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Abstract

In factory automation cameras and image processing algorithms can be used to
inspect objects. This can decrease the faulty objects that leave the factory and
reduce manual labour needed. A vision sensor is a system where camera and
image processing is delivered together, and that only needs to be configured for
the application that it is to be used for. Thus no programming knowledge is
needed for the customer. In this Master’s thesis a way to make the configuration
of a vision sensor even easier is developed and evaluated.

The idea is that the customer knows his or her product much better than he or
she knows image processing. The customer could take images of positive and
negative samples of the object that is to be inspected. The algorithm should then,
given these images, configure the vision sensor automatically.

The algorithm that is developed to solve this problem is described step by step
with examples to illustrate the problems that needed to be solved. Much of the
focus is on how to compare two configurations to each other, in order to find the
best one. The resulting configuration from the algorithm is then evaluated with
respect to types of applications, computation time and representativeness of the
input images.
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1
Introduction

In modern days computers and cameras can often replace the need of manual
inspection in factories. The help of machine vision inspections of products for
example on conveyor belts can increase production speed and reduce the amount
of labour needed.

SICK IVP develops camera systems with embedded image processing. The In-
spector product is such a camera with focus on ease-of-use. The functionality is
rather limited; it acquires a grayscale VGA image of an object and compares it
with a reference image. The processing is done in two steps: first the object is
found in the image, then smaller regions of interest (roi ) are inspected relative
the found pose of the object. Currently, the Inspector needs to be manually con-
figured before use. The configuration is done by taking a reference image of the
object to be inspected, marking the rois on the image and setting some image
processing parameters. The configuration requires no programming knowledge,
but some basic understanding of image processing.

With the focus of the Inspector camera being the ease-of-use, a relevant question
to ask is if using it can be made even easier. Many customers have no knowledge
in image processing, and a way of configuring it without needing this knowledge
would be an improvement to the product. The goal of this thesis is to investigate
one way that this could be done.

The idea is that the customer knows his or her product much better than he or
she knows image processing. The customer could take images of objects that he
or she wants classified as positive and negative respectively, and feed these to the
Inspector. If the Inspector could then find the configuration automatically from
these manually classified images, there would be no need for image processing
knowledge to configure it. A solution like this would take the Inspector one big

1



2 1 Introduction

step forward when it comes to simplicity.

The configuration derived will give a result on the same form that a manually
configured Inspector camera would have. The result is thus easy to examine visu-
ally, which could be very useful if one would want to adjust it slightly for some
reason. It is also useful if the system does not behave as wanted, and one wants
to understand why and how this could be helped.

1.1 The Inspector

The work in this Master’s thesis is focused on the Inspector version named I40,
where I stands for inspection. When configured the Inspector I40 takes images
and outputs one of the three results ”pass”, ”fail” or ”object not found”. Example
applications for the Inspcetor I40 includes:

• Check that a date code is present

• Check that an electrical component is mounted

• Check that the correct number of holes are drilled

• Check that an object is not upside down

• Check that the flaps of a box are correctly folded

• Check that there is an almond in each chocolate praline

The Inspector is configured by the user through a user interface, where the con-
figuration is done in the following steps:

• Capture an image of the object to be processed, to be used as reference
image

• Mark the areas in the reference image that show the object to be processed

• Choose parameters for the object locator, as listed in Table 1.1

• Mark areas where detailed inspection is to be performed

• For each area to inspect, choose a detailed inspection method and parame-
ters for this. Possible methods with corresponding parameters are listed in
Table 1.1.

A screen capture from the user interface is presented in Figure 1.1.

1.2 Problem formulation

The problem formulation for this thesis has two main parts:

• Given a number of manually classified images, automatically choose a con-
figuration for the Inspector using its existing toolbox.
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Figure 1.1: Inspector I40 user interface for configuration

Tool Image processing Parameters Example usage

Object locator Edge-based pattern
matching invariant
to scale, rotation
and translation.

- Search area
- Score threshold
- Maximum rotation
- Allow scaled objects
- ...

Locating the
reference object in
an image.

Pattern inspection Correlation based
comparison with
the reference
image.

- Search range
- Correlation threshold

Check the
printing quality
of a logo.

Pixel counter
inspection

Counts the number
of pixels with
intensity above a
fixed threshold.

- Grayscale threshold
- Counting threshold

Check that a ROI
has correct
intensity.

Edge pixel counter
inspection

Counts the number
of edge pixels above
a fixed threshold.

- Edge strength
threshold
- Counting threshold

Check if a ROI
contains a scratch
or not.

Blob inspection Segmentation on a
binarized image.

- Binarization threshold
- Min/max area
- Min/max number of
blobs

Counting the
number of items.

Table 1.1: List of available tools for the Inspector
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• Evaluate the result to show how well it works on image sets not used when
choosing the configuration.

1.2.1 Configuration

A learning algorithm should be developed, that can automatically find a config-
uration for the Inspector. The input to the algorithm should be images of the
object, henceforth called training images, that the user has manually classified
as positive or negative. The configuration should consist of object locator param-
eters and a set of detailed inspections with parameters. Only parameters and
kinds of detailed inspections currently available on the Inspector can use used.

1.2.2 Evaluation

The evaluation should be done in a way that the following questions can be an-
swered:

• What kinds of applications the algorithm can handle

• How changing allowed computation time affects the algorithm performance

• How the representativeness of the training images affects the algorithm per-
formance

An example of image representativeness is illumination conditions. In this case
the evaluation should show how well the algorithm handles that there is differ-
ences in illumination between the training images.

1.3 Outline

Chapter two describes the parts of the Inspector image processing algorithms
that are needed to understand this thesis. It also lists the restrictions that are set
on the applications and image sets to be used in this thesis.

Chapter three describes the algorithm developed, how it works and what choices
were made during development.

Chapter four describes how the evaluation of the configuration algorithm has
been done, and presents the evaluation results.

Chapter five presents the conclusions about the work done in this thesis, based
on the developed algorithm and the evaluation of this.



2
Background

This chapter describes the details of the Inspector I40 algorithms that are needed
to understand the decisions made during algorithm development and evaluation.
It also lists the restrictions chosen on applications and input images, to make the
problem manageable during the time given for a Master’s thesis.

2.1 Object locator

The object locator of the Inspector is used to find an object in the image to be
inspected, called live image. To do this it uses a reference image of the object.
The object is found independent of rotation and translation, and with up to 20%
change in scale. The object locator works with edge images, and is thus depen-
dent on that the edges of the object in the live and reference image match. The
inputs to and outputs from the object locator are described in this section.

2.1.1 Inputs

There are many parameters that can be set for the object locator algorithm, where
all are not of interest to this Master’s thesis. Those of interest are:

• Reference image, grayscale image of the object

• roimarking what parts of the reference image should be used to locate the
object

• Edge strength, value between 0 and 100 corresponding to how sharp edges
should be, to be used in the matching

• Allowed rotations, 0 to ±180o rotation allowed between reference and live
image

5



6 2 Background

• Allowed scale, none or up to 20% scale difference allowed between refer-
ence and live image

The parameters that are left out mainly concern the trade-off between live com-
putation time and robustness, and will be set to favour high robustness during
this Master’s thesis, see restrictions in Section 2.3.

2.1.2 Outputs

The object locator outputs the best match that it finds. Each match contains the
following information:

• Match rotation, translation and scale between reference and live images

• Score, value 0 to 100 on how well the edges of the reference and live image
match, where a higher score corresponds to a better match

Rotation symmetries

If the object is almost rotation symmetric, the object locator will find more than
one match with similar score values, and pick the best one. As a result, the given
rotation found can be any of the possible rotations. Details that might be of
interest are therefore not guaranteed to be found with the same rotation.

2.1.3 Score threshold

A score threshold can be set for the object locator. When running the Inspector on
live images, any image where the object locator score is lower than this threshold
will be classified as negative. Images with a score higher than the threshold will
be further processed by the detailed inspections configured.

2.2 Detailed inspections

In this Master’ s thesis detailed inspections of types pattern, pixel counter and
edge pixel counter will be used, see restrictions listed in Section 2.3. These all
consist of a roi relative to the object found by the object locator. The roi is de-
fined as a rotated ellipse or rectangle, optionally masked with additional ellipses
and rectangles.

The Inspector can handle multiple detailed inspections. If more than one detailed
inspection is used the Inspector will output ”pass” if and only if all detailed
inspections pass. The detailed inspections require that all of the roi specified for
the inspection are inside the image. If parts of any roi are outside the image, the
inspection will return ”fail”.

2.2.1 Pattern inspection

The pattern inspection tool performs normalized cross-correlation (ncc) between
a roi in the reference image and corresponding roi in the live image. The pattern
matching performs a search for the highest ncc in a small area in the live image.
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This area is set to four pixels in each direction. Using ncc makes the inspection
independent of intensity differences in-between the reference and live image, as
described in [1].

The parameter that need to be set for a pattern inspection is the correlation thresh-
old. Images where the correlation return less than this threshold will be classified
as negative.

2.2.2 Pixel counter inspection

The pixel counter inspection counts the number of pixels in a chosen roi that
has an intensity within a chosen range. The parameters that need to be set for the
pixel counter inspection are:

• Grayscale range, lower and upper bound on what intensity values should
be counted

• Pixel count threshold range, lower and upper bound for pixel count to give
a positive result. Images with pixel counts outside of this range will be
classified as negative.

2.2.3 Edge pixel counter inspection

The edge pixel counter inspection counts the number of edge pixels within the
chosen roi in the live image. The edges are found using Canny edge detection.
More information on Canny edge detection can be found in [1]. The parameters
that need to be chosen for the edge pixel counter are:

• Edge strength. Value in the range 0 to 100 that corresponds to the Sobel
thresholds used in the Canny edge detection.

• Edge pixel count threshold range, allowed range for pixel count to give a
positive result. Images with edge pixel counts outside of this range will be
classified as negative.

2.2.4 Blob counter inspection

The blob counter inspection first creates a binary image from the original image
by setting pixels with an intensity within a given range to one, and the others to
zero. It then finds connected areas in the binary image, and counts how many of
these are within a given area range. The parameters that need to be set for the
blob counter inspection are:

• Grayscale range, lower and upper bound on what intensity values should
be used when creating the binary image

• Blob area range, lower and upper bound on size of blobs to be counted.
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2.3 Restrictions

This section covers the restrictions that have been set on the problem to make
it possible to solve within the time of a Master’s thesis. The restrictions were
chosen after discussions with the supervisor, the product owners and employees
at SICK IVP that have experience in configuring the Inspector for customers. The
restrictions are listed in order of importance for someone who would want to
implement and use the configuration algorithm.

Inspector I40 restrictions

The configuration algorithm will require that the classification between images
can be done using the Inspector I40 tool set. This means that applications where
someone experienced in configuring the Inspector can not find a working config-
uration manually, will not be handled by the algorithm either.

Representativeness of negative images

The negative images are assumed to be representative for all negative images.
That is, only faults on the object that appear on any of the negative training im-
ages will be handled by the configuration. All kinds of faults also have to appear
on their own in at least one of the images. Thus the configuration algorithm is
restricted to applications where negative examples exists or can be created.

Difference between positive images

The object locator needs to be able to find the object in all positive images using
a roi that is set to the entire image. That is, applications where a more detailed
roi for the object locator would be needed will not be handled by the algorithm.

Detailed inspection shapes

The algorithm will only use detailed inspections consisting of rotated rectangles
and ellipses without masks. That is, applications that can not be solved without
masks on the rectangles and ellipses will not be solved by the algorithm.

Blob inspection tool

The blob inspection tool will not be considered when choosing configuration.
That is, applications where the blob inspection tool is needed to solve the prob-
lem will not be handled by the algorithm.

Live computation time

Depending on how the Inspector is configured, the computation time needed to
classify one live image will differ. This computation time will not be considered
when choosing configuration. Where choices can be made, accuracy will be pre-
ferred over live computation time.
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Algorithm

This chapter describes the algorithm developed in this Master’s thesis. It also
describes the steps that are taken and the parameters that need to be set for all
steps.

3.1 Example images

To describe how the algorithm works, four example image sets will be used. These
are chosen because they represent the problems that had to be solved during
development in a good way. The image sets are ordered by difficulty, starting
with the easiest.

The first image set is shown in Figure 3.1. This is a simple application where the
object locator can separate the images on its own, or with one roi of either type.

The second image set is shown in Figure 3.2, where positive images are ace of
spades and negative images are ace of clubs. Here the shadow under the cards
falls differently between images, thus changing where edges are found for the ob-

Figure 3.1: Examples of images in application

9



10 3 Algorithm

Figure 3.2: Examples of images in application with playing cards

Figure 3.3: Examples of images in application with date stamps

ject locator and making its score behave unreliably. One roi around the symbol
in the middle or corner solves the application.

The third image set is of the lid of yoghurt bottles. Here positive images have com-
plete date stamps somewhere on the lid, and negative image have half-written
date stamps or no date stamps at all. This application can not be solved with the
object locator alone, but requires one detailed inspection of pixel or edge-pixel
type. Examples of this image set is shown in Figure 3.3.

Examples of the fourth image set is shown in Figure 3.4, where positive images
have all their light bulbs in place, and negative images miss one or more light
bulb. This application can not be solved by the object locator only, and more
than one roi is needed. If this application was to be manually configured the
intuitive choice would be to use one roi per light bulb that can be missing. The
roi could be of either type, but edge pixel counting turns out to give the best
result.

Figure 3.4: Examples of images in application with lamps
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3.2 Overall strategy

The configuration algorithm is based on the following reasoning: An object will
be classified as positive only if it passes the object locator and all the detailed
inspections. An object will be classified as negative if it fails either the object lo-
cator or any of the detailed inspections. The goal of each step in the configuration
will therefore be to find ways to classify a number of negative images correctly
without classifying any of the positive images wrongly.

3.3 Object locator

The first part of the algorithm is to configure the object locator.

3.3.1 Settings

From the restrictions set in Section 2.3, the object locator can be configured with
a roi set to the entire image. With the parameters for the object locator chosen
as

• Reference image - the first positive image

• roi - full image without masks

• Edge strength - 50

• Rotation - ±180o

• Scale search - on

all positive images in all data sets are correctly matched. This is all that is needed
of the object locator, and thus the parameters are left fixed.

3.3.2 Threshold

The object locator gives a score on how good the found match was. This score
is based on how similar the images are around the edges found. Given the score
for all the images, a threshold value can be chosen to possibly filter out negative
images.

The object locator scores for example image sets 1 and 3, together with a possible
threshold chosen, is shown in Figures 3.5 and 3.6. In both figures the blue cir-
cles represent positive scores and the red crosses represent negative scores. The
threshold chosen for the object locator is marked with a vertical solid black line.
It can be seen that for example image set 1 it is possible to separate all the posi-
tive and negative images using a threshold. For example image set 3 however, no
threshold that correctly classifies any negative and all positive images exist.

The images that the object locator score can classify are often simple to find a
good detailed inspection in. The object locator score will therefore be used to
classify only the images where the object was not found as negative. The negative
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Figure 3.5: Object locator score spread for example image set 1

Figure 3.6: Object locator score spread for example image set 3

images where the object locator finds the object are classified by adding a detailed
inspection.

With this reasoning, the threshold should be chosen so that images where the
object is not found get a score below it. It should also be chosen so that no positive
images get a score below it, and therefore gets wrongly classified. The threshold
value is chosen based on experience on how the object locator score works, gained
during algorithm development. It has been chosen as 20, that is all images that
get a score below 20 will be classified as negative. This threshold satisfies the
above reasoning for all images sets used for algorithm development.

3.3.3 Marking classified images

Only the images where the object locator could find the object will be used when
configuring detailed inspections. Because of this any images that are below the
threshold set for the object locator should be marked, so that they are not used
for detailed inspection configuration.

If all negative images have been marked, nothing more needs to be done. This is
the case when there is a big enough difference between the positive and negative
training images, so that the object is not found in any negative image. In this case
no detailed inspections will be configured, as the object locator is assumed to be
able to correctly classify images.

3.4 Image preprocessing

The object locator gives a transformation that describes how the reference im-
age was transformed in order to match the live image. Given that the object is
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Figure 3.7: Transformation example. Black areas show what parts are out-
side the live image.

found in all images, the images can be resampled so that the object is in the same
position, rotation and scale as in the reference image. An example of this trans-
formation for the cases of pure translation, rotation and scale is shown in Figure
3.7, where the black areas represent parts of the image that were outside before
resampling.

3.4.1 Forbidden areas

Given that a detailed inspection can never have any part outside the image, the
areas that were outside any image where the object was found before transfor-
mation, can not have detailed inspections in them. This area will be referred to
as the forbidden area, and used later when detailed inspections are chosen. An
example of this is shown in Figure 3.8, where the forbidden area is marked as
black.

3.4.2 Flowchart

Figure 3.9 shows a flowchart for setting up the object locator and transforming
the images. Teaching the object locator and finding a match in all images is done
using code given from SICK IVP. The teaching part is done by giving the settings
from Section 3.3.1 to the object locator. The matching is done by giving the image
where the object is to be found to the object locator. When this has been done a
threshold is chosen for the object locator score, according to Section 3.3.2, and
negative images below this score are marked.
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Figure 3.8: Forbidden areas example. No detailed inspections can be in the
black areas of the image

If all negative images have been marked, nothing else needs to be done and the
configuration is finished. If there are still unmarked negative images left, these
will be transformed according to Figure 3.7, and detailed inspections will be con-
figured.

3.5 Detailed inspections

Figure 3.10 shows a manually chosen roi in image set 3. It also shows the values
for all types of detailed inspections, with manually well chosen binary and edge
strength threshold values. Note the difference in scale on the x-axes in the figures.
Values for positive images are marked with blue circles and values for negative
images with red crosses. It is clear that for a detailed inspection of type pixel
and edge pixel counter, it is possible to chose a threshold that classifies values for
positive images from values for negative images. An example of such a threshold
is shown as a black dashed line in the figure. For a detailed inspection of pattern
type however, this is not possible. This is to be expected since the text is different
and in different places in different positive images, and thus the pattern is not
the same.
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Figure 3.9: Flowchart for object locator and image transformation

Figure 3.10: Manually chosen region and thresholds with corresponding
plots showing values for respective roi type
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Figure 3.11: Flowchart for detailed inspections

3.5.1 Summary of detailed inspection algorithm

Figure 3.11 shows a flowchart of how the detailed inspections are chosen. The
goal is to find the best roi in the image, mark the negative images that have been
classified and then if needed find a new roi for the remaining images. The prob-
lem is split into two parts; first determining how to tell if one detailed inspection
is better than another, and then finding the best one.

3.5.2 Simplifications

Some simplifications to the variables that need to be found are made before trying
to find the detailed inspections.

Classification threshold

The classification threshold for the pixel and edge pixel counter tool can be set
as a range with lower and upper bound. This range will be set as over or un-
der a value instead. This is enough for any of the image sets that have been
used for algorithm development, and does reduce the number of parameters per
detailed inspection by one. This in turn reduces the computation time needed
when searching for detailed inspections, as described in Section 3.5.6.

If an application should require pixels to be within a range in the middle of the
interval, the algorithm is assumed to find two detailed inspections at the same
place. One of these can then filter negative values below a value and the other
negative values above another, thus creating a range.

Binary threshold

The binary threshold for the pixel counter can also be set as a range. In the same
way as with the classification threshold, this is set as over or under a value. This
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is enough for any of the image sets that have been used for algorithm develop-
ment, and as for the classification threshold, reduces the parameters per detailed
inspection by one.

If an application where an area can not be too dark or too light should exists, the
algorithm is assumed to find two detailed inspections at the same place. One
detailed inspection can correctly classify negative images that are too dark and
one those that are too light.

To avoid confusion and unnecessary computations one can reason about dupli-
cate detailed inspections for the pixel counter tool. Counting pixels under a in-
tensity threshold and setting positive images as over a pixel count, or counting
pixels over the intensity threshold and settings positive values under the pixel
count gives the same result. That is there are detailed inspections with different
parameters that will always give the same classification result. This will lead to
unnecessary amount of detailed inspections to search through, and thus unneces-
sary computations.

This is handled by not including detailed inspections counting pixels over an
intensity threshold. This removes the duplicate detailed inspections.

3.5.3 Variables

Each detailed inspection consists of a type, a roi and a threshold value. Consid-
ering finding the optimal roi of a specific type as a search problem the unknown
variables are:

• Center position on horizontal axis

• Center position on vertical axis

• Width

• Height

• Orientation

• Binary / Edge strength threshold (Pixel counter / Edge pixel counter only)

This means that there are six unknown variables that need to be found for each
detailed inspection of type pixel and edge-pixel counter, and five unknown vari-
ables for each detailed inspection of type pattern.

3.5.4 Comparing detailed inspections

Finding a way of comparing detailed inspections with respect to how well they
separate positive and negative images is crucial to finding a configuration algo-
rithm. This will be done starting out from the Mahalanobis distance, which is a
way to measure if a data point belongs to a data set [3]. When developing, prob-
lems with this measure were noticed, and solutions for these were created based
on observations of the algorithm results. That is everything in the detailed inspec-
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tion comparison, except for the Mahalanobis distance, is based on observations
made during development and not on published methods.

When describing the comparison used it will be assumed that the detailed in-
spections to be compared have values calculated for each image. This value is the
number of pixels/edge pixels for the pixel/edge pixel counter inspections and
the ncc for the pattern inspection. The following notation will be used:

• vpos: Set of values for all positive images for a detailed inspection

• vneg : Set of values for all negative images for a detailed inspection

• vneg,i : Values for negative image i for a detailed inspection. Sum over all i
represent a sum over all negative images.

• µpos: Mean of all values for positive images

• σpos: Standard deviation of all values for positive images

Mahalanobis distance

The Mahalanobis distance in one dimension between a value x and a set of data
with mean µ and standard deviation σ is defined as

di =
|µ − x|
σ

. (3.1)

Using the Mahalanobis distance to measure the distance of a value for a negative
image to the set of values for positive images, with the above notation, gives

di =
|µpos − vneg,i |

σpos
. (3.2)

Summing these values up as

s =
∑
i

di (3.3)

gives a value on how well the detailed inspections would work as a classifier.
This way of setting score does have some drawbacks though, and modifications
are needed.

Small positive spread

Using the Mahalanobis distance, if all positive images give the same or close to
the same value, the standard deviation goes to zero and the distance measure-
ment blows up. This is solved by adding a constant to the standard deviation,
thus eliminating the cases where it the distance blows up. The resulting measure
of di is

di =
|µpos − vneg,i |
σpos + c

. (3.4)
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Figure 3.12: Example of when problem with Mahalanobis distances. The
solid black line marks the mean value of the positive images, and the dashed
black line marks one standard deviation from the mean.

Unclassifiable images

One drawback of the Mahalanobis distance for this application is that it measures
from the mean of the positive values, and thus gives good distances to images that
may not be possible to classify. This is shown for two cases in Figure 3.12, where
the mean value of the positive images is shown as a solid black line, and one
standard deviation from the mean as a dashed black line. Using the Mahalanobis
distance as it is will give the same score to these detailed inspections, as µpos, σpos
and all vneg are the same. For detailed inspection 1, no classification threshold
can be chosen that can separate positive and negative images. For detailed inspec-
tion 2, however, this is possible. This shows that the Mahalanobis distance as it
is does not give the desired results.

The mean value in the calculation is therefore changed to the maximum or min-
imum value, depending on whether threshold is set over or under the positive
values. How this decision is made is described later on in Section 3.5.5. The ab-
solute value is also removed, so that images that are not possible to classify are
given negative distances.

This measure of distance can be written as

di =
min(vpos) − vneg,i

σpos + c
(3.5)

for the case when classification threshold is set as under positive values, and

di =
vneg,i −max(vpos)

σpos + c
(3.6)

for the case when classification threshold is set as over positive values. Section
3.5.5 describes how the choice of threshold direction is made.

Distance weights

One unwanted property of this measure is that is favours roi that can classify
one image very well, even if the other images are poorly classified. Also, with
unclassifiable images getting bigger negative scores the further from classifiable
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Figure 3.13: Two log-sigmoid functions with different slope

they are, it will favour moving these away. The goal is to get all images well
enough separated, and not caring much about images that are not classifiable. To
get a measure where score increases faster for negatives closer to the positives
than those far away, a log-sigmoid function is used to get roi score as

s =
∑
i

logsigmoid(di). (3.7)

The log-sigmoid function is defined as

logsigmoid(x) =
1

1 + e−β∗x−α
. (3.8)

It has two parameters that can be tuned to give it different shape. The choice
of these two parameters will affect how the scoring is done. Two examples of
log-sigmoid functions with different slope are given in Figure 3.13. One wants
the slope of the log-sigmoid-function to be in the area where changes in distance
measure should be weighted the highest. The log-sigmoid function with the steep
slope in Figure 3.13 is used for the algorithm. This choice was made by trying
different parameters and running the algorithm on the image sets used for algo-
rithm development. A lot of different parameters were tried and this gave the
best results.

An example of how the scoring works for the date stamp example is shown in
Figure 3.14. It shows how the values are recalculated into distances, and how
these distances are recalculated to a score using the log-sigmoid function. As can
be seen, the pixel and edge pixel counter gets scores close to one for all negative
images. The pattern matching however gets close to zero score for all negative
images, which is what is expected.
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Figure 3.14: Manually chosen region and thresholds with corresponding
plots showing values for respective type,the resulting distances di and the
log-sigmoid function for scoring
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Area normalization

An alternative to the normalization described above was also tried during devel-
opment. This normalization was done as

di , relative =
vneg,i −max(vpos)

A
(3.9)

where A is the roi area for pixel and edge pixel counter type. Detailed inspec-
tions of pattern type were not altered. The main problem with this kind of scor-
ing is that if favours small roi over big ones, even when big ones would be pre-
ferred. Because of this problem the normalization with standard deviation was
chosen instead.

3.5.5 Classification threshold

When the roi position, width, orientation and binary / edge threshold is chosen,
a classification threshold for the roi value needs to be set. This threshold should
be set with some safety distance to all positive values, and the negative values
that this roi classifies.

The threshold is chosen in two steps. First a decision is made on which negative
images are to be correctly classified. This is done by deciding that it only clas-
sifies negative images with a big enough di value, that is the di value is bigger
than a constant. A small value on this constant will let more negative images be
classified and thus require less amount of detailed inspections to be chosen. The
margin between threshold and values for training images will be smaller though,
and assuming that the training images are not entirely representative for all pos-
sible images possibly less robust. Choosing a bigger value for this constant will
make each detailed inspection classify less negative images. This will give bigger
robustness for each roi , but could lead to fitting unnecessarily many roi to the
data.

In the special case that no roi is found that can classify any new negative image
with a big enough di value, this limit is removed. The roi is instead set to classify
only the image with the highest di value.

The threshold is then chosen by taking the middle point between the closest pos-
itive and negative values. This gives a classification threshold T as

T =
min(vneg,classif ied) + max(vpos)

2
(3.10)

for roi with negative values higher than positive, and

T =
min(vpos) + max(vneg,classif ied)

2
(3.11)

for roi with negative values lower than positive.
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Figure 3.15: Four cases of roi values. The arrow shows the chosen threshold
direction relative to the positive values.

Threshold direction

The comparison between detailed inspections requires that a decision is made if
the threshold should be set over or under the positive values. For the pattern tool
the threshold always has to be under positive values, so there is nothing more that
needs to be done. For the pixel and edge pixel counter tool however, a decision
needs to be made.

There are four cases to be considered, illustrated in Figure 3.15. The first two are
the simple cases when only one threshold direction makes sense. This is when a
threshold on one side of the positive values can separate any negative values, and
a threshold on the other side can not.

The third case is when it is possible to separate negative values with a threshold
on either side of the positive values. In this case the direction that has the biggest
distance to the first classifiable negative is chosen.

The fourth case is when no negative images can be separated by the detailed
inspection. This is of little interest but will be handled by choosing the direction
that minimizes the distance to when a negative value can be correctly classified.

3.5.6 Search

With a method to compare two detailed inspections with each other, the next
step is to find the one with the best score. With six parameters to vary, using an
exhaustive search approach would be very time consuming. Since the comparison
score derived is not an analytical function, but can only be sampled at specific
points, an analytical derivative can not be derived. In other words, it will not
be possible to use a standard gradient decent algorithm. Instead the choice has
been made to make use of the Nelder-Mead search algorithm. The choice of this
algorithm over others is made because there was an implementation available in
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the programming environment used. It works well on the image sets used for
algorithm development.

As with most search methods available the Nelder-Mead search can get stuck on
local minima [6]. To reduce this risk the searching is done in two steps:

• Generate a fixed number of detailed inspections, M, with different position,
size and threshold over the images and calculate their score

• Pick the k detailed inspections with top scores, k << M, and optimize them
using Nelder-Mead searching

Generating a lot of detailed inspections with different parameters and searching
around these reduces the risk of getting stuck in a local minima far away from
the optimum value. Optimizing the best of the generated detailed inspections
instead of trying all possibilities will reduce the computation time.

The main assumption made in this approach is that the optimal detailed inspec-
tion can be found by optimization of one of the top generated ones. As a conse-
quence, if M is too small, the optimal one might not be found. Also, if k is too
small, the optimal might not be found.

Nelder-Mead

The Nelder-Mead search algorithm uses the concept of simplexes to search for
a local optimum of a function. A simplex is a generalization of a triangle from
two to arbitrary dimensions. The algorithm starts out by generating points in the
parameter space in a simplex structure around the starting point, and calculates
the function value and the center of gravity for these points. The algorithm then
reflects points and expands or contracts the simplex with respect to the center of
gravity depending on the function values in the points evaluated. It stops when
the difference in function value in the simplex points and the size of the simplex
are both below given thresholds. More specifics on how the Nelder-Mead search
works can be found in [6].

Search limitations

The forbidden area calculated in Section 3.4 together with the image border is
used to limit where detailed inspections can be placed. Since a detailed inspec-
tion can never be in the forbidden area or outside the reference image, no de-
tailed inspections are generated with any parts there. The Nelder-Mead search
algorithm is also altered so that it does not optimize a detailed inspection into
the forbidden area or outside the reference image.

It turns out that a very thin detailed inspection in well-chosen places can give
very good score values for areas that should not be inspected. To overcome this
no detailed inspections with too small rois are generated and the Nelder-Mead
search is altered not to allow too small values for roiwidth and height. The limit
is chosen as 20 pixels.
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Figure 3.16: Flowchart for finding detailed inspections

3.5.7 Flowchart

The algorithm for detailed inspections is shown in the flowchart in Figure 3.16.
The details on generating detailed inspections and optimizing these are described
in section 3.5.6. The details on scoring and choosing threshold are described in
Sections 3.5.4 and 3.5.5. The algorithm runs until all negative images are marked
as correctly classified.

3.5.8 Robust scoring

When evaluating this way of searching for detailed inspections it does give the
desired results for most cases considering only the training images. The goal how-
ever is to find detailed inspections that work well with images not used for train-
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Figure 3.17: Two roi in the date stamp example image with corresponding
edge pixel count and di values

ing as well, and therefore some robustness in the roi scoring is needed. Three
things that could improve the robustness were found during development, and
are described with examples in this section.

ROI too small

Figure 3.17 shows the spread plots and distances di for two different detailed
inspections in the example image set 3. Comparing these two they both give
close to perfect scores for all negative images, where the small detailed inspec-
tion has higher distance values for three out of four images. With both detailed
inspections being scored as perfect, the search algorithm will pick one of them
seemingly randomly.

The problem is that the training images are not representative for all possible
input images. In this case, there is no negative image that has ink where the
small roi is, and therefore that roi gets good scores. This problem occurs in
many data sets and exists for roi of pixel counter type as well.

The solution used is to assume that a roi score should be stable for small changes
in position. This can be seen as creating extra positive images from the original
ones, that are translated slightly. The scoring is then run as before but with the
extra positive images.
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Illumination conditions

Figure 3.18 shows a pixel counter detailed inspection placed in the lamp image
set. In this roi none of the positive images have pixels below the threshold, but
many of the negative images do. The score given to this roi will therefore be big,
and chosen before a roi around a light bulb.

One likely reason that this problem arises is that the the positive and negative im-
ages are gathered separately. It can for example be more convenient to first take
images of all the positive samples, and then of all negatives. It is then possible
that the illumination conditions change between the classes.

This is handled by globally adding or removing intensity to the positive images,
i.e. adding or removing a constant to all pixels. Creating new positive images
where all pixels are increased or decreased by a constant gives three times as
many positive images. This new set of images is then used to compare roi in the
same way as before.

Pattern inspection

For none of the gathered image sets, a pattern type detailed inspection would
work better than an edge or pixel counter detailed inspection. Work has been put
into finding such an application with no success. Therefore it has been decided
not to look for detailed inspections of pattern type.
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Figure 3.18: Pixel counter roi where lighting is different between positive
and negative images



4
Evaluation

This chapter covers the evaluation of the algorithm and the results of that eval-
uation. The goal of the evaluation is to draw conclusions as to how well the
algorithm works for different kinds of objects, training image representativeness
and allowed computation time.

In this chapter the term evaluation will be used when discussing the overall per-
formance of the algorithm. The term validation will be used when comparing a
result against ground truth. That is validation will tell if a configuration automat-
ically derived from training images gives the correct classification compared to
ground truth.

4.1 Data

For evaluation to be performed image sets are needed. All image sets have to be
solvable with the restrictions given in section 2.3. They should also represent the
kinds of applications for which the configuration algorithm should work. Lastly
they should be of different difficulty with respect to disturbances such as lighting
conditions, reflections and shadows to be able to tell how well the algorithm
handles these.

Most image sets gathered are of the kind where something on the object can be
removed or changed. The kinds of applications where something is broken, a
stamp is missing or similar are harder to generate, and thus not as well repre-
sented. Care was taken when gathering the data so that no two images would be
exactly alike, as this would have unwanted impact on the evaluation. The main
way of achieving this was to move and rotate the object in the image. With light
coming either from the internal light source of the camera, a window or a ceil-

29
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ing lamp, reflections and shadows thus change between images. The number of
images differ from about 15 to 40 images per image sets. There is a total of 979
images in all sets.

All images gathered are manually classified as positive or negative to use for train-
ing and ground truth in validation. For image sets where there are different kinds
of positive or negative images, these are manually given different labels. Take for
example the image set with advent candlesticks, presented in Section 3.1. Here
there are seven different classes of negative images, one for each missing light
bulb, and they are therefore given different labels. For images where more than
one light bulb is missing, multiple labels are given.

The images are split into groups depending on their difficulty. These groups are:

Group 1:

• There is only a single kind of negative images

• The application can be solved with one roi .

• Small changes in light conditions.

• Contrast between positive and negatives where inspection is to be performed
is big.

• No roi smaller than 50 pixels is needed.

Group 2:

• There are many kinds of negative images

• The application can be solved with one roi .

• Small to big changes in light.

• Contrast between positive and negatives where inspection is to be performed
is big.

• No roi smaller than 50 pixels is needed.

Group 3:

• There are many kinds of negative images

• More than one roi is needed to solve the application

• Small to big differences in lighting.

• Contrast between positive and negatives where inspection is to be performed
can be small. roi down to 30 pixels in size can be needed.

Group 4: Others. The lamp image set is used for illustration, but there are to few
images to live up to the restrictions set on image sets in Section 2.3. The image
set with four chips is used to illustrate problems with rotation symmetry.



4.1 Data 31

Samples of all image sets are shown in Figures 4.1, 4.2, 4.3 and 4.4. The column
to the left shows two positive images and the column to the right shows four
negative. The images are chosen so that if there are different kinds of positive or
negative images, as many of these as possible are shown.

The images are ordered depending on what group they belong to, starting with
the first group and ending with the last. An empty line is left between each group
to separate them.



32 4 Evaluation

Figure 4.1: Summary of images used for evaluation of algorithm. Images in
the left column are positive and images in the right column are negative
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Figure 4.2: Summary of images used for evaluation of algorithm. Images in
the left column are positive and images in the right column are negative
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Figure 4.3: Summary of images used for evaluation of algorithm. Images in
the left column are positive and images in the right column are negative
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Figure 4.4: Summary of images used for evaluation of algorithm. Images in
the left column are positive and images in the right column are negative

4.2 Evaluation algorithm

When evaluation is performed it is important that it is done on data that is not
used when creating the configuration. One way of doing this is to split the avail-
able data into two sets, one for training and one for validation. In this project the
amount of images for each set is very limited, and removing too many training
images will have a bad effect on the algorithm performance.

One way to overcome this problem is to use cross validation, see [2]. This requires
that the data is split into mutually exclusive subsets of approximately equal size.
All but one of these subsets are then used for training, and the last one for vali-
dation. This is then rotated so that another subset is used for validation, and the
classifier is retrained and revalidated.

4.2.1 Data labelling

There are two special cases that need to be considered when choosing how to split
the image sets.

The first one is big variations in positive images. Take for example an applica-
tion where one would want to separate black playing card aces from red ones,
that is clubs and spades are positive. This application can be seen in Figure
4.1. If one splits the data set so that all positive images are clubs, there is a big
chance that the configuration will not classify spades as positive. This big non-
representativeness in training images should not affect the evaluation results, and
needs to be considered when choosing how to split the image sets for validation.

The second case is different kinds of negative images. Take the lamp application
in Figure 4.4, and consider that one of the restrictions from Section 2.3 is that the
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negative images need to be representative. In this case, all the light bulbs that
are missing in the validation set need to be missing in at least one image in the
training set. More specifically every light bulb has to be the only missing light
bulb in at least one training image. If this is not the case the training images does
not live up to the restrictions, and this should not affect the evaluation results.

The solution to this is that all positive and negative images are labelled with what
class or classes they belong to. When the data subsets are chosen for validation, it
will have to be assured that all subsets contain at least one image with each label
on its own.

4.2.2 Image subsets

These restrictions make it difficult to split the image sets with multiple kinds of
positive or negative images into the kinds of subsets required for cross validation.
Instead a variant is used where two positive and two negative images, randomly
chosen, are used for validation and the rest is used for training. This is then
repeated until a certain amount of validation results have been produced. When
the images to be used for validation are chosen this is done so that:

• At least one of each class of positive and negative images exist in the train-
ing set

• This split into training and validation images has not been used before

A bigger amount of validation results should give a better accuracy on how well
the algorithm works. Every training of images takes quite some time, and the to-
tal computation time available for validation is limited. The amount of validation
results used for each image set will thus be limited by the available computation
time.

4.3 Evaluation results

Evaluation has been performed with respect to application type, computation
time and representativeness of images. The problem with rotation symmetry in
the objects is also explained.

The evaluation is done with respect to accuracy and computation time. With the
computation time being measured in seconds, it is of interest what hardware is
used for computation, and what programming language is used. The algorithm is
run on a dual core Intel processor with 1.86GHz clock frequency. The algorithm
is not parallelized, and thus runs only on one of the two processor cores. The code
is written in Mathworks Matlab, with care taken to vectorize the computationally
heavy parts of the code to increase speed. More information on Matlab with
vectorized Matlab code can be found in [4].
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4.3.1 Application types

The evaluation should show how well the trained configuration works for differ-
ent kinds of applications. To do this, image sets are split into groups depending
on difficulty, as described in Section 4.1, and each group is evaluated separately.
In this way it is possible to tell what applications are well handled by the algo-
rithm, and what applications are not. Parameters are chosen for the algorithm to
favour accuracy over computation time.

The validation is performed as described above, i.e. using two positive and two
negative images for validation and the rest for training. The algorithm will be
trained 15 times for each image set, which gives 60 validation images per set.

The results of the validation with respect to application group is presented in
Table 4.1. For each group of images positive and negative predictive values (ppv
and npv) are calculated as

PPV =
Number of true positives
Number of positive calls

(4.1)

and

NPV =
Number of true negatives
Number of negative calls

. (4.2)

Here ”number of positive calls” refers to the number of validation images that
the configuration classified as positive. ”Number of true positives” refers to the
number of positive calls that were correctly classified, when comparing to ground
truth. The same applies for npv. This is to show if positive or negative values
are more represented among the errors. A total amount of correct classifications
is also presented for each group, as well as the average computation time for the
image sets in the group.

Group Positive
calls

True
positives

ppv Negative
calls

True
negatives

npv Total Computation
time

1 512 510 0.996 508 508 1.00 0.998 116 seconds

2 177 177 1.00 183 180 0.984 0.992 153 seconds

3 280 266 0.950 260 256 0.984 0.966 203 seconds

Table 4.1: Validation results showing how well the configuration algorithm
works for different kinds of applications

The resulting configurations for some of the image sets run are presented in Fig-
ure 4.5. The figure shows the reference image of each set overlaid with the result-
ing detailed inspection(s) used. Blue rectangles represent pixel counter inspec-
tions and green ones represent edge pixel counter inspections. The box in the
top left corner of each image is green when all validation images were correctly
classified, and red when not.
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Figure 4.5: Samples of resulting configurations. Blue rectangles represent
pixel counter inspections and green ones represent edge pixel counter in-
spections
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4.3.2 Computation time

The evaluation should show how changing allowed computation time for the con-
figuration algorithm changes its performance. The two main time consuming
parts of the algorithm is the generation of detailed inspections in grid and the
optimization of the top detailed inspections found. The grid generation depends
mainly on how dense the grid is, and the optimization on how many of the top
detailed inspections found are optimized.

To evaluate the effects of computation time the grid density and number of de-
tailed inspections optimized will be varied. Nine different parameter settings
for grid density and number of detailed inspections optimized will be manually
chosen. The one with highest computation time will be the one used to evaluate
performance with respect to application type. The others are then chosen so that
each one has a lesser dense grid and optimizes fewer of the top generated detailed
inspections. Because the validation has to be run once for each parameter setting,
and computation time is still limited, 16 validation images per image set were
used for this evaluation.

The resulting total accuracy for each group and parameter is plotted in Figure
4.6 against the group average computation time. The graphs show that accuracy
tends to increase with computation time, but at some points accuracy is lower
even though allowed computation time increases. Visually examining these extra
misclassifications that occur shows that the algorithm has failed because there are
areas were the training images are not representative. This is further discussed
in the conclusions, Section 5.3.

4.3.3 Representativeness of training images

It is of importance for a user of the algorithm to know how the representative-
ness of the training images affects the results. It is, however, difficult to quantify,
and there are important cases where it does not show in Table 4.1. Instead the
algorithm has been run on the image sets with different amount of training im-
ages used, and the results have been visually evaluated. The representativeness
problems that were found are presented below.

Missing data

An example of when the representativeness of training data is not sufficient is
given in Figure 4.7. Here, the goal of the application is to detect if the left contact
is leaning to the left. The second contact from the left is however always very
much darker in the negative images than in the positive. This will lead to the
algorithm picking a roi around the second contact instead of the first one. Since
this is the case in all available images of this set, the application still gets 100%
accuracy in the above evaluation.

Illumination conditions

Differences in illumination conditions do have an effect on the result. This is
the same problem as described in Section 3.5.8 where shadows fall in the lamp
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Figure 4.6: Accuracy for each group of image sets with respect to computa-
tion time
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Figure 4.7: Examples of a representativeness problem. The goal is to detect
if the left contact is leaning to the left, but the second contact from the left
is a lot darker in all negative images and thus inspected instead.

Figure 4.8: Two edge pixel roi with different sizes

example image set. The solution to this problem that is presented does helps in
the cases where the differences are small. If they are too big though, the algorithm
still fails.

ROI too big

Figure 4.8 shows a zoomed in image of the edges around a light bulb from the
lamp example image, see Section 3.1. Since there are no edges in the background
above the lamp in the training images, the search algorithm has no reason to
choose the smaller roi over the big one. The smaller one, however, is less sen-
sitive to possible disturbances in the background, and would be preferable over
the bigger. The same problem occurs for detailed inspections of pixel counter
type as well. This problem does not show up in the accuracy estimations for the
algorithm above, since no of the images gathered have background disturbances.

4.3.4 Rotation symmetry

Rotation symmetric objects are not handled by the algorithm, as illustrated by
Figure 4.9. The positive images in this application have all four chips present,
and the negatives have one or more chip missing. The object rotated 180o is very
similar to itself, thus the object is rotation symmetric.
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Figure 4.9: Example of rotation symmetry problem

Assume that the first positive image is used as reference image for the object
locator. All other images will then be transformed so that the objects match the
object in this. In the figure, the first negative chip can be found in two ways,
either with the bottom right chip missing, or the top left. The same is true for the
second negative image.

Because of this, the resulting images for which the algorithm is trained can either
both have the top left and the bottom right chip missing, or just one of them. If
only one chip is missing in the training images, the configuration will not handle
both cases, and thus not give a good result.



5
Conclusions

This chapter covers the conclusions drawn from development and evaluation of
the configuration algorithm. It focuses on how well the algorithm works, based
on the evaluation results. It also describes the problems that still exist, and sug-
gests future developments.

5.1 Applications

The evaluation shows that the algorithm works well on the first two groups of
images evaluated, given that it is allowed a generous amount of computation
time, see Section 4.3.1. The third group of images has an increased computation
time and a lower accuracy.

It should be noted that the gathering of representative image sets for the more
complex applications is not easy. One needs to be careful so that light falls in the
same way in at least one positive image as it does in the negative. Where there
are many kinds of negative images, one also needs to be sure that each kind is
represented on its own in at least one training image.

This means that the more complex the application, the more understanding the
customer needs. With the goal of this automatic configuration being the in-
creased easy-of-use of the product, this is a big issue. At some point it might
be easier to learn the image processing needed to configure the product in the
”normal” way, instead of learning how to take good training images.

43
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5.2 Computation time

The evaluation of accuracy at different computation times is described in Section
4.3.2. It shows that, for the image sets gathered in group 1 and 2, the computa-
tion time can be reduced a lot without losing accuracy. Choosing parameters so
that the computation time is around 40 seconds gives good accuracy for the two
groups. For image group 3 however, the accuracy falls a lot if computation time
should be decreased that far. Thus when using the algorithm, a choice has to be
made on what kinds of applications the algorithm should be able to handle, and
what computation times are reasonable. The evaluation indicates that the more
computation time that is allowed, the more difficult applications can be handled.

5.3 Future development

Two things were mentioned as important for this algorithm in the introduction
of this report. Firstly the ease-of-use, and secondly the possibility to visually
examine the results. To come all the way with these two parts there are some
things that could be improved.

Computation time

The computation time needed for the algorithm is quite long. This is not a major
problem, but the algorithm would be much nicer to use if it was faster. The
implementation of the algorithm is currently done in MathWorks MATLAB, and
an implementation in a faster programming language would probably reduce the
computation time.

The computation time of a MATLAB program does depend very much on how it
is written, and thus it is very difficult to determine how much faster it would be
in another language. It would be possible to move the time critical parts of the
algorithm to MEX-files [5], to get a possibly lowered computation time without
having to rewrite all the code.

Algorithm accuracy

With the goal of the project to increase the ease-of-use of the product for the
customer, it is important that the trained configuration works in as many cases
as possible. Thus, increasing the accuracy of the algorithm would be a good im-
provement. The most important issues are listed in the evaluation chapter, Sec-
tion 4.3.3.

Algorithm robustness

In the evaluation of how computation time affects accuracy, Section 4.3.2, it is
noted that some parameter settings give less accuracy than those where both
lower and higher computation time allowed. Why this happens is not known, but
it indicates that there are robustness problems with the algorithm. This would
be an important detail to investigate if the algorithm is further developed.
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Visually logical results

Solving the problem with too big rois would be an important improvement. First
it would, as mentioned, improve the accuracy of the algorithm in presence of
background disturbances. Second the resulting configuration, if loaded into the
user interface and inspected visually, would look a lot more logical. This would
benefit the visual inspection of the configuration results a lot.
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