
Applying EM
3
: Handover Framework in a Project

Parking Context

Ahmad Salman Khan, Mira Kajko-Mattsson

School of ICT, KTH Royal Institute of Technology, Sweden

askhan@kth.se, mekm2@kth.se

Summary

A well-defined handover process model is imperative and critical for succeeding with the transfer of a software

system from one party to another. Despite this, there still do not exist any up-to date handover process models.

Recently, however, we have developed EM
3
: Handover Framework aiding organizations in constructing their

own handover process models. The framework was originally explored within sixty one companies. In this

paper, we apply and evaluate EM
3
: Handover Framework in one Swedish software organization via participatory

observation. Our goal is to examine the framework’s applicability and usefulness in a real-world industrial

scenario. The handover process studied was of a self-to-self type and it was conducted in a project parking

context. Our results show that our framework is fully applicable in an industrial handover setting. Almost all of

its activities were relevant and fully applied in the context studied.

1 INTRODUCTION

Even if software engineering has been with us for more than five decades, it has still not reached a

satisfactory level with respect to the definition and establishment of some of its processes. Certainly, it

has explored various ways of developing software systems, and inarguably, it has reaped many

development methods and approaches. It has not, however, explored all the corners and edges of the

whole software engineering domain, especially the ones taking place after software development. One

such a corner is software system handover alias transition, a domain implying a transfer of a software

system from one party to another, usually from the party conducting development to the party

conducting evolution and/or maintenance [1].

 A well-defined software system handover process model is imperative and critical for planning and

managing a software handover and for alleviating many handover problems. Failing to transfer a

software system may lead to serious consequences such as loss of productivity, loss of maintainer

credibility, loss of system and maintenance process quality, and sometimes, even loss of business.

Despite this, there still do not exist any up-to date handover process models that designate important

process features that are necessary for conducting a systematic and disciplined software system

transition. Regrettably, the issue of software handover is still a strongly under-researched and

neglected domain. So far, the research community has not paid enough attention to the handover

process. The published handover process models are either too old or they are defined on a very

general level [2] [3] [1] [4] [5] [6].

 Lack of appropriate software system handover process models leads to the fact that companies do

not have any process models to follow while performing their handover processes, or if they do have

them, then they still may feel insecure whether their models appropriately reflect the complexity of the

handover process domain. One such a company is E-Identity, a company that has commissioned us to

conduct software system handover. Although the company has developed its own handover process

model, they still felt very insecure in conducting it in one of their very unique and intricate handover

cases. Therefore, they asked us to assist them in their handover process in the role of an expert and

supervisor.

 In this paper, we report on the results of conducting a handover process at E-Identity using our

recently developed handover process model – EM
3
: Handover Framework where EM

3
stands for

Evolution and Maintenance Management Model. Our goal was to observe the implementation of our

framework and examine its applicability and usefulness in an industrial scenario. The handover

process studied was of a self-to-self handover type, it was conducted in a project parking context and

its evaluation was made via participatory observation [7].

 The remainder of this paper is as follows. Section 2 briefly presents the company and its handover

process. Section 3 describes our research process and Section 4 briefly describes EM
3
: Handover

Framework. Section 5 reports on results of the framework’s implementation within the company

studied and Section 6 analyzes the implementation results. Finally, Section 7 rounds up the paper by

providing concluding remarks and suggestions for future work.

2 COMPANY DESCRIPTION

E-Identity is a Swedish company based in southern Sweden. It develops a product for digital identity

authentication. In 2012, it encountered a financial crisis which did not allow it to continue developing

its product. However, the company was strongly determined to continue with its development as soon

as it recovered from the crisis.

 As shown in Figure 1, the company’s system consisted of two parts. These were API infrastructure

and digital identity authentication product. Different teams were responsible for these parts. The

infrastructure development team was responsible for developing the API infrastructure and for

establishing a platform for the application development. The application development team then used

the APIs to develop the digital identity authentication product for the end-user customer. Here, the

application development team was an internal customer to the infrastructure development team.

 Before the crisis, the company employed about 25 people. At the moment of writing this paper, the

company had to dismiss about 15 people and dissolve all the teams. The people who stayed were (1)

three members of the infrastructure development team having the roles of development team lead,

project manager and product owner, (2) three members of the application team having the roles of

application developers, network administrator, (3) two company lawyers, (4) CEO, and (5) a secretary.

Out of these, four people were involved in the handover process. These were the following:

1. Development team lead responsible for product development and maintenance. He had a

complete domain and system knowledge. During handover, he documented the domain and

system knowledge and generated a stable infrastructure development API release.

2. Project manager responsible for managing the handover project. He designed and monitored the

handover process and reported on its progress to the product manager.

3. Product owner responsible for the product to be handed over. He approved the handover

planning, implementation and closure. He also led the daily start-up meetings and made high-

level decisions.

4. Researcher: responsible for supervising the handover process.

 At E-Identity the handover process activities are classified under three categories. As shown at the

bottom of Figure 1, these are handover planning, handover implementation and handover closure.

Project parking stage mainly comprises activities dealing with handover planning and a few activities

dealing with handover implementation. Project resumption, on the other hand, comprises handover

implementation and handover closure activities.

Figure 1. The handover context at E-Identity

3 RESEARCH PROCESS

In this section, we describe our research process. We first present the research approach in Section 3.1

and the research steps in Section 3.2.

3.1 Research approach

In this study, we followed the participatory research approach where we played the role of an active

participant [7]. This means that through participating in the process, we tried to understand the

handover process studied by actively observing what did happen and what did not happen in the

process. We also provided support to the company while implementing the EM
3
 practices. In this way,

we gained a close familiarity with the process and the people performing the process. To get as much

intimacy with the handover process as possible, we used a wide range of data collection methods such

as direct observation, active participation, collective discussions, brainstorming sessions, analysis of

the organizational documents, and informal interviews. In this way, we could identify similarities and

discrepancies between the EM
3
 practices and the handover process studied. In other words, we were

able to obtain accurate and detailed knowledge about the handover process, and thereby, we were able

to evaluate its usefulness and applicability in an industrial setting.

3.2 Research steps

The handover process studied took three weeks to perform and the duration of our participatory

observation research corresponded to the part of the handover process corresponding to the project

parking phase. During this time, we conducted four major steps that are typical of a participant

observation method [7]. These were (1) Establish Rapport, (2) Acting in the Field, (3) Recording

Observations, and (4) Analyzing Data.

 The first phase, the Establish Rapport phase, lasted for only one day. We visited the company

studied, we acquainted ourselves with the company’s employees and acquired some introductory

information about the company’s situation. Here, we had a meeting with the project manager who

provided us with the big picture of the organization, the system and the processes used for managing

the system. We then spent the remaining time of the day on becoming friends with the company’s

employees. We strongly believed that establishing a good relationship would promote cooperation.

 In the Acting in the Field phase, we tried to act just as the company’s “local” member with some

minor exceptions [7]. In addition to acting as a local, we had to get a thorough understanding of the

company, its product and processes. For this reason, we studied all the organizational documentation

that was relevant and available. Just because not much documentation was in place, we continued our

study via informal discussions with the company’s employees.

 As an active team member, or now as a local, we worked on implementing the handover process

using EM
3
: Handover Framework. Being fully integrated with the company’s transition team, we

played the role of an active participant observer. Here, we conducted all kinds of activities starting

from participating in the morning startup meetings, planning the handover process, conducting and

monitoring the handover process, documenting the process, brainstorming, and supporting the

company’s management in decision making.

 The third phase, the Recording Observations phase ran in parallel with the Acting in the Field

phase. While observing the process, we followed the implementation of almost all of the EM
3

framework practices, compared the framework’s activities with the company’s handover activities and

evaluated their applicability. Wherever it was relevant, we suggested improvements in the light of EM
3

Framework. This helped the company to cover the gaps in their handover process and helped us gain

feedback for improving the EM
3
: Handover Framework.

 Regarding the EM
3
 activities that could not be implemented in the process studied, we first asked

whether the company conducted them in other handover cases and inquired about their usefulness

using mainly semi-structured interviews. We also conducted the interviews with the purpose of finding

the reasons behind the handover process studied, its main challenges, and the actions that could be

taken to remedy the challenges. Finally, in the Analyzing Data phase, we studied each of the EM
3

activities in order to find out whether it was fully or partially implemented and to find out reasons for

their non-adherence to the executed handover process. It is these findings that constitute the

contribution of this paper.

4 EM
3
: HANDOVER FRAMEWORK

EM
3
: Handover Framework provides a skeletal structure of six different parts that are necessary for

creating handover processes. It is a result of an explorative study made in 61 companies [8]. As shown

in Figure 2, its central part is EM
3
: Handover Taxonomy – a set of component practices including the

activities that play a significant role in executing a handover process. The taxonomy activities may be

used for orchestrating handover processes using the framework’s other five parts such as (1) Handover

Types designating three types of software handover, (2) Handover Contexts placing handover within

software lifecycle, (3) Handover Roles identifying the main responsibilities in the handover process,

(4) Handover Lifecycle Roadmap designating time spaces in the handover lifecycle phases, and (5)

Handover Guidelines providing support to the organizations in their handover endeavors. Due to the

space restrictions, we do not explain each part of the framework. We rather focus on EM
3
: Handover

Taxonomy - the core part of EM
3
: Handover Framework.

4.1 EM
3
 Handover Taxonomy

EM
3
: Handover Taxonomy comprises eight practices important for implementing software system

handover. These are (1) Management and Administration, (2) Maintenance Environment, (3) Version

and Configuration Management, (4) Training, (5) Deployment, (6) Documentation, (7)

Maintainability Management, and (8) Software System Transfer. In this section, we briefly describe

them and their constituent activities. To be able to follow our descriptions, we strongly advise our

reader to follow the EM
3
 activities in Table 1.

4.1.1 Management and Administration

The Management and Administration (MA) practice includes the activities required for handling and

controlling the handover process. The success of the overall handover process strongly depends on this

practice. As shown in Table 1, the practice contains activities starting from planning a handover

process, to managing it and to, finally, evaluating it postmortem.

 Before starting transition, the organizations should identify its type and complexity. For instance,

transition might be of a self-to-self type where the transitioners are the transitionees or it might be of

an external type where the transitioners and transitionees are separate teams or organizations. The

transition might be of a high complexity implying a handover of a large safety critical system among

several organizations or it might be as simple as a self-to-self handover of a newly developed small

system version (see Table 1).

 As a next step, the transition team should create a transition plan and assure that important

management plans supporting the transition process are in place. Being guided by parameters such as,

for instance, transition deadline, resource constraints and the like, the transition plan should define

transition manpower resource requirements, budget and schedule. The management plans, on the other

hand, should plan for the processes that interact with the transition process. Examples of them are

development, maintenance, quality management, to mention a few. A communication model should be

Figure 2. EM3: Handover Framework

in place for interacting and transferring knowledge between different parties participating in the

handover process. Finally, the handover process should be continuously monitored and it should be

evaluated postmortem for future improvements.

 Determining the transition type and complexity is a prerequisite for defining a transition strategy,

for establishing a transition team, for defining a transition process, and for designating a transitionee.

A transition team should from now on manage and administer the transition process. It should enlist

all its core activities, and the activities that are part of other processes, the processes that either impact

or are impacted by the transition. Failing to identify them may jeopardize the whole transition process.

Finally, all the stakeholders involved, including the transitionees, should agree upon the design of the

transition process to be executed.

4.1.2 Maintenance Environment

The transitionee has to have the environment that is right from the beginning. Hence, the Maintenance

Environment (ME) practice includes the activities that are required for determining the needs for

hardware suites, software suites and maintenance support suites and activities required for their

installation (see Table 1).

 The needs should be determined in advance in cases one transfers a newly developed system. In

other cases, the current suites should be assessed whether they still fulfill their function. Here, one

should identify their potential adequacies and deficiencies and assure that they are compatible across

all the environments, that is, the environments of the transitioners, transitionees and of the customers.

If the suites are not determined or assessed in advance, then there is a risk that they will not be

delivered on time, that the transitionee will not get enough time for learning them or that they may

face compatibility problems, and thereby, waste valuable time. This, in turn, implies a risk that the

customer will not get efficient support during the initial phases of system operation.

4.1.3 Version and Configuration Management

The Version and Configuration Management (VCM) practice includes the activities required for

keeping track of the changes made to a software system before, during and after handover. The

practice is critical for assuring that the system that has been handed over includes the right

components that are compatible with the components on the transitioner, transitionee and customer’s

sites. As shown in Table 1, it deals with placing the system under version and configuration

management and it deals with managing baselines.

 It goes without saying that it is significant to baseline the software system to be handed over. In

the context of a system handover, at least two groups of baselines are relevant. These are test and

postdelivery baselines. The test baselines are created before the delivery of the system during different

testing phases. They constitute platforms for identifying and tracking all the changes made to the

system and for making important decisions on the delivery and handover. The postdelivery baselines,

on the other hand, are created just after the system delivery. They constitute important platforms for

synchronizing the changes across the development, maintenance and operational environments and for

assuring that they have identical or as identical as possible system copies.

4.1.4 Training

People involved in handover must be properly trained so that they will be able to work with the system

from the very first day after handover. For this reason, as shown in Table 1, the Training practice

focuses on training planning, creating training material and on providing training. The trainees are

mainly maintenance and support teams, acquirer and the topics to be taught are system structure and

operation, maintenance and support processes, and technology. In addition, the practice advocates

early involvement of the maintainers in attending to modification requests, performing white-box

testing and onsite support as an alternative form of training.

 To ensure that the training is effective, the practice also designates the roles responsible for the

training process. These are (1) the role responsible for managing the overall training process and the

(2) role responsible for providing the training. Finally, the component practice suggests that the

educational policies be developed and followed by all the handover projects.

4.1.5 Deployment

Deployment is a critical prerequisite step for commencing software operation and maintenance. As

shown in Table 1, the Deployment practice includes activities starting from defining release scope and

contents to preparing for installation, to installing and deploying the system, to finally, closing the

deployment and planning for future releases.

 The starting steps within deployment are identifying the scope and contents of the release and

creating a team responsible for it. Afterwards, preparations for deployment include development of

installation procedures, identification of the stakeholders impacted by the release, preparations of the

release and build documentation and updates of access rights. It is especially important that

installation procedures are in place to back out releases in case of failures. Organizations cannot afford

to keep their systems shut down for longer periods of time while installing new releases. Finally, the

system deployment is reviewed and a decision is made on the deployment closure. In parallel with the

above-listed deployment activities, it is important to plan for future releases. The planning includes

activities for identifying features to be deployed in the next release, activities for determining the

impact of the externally acquired components, activities for estimating release effort, size and time,

and the activities for defining hardware/software infrastructure requirements.

4.1.6 Documentation

The Documentation component practice focuses on establishing a system documentation repository

and mechanisms for controlling its status. Both developers and maintainers need a central location for

storing software system documentation and for assuring that nothing gets lost while handing over a

software system. As shown in Table 1, the practice includes (1) activities for establishing a system

documentation repository providing rudimentary services such as access, store, update, remove, grant

access rights, (2) activities for subjecting the documentation repository to SCM, and (3) mechanisms

for controlling the status of the system repository. The practice also suggests that the documentation

standards be established, and finally, that the documentation repository be handed over to the

transitionee.

 4.1.7 Maintainability Management

The Maintainability practice includes assessment of two types of maintainability: (1) system

maintainability referring to the ease with which one changes the system, and (2) data maintainability

referring to data integrity, correctness and consistency. If the system is not maintainable, it then

becomes difficult for the maintenance team to understand, and thereby, difficult to evolve and change.

If the data is defective or inconsistent, then the company may encounter the problem of a critical data

loss.

 Both maintainability types must be assessed before system handover. As shown in Table 1, the

company must define appropriate system and data maintainability attributes, define rules for adhering

to them, identify milestones for assessing them, and finally, assess them. After finalizing the handover

process, the organizations should assess their procedures for managing and controlling data and

system maintainability.

4.1.8 Software System Transfer

The Software System Transfer practice was added to EM
3
: Handover Taxonomy during this study.

While observing the company’s process, we realized that our taxonomy missed the practice of keeping

track of the status and readiness of the software system to be handed over. As shown in Table 1, the

Software System Transfer practice focuses on monitoring the status of software components, managing

modification requests, and on actually transferring the system.

 During the development and testing phases, one should continuously monitor the progress of the

system. Its components may still be either under development, testing or they may be ready for

deployment. Continuous monitoring of system components is pivotal for evaluating the system status

and for making decisions on whether to hand it over or not.

 To be able to monitor the system status, its changes or the need for system changes, the practice

suggests creating a template for managing information about modification requests and for placing the

modification requests in a modification request repository. The status of modification requests must be

monitored during the handover phase. Their severity and complexity will then provide a basis for

decision making.

 The last major activity of the practice includes the transfer of the system components, of the

operational data and of all the unresolved modification requests. Regarding the operational data, the

maintenance team needs the data that was operated on while the problem got encountered. Hence, it is

enough that they have access to its replica only. They do not need to access its master copy. Providing

the maintenance team with the master copy only implies the risk of unintentional corruption. Finally,

the practice advocates the monitoring of the system after the handover and the signing off of the

software system handover after approval of all the parties involved.

5 STATUS

In this section, we present the course of implementing EM
3:

 Handover Taxonomy at E-Identity. When

doing it, we try to follow the order of the activities as listed in the Tables 1. Sometimes however, for

presentational reasons, we had to change their order. Due to space restrictions, we could not report on

the implementation of all the EM
3
activities. Therefore, we only report on the most important ones. For

more information, the interested readers are welcome to study [8] . Finally, while participating in the

handover process, we could not observe the implementation of all the EM
3
activities. Some of the EM

3

activities were not relevant in the handover context studied. However, to be able to evaluate those EM
3

activities, we inquired about their applicability and usefulness in other handover processes that the

company had experienced. To distinguish them from the observable ones, we mark them with +(i)

standing for “inquired and performed”.

5.1 Implementing the Management and Administration practice

E-Identity has implemented almost all the activities listed in the Management and Administration

practice. As shown in Table 1, we could observe the implementation of all except for two activities. At

the moment of writing this paper, the company could not evaluate the transition process postmortem

due to the fact that the transition project had not been finalized yet. Neither could it define any

additional manpower resources required for the whole transition process. Due to financial reasons,

their resources were restricted to simply what they had.

 Concerning all the other activities in the Management and Administration practice, they were all

followed by the company studied. E-Identity experienced a self-to-self type of handover and, due to

unavailability of the transitionee, it deemed the transition process to be of a very complex nature. For

this reason, their transition strategy focused on the following four sub-strategies: (1) Strategy 1

determining the future transitionees, (2) Strategy 2 designating a future transition team, (3) Strategy 3

designing the transition process, and (4) Strategy 4 establishing ways of transferring knowledge.

 Regarding the design of the transition process (Strategy 3), the company decided to structure it into

two phases: (1) the project parking phase to be conducted by the transitioners and (2) the project

resumption phase to be conducted by the transitionees. At the moment of writing this paper, the

project parking phase got finalized and the resumption phase had not yet started. However, the

company had outlined an overall transition process that would facilitate the future project restart. The

process included the activities for preparing for the project restart and for restarting the project. The

preparations included preparing the organization and its product and processes for the project parking

and resumption, recruiting transitionees, and training them.

 According to Strategy 2, not the whole transition team could be designated in advance. Part of the

team was created for conducting the project parking phase. This part comprised project manager,

product owner, development team lead, and researcher. Another part of the team will be created in the

project resumption phase in the future. The members that will stay on this team will be project

manager and product owner. The members that will leave the team will be the development team lead

and researcher. In addition, some of the new hires will join the transition team. According to Strategy

1, the future transitionees will be consultants instead of fixed-term employees. The company claims

that this will substantially reduce project restart time and cost.

 Regarding Strategy 4, the strategy concerning the transfer of knowledge between the transitioners

and transitionees, the company was aware of the fact that the two groups would not have the

opportunity to communicate with each other. For this reason, Strategy 4 dealt with creating a

documentation of the company’s products, processes, and technology. The documentation would

constitute the main channel of communication.

 Overall, the transition process studied was carefully planned and continuously monitored. Its plan

focused on determining current and future manpower resources, budget required, facility resources and

training effort and time required for parking and resuming the project. The estimated manpower

resources for resuming the project were five to eight developers and the estimated time for resuming

development was two months. The facility resources would not change; the new team would use the

company’s current facilities.

5.2 Implementing the Maintenance Environment practice

E-Identity has implemented all the activities listed in the Maintenance Environment practice. We had

the opportunity to observe the implementation of all except for one activity, the activity of granting the

transitionee access permission to hardware/software suites. This is because the transitionee has not yet

been designated.

 The implementation of all the Maintenance Environment activities went very smoothly, mainly

thanks to the fact that the transition took place within one and the same company. The hardware and

software suites and maintenance support suites were already determined and installed. The company

did not need to determine any new suites. Neither did they need to assure that the suites matched each

other. They all did by default.

 Regarding the matching of the company’s suites with the customer’s suites, it was the product

owner who assured that the company’s hardware and software suites matched for all the groups

involved. However, while assessing the hardware/software and maintenance support suites, the

company encountered two deficiencies. First, the hardware/software suites were not efficient enough.

Therefore, the company decided to migrate their system to another application server – JBoss [9], with

the purpose of achieving better efficiency soon after the project resumption. As a result, they had to re-

assess their current hardware and software suites to make sure that they were compatible with JBoss.

Regarding the maintenance support suites, when assessing them, the company had discovered that

some of the development tasks that had been shown as resolved in Jira (a tool managing requests)

were not integrated into the main branch in their central version control repository – Git [10], the

repository in which the code was stored. The solution was only available on the developer’s local

machines. It was decided that the project resuming team would attend to this deficiency in the future.

5.3 Implementing the Version and Configuration Management practice

The company has implemented all except for two EM
3
 activities for managing version and

configurations. The activities that have not been implemented concerned the identification and

tracking of the customizable configuration items during handover. The reason for why they were not

implemented was the fact that the company had only one customer. Hence, they did not experience

any customization needs.

 Regarding the activities that got implemented, we only had the opportunity to observe an

accomplishment of a subset of them. As indicated in Table 1, we observed the complete

accomplishment of Activities VC1 and Activity VC 2.1, that is, the activities concerning the

management of versions, configurations and baselines. We did not have however the opportunity to

observe the accomplishment of Activity VC2.2 concerning the establishment of post-delivery

baselines. Nonetheless, we inquired about how they were performed in normal handover cases.

 The company establishes four baselines: developer test, system test, acceptance test, and

deployment baselines. Due to the fact that its developers continue with maintenance, the activity of

assisting developers in attending to problem reports during acceptance testing was not relevant.

Developers attend to all problems during both system and acceptance testing. Finally, the company

identifies and tracks configuration items, keeps track of the changes made to the baselines, and notifies

its relevant stakeholders about the changes made.

 While following the handover process at E-identity, we observed an additional baseline that we had

not recognized in our model. It is a release baseline. It is a separate release branch that is created

during deployment. It includes all the changes made to the software system during deployment. Its

changed code is then merged with the main branch which is then synchronized with the all the

development, maintenance and operational branches.

 Whenever problems arose during the handover phase, the transition team discussed their nature and

made decisions on whether to resolve them or not. Problems of critical nature were urgently attended

to whereas problems of less serious nature were to be resolved after the handover. Finally, the project

manager created post-delivery baselines for operation and maintenance of the system.

5.4 Implementing the Training practice

Training was regarded as one of the most important practices of the company’s handover process.

Hence, all the EM
3

training activities had been implemented. However, as shown in Table 1, at the

moment of conducting this study, the company only implemented the training activities from T1 to

T5.1, the activities focusing on the designation of the role responsible for the training, on planning of

the training, and on parts of preparing training material. Regarding the remaining activities, the

company will perform them in the project resumption phase. Its trainees are the transitionees and the

planning for their training focused on creating a thorough system and process documentation on

different granularity levels. Since their product is an electronic notary public, the company had also

created training material on legal constraints.

 The future trainee group would constitute staff of five to eight developers and the future trainer

would be the transitionee himself and the project manager, the only employee who has stayed. With

this, we mean that the new hires will be highly responsible for self-educating themselves under the

mentorship of the project manager. Their training will comprise studying practically everything

starting from acquiring an overview of the system, overview of the company and of its processes and

ending up on performing various tasks such as studying documentation, attending to modification

requests, writing test cases, exercising the system, and so on. All this will be based on the training

material that corresponds to the documentation that had been created or updated during the handover

process. It was also planned that the initial tasks would be simple in nature. They should help the

transitionee to gradually understand the system. The company estimated that each transitionee would

require two months to learn the system in order to start working productively.

5.5 Implementing the Deployment practice

All the deployment activities as defined in the Deployment practice have been implemented by the

company studied, that is, the company has defined and planned the scope and type of the releases,

defined installation procedures, installed the system, closed the deployment and planned for future

releases. At the moment of our study, we did not have the opportunity to experience the full

deployment process to an external customer. We only observed the internal deployment process.

 The company had two types of deployment: (1) internal deployment of infrastructure API

transferred from the infrastructure development team to the application development team, and (2)

external deployment of a ready application from the application development team to its external end-

user customers. The main reason for conducting the internal deployment during handover was to

provide an updated and stable version of API to the application development team before freezing the

system. The application development team would then continue their work on developing the

application after project parking.

 The steps in the internal deployment process studied were (1) establish a deployment branch for the

release, (2) compile and verify the deployment branch by performing deployment readiness tests, (3)

make changes to the deployment branch code to solve the problems encountered during testing, (4)

integrate those changes in the main branch, (5) de-install the former system version, (6) install the new

system version, and, (7) install the operational data. Finally, the company closed the deployment by

reviewing the whole deployment process and by making sure that it ended in a correct manner.

5.6 Implementing Documentation practice

The company had implemented all the activities in the Documentation practice. As indicated in Table

1, some of the activities were however partially accomplished. These concern defining organizational

policies for developing documentation standards and creating mechanisms for controlling the quality

of system documentation. The reason is the fact that the development team gave priority to meet the

delivery deadline, and hence, they put less emphasis on documentation quality. Therefore, the

documentation was outdated with low quality before the beginning of the project parking phase. The

company realized this during the project parking phase, and therefore, decided to develop the

documentation standards in the future.

 Some other activities could not be observed while conducting our study. These concern sharing

documentation standards and documentation repository with the transitionee. The reason is the fact

that the transitionee has not been decided yet. However, in normal handover cases, the company shares

the repository by default due to the fact that the transitioner was the same as the transitionee. The

activities that we could observe concerned the establishment of system documentation repository,

definition of the services to be provided by the repository, subjecting the repository to SCM and the

sub-activities of the establishment of the documentation standards. Finally, the company had no

mature documentation standards. At the moment of conducting this study, they had no other standards

than the templates for describing modification requests.

5.7 Implementing Maintainability Management practice

The company has not fully fulfilled the Maintainability practice component. As indicated by Table 1,

it has not defined any procedures for assessing data maintainability. They claim that the reason is the

fact that the system is not yet fully operationalizable. Hence, it does not have any operational data to

consider.

 The company has only partially defined procedures for assessing system maintainability. This

means that it has defined various quality attributes concerning mainly architectural design and coding

standards, however, it has not documented them. The definition of system maintainability lies in the

heads of the employees instead. Despite this, the company uses it on a regular basis while assessing

the system state at the end of each development tollgate.

 Finally, at the moment of conducting our study, the company realized that one important

maintainability attribute was missing. It concerned the traceability between the system documentation

and code. The system documentation played the most important role in the company’s handover

process. It was a prerequisite for resuming system development and it was the only source of

information for the project resumption team. For this reason and for the reason of attending to the

traceability problem, the company revised all the documentation and made sure that it conveyed as

much information as possible about the system and its status and that it could be easily traced across

its code and documentation.

5.8 Implementing Software System Transfer practice

The Software System Transfer practice was added to EM
3
: Handover Framework during this study. Just

because its activities mirror the activities that were conducted in the company studied, the company has

implemented all of them. However, as shown in Table 1, at the moment of conducting this study, we

were able to observe the implementation of only Activities ST1 to ST3, that is, monitoring of the

status of system components, making decisions on the components to be handed over and managing

modification requests. We could not observe the implementation of Activity ST4 dealing with the

actual system transfer. The reason is the fact that the transitionee has not yet been designated, hence,

this activity would take place in the project resumption phase.

 From the handover perspective, the company distinguished between three types of system

components. There were (1) stable components, (2) components under testing, and (3) components

under development. The stable components were ready to be used in the system. The components

under testing would need to undergo low and high-level testing. The components under development

would need to be developed from scratch. All these components were managed with the already-

mentioned modification requests managed by Jira.

6 ANALYSIS

A quick scan through Tables 1 shows that almost all of the EM
3
’s activities have been implemented in

the handover process studied. Not all of them however were directly observable due to its specific

handover case. The activities that could not be observed either concerned general prerequisite

handover activities or the activities to be performed in the project resumption phase; the phase that the

company has not performed yet. Out of the total of EM
3
’s activities, 66% could be directly observed

and 21/% were inquired about. Only 6% were partially performed and as few as 4/% were not

performed at all. Finally, 2% of the activities were not applicable and 1% of the activities was not

relevant.

 Except for a new component practice, Software System Transfer, and its activities, our study has

not led to any additions of new activities. It has rather led to the confirmation that almost all the EM
3
’s

activities were easily applicable in the handover context studied. It has also helped us identify a new

context of a handover process where transitioners will never have the opportunity to learn to know the

transitionees.

 In this study, we have distinguished between two groups of practices: (1) the practices that

contributed to the confirmation that they were applicable and relevant in the context studied, however,

they did not lead to any new knowledge or lessons learned, and (2) the practices that both confirmed

their relevancy and applicability and also contributed to new knowledge and lessons learned.

 To the first group belong Maintenance Environment, Version and Configuration Management, and

Maintainability Management. Here, however, we could confirm that clear evidences and consequences

of non-synchronization of code at developer’s machine with the central version control repository

could lead to a series consequence of losing important code changes. Moreover, we could confirm that

separate baselines should be established for making changes in the code without altering the master

baseline and that the presence of issue tracking software was significant for handover. It provides an

overall picture about the existing problems in the system. To the second group belong Management

and Administration, Training, Documentation, and System Transfer. They have helped us to learn the

following lessons:

 In all transition contexts, one should designate a transition team. Initially, such a team is not

complete, but it at least includes a set of representatives from both the transitioners and

transitionees’ sides. In the context of our study, however, the team included only the

representatives from the transitioner side. The transitionee was not yet known. For this reason, the

only communication channel that was possible was a very detailed documentation of the

company’s products, processes, and technology. There was no other way for those two groups to

communicate.

 The specific context of the handover process studied forces the transitionee to be both the trainer

and trainee. This means that the new hires will be responsible for self-educating themselves using

the documentation created during the project parking phase.

 Handover does not only take imply a transfer from the parties involved in development to the

parties involved in maintenance. It may very well take place internally between two development

teams where one team develops a development platform to be then used for developing a system

by another team.

 During handover, it is important to keep track of the software system and the health and progress of

its components. For this reason, one needs to clearly distinguish between (1) stable components, (2)

components under testing, and (3) components under development. Only then one may make

decisions on their deployment, and thereby, handover.

 We noticed that the status of modification requests was decisive in handover. The magnitude and

nature of modification requests aids in revising the handover decision.

 Finally, we identified new documents that were especially created for the unique handover context

studied. The included creation of project startup procedure, project status and developer skill set

documents. These documents would help the future transitionee to understand the system status

and restart the project in an optimal way.

7 Epilogue

In this paper, we have reported on the results of implementing the taxonomy activities inherent in

EM
3
: Handover Framework. Our goal was to observe their implementation and examine its

applicability and usefulness in a real-world industrial scenario. The handover was of a self-to-self

handover type and it was conducted in a context where the company studied was forced to park a

development project due to financial problems.

 Even though EM
3
: Handover Framework has been originally explored within sixty one companies

and has shown to be useful in this study, we strongly advise the software community to continue to

explore the handover domain and to evolve our framework. More handover contexts need to be

explored and more studies need to be done to evaluate EM
3
: Handover Framework and assure its

usefulness and accuracy in an industrial setting. We believe however, that this study has already

provided evidence that EM
3
: Handover Framework is on the right path towards providing a fully-

fledged support for creating handover process models.

References
[1] T. Pigoski, Practicle Software Maintenance: Best Practices for Managing Your Software Investment, John Wiley &

Sons, 1996.

[2] T. M. Pigoski och C. S. Looney, ”Software Maintenance Training: Transition Experiences,” 1993.

[3] T. M. Pigoski och J. Sexton, ”Software Transition: A Casestudy,” i International Conference on Software Maintenance

ICSM, 1990.

[4] I. O. Standardization, ”ISO/ IEC 15288, Systems and software engineering- System life cycle processes,” IEEE, 2008.

[5] I. O. f. Standardization, ”ISO/IEC 14764:2006, Standard for Software Engineering- Software Life Cycle Processes-

Maintenance,” IEEE, 2006.

[6] T. Vollman, ”Transitioning from development to maintenance,” i Conference on Software Maintenance, San Diego, CA,

1990.

[7] J. T. Howell, Hard Living on Clay Street: Portraits of Blue Collar Families. Prospect Heights, Illinois, Waveland Press,

Inc, ISBN 0881335266, 1972.

[8] A. S. Khan, A Framework for Software System Handover, Stockholm: KTH, Software and Computer systems, SCS,

http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-122270, ISBN:978-91-7501-739-6, 2013.

[9] JBoss, ”JBoss Applicaiton server,” JBoss, 2013. [Online]. Available: http://www.jboss.org/.

[10] G. Hub, ”Git open source distributed version control system,” Git, 2013. [Online]. Available: http://git-scm.com/.

[11] Atlassian, ”Jira Project Tracker,” Atlassian, 2013. [Online]. Available: http://www.atlassian.com/software/jira/overview.

Table 1. EM
3
: Handover Taxonomy practices with activities part 1

+ stand for observed and performed, +(i) stand for inquired and performed, -- stands for not performed, P stands for partially performed and NA stands for not applicable.

Plan stands for handover planning, Impl stands for handover implementation and Clos stands for handover closure.

Activities Status Phase

MANAGEMENT AND ADMINISTRATION
MA 1: Determine/redetermine type and
complexity of transition

+ Plan

MA 2: Define a strategy for transition
process

+ Plan

MA 3: Designate a transitionee + Plan

MA 4: Establish a transition team + Plan

MA 5: Define a transition process + Plan

MA 5.1: Identify core transition activities + Plan

MA 5.2: Identify activities of other
processes that impact or are impacted by
the transition

+ Plan

MA 6: Agree upon the executed
transition process

+ Plan

MA 7: Create/adjust a transition plan + Plan

MA 7.1: Define/adjust parameters guiding
the design of the transition plan

+ Plan

MA 7.2: Create the transition plan using the
parameters

+ Plan

MA 7.3: Define transition resource
requirements

+ Plan

MA 7.3.1: Define manpower requirements + Plan

MA 7.3.1.1: Define maintenance manpower
requirements

+ Plan

MA 7.3.1.2: Define developer manpower
resources

+ Plan

MA 7.3.1.3: Define transition team
manpower resources, if any

+ Plan

MA 7.3.1.4: Define other manpower
resources, if any

NA Plan

MA 7.3.2: Define maintenance facility
requirements

+ Plan

MA 7.4: Determine transition budget + Plan

MA 7.5: Create a transition schedule + Plan

MA 8: Develop management plans
necessary for transition

+ Plan

MA 9: Determine a communication
model to be used within transition

+ Plan

MA 10: Monitor the transition process + Impl

MA 11: Evaluate the transition process
postmorten

+ Clousre

Activities Sta.us Phase

MAINTENANCE ENVIRONMENT
ME 1. Manage hardware/software suite needs + Plan

ME 1.1: Determine hardware/software suite needs + Plan

ME 1.1.1: Determine hardware and software
packages constituting the hardware/software suites

+ Plan

ME 1.1.2: Assure that hardware/software suite needs
match the developer’s hardware/software suites

+ Plan

ME 1.1.3: Assure that hardware/software suite needs
match the customer’s hardware/software suites

+ Plan

ME 1.2: Install hardware/software suite + Impl

ME 1.3: Grant the transitionee access permission to
hardware/software suites

+(i) Impl

ME 1.4: Assess current hardware/software suite, if
any

+ Plan

ME 1.5: Remedy the deficiencies in
hardware/software suite , if any

+ Impl

ME 2: Manage maintenance support suite + Plan

ME 2.1: Determine maintenance support suite + Plan

ME 2.1.1: Determine software packages constituting
the maintenance support suite

+ Plan

ME 2.2: Install maintenance support suite + Impl

ME 2.3: Assess maintenance support suite + Plan

ME2.4: Remedy the deficiencies in maintenance
support suite , if any

+ Impl

VERSION AND CONFIGURATION MANAGEMENT
VC 1: Manage version and configuration + Impl

VC 1.1: Define rules to uniquely identify, name and
label the configuration items and their relationships

+ Plan

VC 1.2: Define how the configuration items are to be
selected, grouped and classified

+ Plan

VC 1.3: Decide on how to identify and track changes
made to customizable configuration items during
handover

NA Plan

VC 1.4: Put software under configuration
management

+ Impl

VC 1. 5: Place software under version control
management

+ Impl

Activities Status Phase

VC 2: Manage baselines + Impl

VC 2.1: Establish test baselines (system test
baseline, acceptance test baseline)

+ Impl

VC 2.1.1: Assist developers in attending to
problem reports during acceptance testing

NR Impl

VC 2.1.2: Identify and track customizable
configuration items during handover

NA Impl

VC 2.1.3: Keep track of the changes made
to the baselines

+ Impl

VC 2.1.4: Notify all the stakeholders
involved about the changes made to the
system

+ Impl

VC 2.2: Establish post-delivery baselines
(operational baseline and maintenance
baseline)

+(i) Closure

VC 2.2.1: Check whether the reported
problems are not of critical nature

+(i) Closure

VC 2.2.2: Synchronize system changes made
during system handover in all the
environments (operational, development and
maintenance)

+(i) Closure

VC 2.2.3: Assure that the identical copies (or
as identical copies as it is possible) are
installed in the operational, development and
maintenance environments

+(i) Closure

VC 2.2.4: Accept and approve the system
for operation and maintenance

+(i) Closure

TRAINING
T 1: Designate the role responsible for
managing the training process

+ Plan

T 2: Plan training + Plan

T 2.1: Identify training topics to be taught
(e.g. system, maintenance process, support
process, technology, legal aspects)

+ Plan

T 2.2: Identify the trainee groups + Plan

T 2.3: Determine training needs of each
trainee group with respect to the training
topics

+ Plan

T2.4: Define methods of training + Plan

T 3: Create/update training material + Plan

T 4: Identify the role responsible for
providing the training

+ Plan

T 5: Prepare for training + Plan

T 5.1: Adapt the training material to the
trainee group and its needs

+ Plan

T 5.2: Setup training environment, if required +(i) Plan

T 6: Provide training +(i) Impl

T 7: Involve maintainers in attending to
modification requests

+(i) Impl

Table 1. EM
3
: Handover Taxonomy practices with activities part 2

+ stand for observed and performed, +(i) stand for inquired and performed, -- stands for not performed, P stands for partially performed and NA stands for not applicable.

Plan stands for handover planning, Impl stands for handover implementation and Clos stands for handover closure.

Activities Status Phase

T 8: Involve maintainers in white box
testing and debugging

+(i) Impl

T 9: Provide onsite support, if needed +(i) Impl

T 10: Develop educational policies
providing guidance for developing
educational plans

+(i) Plan

T 11: Develop project specific
educational plan using policy
guidelines

+(i) Plan

DEPLOYMENT
DP 1: Define/continuously re-define
the scope and contents of the release

+ Plan

DP 2: Determine type of release
(major/minor)

+ Plan

DP 3: Create a deployment team + Plan

DP 4: Develop installation procedures + Plan

DP 4.1: Develop rollback procedures + Plan

DP 4.2: Develop installation manuals + Plan

DP 4.3: List organizations and
stakeholders affected by the new release

+ Plan

DP 4.4: Prepare release and build
documentation

+ Plan

DP 4.5: Define/continuously update the
access rights to release components

+ Plan

DP 5: Installation + Impl

DP 5.1: Take a backup of the system
release to be de-installed

+ Impl

DP 5.2: Perform deployment readiness
test

+ Impl

DP 5.3: Distribute and deliver the system
and /or system components at a correct
location and time

+ Impl

DP 5.4: Install the new system version + Impl

DP 5.5: Install operational data + Impl

DP 5.6: Record any incidents, unexpected
events, issues or deviations from the
release plan

+ Impl

DP 5.7: Perform deployment verification
tests

+ Impl

DP 6: Deployment Closure + Clos

DP 6.1: Review the system deployment + Post

DP 6.2: Close the deployment + Post

Activities Status Phase

DP 6.2: Close the deployment + Post

DP 7: Planning for future releases +(i) Plan
DP 7.1: Plan updates of future releases +(i) Plan
DP 7.1.1: Identify features to be deployed in the next
release

+(i) Plan

DP 7.1.2: Determine the impact of the externally
acquired components on the planned release and vice
versa, if relevant

+(i) Plan

DP 7.1.3: Estimate release size, effort, time and
hardware/software infrastructure required

+(i) Plan

DP 7.2: Determine the system distribution structure +(i) Plan
DP 7.3: Determine forms of deployment software +(i) Plan

DOCUMENTATION
D 1: Establish a system documentation repository + Plan
D 2: Define services to be provided by the system
documentation repository

+ Plan

D 2.1: Identify different types of services to be provided
by the system documentation repository

+ Plan

D 2.2: Determine groups of access rights to the services + Plan
D 3: Subject system documentation repository to
SCM

+ Impl

D 4: Establish documentation standards + Plan
D 4.1: Define organizational policies/rules/guidelines for
developing documentation standards

P Plan

D 4.2: Share documentation standards with the
maintenance team during handover

+(i) Impl

D 4.3: Develop templates for documentation according
to the defined policies/rules/guidelines

+ Plan

D 4.4: Create rules for updating the system
documentation repository

+ Plan

D 4.5: Create mechanisms for controlling the status of
the system documentation repository

P Plan

D 5: Transfer the documents from the documentation
repository to maintainer

+(i) Impl

MAINTAINABILITY MANAGEMENT
MM 1: Assess system maintainability P Plan

MM 1.1: Define system maintainability attributes P Plan

MM 1.2: Define rules and guidelines for adhering to the
system maintainability

P Plan

MM 1.3: Identify milestones for assessing system
maintainability

P Plan

MM 1.4: Assess system maintainability using the system
maintainability attributes

P Impl

Activities Status Phase

MM 1.5: Assess procedures for managing
and controlling system maintainability

P Plan

MM 2: Assess data maintainability -- Plan
MM 2.1: Define data maintainability
attributes

-- Plan

MM 2.2: Define rules and guidelines for
adhering to the data maintainability

-- Plan

MM 2.3: Identify milestones for
assessing data maintainability

-- Plan

MM 2.4: Assess data maintainability
using the data maintainability attributes

-- Impl

MM 2.5: Assess procedures for
managing and controlling data
maintainability

-- Plan

SOFTWARE SYSTEM TRANSFER
ST1: Monitor status of software
components

+ Impl

ST1.1: Identify stable software
components ready to be used in the
system to be handed over

+ Impl

ST1.2: Identify software components
under testing stage

+ Impl

ST1.3: Identify software components
under development stage

+ Impl

ST2: Make decision on the
components to be handed over

+ Impl

ST3: Manage modification Requests + Impl
ST3.1: Create a template for managing
information about modification requests
and their management

+ Impl

ST3.2: Place modification requests in a
modification request repository

+ Impl

ST3.3: Use modification requests to
revise the handover decision

+ Impl

ST4: Transfer software system +(i) Impl
ST4.1: Transfer the agreed upon software
components

+(i) Impl

ST4.2: Transfer the replica of the
operational data

+(i) Impl

ST4.3: Transfer modification requests +(i) Impl
ST4.4: Monitor the system after
handover

+(i) Clos

ST4.5: Singoff the handover closuer +(i) Clos

	Journal paper v 39-final.pdf
	Table 1 part 1 (1)
	Table 1 part 2 (1)

