
√

γ⋆
1 . (75)

In order to further simplify the notation, we define

ũi(xi) , βixi + β̃i

√

1− x2
i , (76)

ṽi(xi) ,
√

g2iix
2
i + σ2

i . (77)

Problem (71)–(75) is feasible forγ⋆
1 ∈ [0, γdd

1 ]. The rate
R

dd

1 = log2(1 + γdd
1 ) is the highest rate of link TX1 →RX1

that can be decoded by both RXs, achieved when TX2 does
not transmit. We determineγdd

1 as

γdd
1 =

(

maximize
0≤x1≤1

min

{

g11x1

σ1
,
β1x1 + β̃1

√

1− x2
1

σ2

})2

.

(78)
The maximization in (78) is similar to (58), so we can solve it
using (64). By interchanging the indices in (78), we can find
γdd
2 .

Due to the variablez, (73) does not define a convex
set. Hence, (71)–(75) is neither a concave nor a quasi-
concave problem as it stands. But, by using the epigraph
formulation, (71)–(75) can be equivalently reformulated into
a quasi-concave problem. By studying the KKT conditions of
(71)–(75), we identify two cases and apply to each of them
techniques introduced in Secs. IV-A and V, respectively. The
fact that the gradient of the Lagrange function of (71)–(75)
vanishes at the optimum, gives the KKT conditions

∂L
∂z

= 1− µ1 − µ2 = 0, (79)

∂L
∂x1

= −µ2
ṽ′1(x1)ũ2(x2)

ṽ21(x1)
+ µ3

g11
σ1

+ µ4
ũ′
1(x1)

ṽ2(x2)
= 0, (80)

∂L
∂x2

= µ1
g22
σ2

+ µ2
ũ′
2(x2)

ṽ1(x1)
− µ4

ṽ′2(x2)ũ2(x2)

ṽ22(x2)
= 0, (81)

whereµi ≥ 0, i ∈ {1, 2, 3, 4} are the Lagrange multipliers of
constraints (72)–(75), respectively. First, we observe that we
can haveµ3 = µ4 = 0 only whenx1 = 0. This is the case
only whenγ⋆

1 = 0. Hence, for every other point we have either
µ3 > 0 or µ4 > 0, corresponding to equality in (74) and (75),
respectively. Next, for each case, we change the corresponding
inequality in (71)–(75) to equality. We solve the two programs
separately and compare the solutions. The solution with the
highest optimal value will yield the optimum of (71)–(75).

For the case of equality in (74), it immediately follows that
x⋆
1 =

√

γ⋆
1σ

2
1/g

2
11. From (75), we see that the problem is

feasible only ifβ1x
⋆
1 + β̃1

√

1− (x⋆
1)

2 ≥
√

γ⋆
1σ

2
2 . Note that

this is always the case ifγ⋆
1 ≤ γdd

1 . Given that (71)–(75) is
feasible with equality in (74), we have the problem

maximize
0≤x2≤1

min

{

g22x2

σ2
,

ũ2(x2)
√

γ⋆
1 + σ2

1

}

(82)

subject to x2 ≤
1

g22
√

γ⋆
1

√

ũ2
1(x

⋆
1)− γ⋆

1σ
2
2 . (83)

Note thatx2 is real and non-negative whenever the structure of
(82)–(83) is similar to (57). The only difference is the extra
constraint (83) which yields a tighter upper bound forx2.
Hence, we can use Prop. 2 to findx⋆

2 by using coefficients
ã , g22/σ2, b̃ , β2/

√

γ⋆
1 + σ2

1 , and c̃ , β̃2/
√

γ⋆
1 + σ2

1 , in
place ofa, b, andc, respectively.

For the case of equality in (75), we get

x2 =
1

g22
√

γ⋆
1

√

ũ2
1(x1)− γ⋆

1σ
2
2 , w̃(x1). (84)

Inserting (84) in (71)–(75) yields the problem

maximize
0≤x1≤1

min {s1(x1), s2(x1)} (85)

subject to g11x1/σ1 ≥
√

γ⋆
1 , (86)

ũ1(x1) ≥
√

γ⋆
1σ

2
2 , (87)

ũ1(x1) ≤
√

γ⋆
1 (g

2
22 + σ2

2), (88)

where

s1(x1) , g22w̃(x1)/σ2, (89)

s2(x1) , ũ2 (w̃(x1)) /ṽ1(x1). (90)

The constraints (87) and (88) correspond tox2 ≥ 0 andx2 ≤
1, respectively. Constraint (86) is satisfied ifg11/σ2

1 ≥ γ⋆
1 ,

constraint (87) is satisfied if̃u1(κ1) = g212 ≥
√

γ⋆
1σ

2
2 and

constraint (88) is satisfied if̃u1(0) = β̃1 ≤
√

γ⋆
1 (g

2
22 + σ2

2).
Hence, (85)–(88) is feasible when

(1− κ2
1)g

2
12

g222 + σ2
2

≤ γ⋆
1 ≤ min

{

g211
σ2
1

,
g212
σ2
2

}

. (91)

By comparing the RHS of (91) with (78), we see that
γdd
1 ≤ min{g211/σ2

1 , g
2
12/σ

2
2}. While (82)–(83) is feasible for

all γ⋆
1 ≤ γdd

1 , the optimization (85)–(88) is feasible only for a
smaller subset as already illustrated by (91). The optimization
(85)–(88) will be solved using a method similar to that used
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for solving (29) forBdd in Sec. IV-A. First, we show that
we do not need to solve (85)–(88) for allγ⋆

1 satisfying (91).
By revisiting the KKT conditions (79)–(81), we see that if
µ4 > 0 andx1 > κ1, then we must haveµ3 > 0 as well. This
follows sinceũ′

1(x1) < 0 for x1 > κ1. But the case ofµ3 > 0
is already covered by (82)–(83). Hence, ifγ⋆

1 > g211κ
2
1/σ

2
1 ,

it suffices to solve (82)–(83) and we set the optimal value
of (85)–(88) to zero. Therefore, in the following, we only
consider the upper boundγ⋆

1 ≤ g211κ
2
1/σ

2
1 and lower bound

of (91). Second, we determine upper and lower bounds onx1.
Since ũ1(x1) is non-decreasing forx1 ≤ κ1, the constraint
yields an upper bound on the optimalx1; namelyx1 ≤ x1,
where

x1 ,











κ1

√

γ⋆
1

γ̃MR
1

−
√

1− κ2
1

√

1− γ⋆
1

γ̃MR
1

, γ⋆
1 ≤ γ̃MR

1 ,

κ1, γ⋆
1 > γ̃MR

1 ,

(92)

where γ̃MR
1 , g212/(g

2
22 + σ2

2) is the SINR at RX2 when it
decodes the interference while TX1 and TX2 transmit in the
MR directions ofh12 andh22, respectively. The constraints
(86) and (87) yield a lower boundx1 ≥ x1, where

x1 , max

{

√

γ⋆
1σ

2
1

g11
, κ1

√

σ2
2γ

⋆
1

g212
−
√

1− κ2
1

√

1− σ2
2γ

⋆
1

g212

}

.

(93)
Next, we show that the objective function (85) is quasi-

concave forx1 ∈ [x1, x1]. We note that the minimum of
two quasi-concave functions is quasi-concave [27, Ch. 3.4].
The function (89) is on the same form as (26) and hence, it
is concave. So, if (90) is quasi-concave, then (85) is quasi-
concave. We note that (90) has the same structure as the
objective function of (29). Hence it follows from Lem. 2 that
(90) is quasi-concave.

Since (85) is quasi-concave, we can use a gradient method
similar to the respective one forBnn, presented in Tab. I.
The proposed method to computeBdd is sketched in Tab. IV
and differs in the following points to the one forBnn. First,
for Bdd we have to solve two optimization problems, which
we do separately. We denotex⋆

11, x
⋆
21 and γ⋆

21 the optimal
solution and value, respectively, of (82)–(83), andx⋆

12, x
⋆
22 and

γ⋆
22 the optimal solution and value, respectively, of (85)–(88).

The solution to the subproblem that yields the highest optimal
value is declared the solution to (71)–(75). If both subproblems
are infeasible, we set the optimal value to zero. Second, we
maximize the minimum of two functions. Therefore, in lines
13–17, we let the gradient of the objective function (85),
denoted by∆, at a pointx1, take as value the minimum of
the derivatives of functionss1(x1) and s2(x2). In lines 21–
22, we usẽs(x1) , min {s1(x1), s2(x1)} . Except for these
points, the method works as forBnn.

VII. N UMERICAL ILLUSTRATIONS

Here we illustrate how the channel parametersgij , κi,
i, j = 1, 2 affect the shape of the rate regions. By choosing
these parameters in a controlled way, instead of randomly
drawing channel vectors, we can illustrate interesting prop-
erties of the four rate regions. Also, we provide an analysisof

1: Input and output: same as in Tab. I
2: Output: Bdd given by vectorsr1, r2 ∈ RM

3: r1 = [0 : R
dd
/(M − 1) : R

dd

1 ]

4: r2(1) = R
dd

2 , x⋆
1 = 0

5: for k = 2 : M

6: γ⋆
1 = 2r1(k) − 1

7: Solve (82)–(83) using Prop. 2⇒ x⋆
11, x

⋆
21, γ

⋆
21

8: if (1 − κ1)
2g212/(g

2
22 + σ22) ≤ γ⋆

1 ≤ g211κ
2
1/σ

2
1

9: Computex1 andx1 using (92) and (93)

10: x
(0)
12 = [x⋆

1]
x1

x
1

11: l = 0
12: repeat
13: if s1(x

(l)
12 ) ≤ s2(x

(l)
12 )

14: ∆ = s′1(x
(l)
12 )

15: else
16: ∆ = s′2(x

(l)
12 )

17: end
18: Determine step sizet

19: x
(l+1)
12 = [x

(l)
12 + t∆]x1

x
1

20: l← l + 1

21: until
∣

∣s̃(x
(l)
12 )− s̃(x

(l−1)
12 )

∣

∣ < ǫ

22: γ⋆
22 = s̃2(x

(l)
12 )

23: Computex22 using (84)
24: else
25: γ⋆

22 = 0
26: end
27: if γ⋆

21 ≥ γ⋆
22

28: γ⋆
2 = γ⋆

21, x⋆
1 = x⋆

11, x⋆
2 = x⋆

21

29: else
30: γ⋆

2 = γ⋆
22, x⋆

1 = x⋆
12, x⋆

2 = x⋆
22

31: end
32: Computew⋆

i using (68)
33: Computer2(k) = R⋆

2 = log2 (1 + γ⋆
2 )

34: end

TABLE IV
NUMERICAL METHOD TO COMPUTEBdd

the computational complexity of the proposed methods.
In Figs. 2–4, we illustrate the scenario where the channel

gains are symmetric withg11 = g22 = 1 andg12 = g21 = 2.
That is, the crosstalk channels are stronger than the direct
channels. In Fig. 2, we haveκ1 = κ2 = 0.3, which
corresponds to a low spatial correlation of amongst the direct
and crosstalk channels. We see that, even though the crosstalk
channel gains are high,Rnn is almost rectangular and all the
other regions are contained inRnn. In this case, there is no
need of cancel out interference; it costs too much in terms
of useful signal power to create extra interference in orderto
enable interference cancellation.

We illustrate the other extreme case in Fig. 3. Here we
haveκ1 = κ2 = 0.85, which corresponds to the case where
the angle between the direct and crosstalk channel vectors is
small. We see that all the other regions are contained inRdd.
The combination of strong crosstalk channels and high spatial
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correlation, entails that the cost of boosting interference in
order enable interference cancellation is very small.

In Fig. 4, we depict the case ofκ1 = 0.85 andκ2 = 0.3,
i.e., the channels from TX1 and TX2 have high and low spatial
correlation, respectively. In this case we haveR = Rnd. The
reason is that RX2 experiences high interference and has no
problem to decode it. On the other hand RX1 experiences low
interference, so it is better to treat it as noise.

For both Fig. 2 and Fig. 4, we see thatRdd ⊆ Rdn
⋃Rnd.

This is something that we frequently observe when the
channels are i.i.d. Rayleigh and SNR is around 0 dB. The
explanation is that forRdd both links have to sacrifice part
of the desired signal power in order to enable interference
cancellation.
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Fig. 2. Rate regions forg11 = g22 = 1, g12 = g21 = 2, κ1 = κ2 = 0.3

0
0

1

1

2

2

3

3

4

4 5
R1 [bpcu]

R
2

[b
p

cu
]

Rnn

Rnd

Rdn

Rdd

(R⋆
1, R

⋆
2)

(R
nn

1 , Rnn
2 )

(Rnn
1 , R

nn

2 )
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Fig. 4. Rate regions forg11 = g22 = 1, g12 = g21 = 2, κ1 = 0.85,
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A. Computational Complexity

Here, we consider the computational complexity of the
proposed methods. We give both order expressions and the
number of flops required to find the boundaries for the regions
in Figs. 2–4. In Tab. V, we compare the complexity of the
proposed methods with that of the brute-force methods.

The complexity of the proposed methods depends on the
number of grid points,M , of each parameter. For the closed-
form method forBnn given in Sec. IV-B, the parameter isλ⋆

1.
For the other three methods, the parameter isγ⋆

1 . From the
descriptions of the methods given in Tabs. I–IV it is clear that
all four methods have a computational complexity ofO(M)
flops. The brute-force method forBnn is based on a search
over a two-dimensional parameter space [13]. We getM2 rate
points when we sample each parameter inM grid points. The
algorithm8 we use to find the boundary out ofL rate pairs is
similar to the mergesort algorithm, see e.g., [30], which has a
worst-case complexity ofO(L logL) flops. Hence, the total
complexity of the brute-force comparison isO(M2 logM)
flops. ForBdn andBnd, we need three parameters to describe
all pairs of potentially PO points [12]. Hence, the search is
overM3 rate points and the total complexity isO(M3 logM)
flops. ForBdd, we need four parameters according to [12],
which would imply a total complexity ofO(M4 logM) flops.
On the other hand, we noticed in Sec. VI that it is straightfor-
ward to reduce the number of parameters to two and the total
complexity toO(M2 logM) flops.

In Tab. V, we give the complexities for the proposed
methods and the brute-force methods. In the numerical com-
putations, we useM = 500 grid points and the tolerance
ǫ = 5.0 · 10−5. The complexity for computing the channel
constantsgij , κi, σ

2
i , i, j = 1, 2, and the final beamforming

vectors is not included in this analysis. When we count the
flops, we use the numbers given by [31]. The complexities
of the proposed methods are at least one order-of-magnitude

8See the source code available at http://urn.kb.se/resolve?urn=urn:nbn:se:
liu:diva-93845.
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less than the corresponding brute-force methods. ForBdn

and Bnd, the complexity reduces more than four orders-of-
magnitude. The complexity of our closed-form method for
Bnn is about20% less than the complexity of the method
presented in [20]. This gain arises from the fact that our
choice of parameterization of the beamforming vectors is
more computationally efficient, which shows that the choice
of parameterization is not unimportant. Also, the numerical
method forBnn has 2–5 times higher complexity than the
closed-form method. On the other hand, the numerical method
is more efficient for solving (17)–(18) for a specificγ⋆

1 . For
Bdd, the gain is one order-of-magnitude. Compared to the
state-of-the-art brute-force method with four parameters[12],
which has complexityO(M4 logM) the gain is even larger.
On a desktop computer running Matlab, it takes about50 ms
to find the boundaries of the four regions using the proposed
methods. Using the brute-force methods, it takes a few hours
to find the boundaries. One observation is that the numerical
method forBdd is less complex than the numerical method
for Bnn. This might seem counterintuitive since (85)–(88) is
more involved than (29), but the reason is that we partly solve
the former in closed form.

Order Fig. 2 Fig. 3 Fig. 4
Bnn, numerical, Tab. I O(M) 2.3·105 2.9·105 5.1·105

Bnn, closed-form, Tab. II O(M) 1.0·105 1.0·105 1.0·105

Bnn, closed-form, [20] O(M) 1.3·105 1.3·105 1.3·105

Bnn, brute-force, (19) O(M2 logM) 4.2·106 4.3·106 4.4·106

Bdn, closed-form, Tab. III O(M) 7.0·104 6.7·104 7.0·104

Bdn, brute-force, (47)–(48)O(M3 logM) 8.8·108 8.8·108 8.8·108

Bnd, closed-form, Tab. III O(M) 7.0·104 6.7·104 6.8·104

Bnd, brute-force, (47)–(48)O(M3 logM) 8.8·108 8.8·108 8.8·108

Bdd, numerical, Tab. IV O(M) 8.8·104 2.2·105 1.2·105

Bdd, brute-force, (68) O(M2 logM) 2.2·106 2.2·106 2.0·106

TABLE V
COMPUTATIONAL COMPLEXITY IN FLOPS FOR THE EXAMPLES IN

FIGS. 2–4FOR THE PROPOSED AND BRUTE-FORCE METHODS WITH

M = 500.

VIII. C ONCLUSION

We proposed an efficient method to compute the Pareto
boundary of the rate region for the two-user MISO IC with
SIC-capable RXs. The merit of the proposed method, com-
pared to the state-of-the-art, is that it avoids the brute-force
search over all potentially PO beamforming vector pairs. The
complexity of the proposed method is constant with respect
to the number of transmit antennas. More importantly, we
observed that the complexity gain of the proposed methods
is a few orders-of-magnitude compared to the state-of-the-art
brute-force methods. We achieved this by solving the quasi-
concave optimization either by solving a cubic equation or
performing a scalar line search. Finally, the numerical results
illustrate that SIC should be performed when the cost of
boosting the interference is small, i.e., when the crosstalk
channel is strong or the spatial correlation of the forward and
crosstalk channels is large.

It appears unlikely that there is any structure left in the
problem that we can exploit in order to further improve the
efficiency. Unfortunately, it seems that the proposed methods

are not directly applicable for the generalK-user MISO IC,
where the number of parameters grows asK(K − 1) for
Rnn [14] and probably even faster for the other regions. The
number of regions, corresponding to all possible decoding
orders grows at least asO(((K−1)!)K). This number follows
from the case where each receiver decodes all(K − 1)
interfering signals, which can be done in(K − 1)! different
orders.

The practical usefulness of our methods has been demon-
strated by studies by others. For example, the closed-form
method for computingBnn was used in [32] for a system-
level assessment of inter-operator spectrum sharing. Also, we
can use the method for the MISO broadcast channel. However,
for this task we have to perform an extra line search to find
the optimal power allocation. Perhaps, the methodology we
brought forward here can be applied to other problems too.
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