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ABSTRACT
Direct Volume Rendering of Finite Element models is chal-
lenging since the visualisation process is performed in world
coordinates, whereas data fields are usually defined over
the elements’ material coordinate system. In this paper we
present a framework for Direct Volume Rendering of Finite
Element models. We present several novel implementations
visualising Finite Element data directly without requiring re-
sampling into world coordinates. We evaluate the methods
using several biomedical Finite Element models. Our GPU
implementation of ray-casting in material coordinates using
depth peeling is several orders of magnitude faster than the
corresponding CPU approach, and our new ray interpolation
approach achieves near interactive frame rates for high-order
finite element models at high resolutions.

Categories and Subject Descriptors
I.3.3 [Picture/Image Generation]: Display algorithms;
I.3.7 [Three-Dimensional Graphics and Realism]: Ray-
tracing; I.3.8 [Computer Graphics]: Applications

Keywords
visualisation, direct volume rendering, GPU computing, fi-
nite elements

1. INTRODUCTION
Finite Element (FE) models are popular in science, en-

gineering, and biomedicine for simulations, shape analysis,
data fitting, and as reference frames for model and data com-
parison. Finite element models represent complex model
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geometries by connecting sample points (nodes) to (poten-
tially curvilinear) elements. Both the geometry and data
fields over the domain are defined by interpolating nodal val-
ues over each element using interpolation functions, whose
parameter space is referred to as the element’s material co-
ordinates.

In order to analyse and understand finite element data
sets it is beneficial to visualise them. Direct Volume Ren-
dering (DVR) is a popular visualisation technique for in-
teractively exploring complex multi-dimensional data sets.
Applying the technique to FE data sets is difficult since the
ray-casting process is performed in world coordinates, but
data fields are defined over the elements’ material coordi-
nates. Hence the visualisation either requires resampling the
data into world coordinates, which introduces numerical er-
rors, or computing along each ray sample points in material
coordinates, which is slow and numerically complex. For ex-
ample, a tricubic interpolation x(ξ) over a cuboidal element
contains 64 terms (8 nodes with 8 nodal values and deriva-
tives each), which are cubic functions in the three material
coordinate directions. Computing the inverse mapping

ξ(x) = (x(ξ))−1 (1)

with a multi-dimensional Newton method requires multiple
iterations involving the Jacobian of that mapping (matrix of
all first-order partial derivatives) [9].

In this paper we present and compare several techniques
for visualizing FE data sets using DVR. For comparison pur-
poses we use a straightforward CPU implementation (as gold
standard for evaluating numerical precision), and a tradi-
tional resampling process using GPU-accelerated ray trac-
ing of the resulting regular sample grid (as gold standard for
evaluating efficiency). We then introduce a more efficient
GPU implementation using depth peeling and hardware ac-
celerated FE interpolations and coordinate transformations.
We also summarise a new algorithm developed within this
framework [3], that decouples the expensive world-to-material
space transformation from the rendering stage, thereby al-
lowing it to be performed within a pre-computation stage.

Section 2 reviews previous work on direct volume render-
ing of finite element models. Section 3 and section 4 present
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the design and implementation of different DVR techniques
for visualising FE models. Section 5 summarises the results
of evaluating these implementations. Section 6 concludes
this paper and gives an outlook on future work.

2. LITERATURE REVIEW
In our research we use a ray-casting method, which traces

for each image pixel a ray through the volume and accumu-
lates colour and transparency information representing field
values along the ray [12]. This approach is more flexible than
alternative approaches [7] and can be efficiently accelerated
using graphics hardware.

Traditionally ray-casting is performed in world coordi-
nates using a regular grid of samples, which are interpo-
lated using a reconstruction kernel [13]. Wihelms et al. ex-
plored the visualisation of a curvilinear volume by directly
ray-casting the volume and by resampling it first into a rec-
tilinear grid [17]. The authors use a greedy algorithm to
find the cell that contains the ray sample. The field data
for the sample point is then computed by interpolating the
cell’s vertices. The ray-casting process can be sped up by
identifying ray entry, re-entry, and exit cell faces, project-
ing them onto the image plane, and sorting them by their
depth value [6]. In order to alleviate the visualisation error
introduced by resampling, Mao et al. apply a stochastic sam-
pling technique called Poisson disk sampling to a low-order
curvilinear volume and render the samples using a splatting
algorithm [10].

FE models can be visualised directly (without resampling)
by developing fast approximations for finding the material
coordinates of a world coordinate point and/or by accelerat-
ing the computation on the GPU. Marmitt et al. subdivide
curvilinear volumes into tetrahedral meshes, find tetrahedral
cells using a k-d tree structure, and then use Plücker coordi-
nates to speed up ray intersection tests with the triangular
element faces [11]. Moreland and Angel visualise linear tetra-
hedral meshes with interactive frame rates by performing a
partial preintegration of the volume rendering integral [14].

Üffinger et al. employ GPU-based raycasting for direct
volume rendering of high-order FE models. By parallelis-
ing the visualisation process onto a cluster of GPUs the
authors achieve interactive visualisation for high-order FE
models [16]. To reduce the overhead of the world-to-material
space transformation, the FE simulation solution is repre-
sented in a reference space using barycentric coordinates.
This enables the authors to represent the solution in a cell us-
ing a compact monomial representation, which can be sam-
pled in physical space without requiring the expensive world-
to-material space mapping from equation 1. The technique
assumes a Galerkin FE method solution and is not suitable
for large highly curved elements with high field variations.

In summary methods based on resampling suffer from a
limited resolution when zooming into a data set, sampling
can result in important features being missed, sampling makes
it difficult to accurately represent element boundaries, and it
results in a loss of the relationship between field values and
element geometry (e.g., strain direction relative to an ob-
ject’s surface). Direct visualisation methods can overcome
these constraints, but current methods are unable to inter-
actively render complex high-order curvilinear FE models.

The key challenge of direct volume rendering high-order
FE models is to avoid or speed up the expensive world-to-
material mapping from equation 1. Several of the presented

methods employ GPU-acceleration for speeding up compu-
tations. In this paper we present two GPU accelerated tech-
niques and compare them with a CPU direct visualisation
approach and a resampling approach.

Figure 1: The visualisation pipeline for the tradi-
tional DVR approach using resampling (left), and
the direct visualisation of FE data without resam-
pling implemented on the CPU (middle) and the
GPU (right).

3. DESIGN

3.1 GPU Implementation using Resampling
We can visualise FE data with a traditional GPU-accelerated

DVR algorithm [12] by using the following steps illustrated
by the pipeline on the left hand side of figure 1:

1. Represent the field data as a regular grid.

2. Compute for each point of the image plane a viewing
ray, compute entry and exit points with the volume,
and sample the ray.

3. Compute field values at the sample points and deter-
mine colour and opacity values at the sample points
using user defined classification functions.

4. Accumulate colour and opacity values along each ray.

The regular grid of sample points is computed as follows: we
first determine the bounding box of the FE model and define
an equidistant sample grid in world coordinates. The sam-
ple points’ material coordinates are computed using equa-
tion 1, which is solved using a multi-dimensional Newton
method [15].
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3.2 DVR in Material Space - CPU Implemen-
tation

In order to visualise a FE data set directly (i.e., with-
out resampling) for each ray traversing the world coordinate
space its entry and exit points with a finite element must be
found, and the material coordinates of sample points along
a ray must be computed. The latter can be achieved us-
ing a multi-dimensional Newton method as explained above.
The element ray entry and exit points for each ray are effi-
ciently determined by rendering the FE geometry (element
surfaces) and colour coding it. The idea is adapted from a
similar scheme for GPU-based volume ray-casting [8], how-
ever, in our case we associate the three material coordinates
ξ1, ξ2, and ξ3 with the RGB channels and encode an el-
ement’s unique ID in the opacity channel. The resulting
visualisation is shown in figure 2. Each pixel encodes for the
corresponding viewing ray the intersected element (if any)
and the material coordinates of the intersection point. This
information can then be used during ray sampling as initial
guess for the multi-dimensional Newton method in order to
compute the material coordinates of the next ray sample
point.

Since a viewing ray can intersect multiple elements we use
depth peeling, which has been originally proposed for ray
tracing of non-refractive transparent surfaces [5]. In our ap-
plication this approach yields for each pixel a sequence of
element entry and exit points and hence the ray segments
for all intersected elements. Shared faces are rendered twice
(once for each element), which results in z-fighting problems.
We identify the correct sequence of intersected faces by tak-
ing into account element IDs and face normals [9].

The process is illustrated by the visualisation pipeline in
the middle of figure 1.

Figure 2: Colour coding of elements’ material co-
ordinates for the first entry-points layer (left) and
exit-points layer (right).

3.3 DVR in Material Space - GPU Implemen-
tation

Implementing the above described direct visualisation ap-
proach on the GPU requires several changes: (1) Ray-casting
is performed with fragment shaders in parallel using the seg-
ments obtained with the depth peeling process. (2) The FE
data is stored on the GPU taking into account the limited
number of uniform variables on the GPU. The FE geome-
try is encoded into a 3D texture, where the three texture
dimensions correspond to element ID, node ID, and nodal
and derivative values. For example, a tricubic interpolation
requires a nodal value, derivatives in all three coordinate di-

rections, and four mixed derivatives for a total of 8 values.
For data fields we use different representations dependent
on whether they are defined by interpolating nodal values,
as subsampled field over each element, or as image acqui-
sition raw data (for details see [9] and section 5). (3) The
ray sampling and colour and opacity calculation must be im-
plemented on the GPU. This required us to implement FE
element interpolation functions and the multi-dimensional
Newton method on the GPU [9]. Since the size of a FE model
can easily exceed GPU memory, ray segments are processed
one depth layer at a time, with one fragment processor for
each pixel. Accumulation of colour and opacity values is
performed using a separate intermediate texture.

Figure 3 displays the differences between the CPU and
GPU-implementation of the direct visualisation approach.

Figure 3: The differences in the pipeline for the CPU
(top) and the GPU (bottom) direct visualisation ap-
proach.

3.4 Proxy-ray Interpolation Approach
The DVR process can be be sped up by performing the

world-to-coordinate mapping in a precomputation step. The
resampling approach in subsection 3.1 enables us to utilise
the full speed of traditional GPU-accelerated DVR methods.
However, the approach introduces numerical errors when re-
constructing data from sample points, the resampled data
set has a fixed resolution (image resolution decreases when
zooming into the data), the approach requires precalculation
of all data fields which might be used during interactive ex-
ploration, and it does not represent the relationship between
the finite element geometry and field values.

In order to overcome these shortcomings we have devel-
oped a novel DVR technique for FE models. The method
avoids computation of the inverse transformation at run time
by pre-computing view-independent proxy rays in material
coordinates, and interpolating them during run time in or-
der to approximate rays and ray sample points for a given
view point during interactive rendering. This decouples the
expensive coordinate inverse transformation from the ray-
casting, but we still perform the field data interpolation in
the sampling stage.

The number of precomputed proxy rays is defined by sam-
pling an element’s surface using n entry points and m exit
points and defining rays for each combination of entry and
exit points. The values for n and m depend on the element
size and field complexity. In our examples we found that
n = m = 5 yielded good results. The proxy ray segments are
straight in world coordinates, but curved in material coordi-
nates as illustrated in figure 4. We represent the proxy rays
in material space using Catmull-Rom splines [4], and store
them using the spline’s control points. In order to reduce
storage space we cluster the rays using an approach similar
to [1]. During interactive rendering for a given ray, the entry
and exit points of the closest proxy rays are determined. The
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material coordinates of the ray’s sample points can hence be
computed efficiently by interpolating the known material co-
ordinates of the surrounding precomputed proxy rays. More
details are found in [3].

Figure 4: A FE model of a left ventricle of the heart
in world coordinates (left) and the elements’ mate-
rial space (right) shown using an axial view (top)
and a sagittal view (bottom). Straight parallel rays
in world coordinates (left) are curved in the material
space of the elements and neighbouring rays have a
similar geometry (right).

4. IMPLEMENTATION
All visualisation techniques presented above were inte-

grated into the Voreen volume rendering framework [12].
This enabled us to make use of existing functionalities such
as reconstruction kernels, classification functions, and cam-
era and interaction widgets. All newly developed functional-
ities were defined as processors, in order to use them inside
the visual programming interface of Voreen (figure 5).

5. RESULTS
We tested our DVR algorithms using two different Finite

Element models:
Heart Model: A model of the left ventricle of a healthy

human heart consisting of 16 bicubic-linear elements. A
strain field is defined using 6 × 11 × 11 equidistant sample
points over the material space of each element.

Tongue Model: A model of a bovine tongue using 64
tricubic elements. Multiple vector fields representing mus-
cle fiber groups are defined over the elements by tricubicly
interpolating nodal values.

All visualisations were generated on a PC with Intel i7
3.40GHz CPU, 8 GB RAM and a GeForce GTX 580 graphic
card with 512 CUDA cores and 1.5GB GDDR5 memory.

5.1 Comparison with Visualisation Tools
In order to test the correctness of our DVR techniques

we compared them with equivalent visualisations obtained

Figure 5: A network for visualising the heart model
using the GPU direct visualisation approach. The
reused processors of Voreen are highlighted by a blue
box. The transfer function widget on the left shows
the employed transfer function.

using existing tools. Figure 6 shows on the left a visualisa-
tion of the circumferential strain on the endocardial surface
of the left ventricle obtained using colour mapping. The 0-
isosurface of the circumferential strain is indicated by the
blue surface segments at the top of the model. The visu-
alisation was obtained using a polygonal rendering tool for
biomedical finite element models [18, 19]. The image on the
right of figure 6 shows the equivalent visualisation using our
DVR framework.

Figure 7 shows on the left a visualisation of one muscle
fiber group within the tongue model. The visualisation was
obtained using CMGUI, a 3D visualisation software which
is part of CMISS, an open source modelling environment
developed by the Auckland Bioengineering Institute at the
University of Auckland [2]. The image on the right shows the
equivalent visualisation using our DVR framework, with line
segments indicating vector directions at ray sample points.

In both cases the visualisations show similar structures
and values. The purpose of these tests was to verify that
the data sets are correctly loaded and the depth peeling, ray
construction, and ray sampling is correctly performed.

Figure 6: A visualisation of the circumferential
strain in the human left ventricle using a polygon-
based visualisation tool [18, 19] (left) and our CPU
direct visualisation approach (right).

5.2 Precision
Figure 8 illustrates the differences between the four pre-

sented visualisation techniques. We use the CPU direct vi-
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Figure 7: A visualisation of the direction of a mus-
cle fiber group in a bovine tongue performed using
CMGUI [2] (left) and our GPU direct visualisation
approach (right).

sualisation approach as a gold standard and compare re-
sults with: The GPU direct visualisation approach (top);
the proxy-ray interpolation visualisation using 5 × 5 ray en-
try and exit points for each element face, which results in
360,000 pre-computed rays (middle); and the traditional DVR
approach using a regular sample grid of 5003 voxels (bot-
tom).

The top row of the figure shows that the CPU and GPU
implementation of the direct visualisation approach result
in very similar, but not identical images. The visualisation
obtained with the GPU implementation is less smooth and
features have slightly different locations. There are two rea-
sons for this: (1) the multi-dimensional Newton method is
running under 64bit (double) precision on the CPU but only
32bit (float) precision on the GPU. This reduces the accu-
racy of the material coordinate computation. (2) We use
GPU hardware interpolation for the strain field, which is
less accurate than the corresponding CPU implementations
and requires adding a padding layer in all three coordinate
directions [9].

The middle row of the figure shows that the proxy-ray vi-
sualisation results in a very good visualisation containing all
relevant details. However, there are some slight artifacts, as
indicated by the red box in the centre of the image. The
discontinuity in that artifact is most likely caused by neigh-
bouring rays using different proxy rays in the interpolation
process. This error could be reduced using super-sampling
at the expense of an increased computation time.

The bottom row of the figure shows that resampling results
in a smooth and visually very similar image to the CPU
direct visualisation approach. However, the difference image
shows larger variations than for the other two visualisation
techniques due to the limited resolution of the sample grid.

5.3 Efficiency
We investigated the running time of our DVR algorithms

using different data sets and different visualisation parame-
ters. Figure 9 illustrates that the GPU direct visualisation
approach is considerably faster than the CPU visualisation.
The performance advantage increases with the complexity
of the visualisation. For example, when using a complex
transfer function more sample points along a ray need to
be computed and used for the accumulation step, and when
zooming into the image the required precision of the world-
to-material coordinate mapping increases. The image on the
right hand side of the figure demonstrates that the GPU im-
plementation can be more than four orders of magnitude
faster than the corresponding CPU implementation.

Figure 8: Direct volume rendering of the normal
strains of the left ventricle. The opacity and colour
transfer functions were designed to display the re-
gions with strain values [-0.184, -0.130] (red), [0.017,
0.044] (green), and [0.236, 0.263] (blue). The column
on the left shows the results obtained with the CPU
direct visualisation approach. The column in the
middle shows the GPU direct visualisation approach
(top), the proxy ray interpolation (middle) and the
resampling approach (bottom). The column on the
right shows the corresponding difference images.

Figure 9: Three different visualisations of the radial
strain in the left ventricle obtained using different
opacity and colour transfer functions and zoom fac-
tors (top), and the corresponding rendering times
using the CPU (middle) and GPU (bottom) direct
visualisation approach.

Figure 10 shows that the proxy-ray interpolation approach
is another order of magnitude faster than the GPU direct
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visualisation approach and it approaches interactive frame
rates. However, none of the presented algorithms using the
FE material space can achieve the performance of the re-
sampling approach, that solely operates in world space.

Figure 10: Performance comparison of the four al-
gorithms for visualising FE data (rendering time per
frame in seconds).

6. CONCLUSIONS AND FUTURE WORK
We have presented a framework for visualizing FE data

in material space and presented two new GPU implementa-
tions for this task. We compared the presented algorithms
using different FE data sets and showed that the GPU direct
visualisation approach is several orders of magnitude faster
than the corresponding CPU implementation. The novel
proxy-ray interpolation visualisation is another order of mag-
nitude faster and approaches interactive frame rates. None
of the presented algorithms using the FE material space can
achieve the performance of the traditional resampling ap-
proach. However, considering the limitations of the resam-
pling approach, the new GPU implementations are viable
alternatives, especially for the exploration of multi-field FE
data.

In future work we want further to improve the GPU im-
plementations and use them for comparative visualisations,
where the FE material space provides a common reference
frame for, e.g., models of healthy and diseased left ventricles.
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