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Abstract
Since the size of time-varying volumetric data sets typically exceeds the amount of available GPU and main mem-
ory, out-of-core streaming techniques are required to support interactive rendering. To deal with the performance
bottlenecks of hard-disk transfer rate and graphics bus bandwidth, we present a hybrid CPU/GPU scheme for
lossless compression and data streaming that combines a temporal prediction model, which allows to exploit co-
herence between time steps, and variable-length coding with a fast block compression algorithm. This combination
becomes possible by exploiting the CUDA computing architecture for unpacking and assembling data packets on
the GPU. The system allows near-interactive performance even for rendering large real-world data sets with a
low signal-to-noise-ratio, while not degrading image quality. It uses standard volume raycasting and can be easily
combined with existing acceleration methods and advanced visualization techniques.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Display Algorithms; E.4 [Coding and Information Theory]: Data Compaction and Compression.

1. Introduction

Improvements in programmable graphics hardware have
made interactive volume visualization possible for data from
many different domains like medicine or seismology. While
the resolution of these data sets is constantly increasing due
to advancements in acquisition technology, graphics proces-
sors could keep up with the growing amount of data by
means of boosting computation performance and graphics
memory. GPU-based raycasting [KW03] can easily achieve
interactive frame rates for many data sets even without in-
cluding optimization algorithms. However, this only holds
true as long as all data required by the visualization fits com-
pletely into GPU memory. When this is not possible, data
needs to be streamed from system memory to GPU mem-
ory and potentially even from mass storage. The transfer
bandwidth has not kept up with the advances in GPU per-
formance, and therefore serious performance degradations
must be expected when data sets require out-of-core stream-
ing. Time-varying volume data can easily reach sizes in
the range of gigabytes—or even terabytes in the domain of
petascale visualization. Time-varying volume data sets can
be acquired by medical scanners, although in this domain
only a relatively low temporal resolution is used. In contrast,

time-varying data sets with high spatial and temporal reso-
lution are routinely created in numerical simulations, espe-
cially in the field of fluid dynamics and meteorology.

While the volumetric data resulting from large-scale sim-
ulations is often primarily intended for applying statistical
analysis models, visualization can be essential for under-
standing unexpected results or spotting errors. Precomputed
animations can solve this problem only to a certain degree,
as interactive modification of viewing parameters like cam-
era position and transfer function is generally seen as a ne-
cessity for visualization of volumetric data. Additionally, the
occlusion problem is more of an issue for volume series than
for a static volume, as the camera position may need contin-
uous updates to keep the region of interest in sight.

To allow interactive rendering of large time-varying vol-
umetric data sets, techniques to accelerate data streaming to
the GPU must be applied. A common approach is to use
data compression techniques in order to reduce the amount
of data that needs to be transferred through bandwidth bot-
tlenecks. Many compression techniques have been proposed
for static as well as time-varying data sets. However, lossless
compression techniques for rendering time-varying data sets
are rare, although a domain expert has to be able to access all
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details of the data at a high accuracy. Especially when con-
sidering the amount of time spent on the simulation, it is of
great interest to be able to inspect the data without any reduc-
tion. Therefore we present a lossless compression scheme,
which meets these requirements and allows near-interactive
frame rates even for large data sets. When visualizing data
with our approach, the domain expert can rely on the fact
that all visible features are actually present in the data and
do not occur due to compression artifacts.

To achieve this goal, our technique utilizes direct pro-
gramming of the graphics processor through the CUDA pro-
gramming interface. With this programming functionality,
simple compression techniques can be directly brought to
the GPU. Since typically the graphics processor is not used
to capacity when data needs to be streamed, it has free re-
sources to support this compression, which previously would
have been handled exclusively by the CPU. Our hybrid ap-
proach allows the combination of several different compres-
sion methods, which are optimized for different parts of the
data transfer pipeline. Thus, we are able to achieve an effi-
cient lossless compression, which is essential to allow fast
streaming. As most components of our approach work inde-
pendently from each other, the lossless compression scheme
can be modified by exchanging individual parts or adding
further ones. It can therefore be viewed as a generic frame-
work for combining CPU and GPU techniques to improve
data throughput and rendering performance. Since the de-
compression is performed on-the-fly, the presented approach
does not limit the visualization techniques that can be ap-
plied to the data.

2. Related Work

There exists a multitude of approaches for compressed vol-
ume rendering and for visualization of time-varying volume
data sets [Ma03]. They use lossless or lossy compression, or
a combination of both. A second distinction can be made be-
tween CPU-based, GPU-based, and hybrid CPU/GPU tech-
niques.

Guthe et al. [GWGS02] presented a lossy CPU-based hi-
erarchical wavelet decompression for rendering of very large
volume data sets using hardware-accelerated slice rendering.
Vector quantization was used by Kraus and Ertl [KE02] in a
GPU-based compression scheme for static and time-varying
volumetric data sets. Sohn et al. [SBS04] described a com-
pression scheme for encoding time-varying volumetric fea-
tures to support isosurface rendering. It is based on a lossy
wavelet transform with temporal encoding. A block-based
transform coding scheme for compressed volume render-
ing using vector quantization was introduced by Fout and
Ma [FM07], which performs decompression on the GPU by
rendering to slices of a 3D texture. Nagayasu et al. [NIH08]
presented a pipeline rendering system for time-varying vol-
ume data. It uses a two-stage CPU/GPU decompression that
combines lossy hardware texture compression on the GPU

(DXT/S3TC) with lossless LZO compression on the CPU.
Because it is based on the simple hardware compression
originally intended for 2D textures, the system is limited
to 8-bit scalar data and is prone to visual artifacts. While
achieving interactive frame rates through a high compres-
sion ratio, the authors report visible artifacts that could mis-
lead the user, but assess the image quality as tolerable for
time-series analysis.

Several lossless compression algorithms and prediction
schemes for volumetric medical data were compared by Ait-
Aoudia et al. [AABY06]. While most of these techniques
have been developed for static data, Binotto et al. [BCF03]
proposed a lossless compression approach using fragment
shaders, based on the concept of adaptive texture maps as
introduced by Schneider and Westermann [SW03]. It sub-
divides the volume into 3D blocks and replaces duplicate
and homogeneous blocks by references. As this relies on ex-
act matches between blocks, the approach is most effective
for sparse data sets with a low noise level, which are hardly
found with complex numerical simulation data.

Smelyanskiy et al. [SHC∗09] used a slice-based variable-
length coding to compress static volume data on the x86
and Larrabee architectures, which they report to be more
effective and faster than ZLIB compression. Fraedrich et
al. [FBS07] presented an implementation of lossless Huff-
man coding as a fragment shader that allows to store up
to 3.2 times more volume data without loss of information.
However, the decoding throughput of this technique lies in
the range of the transmission rate of PCI Express, undoing
any savings achieved by the data compression. Hence, this
result demonstrates the difficulty of porting compression al-
gorithms to a GPU architecture.

3. Hybrid Compression Scheme

3.1. Data properties and hardware limitations

Volume data acquired from medical scanners is typically
stored using 12-bit or 16-bit integer values. Simulations, on
the other hand, return floating-point data with a highly vary-
ing value range. While modern graphics processors directly
support 32-bit float textures, 16-bit integer data is gener-
ally seen as sufficient for most volume visualization tasks.
Direct compression of float data, as described, for exam-
ple, by Lindstrom and Isenburg [LI06] for integration into
a large scale simulation cluster, is beyond the scope of this
paper. Hence, we convert the available simulation test data
from float to integer format during preprocessing, spreading
the values according to the minimum and maximum values
found in the data set to make full use of the 16-bit value
range. Depending on the actual application, a more elabo-
rate mapping might be needed.

While there exist data sets with extremely high tempo-
ral as well as spatial resolution, for many applications a sin-
gle time step of a time-varying data set can easily fit into
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data set resolution steps step size
combustion 448×704×128 122 77 MB
convection 512×2562 401 64 MB
hurricane 5122 ×128 48 64 MB

Table 1: Properties of the time-varying data sets tested with
our approach (using 16-bit integer scalar values).

graphics memory. Having the complete time step available
to the GPU has several advantages for rendering, in con-
trast to splitting up data, e. g., into individual volume bricks.
First, no overhead is introduced for managing and composit-
ing several parts of the volume or for border handling. Sec-
ond, availability of the complete volume allows us to use
visualization and acceleration techniques that require more
information than what is available in a single brick. Finally,
implementation is greatly simplified. Therefore it is desir-
able for the decompression to assemble the data back into its
original form as a single 3D texture in GPU memory. Hence,
as our approach makes the uncompressed data accessible as
a standard volume texture during rendering, no multi-pass
bricking techniques have to be exploited but standard ren-
dering can be used. In the optimal case a volume rendering
system can be extended to support such an out-of-core ren-
dering of time-varying data by just replacing the modules for
loading from disk and uploading into a 3D texture, while the
actual rendering may stay untouched. This is an important
aspect especially in the context of existing large-scale visual-
ization systems. Furthermore our technique can be combined
with multi-resolution approaches [LLY06]. Since we employ
a lossless compression, a multi-resolution data set can be
compressed and streamed by using our approach without af-
fecting its content.

A major reason for the high volume rendering perfor-
mance achieved by current graphics processors is the graph-
ics memory bandwidth. For example, an NVIDIA GeForce
GTX 280 achieves 110 GB/s for an on-device copy. When
data needs to be streamed from the CPU to the GPU via
the PCI Express bus, the achievable throughput is more than
an order of magnitude lower at 2.5 GB/s. Finally, when the
data must be read from mass storage, current desktop hard
drives achieve around 110 MB/s and server hard drives up to
170 MB/s. Combining several drives can improve through-
put, but it is obvious that mass storage is the major bottle-
neck for streaming data to the GPU.

3.2. Two-stage compression approach

As the size of a single time step for typical time-varying data
sets is already in the range of what a hard drive can trans-
fer per second (compare Table 1), it becomes clear that any
technique that aims at interactive rendering must minimize
the amount of data that needs to be loaded from disk, i. e., it
must maximize the compression ratio of the on-disk storage
format.

It would be optimal to run a decompression algorithm
on the GPU, as the data would then travel through both
described bottlenecks in compressed form. Unfortunately,
the highly parallel architecture of current GPUs is not well
suited for compression tasks. Most algorithms for data com-
pression work in a serial fashion and show no coherent
branching behavior, which does not map well to GPUs.
Hence, the main decompression must be performed by the
CPU. As the bandwidth between CPU and GPU is an order
of magnitude greater than that of mass storage, getting max-
imum compression with this transfer is not as important as
when loading from disk. But as decompression can use the
CPU to full capacity, moving calculations to the GPU can
be beneficial. This is possible only for simple computations
that fit into the highly parallel architecture, but even simple
memory copy operations can benefit from the higher mem-
ory bandwidth available compared to the CPU. Therefore we
propose a two-stage or hybrid compression scheme. Data is
compressed twice, first with a simple algorithm whose de-
compression component runs efficiently on the GPU, then
with a CPU-based compression technique. Care must be
taken that the output of the first compression is still suitable
for the second compression step to be effective. On the other
hand, an initial compression step that preprocesses data so
that they can be compressed more efficiently by the second
technique would be useful.

3.3. Subdividing the volume into bricks for compression

Volume data is usually stored with a simple memory layout
where the two-dimensional slices that form the volume are
saved one after another. Previous work often used 2D com-
pression techniques on these individual slices. Working with
slices has the advantage that the memory format is identi-
cal to that of the final 3D texture used for rendering, but this
comes at the cost of losing spatial coherence. Two voxels
which are close together in volume space can actually lie
far away in memory space and vice versa. This effect can
be evaded by subdividing the volume into three-dimensional
bricks and storing the contents of each brick as a continuous
block in memory, hence reducing the memory range used
per brick. This bricking scheme is only used for compres-
sion and data transfer, but not for rendering. Therefore, it
does not introduce an overhead to the rendering, but requires
the bricks to be assembled back to the original form of a sin-
gle 3D texture. This is a simple operation that can be run
very efficiently on the GPU. While OpenGL supports brick-
wise updates of 3D textures, it only allows a direct copy
with no possibility of data reduction. So even a brick with
all zeros would need to be transferred completely. OpenGL
also supports slice-based writing to 3D textures from a frag-
ment shader, but this requires considerable overhead and is
inflexible. Using CUDA for assembling the bricks back into
a complete volume on the GPU is more flexible and allows
for better performance.
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A good opportunity for optimization after the volume has
been decomposed into bricks is removing duplicate bricks
and replacing them by references [BCF03]. This, however,
requires an exact match and is only applicable for data
without noise, i. e., mostly synthetic data. Real-world data
sets we tested did hardly contain any non-uniform duplicate
bricks when choosing a feasible brick size, hence we do not
see this method as beneficial for our use case. The only type
of duplicate bricks that appears regularly is a uniform brick
where all voxels are set to zero. This case is efficiently han-
dled by the variable-length coding described in Section 3.6.

3.4. Main compression algorithm

To choose a compression algorithm for our use case we must
take both compression ratio and decompression speed into
account. As a requirement, the time for reading and uncom-
pressing a data block must be less than the time that would be
needed for reading the uncompressed block. However, most
lossless data compression tools and libraries such as gzip
or bzip2 are optimized for maximum compression ratio, but
not speed. We have evaluated these with parts of the con-
vection data set, but none of them was able to decompress
faster than it would take to read the uncompressed file. As an
alternative suggested by Nagayasu et al. [NIH08], we chose
the Lempel-Ziv-Oberhumer (LZO) real-time compression li-
brary [Obe08]. It uses the same Lempel-Ziv dictionary coder
as gzip, but was built with the main goal of providing fast de-
compression. The library supports multiple algorithms, from
which we selected the LZO1X-999 variant, which yields the
best compression ratio. It is the slowest of the available LZO
compressors (up to 8 times slower than the default in our
tests), but this does not influence the decompression speed.

3.5. Prediction schemes

The block compression algorithms described in the previ-
ous section can reduce the size of volume data by utilizing
spatial coherence. But they cannot directly take advantage
of temporal coherence between different time steps, because
their sliding window is not large enough to cover several
time steps. To utilize temporal coherence in time-varying
data, a prediction model needs to be applied. Such a model
tries to predict voxel values and replaces them by the er-
ror in the prediction [AABY06, FBS07]. For time-varying
data it is promising to predict that the current voxel value
will not change in the next time step and to store the differ-
ence to the actual value, i. e., the error in the prediction. This
differential pulse-code modulation (DPCM) or delta encod-
ing initially does not reduce the storage requirements. How-
ever, when the changes between time steps are not random,
the error data will exhibit uniform structures. For example,
all voxels in regions that do not change between time steps
will get a delta value of zero, resulting in uniform bricks that
can be compressed efficiently. Also the resulting delta values
will typically not use the full data range that is taken up by

Figure 1: Block diagram of the complete volume compres-
sion scheme, also showing which parts are optimized for de-
compression on the GPU and on the CPU.

the original values. Therefore the distribution of delta values
will be non-uniform, which allows further compression. A
disadvantage of a delta encoding is that it prevents jumping
directly to a certain time step, as all previous time steps first
have to be read to reconstruct the data. This can be resolved
by saving the absolute values in addition to the delta values
and loading them on demand, at the cost of increased storage
requirements.

3.6. Variable-length coding

As values inside a data set are usually not uniformly dis-
tributed over the volume, the value range of some bricks
will be smaller than the value range of the entire volume.
When the difference between the maximum and the mini-
mum value in one brick is less than 2n with n < 16, the brick
size can be reduced by storing the minimum as the brick’s
base value, and for each voxel the difference from the base.
Each of the difference values now only takes n bits to store,
so this variable length-coding reduces the size needed for
storing the brick.

This approach can be directly applied in combination with
the previously described temporal prediction scheme. As the
resulting delta values are typically smaller than the abso-
lute voxel values they encode, the variable-length coding
can achieve much higher compression ratios when applied to
the delta values compared to when the time steps are com-
pressed using absolute values. Uniform bricks are handled
by the variable-length coding directly: All voxels in such a
brick have the same value, so just the base value needs to be
stored, while the delta values are reduced to “zero bits”, i. e.,
are omitted.

3.7. Preprocessing and on-disk storage format

The entire data set processing as shown in Figure 1 can run
as an offline preprocessing step, with the aim of minimiz-
ing the overall data size. The runtime of this preprocessing
is usually not an issue, as it is much less computationally
intensive than the simulations used for creating the data in
the first place. Our preprocessing creates a stream file that
contains a sequence of compressed bricks with additional
per-brick information, such as the number of bits used for
storage. Preprocessing of the test data took 3 minutes for
hurricane, 23 minutes for combustion, and up to 167 min-
utes for convection, with most of the time spent on the LZO
compression algorithm. It should be noted, however, that the
preprocessing was not optimized for speed, e. g., by running
multiple compression threads in parallel.
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4. GPU-supported Decompression Pipeline

4.1. Multi-threaded loading and LZO decompression

We use a pipeline approach to overlap loading from disk,
LZO decompression, and data upload to the GPU (see Fig-
ure 2). Each of these tasks runs as one or more independent
threads. The loader thread will load up to five time steps in
advance and feed them to the decompression thread when it
becomes idle. The main bottleneck is typically data loading,
so building up of a long queue is only expected for bricks
with a high compression ratio, for which loading from disk
is faster than decompression.

4.2. Asynchronous data transfer

The data transfer of the uncompressed bricks to the GPU
runs through a transfer buffer in main memory that is marked
as page-locked. Using this “pinned” memory allows us to
start an asynchronous memory copy that can run in parallel
to CPU operations and GPU kernel executions. It reaches the
maximum transfer bandwidth available by copying one large
memory block that contains all bricks. While the variable-
length coding already handles “empty” (i. e., all-zero) bricks
and those bricks that do not change between time steps, the
data transfer could be further reduced by ignoring bricks that
are completely transparent because of the transfer function.
A simple approximation for determining a brick’s visibility
is comparing the minimum and maximum intensity values
inside the brick with the minimum and maximum intensity
that is assigned non-zero opacity through the transfer func-
tion. This can be implemented efficiently but introduces two
issues: First, not loading a brick because it is currently in-
visible breaks the delta encoding of upcoming time steps, as
it requires data from all previous time steps to calculate the
current value. Hence, the absolute value would need to be ac-
cessible as well, increasing disk usage. The second issue is
that when the user modifies the transfer function, bricks that
were previously hidden may get visible, therefore requiring
a load operation, which might hamper the user experience.
In addition, this optimization is not specific to our hybrid
compression scheme, so we have not yet implemented it for
the current system.

4.3. Brick assembly and resolving prediction

The data packets as uploaded to the GPU require three pro-
cessing steps before they can be copied to the final 3D tex-
ture to be used for rendering: Resolving variable-length cod-
ing, resolving delta encoding, and brick assembly.

As the variable-length coding requires different address-
ing modes based on with how many bits a brick is stored,
we have implemented individual kernels for handling each
of the supported bit lengths. Based on analysis of our test
data, we concluded that the compression ratio for just sup-
porting 16, 8, 4, and 0 bits comes close enough to the optimal

Figure 2: Our hybrid CPU/GPU decompression pipeline.

result so that the additional costs of supporting all possible
numbers of bits are not justified.

To be able to benefit from the texturing hardware for
linear filtering and border handling during rendering, the
volume needs to be available to the raycasting kernel as
a CUDA array. In contrast to data in global memory a
CUDA kernel cannot directly write to such an array. There-
fore the decompression kernel uses a shadow copy of the
volume texture located in global memory to write its re-
sults. The volume is later copied to the CUDA array by
calling cudaMemcpy3D() from host code. As this is an
on-device copy, it can theoretically make use of the full
GPU memory bandwidth. This intermediate step is antic-
ipated to become unnecessary with the next generation of
graphics processors, which are expected to allow writing
to 3D textures from kernel code. The feature is already in-
cluded in the OpenCL specification through the extension
cl_khr_3d_image_writes, but this extension is not
yet supported by current GPUs and drivers.

Implementing delta encoding is trivial, as the kernel just
needs to add the calculated value to the existing value in the
volume instead of overwriting it. To obtain optimal perfor-
mance with CUDA kernels it is most important to satisfy
the coalescing rules, i. e., to organize memory accesses so
that they require the minimum number of memory trans-
actions. We distribute the assembly of a brick onto blocks
of 64 CUDA threads, where each thread is assigned an x-
coordinate and processes all voxels in the brick belonging to
this x-coordinate. Due to the memory layout, this results in
adjacent threads accessing adjacent memory cells and there-
fore achieving full coalescing. By constructing a suitable
two-dimensional CUDA grid of thread blocks, a single ker-
nel launch is enough to start processing of all bricks.

4.4. Rendering

The implementation of GPU-based rendering with CUDA is
similar to a fragment shader implementation, with some ad-
ditional possibilities such as controlling the distribution of
rays to threads through the CUDA block size. We have pre-
viously investigated raycasting with CUDA [MRH10] and
accordingly selected a block size of 8× 8 to get optimal re-
sults. The raycaster uses direct volume rendering with Phong
lighting, on-the-fly gradient calculation, and early ray termi-
nation.
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5. Results

Tests were conducted on a workstation equipped with an
Intel Core 2 Quad Q9550 CPU (2.83 GHz), an NVIDIA
GeForce GTX 280 GPU, 4 GB RAM, and a 1.5 TB eSATA
hard disk with a specified burst transfer rate of 105–115
MB/s. The system was running Linux and used version
3.0 beta of the CUDA Toolkit. We integrated loading and
streaming of time-varying data into the Voreen volume ren-
dering engine by implementing a single volume source pro-
cessor, making use of the data flow architecture in Voreen.

5.1. Test data sets

Renderings of the test data sets are shown in Figure 3. The
convection data set is the result of a hydrodynamical simu-
lation of a thermal plume. It contains two modalities, tem-
perature (T) and enstrophy (ens), where the latter highlights
swirling regions of the flow. As can be seen in the first time
step of this data set in Figure 3, the T modality contains a
high level of noise, which was intentionally introduced into
the simulation, and ends in a fully turbulent scenario. The
ens modality is more uniform in the initial part, but also
becomes fully turbulent towards the end. Three modalities
chi, vort, and y_oh are available from a turbulent combustion
simulation. The structure of this data set is turbulent as well,
but the amount of empty space varies between the modali-
ties. Finally, there is data from a simulation of the amount
of rain in different levels of the atmosphere for Hurricane Is-
abel. This smaller data set contains many empty regions and
is expected to achieve a high compression ratio.

5.2. Compression ratios

To evaluate the effect of the compression parameters, we
have compressed convection/T with several different op-
tions, results are listed in Table 2. Note that the given raw
sizes correspond to the data converted to 16-bit, the orig-
inal float data would take up twice the amount of memory.
First, we examined the effect of delta encoding without using
variable-length coding. Delta encoding increased the com-
pression ratio of the LZO algorithm from 1.50 to 2.17, which
is very significant, considering the low cost of calculating
the delta values. The efficiency of variable-length coding de-
pends on the brick size, as smaller bricks are more likely to
contain data that fits into a smaller value range. As can be
seen from the bit usage, only 4% of the bricks can be en-
coded with less than the full 16 bits when a brick side length
of 256 voxels is used. This percentage increases with smaller
brick size, increasing the compression ratio σvlc achieved by
the variable-length coding alone. The best compression ratio
is achieved for brick side length 32, but also the number of
bricks increases to 1024 for this configuration. To keep the
overhead for managing bricks reasonable, we chose a brick
side length of 64 for all following tests.

As expected, the compression gave quite different results

for the different data sets (Table 3). The modality T of the
convection data set has the lowest compression ratio both
for variable-length coding as well as for total compression.
This is the result of the high level of noise and low amount of
empty space in the data set. The ens modality is more sparse
and therefore has a much higher compression factor of 5.2,
with many more bricks encoded with less than 16 bits. The
combustion data set contains a lot of empty space, so 41 to
50% of its bricks are empty and can be encoded with zero
bits. It is notable that while σvlc only varies slightly between
the modalities, the overall compression factor σ varies be-
tween 3.0 and 4.3. Hence, the differences are a result of only
the LZO compression. Finally, hurricane is a rather small
and sparse data set that gets a high compression factor of
25.1 and therefore shifts the system bottleneck from disk
throughput to decompression speed.

5.3. Rendering speed

To determine the increase of overall rendering performance
achieved by our method, we measured the time taken for ren-
dering all time steps of the compressed data sets and com-
pared this to the results of the uncompressed version (Ta-
ble 4). The loader for the uncompressed files reads the 16-
bit integer data of a time step into memory and immediately
uploads it to the GPU. Disk caches were flushed between
test runs. The raycasting sampling rate was set to 2 sam-
ples per voxel and a viewport size of 512× 512 pixels was
chosen. As expected, the rendering speedups for the differ-
ent data sets resemble the compression ratios, for some even
slightly exceeding this value. The small hurricane data set
is not limited by disk throughput and therefore the render-
ing speedup attained by the compression technique is signifi-
cantly smaller than the compression ratio. It is rendered with
10 fps, more than 7 times faster than without compression.
The larger data sets are also rendered with a near-interactive
performance of up to 6 fps.

Measuring the time needed for the on-device copy of the
volume from global memory into the final 3D texture stored
as a CUDA array (compare Section 4.3) gave results of about
24 ms for the convection data set, twice the time needed for
brick assembly and even more than the time taken for ren-
dering. This corresponds to a throughput of about 5 GB/s,
much less than the maximum of 110 GB/s. We presume that
the low throughput for copying to a 3D CUDA array is re-
lated to the internal data format, which is not documented by
the vendor. Future graphics processors that are expected to
allow direct writing to 3D textures from kernels will make
this intermediate copy unnecessary.

To examine the efficiency of the GPU-based brick assem-
bly implemented as a CUDA kernel, we compared it to a
CPU implementation that assembles the bricks into a mem-
ory buffer, which is then uploaded to the GPU. The results
in Table 5 show that the CUDA implementation is never
slower than the CPU and can achieve a significant rendering
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brick bit usage
pred. vlc bs memory #bricks compr. size σ σvlc 16 8 4 0
none no 64 512 kB 128 16.76 GB 1.50 — — — — —
delta no 64 512 kB 128 11.53 GB 2.17 — — — — —
delta yes 32 64 kB 1024 11.16 GB 2.24 1.33 61% 18% 20% 1%
delta yes 64 512 kB 128 11.31 GB 2.22 1.14 78% 15% 6% 0%
delta yes 128 4 MB 16 11.68 GB 2.15 1.04 93% 7% 0% 0%
delta yes 256 32 MB 2 11.92 GB 2.10 1.02 96% 4% 0% 0%

Table 2: Effect of prediction scheme, variable-length coding (vlc), and brick size (bs) on compression, tested with the convec-
tion/T data set. Also listed are the total compression ratio σ, compression ratio obtained by variable-length coding alone σvlc,
and the percentages of bricks that are encoded with a certain number of bits by the variable-length coding.

brick bit usage
data set modality raw size compr. size σ σvlc 16 8 4 0
convection T 25.1 GB 11.3 GB 2.2 1.1 78% 15% 6% 0%

ens 25.1 GB 4.8 GB 5.2 1.5 52% 19% 12% 17%
combustion chi 11.4 GB 2.7 GB 4.3 2.0 48% 2% 1% 50%

vort 11.4 GB 3.8 GB 3.0 1.9 50% 3% 6% 41%
y_oh 11.4 GB 3.5 GB 3.3 2.0 49% 2% 2% 47%

hurricane rain 3.0 GB 0.1 GB 25.1 2.6 36% 3% 1% 60%

Table 3: Results of our hybrid compression scheme. The compression uses 643 bricks, delta encoding, variable-length coding,
and LZO1X-999 compression.

raw compressed
data set mod. time fps time fps s
convection T 281 1.4 108 3.7 2.60

ens 281 1.4 66 6.0 4.23
combustion chi 126 1.0 28 4.4 4.55

vort 117 1.0 39 3.1 2.98
y_oh 125 1.0 36 3.4 3.47

hurricane rain 35 1.4 5 10.0 7.27

Table 4: Frame rates for rendering, with time in seconds,
frames per second, and speedup factor s.

CPU GPU
data set mod. time fps time fps s
convection T 117 3.4 108 3.7 1.08

ens 92 4.4 66 6.0 1.38
combustion chi 28 4.4 28 4.4 1.01

vort 39 3.1 39 3.1 1.01
y_oh 36 3.4 36 3.4 1.00

hurricane rain 48 6.2 5 10.0 1.29

Table 5: Efficiency of running brick assembly on the GPU
compared to the CPU, s specifies the rendering speedup.

speedup of up to 1.38 for data sets that are not disk-limited.
The CPU implementation writes directly into the 3D tex-
ture without an intermediate on-device copy, so the speedup
would rise further when the CUDA kernel would also be able
to write directly to a 3D texture.

6. Conclusions

In this paper we have presented a framework that allows to
increase rendering speed of time-varying data sets based on
a lossless compression scheme. By utilizing both CPU and

GPU, we could minimize the amount of data that needs to
be transferred. Relocating work to the GPU allows us to
use more complex prediction models and use brick-based in-
stead of slice-based addressing to better maintain spatial co-
herence and increase the efficiency of variable-length coding
without increasing load on the CPU. While the image qual-
ity is not affected by our approach, the compression ratio
that can be achieved is highly dependent on the data set. We
have demonstrated our technique with real-world data sets
that contain a considerable level of noise. In all cases a near-
interactive performance was obtained at full image quality,
and the compression increases performance so far that fully
interactive performance is expected to be achieved when re-
placing the single hard disk by a faster storage device, e. g.,
a RAID system.

Since we have exploited recent stream programming tech-
niques, the compression scheme is flexible and can be ex-
tended or modified easily. Thus, it would also be possible to
integrate lossy compression schemes for application cases
where accuracy is not the highest demand. When using the
proposed technique, the actual GPU-based volume rendering
needs no adaptation and can remain completely unchanged.
Therefore, combination with other conventional acceleration
techniques, for example, empty-space skipping, is possible.
However, for the types of data we tested, the pure raycasting
performance on the GPU was not the bottleneck.

Future work includes direct support for floating-point
data, evaluating further prediction schemes, and combina-
tion with multi-resolution techniques. With new graphics
processors it should also be investigated whether they better
support the implementation of more complex compression
algorithms.

c© The Eurographics Association 2010.
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Figure 3: Visualization of time steps from the test data sets using direct volume rendering.
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