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Abstract 

 

The importance of single-tree-based information for forest management and related industries in 

countries like Sweden, which is covered in approximately 65% by forest, is the motivation for developing 

algorithms for tree detection and species identification in this study. Most of the previous studies in this 

field are carried out based on aerial and spectral images and less attention has been paid on detecting 

trees and identifying their species using laser points and clustering methods. 

In the first part of this study, two main approaches of clustering (hierarchical and K-means) are 

compared qualitatively in detecting 3-D ALS points that pertain to individual tree clusters. Further tests 

are performed on test sites using the supervised k-means algorithm in which the initial clustering points 

are defined as seed points. These points, which represent the top point of each tree are detected from 

the cross section analysis of the test area. Comparing those three methods (hierarchical, ordinary K-

means and supervised K-means), the supervised K-means approach shows the best result for clustering 

single tree points. An average accuracy of 90% is achieved in detecting trees. Comparing the result of 

the thesis algorithms with results from the DPM software, developed by the Visimind Company for 

analysing LiDAR data, shows more than 85% match in detecting trees.  

 

Identification of trees is the second issue of this thesis work. For this analysis, 118 trees are extracted as 

reference trees with three species of spruce, pine and birch, which are the dominating species in 

Swedish forests. Totally six methods, including best fitted 3-D shapes (cone, sphere and cylinder) based 

on least squares method, point density, hull ratio and slope changes of tree outer surface are developed 

for identifying those species. The methods are applied on all extracted reference trees individually. For 

aggregating the results of all those methods, a fuzzy logic system is used because of its good reputation 

in combining fuzzy sets with no distinct boundaries. The best-obtained model from the fuzzy system 

provides 73%, 87% and 71% accuracies in identifying the birch, spruce and pine trees, respectively. The 

overall obtained accuracy in species categorization of trees is 77%, and this percentage is increased 

dealing with only coniferous and deciduous types classification. Classifying spruce and pine as coniferous 

versus birch as deciduous species, yielded to 84% accuracy.      
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Sammanfattning 

 

I bland annat den svenska skogsindustrin, där landets yta ät täckt av skog till 65%, är det av stor vikt att 

få fram information om skogen som är baserad på varje individuellt träd. Därför fokuserat denna studie 

på algoritmer för trädigenkänning samt för att artbestämma träd. De flesta tidigare studier inom 

området baseras från flygfoton eller satellitbilder mindre fokus har lagts på metoder som andvänder 

punktmoln från laserscanning.  

I första delen av studien görs en kvalitativ jämförelse av två olika sätt att arbeta med klusterbildning 

(hirarkisk och K-means) här söks efter 3-D ALS punkter som bildar individuella trädkluster. Fler tester 

utförs med ”supervised K-means”-algoritmen där de initierande klusterpunkterna definieras som seed-

punkter. Dessa punkter som representerar förälder-noden i varje träd kommer från ”cross section” 

analys av testytan. När man jämför dessa metoder (hriarkisk, vanlig K-means och ”supervised K-means”) 

visar ”supervised K-means” bästa resultatet för att ta fram kluster för enstaka träd. 

Medelnoggrannheten är 90 % för att identifiera enstaka träd. Om man jämför resultatet från denna 

studie med DPM mjukvara, som utvecklats av Visimind för att göra analyser av LiDAR-data så har 

resultatet från den 85 % noggrannhet. 

Den andra delen i studien består av att identifiera vilka arter träden har. För att kunna utföra analysen 

togs 118 olika träd ut för att användas som referensobjekt med arterna gran, tall och björk, de tre mest 

dominerande arterna i svenska skogar. Totalt användes sex olika metoder för att artbestämma träden, 

”best fitted 3D shapes” (konisk, sfärisk och cylindrisk), minstakvadratmetoden, punkt densitet, ”hull 

ratio”, förändring i lutning för ytterytan. Dessa metoder användes sedan på alla referensträd 

individuellt. För att kunna aggregera ihop resultaten användes ”fuzzy logic”-system eftersom systemet 

har bra rykte vad det gäller att kombinera ”fuzzy sets”. Den bästa modellen om man ser till ”fuzzy”-

systemet ger 73, 87 och 71 % noggrannhet då man identifierar respektive gran, tall och björk. 

Noggrannheten för alla sammanslaget för att kategorisera träd är 77 %, den procenten ökar då man 

väljer att klassificera barr och lövträd istället för mer artspecifikt, då får man istället 84 % noggrannhet. 
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1 Introduction 

 

1.1 Background 

Forests and trees are a crucial part of life on Earth, from maintaining biodiversity and cleaning the air 

and water, to providing basic human needs and contributing to culture and recreation1. Forests are 

important for us in three general aspects of environmental value, economic value and enjoyment value. 

They play an important role in the environment such as being a habitat for biodiversity, climate control 

and atmosphere purification. In addition to their role in global ecosystem, forests are the main source of 

timber and non-timber productions for the industry. The mentioned introduction about the importance 

of forests in human life is a motivation for doing investigations on forest inventory.  

General characterization of the forest in terms of tree numbers, species, forest condition, and 

regeneration is called forest inventory. In other words, the forest inventory is a systematic collection of 

data and forest information for assessment or analysis. The aim of the statistical forest inventory is to 

provide comprehensive information about the state and dynamics of forests for strategic and 

management planning2. The inventory of trees has a history, which began in the late 18th century. The 

first inventories such as estimating the volume and dispersing of trees were carried out based on visual 

inspections. As the 20th century progressed, new statistical methods of sampling were established and 

the appearance of the new computer technologies as well as aerial images, opened a new era in this 

field.  

These days, for collecting inventory data of an area, different approaches are being used with more 

advanced technologies such as Colour Infra-Red (CIR) images, aerial photographs and airborne laser 

data. The forest inventory is being performed at different resolutions, to gather the forest attributes for 

different purposes. In the diverse forests, a stand-wise approach is usually not sufficient for forest 

management planning as established in a number of European countries (Koch et al., 2006). The forest 

planning systems, especially for harvest management plans, typically work at the single tree level (e.g. 

Lämås & Eriksson, 2003). Therefore, single tree detection and related information extraction seems to 

become a prerequisite to fulfil these needs. Since remotely sensed data emerged and became a popular 

data source in forestry, there have been efforts to classify forest types of large areas (Nelson et al., 

1984). The access of new age high resolution remote sensing data has facilitated users analysis in forest 

inventory field (Brandtberg & Warner, 2006). 

Among high resolution remote sensing techniques, airborne laser scanning (ALS) has gained an 

important recognition as a complement for information extraction at individual tree level than other 

remote sensing sources (Koukoulas & Blackburn, 2005; Magnusson, 2006; Maltamo et al., 2006).    

                                                           
1
 http://www.janegoodall.ca/planet-releaf/documents/WhyForestsareImportant.pdf [Accessed 10 January 2013] 

2
 http://en.wikipedia.org/wiki/Forest_inventory [Accessed 10 December 2012] 

http://www.janegoodall.ca/planet-releaf/documents/WhyForestsareImportant.pdf
http://en.wikipedia.org/wiki/Forest_inventory
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A short description about Light Detection and Ranging (LiDAR) technologies and products have been 

given by Wang (2009). 

Since the last decade, the usage of three-dimensional (3D) ALS data with the application of different 

algorithms for single tree extraction is commonly exploited in the field of forestry in order to minimise 

the traditional forest inventory practices, which are very time, manpower and cost consuming. The costs 

of ALS data acquisition for single tree detection methods are higher compared to area based estimations 

(Næsset, 2002; Packalén, 2009). In addition, ALS based tree detection limited in a way that it can miss a 

portion of the smallest and/or understory trees (Persson et al., 2002). On the other hand, trees that are 

eventually detected correspond to the dominant tree layer (Vauhkonen, 2010). 

As only the upper part of the tree crowns are visible in vertical aerial photos, the exact measurement of 

the tree crowns is not possible. On the other hand, the tree trunk is invisible and there is no possibility 

for direct stem diameter measurement.  Based on the relation of crown size and the diameter of the 

stem, some regression models are created as allometric estimation of trees. Therefore using only aerial 

photos as a source of fundamental information for indirect estimation of tree species and tree allometry 

may result in prominent biases (Korpela, 2004). The demand for airborne LiDAR data with high quality 

(e.g. desirable footprint size, high point density) and more information (intensity, pulse width, number 

of echoes from each emitted laser pulse) has increased for various applications, like for the estimation 

of biophysical parameters in forest management performance using different techniques (Woodget et 

al., 2007; Suárez et al., 2008; Maltamo et al., 2009; Ørka et al., 2009) and environmental planning 

practices (Nilsson, 1996). 

In addition to tree detection, the classification of trees is also involved in this thesis work. The 

classification of vegetation, especially trees, has been a piece of useful information for many studies, but 

it is a challenging task because remotely sensed imagery data, provides little information about the 

internal structures of tree canopies. In many studies, tree classifications are performed by human 

interpretation using aerial photos. The introduction of small footprint airborne LiDAR opened up many 

research possibilities for forest studies because of the capability of LiDAR to penetrate canopies 

vertically and revealed some of their internal structures, thus, providing geometrical information about 

tree crowns and boles. For that reason, it is logical to develop methodologies that include the internal 

structures of individual trees (Ko et al., 2009). In addition to internal structure of tree, the outer surface 

and shape of it can be evaluated by 3D geometrical shapes.  

The major goal of this thesis work is to detect trees and identify their corresponding species. For this 

purpose, some algorithms are developed for detection and then based on clustering methods, the tree 

points are extracted and finally fuzzy logic inference system helps us to obtain a model for species 

identification. The thesis report is written in four major sections in which the Introduction section 

explains the overviews of methods that have been used in this study; the second section consists of the 

methodology of all developed algorithms. In the third part of the report, the results of the thesis 

algorithms are presented and compared with the results of other software for tree detection. The 

conclusion and future work for this study are outlined in the last section.   
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1.2 Overview of clustering methods 

Clustering of objects is as ancient as the human need for describing the salient characteristics of men 

and objects and identifying them with a type. Therefore, it embraces various scientific disciplines: from 

mathematics and statistics to biology and genetics, each of which uses different terms to describe the 

topologies formed using this analysis. From biological “taxonomies”, to medical “syndromes” and 

genetic “genotypes”, the problem is identical: forming categories of entities and assigning individuals to 

the proper groups within it  (Rokach & Maimoon, 2005). In the other words, cluster analysis divides data 

into groups (clusters) that are meaningful and/or useful. Classes or conceptually meaningful groups of 

objects that share common characteristics, play an important role in how people analyse and describe 

the world. Indeed, human beings are skilled at dividing objects into groups (clustering) and assigning 

particular objects to those groups (classification). Therefore, from a statistical pattern recognition view, 

clustering is the unsupervised classification of patterns (observations, data items, or feature vectors) 

into groups (clusters) (Gupta, 2010).  

Since clustering is the grouping of similar objects, some sort of measure that can determine whether 

two objects are similar or dissimilar is required. There are two main types of measures used to estimate 

this relation: distance measures and similarity measures. Many clustering methods use distance 

measures to determine the similarity or dissimilarity between any pair of objects. It is useful to denote 

the distance between two objects     and     in the data set   as:            A valid distance measure 

should be symmetric and obtains its minimum value (usually zero) in case of identical objects. The 

distance measure is called a metric distance measure if it also satisfies the following properties: 

1. Triangle inequality             (      )    (       )                                                            (1-1) 

2.  (      )                                                                                                                                (1-2)  

Given two p-dimensional objects that are characterized by a set of p measured attributes (variables),  

     (             ) and       (                ). The distance between the two objects can be 

calculated using the Minkowski metric (Han & Kamber, 2001): 

 (      )   (|        |
 
  |         |

 
      |         |

 
)
 

 ⁄
                                                    (1-3) 

The commonly used Euclidean distance between two objects is achieved when      . Given      , 

the sum of absolute paraxial distances (Manhattan metric) is obtained, and with       one gets the 

greatest of the paraxial distances.  

An alternative concept to that of the distance is the similarity function          that compares the two 

vectors     and   . This function should be symmetrical, i.e.                      , and have a large 

value when     and     are somehow “similar” and constitute the largest value for identical vectors.  

A list of clustering methods is shown in Figure 1, and common methods are explained further. 
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Figure 1: Different methods of clustering (adapted from Jain et al., 1999). 

1.2.1 Hierarchical methods 

The hierarchical methods construct the clusters by recursively partitioning the objects in either a top-

down or bottom-up fashion. These methods can be subdivided as follows: 

 Agglomerative hierarchical clustering: Each object initially represents a cluster of its own. Then 

clusters are successively merged until the desired cluster structure is obtained. 

 Divisive hierarchical clustering: All objects initially belong to one cluster. Then the cluster is 

divided into sub-clusters, which are successively divided into their own sub-clusters. This 

process continues until the desired cluster structure is obtained. 

The result of the hierarchical methods is a dendrogram, representing the nested grouping of objects and 

similarity levels at which groupings change. A clustering of the data objects is obtained by cutting the 

dendrogram at the desired similarity level. The merging or division of clusters is performed according to 

some similarity measure, chosen so as to optimize some criterion (such as a sum of squares). The 

hierarchical clustering methods could be further divided according to the manner that the similarity 

measure is calculated (Jain et al., 1999): 

 Single-link clustering (also called the connectedness, the minimum method or the nearest 

neighbour method) 

 Complete-link clustering (also called the diameter, the maximum method or the furthest 

neighbour method) 

 Average-link clustering (also called minimum variance method) 

Generally, hierarchical methods are characterized with the following strengths: 

 Versatility: The single-link methods, for example, maintain good performance on data sets 

containing non-isotropic clusters, including well separated, chain-like and concentric clusters. 
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 Multiple partitions: hierarchical methods produce not one partition, but multiple nested 

partitions, which allow different users to choose different partitions, according to the desired 

similarity level. The hierarchical partition is presented using the dendrogram. 

The main disadvantages of the hierarchical methods are: 

 The time complexity of hierarchical algorithms is at least       (where m is the total number of 

objects), which is non-linear with the number of objects. 

 Hierarchical methods can never undo what was performed previously. Namely, there is no back-

tracking capability. 

1.2.1.1 Hierarchical clustering in MATLAB 

The statistic toolbox in MATLAB provides a bunch of pre-defined functions for applying on data to do 

hierarchical clustering. In this thesis work, analysis of data set is carried out based on agglomerative 

hierarchical clustering. The algorithm can be described as below: 

1. In first step, the similarity of pairs of objects in data set should be found. As the most popular 

way to evaluate similarity is the use of distance, and on the other hand, the most widely used 

distance measurement is Euclidean distance. The distances are calculated by pdist function, 

which uses Euclidean distance. 

2. In next step, the pairs of points in close proximity are linked together by linkage function. This 

function uses the computed distances from previous step to determine the closeness of points 

to each other. The points are paired into binary clusters and those small clusters are grouped to 

bigger clusters until making a hierarchical tree that can be illustrated by dendrogram function.  

3. In last step, the branches (leaves) of hierarchical tree should be pruned to get optimal number 

of clusters. 

The principles of hierarchical clustering is explained below, which can be reached out using built in 

functions in MATLAB. 

Similarity Measures 

 As explained already, the popular method for similarity measure is distance. Pairwise distance between 

pairs of objects can be determined by the pdist function with applying different methods, the famous 

and frequently used method is Euclidean Distance that can be defined as:   √               
  

in which       are vectors consisting of objects. For a data set made up of m objects, there are m*(m – 

1)/2 pairs in the data set. The other methods are: Standardize Euclidean Distance (seucldiean), cityblock, 

minkowski, cosine, correlation … (MATLAB documentation). In this thesis, the default option of the pdist 

function, Euclidean Distance, is used due to its simplicity and efficiency in dense data.  
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Linkages and Dendrograms 

The linkage or amalgamation method is used to determine whether two clusters are sufficiently similar 

to be linked together.  Amongst the different linkage methods, average linkage is widely used because it 

is a compromise between the sensitivity of complete-link clustering to outliers and the tendency of 

single-link clustering to form long chains (Manning et al., 2008). For the creation of a hierarchical cluster 

tree, the weighted average distance algorithm is used, or also known as weighted pair-group method 

using arithmetic averages (WPGMA), one type of agglomerative or bottom-up algorithm (Sneath & 

Sokal, 1973) was used. 

A dendrogram can be considered as a graphical interface of linkages. In Figure 2, the component of the 

dendrogram is shown. Dendrograms consists of many U-shaped lines connecting objects in the 

hierarchical tree and defines links. The horizontal axis in the dendrogram represents the indices of 

objects in the data set and the vertical axis shows the distances between the grouped objects (clusters). 

These distances can be interpreted as height of the links, which connects clusters to each other. Each 

node in the diagram represents one object if the total number of objects does not exceed 30, otherwise 

each node may represent more nodes (MATLAB documentation).  

                       

Verify the cluster tree 

After linkage, the verification should be performed to see how accurate the computed distances and 

grouped objects are in comparison with the real distances and clusters. For this purpose, further 

investigations for verification analysis are carried out as follows:  

 Verify Dissimilarity: in the hierarchical tree, every pair of objects is connected together in some 

level and the height of link shows the distance of clusters containing those two objects. This 

distance is also called cophenetic distance between two objects. To reach to our purpose, the 

computed distances by pdist are compared with cophenetic distances, which are a result of 

linkage. If the clustering is valid, the linking of objects should have a strong correlation with 

distances. The value of the cophenetic correlation coefficient brings the answer. The closer the 

value to 1, the more accurate the reflected data. As explained before, the pdist and linkage 

functions have different methods to apply on data, so those differences affect the cophenetic 

coefficient, it is clear that the method, which gives better cophenetic value, will be used in 

process (MATLAB documentation). Equation (1-4) shows the mathematical definition of 

cophenetic coefficient:   

                                              
∑                   

√∑         ∑               

                                                     (1-4) 

where: 

   is cophenetic correlation coefficient. 

     is the Euclidean distance between objects   and  . 

     is the cophenetic distance between objects   and  . 

   and   are the averages of   and  , respectively. 
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 Verify Consistency: one of the ways to determine the cluster divisions in a data set is comparing 

the height of the link with the height of neighbour links underneath that link. If the link has 

approximately the same height of below links, then it is called to have consistency with 

components and there is no division between clusters. The value of consistency would be zero if 

two nodes have been investigated under one link. On the other hand, if the link height has 

noticeable difference with the height of the below links, it shows a natural division among the 

data set in that level of hierarchical tree. That link is said to be inconsistent with the links below 

it. The relative consistency of each link in a hierarchical cluster tree can be expressed as the 

inconsistency coefficient. This value compares the height of a link with the average height of the 

links below it. Links that join distinct clusters have a high inconsistency coefficient; links that join 

indistinct clusters have a low inconsistency coefficient (MATLAB documentation). 

 

Create Clusters 

For separating clusters using the dendrogram, there are several choices. As explained before, one of the 

factors for cutting the tree is the inconsistency coefficient, which presents a relative value of consistency 

between links in different levels of a tree. The second factor is the height of links. As shown in Figure 2, 

any horizontal line can cut the dendrogram in specific height for obtaining the desired number of 

clusters. For instance, the drawn dashed line cuts the tree to six clusters. The function of cluster can 

manage this task. 

 
Figure 2: The Dendrogram and its components. 
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1.2.2 Partitioning methods 

The workflow for the partitioning methods is relocating objects by moving them from one cluster to 

another, starting from an initial partitioning. For running these methods, the number of clusters should 

be determined and set in advance. A relocation method iteratively relocates points between the K 

numbers of clusters. Error minimisation algorithms are one of the sub-sections of partitioning methods, 

which are the most intuitive and frequently used methods among other types. The basic idea is to find a 

clustering structure that measures the distances of each object to its representative value. The most 

well-known criterion is minimising the Sum of Squared Errors (SSE), which minimises the total squared 

Euclidean distance of objects to their representative values (Rokach & Maimoon, 2005). The most 

common algorithm using squared error is K-means.    

1.2.2.1 K-means 

The K-means clustering is an iterative partitioning-based clustering mechanism. K-means has become 

the most common technique for partitioning a dataset in which the sum of the within-cluster variances 

are minimised (McQueen, 1967). The algorithm partitions the data set to K clusters (             ), 

represented by centroids. The centre point of each cluster is the mean of all objects, which it belongs to.  

The algorithm starts with an initial set of cluster centers, chosen at random or according to some 

heuristic procedure. In every iteration, each object is assigned to its nearest cluster centre according to 

the Euclidean distance between them. In the next step, the cluster centers are re-computed. The 

iterations continue while either partitioning error is not reducing by centre relocation, which means that 

the obtained cluster is the optimal one, or the iteration numbers reach to pre-defined number of 

iterations (Rokach & Maimoon, 2005).  

 

The popularity of this method is because of its linear complexity, which is considered as an advantage 

versus other clustering methods like hierarchical clustering with non-linear complexity. The complexity 

of K-means for l number of iterations and K cluster for   number of objects is       . In addition, the 

ease of interpretation, simplicity of implementation, speed of convergence and adaptability to sparse 

data are other advantages for this algorithm (Dhillon & Modha, 2001). 

1.2.2.2 K-means in MATLAB 

The statistics toolbox in MATLAB has functions to perform two types of clustering, hierarchical 

clustering, which was explained before and k-means clustering. It has been mentioned already that K-

means treats observations in the data set as objects, which have location and distance; it partitions the 

objects to K clusters such that all objects within one cluster are as close to each other as possible and far 

from other objects in other clusters. This approach can be applied on data by the kmeans function in 

MATLAB, this function has a capability to start the clustering either with random initial points or pre-set 

initial points and the method for computing the distances can be defined as well as the number of 

iterations (MATLAB documentation). 
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Validation of clustering 

After clustering the data by using any technique such as K-means into K clusters, silhouette plot can 

display a measure of how close each point in one cluster is to points in the neighbouring clusters. Peter 

Rousseeuw first described silhouette plot, which is a measure of cluster goodness in statistical analysis. 

A silhouette value (    ) for each object ( ) is defined as follows (Rousseeuw, 1987): 

                                                           
         

    {         }
                                                                   (1-5) 

where  

      is the average dissimilarity of object (i) with all other objects inside cluster A that object (i) 

belongs to. 

      is the average dissimilarity of object (i) with all other objects from nearest neighbouring 

cluster to A. 

From equation (1-5), the range of      is deducted as:          . If the numeric value of 

silhouette closes to 1, it implies that “within” dissimilarity      is much smaller than the smallest 

“between” dissimilarity     , therefore we can say that object (i) is well-clustered. If silhouette value 

closes to zero, it shows that the value of       and      are somehow the same and there is no 

distinct conclusion that which cluster the object (i) belongs to, so it can be considered as 

intermediate case. The worst case is to get silhouette value close to -1, which means that object (i) 

belongs to other cluster and “misclassified” (Rousseeuw, 1987). 

The silhouette value, which is used for analysing the clustering, is the mean of all the silhouettes of 

clusters. Figure 3 illustrates one sample silhouette plot for a data set with three clusters. It is clear 

that the third cluster has less dissimilarity within the cluster and totally better partitioned. 

 
Figure 3: Sample silhouette plot shows the values in horizontal axis and the number of clusters in vertical axis. 
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1.3 Single tree detection 

In the field of tree detection, some studies have been carried out since previous years for the purpose of 

either detecting a general number of trees in forest areas or as a pre-requisite procedure for 

investigating on tree species. In recent years, more or less all studies follow a specific method for tree 

detection in which the researchers mostly deal with data obtained from LiDAR, CIR (Colour InfraRed) or 

spectral images and orthophotos. In the study carried out by Koch et al. (2006), using Digital Terrain 

Model (DTM) and Digital Surface Model (DSM) prepared from LiDAR points, a Digital Crown Height 

Model (DCHM) was computed from subtraction of so-called DTM and DSM for each pixel, which 

represents the height value of canopy in each pixel. DCHM maps the surface of the canopy and for 

increasing the precision of detection, a Gaussian smoothing model is applied to DCHM. In the smoothed 

DCHM, treetops were determined based on the local maximum filter in which the pixel is counted as 

local maxima if the other nearest neighbour pixels have less height value than that pixel. This process 

started from the local maxima and extended as long as the low height value is existed in neighbour 

pixels. This approach, which is called Pouring algorithm, has a similar function as the classical watershed 

algorithm. Many researches on tree detection follow this approach, for instance, similar studies were 

carried out by Heinzel et al. (2008) and Reitberger et al. (2009). 

The drawback of the so called Pouring approach goes back to interpolation, since the interpolation 

process smoothes the surface drastically, neighbouring trees cannot be separated properly and it is 

probable to become segmented as group of trees instead. The other problem is related to detecting 

short trees from DCHM. As small trees are dominated by larger trees in dense forests, it is impossible to 

find them by pixel analysis (Reitberger et al., 2009). 

Tiede et al. (2005) performed tree detection using an algorithm based on a regression model, which was 

linking the crown-width to the tree-height for finding local maxima and used similar neighbouring 

methods for crown delineation. 

  

Steps in tree detection procedure 

In the first part of this thesis work, a tree detection process is performed using two different clustering 

methods. Their principle was explained in the previous section. The K-means algorithm (an iterative 

partitioning top-down approach) and agglomerative bottom-up hierarchical algorithm are two clustering 

methods used in this study, which help us to obtain any tree in the study area as one individual cluster. 

The K-means method is applied to data set in two forms:  supervised and unsupervised. Then the 

clustering results of all these three types are compared with each other. Finally, for the verification of 

tree detection, the obtained result is compared with the result of DPM software, which is developed by 

Visimind AB Company for processing LiDAR data. The major steps for tree detection are: 

 Determination of tree numbers in the study area 

 Applying simple (unsupervised) K-means method 

 Performing supervised K-means approach 

 Applying hierarchical method 
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1.4 Overview of tree species classification 

Sweden is a country dominated by forests, so any type of studies, which leads to attaining more reliable 

and useful information such as trees count, crown size, growth rate and species in this area would be 

helpful. Such information would be used by research institutions, forest owners, industry, governmental 

or nongovernmental organizations and sections, which are active in this field. As stated by Hyyppä et al. 

(2008) the information about tree species is of particular interest for forest applications. As a quick 

glance at the statistics of land use and tree species in Sweden, the content of Figure 4 would be useful. It 

is clear from the figure that the majority of land in Sweden belongs to forestial areas, which based on 

Swedish National Forestry Inventory website, is around 28 million hectares from total 41 million 

hectares of land area. The forest land in Sweden is covered mostly by three species of Norway spruce 

(Picea abies), Scots pine (Pinus sylvestris) and a small portion of birch (Betula spp.) trees. It should be 

mentioned that other type of trees are also existing like oak, aspen and other deciduous types but the 

overall percentage of them is not as much as other so called species. Automatic classification into these 

tree species groups would be useful for forest management planning and monitoring the environment 

(Holmgren et al., 2008). The second part of this thesis work focuses on distinguishing the tree species 

based on laser points. As explained already the dominant tree species are pine, spruce and birch so, the 

algorithms are developed to classify trees into these three species.   

 

Figure 4: Chart (a) shows the statistics of land use in Sweden (total land area is 40.8 million ha) and chart (b) 

represents the percentage of tree species in productive forestland, data source is Swedish National Forestry 

Inventory (2004-2008). The land, which is producing or capable of producing commercial forest products, is called 

productive forestland. 

 



12 
 

Previous works on tree species identification 

In the field of tree species detection, some projects have been carried out in the recent decade and 

some approaches as well as software are introduced in different articles and scientific journals. Different 

types of data were used for achieving the goal. Based on the geographic area that the data come from, 

the approaches and purpose for distinguishing tree species are changing. The studies in Northern 

European countries mostly focus on determining different coniferous trees, while the studies in central 

or southern parts are aimed to distinguish deciduous tree types. Due to the purpose of this study, most 

of the reviewed articles were investigating tree species problems in northern Europe. Some of the 

previous works are mentioned concisely below:  

 Liang et al. (2007) and Reitberger et al. (2006) were distinguishing coniferous and deciduous 

trees with LiDAR based attempts. First study was performed under leaf-off conditions and they 

assumed that in coniferous trees, first and last pulse signals are reflected by tree tops while in 

deciduous trees, first pulse would hit the tree tops and last signals would reflect ground, based 

on this difference they obtained 89% accuracy in classifying coniferous-deciduous types. In 

second study, they used leaf-on data and obtained 80% accuracy for same classification.   

 Ørka et al. (2007) used two intensity metrics of mean intensity and standard deviation of 

intensity. Those values were computed for echo categories in each tree. They achieved 68% to 

74% accuracy in classifying tree species depending on the number of considered variables. 

 Using combination of laser data and multi spectral images by Persson et al. (2006), yields quite 

good accuracy for classifying coniferous and deciduous trees. 

 Heinzel et al. (2008) did an investigation on a test area in Poland using laser scanning data and 

CIR (Colour Infra-Red) aerial photographs for classification of oak, beech and coniferous tree 

types. They separated the spectral bands into near infrared, red and green and further 

transformed into hue, saturation and intensity channels; previously detected tree polygons are 

fitted to spectral data and based on comparing different channels, the species are being 

classified. The overall accuracy of 83% was achieved. 

  In another study, Hollaus et al. (2009) achieved 83% accuracy in determining the species of 

spruce, larch and beech trees. Their approach uses geometric information such as echo width 

and backscatter cross section, extracted from full-wave form ALS data, for identifying tree 

species. 

 Fusion of LiDAR data and multi-spectral aerial image has been studied for tree detection, 

measuring tree heights and for estimation of stand volume (e.g. Popescu et al. 2004). However, 

there are some works also carried out using this technique for species identification (e.g. Hill & 

Thomson, 2005; Koukoulas & Blackburn, 2005); the validation procedure of their study was 

carried out on an aggregated level, i.e. not on an individual tree level. Holmgren et al. (2008) 

performed tree species classification on an individual tree level. They used LiDAR data for 

segmenting tree crowns and combination of LiDAR data with DMC (Digital Mapping Camera) 

pixel values for segmented crowns for carrying out tree identification. Spectral values were 

extracted by projection of the LiDAR derived segments onto digital aerial images. They did quite 

a broad study on 1711 trees in this field, the achieved accuracy using just LiDAR data was 88% 
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while combining those data with high-resolution spectral images in autumn and summer, yields 

96% accuracy for classifying three species of spruce, pine and deciduous trees in a test area 

situated in southern Sweden. 

 The last reviewed literature refers to a study by Ko et al. (2009). They performed deciduous-

coniferous classification for 65 trees using leaf-on single flight LiDAR data. Single trees were 

separated manually and the geometrical shape of the crown from real LiDAR data was 

compared with artificially generated point clouds by the Lindenmayer system language. Convex 

hull calculation and buffer analysis were also carried out for catching differences between those 

two types. The classification accuracy of their study is 85%-88%. 

1.5 Fitting shapes based on least squares method 

In the second part of this study, it is needed to get an estimation of how quadratic shapes can fit to an 

extracted point cloud of single trees. For this purpose, we found the least squares method efficient. As a 

general definition “the least squares method is a standard approach to the approximate solution of 

overdetermined systems, i.e., sets of equations in which there are more equations than unknowns. Least 

square means that the overall solution minimises the sum of the squares of the errors made in the results 

of every single equation.” The most used application of this method is in data fitting. The best fit 

minimises the sum of the squared residuals, which is the difference between an observed value and the 

fitted value provided by a model. The least squares method is divided to a linear (ordinary) and a non-

linear method; the linear approach, which is called linear regression in statistics, is minimising the sum 

of squared vertical distances of objects in a dataset from predicted linear approximation. Usually the 

linear least squares method is a closed-form solution while the non-linear approach follows an iterative 

refinement; at each iteration the system is approximated by a linear equation so the base of both 

methods are similar. It should be mentioned that for starting a non-linear algorithm, an initial estimation 

is needed (Wikipedia documents). The general equation of the least squares method can be expressed: 

                                                                        ∑   
          

                                                                      (1-6) 

where    denotes the estimated error or residual of observation    for          . The above 

condition applies when the observations are uncorrelated, otherwise the corresponding condition of the 

least squares method becomes: 

                                                                                                                                   (1-7)  

where   is the residual vector containing all residuals    , which are derived together with the optimal 

estimate,   and    is the variance-covariance matrix of   (Fan, 2010). 

As we deal with the 3D surface and model of trees, different geometrical shapes are used for fitting to 

tree shapes. These geometrical shapes (cylinder, cone and sphere) have non-linear equations. We need 

to linearize the non-linear observation equations of quadratic shapes to be able to use the least squares 

method for acquiring best fit shapes. The general linearization procedure is as follows (Fan, 2010): 

http://en.wikipedia.org/wiki/Overdetermined_system
http://en.wikipedia.org/wiki/Errors_and_residuals_in_statistics
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It is assumed that we have   observation            and the true value and error of    are  ̃  and    such 

that  ̃               . In addition, it is assumed that each  ̃  is a non-linear function of   

unknown parameters           :    

                                                                          ̃                                                                                    (1-8) 

Let   
  and     denote an approximate value of    and its correction, such that      
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]                                      (1-9) 

Expanding the equation (1-8) into a Taylor series, the linear observation equation is obtained: 

                                               ̃                                                                       (1-10) 

where      
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Hence, the linearized equation can be written in the general form of:  
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where: 
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]                   (1-13) 

 The least squares solution of    can be written as:  

  ̂                                                                               (1-14) 

Finally, the least squares estimated unknown parameters as follows: 

         ̂       ̂                                                                      (1-15) 

The standard deviation of residuals, which is used as an assessment value for the fitted shapes in this 

study, is calculated as: 

                                        ̂  √  ̂  ̂

   
                  where               ̂        ̂                                                (1-16) 

The standard errors of the unknowns are obtained from variance matrix of unknowns by: 
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                                                                         ̂ ̂     ̂  ̂   ̂ 
                                                             (1-17) 

For getting a better insight of how extracted reference tree points look like, three quadratic shapes 

(sphere, cone and cylinder) are fitted to the data set based on the least squares approach. The 

procedure of the least squares fitting of the shapes is described in the following subsections. 

1.5.1 Fitting a sphere on a data set 

LiDAR is a technology in which the scanning device sends a multitude of signals in a very short time, 

resulting in a point clouds containing thousands of data points. This technology has many applications 

such as monitoring construction sites, developing an as-built model of structures, etc. Point clouds could 

represent many 3D shapes of features but as mentioned before we deal with three shapes in this study, 

so the principle of fitting a sphere is reviewed in this section. The general equation of a sphere can be  

written as:  

                                                           
        

        
                                                       (1-18) 

where 

   is the radius of the sphere. 

    ,    and    are the coordinates of the centre point. 

   ,   and   are the coordinates of a point on the surface of the sphere 

Our goal is to use scanned points (          ) to find the best-fit radius  ̂ and coordinates of the centre 

( ̂    ̂    ̂ ), which fulfils the least squares condition: 

                                                                     ∑     ̂   ∑  
                                                                   (1-19) 

where  

     √       
         

         
                                                                    (1-20) 

   is the number of points in the point cloud. 

To be able to apply the linear model (1-12), we have to linearize Equation (1-20) by Taylor expansion 

around approximate coordinates of centre (             ): 

                                                       
   

   
    

     
   

   
    

    
   

   
                                                (1-21) 

where 

     √        
          

          
                                                                             (1-22)                             

          and     are the improvements to approximate coordinates so that: 

 ̂                  ̂                  ̂           

With         , we can rewrite Equation (1-21) in form of Equation (1-10) as:                                           
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                                                                                                                                      (1-23) 
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Equation (1-12) becomes: 
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]                                                  (1-24) 

where           and     denote the approximated mean coordinates of point cloud as an initial point for 

starting the iteration procedure of the least squares. They are being updated at the end of every 

iteration loop by   ̂     ̂  and   ̂ . 

The residual matrix ( ) is computed as  ̂       ̂, which is used for computing standard deviation 

value for analysing the quality of fitting shape to point cloud by Equation(1-16). The standard errors of 

unknowns are also computed from Equation (1-17) as: 

  ̂   √   ̂  ̂            ̂ 
 √   ̂  ̂          ̂ 

 √   ̂  ̂           ̂  √   ̂  ̂                      (1-25) 

where     ̂  ̂   ̂ 
         is a variance matrix of unknowns by dimension of 4*4, and   ̂  √

 ̂  ̂

   
 

Figure 5 shows the least squares fitted Sphere to a sample point cloud. 

 

   

 

Figure 5: Fitted sphere to the point cloud. It should 

be mentioned that the point cloud (red points) is 

generated as a partial cloud of a sphere with radius 

of 40 units, origin at (0, 0, 0). As shown in the figure 

the algorithm successes to fit a sphere with those 

parameters. 
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1.5.2 Fitting a cone on a data set 

Second quadric shape that is needed to fit to the point cloud is a cone, the procedure for performing the 

least squares method is the same as what has been performed for the sphere fitting, but the difference 

is in the general equation of the cone. As we know, the parameters, which define a sphere, are radius 

and origin point in which the radius is constant for the whole shape while in conical shapes the radius is 

a function of height. In other words, the points in cone surface, which are closer to the vertex, have 

smaller radius ( ) than points near the base of the cone with greater height ( ). As we can assume that 

trees are vertical, it is reasonable to use equation of cone with axis parallel to   axis. The general 

equation of a cone is written from Adams (1990) as follows: 

                                                              
        

        
                                                        (1-26) 

where 

      and   are the coordinates of a point on the surface of the cone. 

        and    are the coordinates of the cone vertex. 

            , the angle   is the opening angle (semi-vertical angle) of the cone. 

The aim is to use scanned points (          ) to find  ̂ as a parameter that defines the best-fit cone with 

vertex point ( ̂    ̂    ̂ ), which fulfils the least squares condition: 

                                                                  ∑     ̂   ∑  
                                                                    (1-27) 

where 

     √
       

  (     )
 

        
                                                                                                     (1-28) 

   is the number of points in the point cloud. 

To avoid singularity in Equation (1-28), we do not use points for which             . 

Being able to apply the linear model (1-12), we have to linearize Equation (1-28) by Taylor expansion 

around approximate coordinates of vertex point (             ): 

                                                      
   

   
    

     
   

   
    

    
   

   
                                               (1-29) 

where 

     √        
  (      )

 

         
                                                                                                                    (1-30)                             

          and     are improvements to approximate coordinates so that: 

 ̂                  ̂                  ̂           

With         , we can rewrite Equation (1-29) in form of Equation (1-10) as:                                           
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                                                                                                                                      (1-31) 
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Equation (1-12) becomes: 
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]                                                  (1-32) 

The least squares solution is:  

                                                              ̂             [ ̂     ̂      ̂     ̂ ]
                                         (1-33) 

The residual matrix ( ) is computed as  ̂       ̂, which is used for computing standard deviation 

value for analysing the quality of fitting shape to point cloud. The estimation of errors in unknowns can 

be performed by Equation (1-16) and Equation (1-17) as: 

  ̂   √   ̂  ̂            ̂ 
 √   ̂  ̂          ̂ 

 √   ̂  ̂           ̂  √   ̂  ̂                      (1-34) 

where     ̂  ̂   ̂ 
         is a variance matrix of unknowns by dimension of 4*4, and   ̂  √  ̂  ̂

   
 

 

 

 

 

 

 

 

Figure 6: The point cloud for the sample cone is 

generated with a radius of 25 units, a vertex point of 

(0, 0, 0) and semi-vertical angle of 45 degrees; as 

shown in the figure, the algorithm fitted the cone 

correctly with the same parameters to point cloud. 



19 
 

1.5.3 Fitting a cylinder on a data set 

In the previous sections, for fitting sphere and cone, the general equation of each surface was used for 

the linearization process while in this section; the most general second-degree equation in three 

variables for quadric surfaces is going to be used for the least squares analysis of best cylinder fit.   

                                                                                                (1-35) 

where  

           ,            ,            ,         ,         ,          

                            

                                                                                                                                     (1-36) 

                           

             
           

           
                             

 
 

A cylinder can be specified by a point (        ) on its axis, a vector (     ) pointing along the axis and 

its radius ( ). Therefore, for fitting a cylinder to a point cloud, these parameters should be computed 

and finally using least squares method, the distance between any points to the surface of the cylinder 

being minimised. The workflow of fitting the cylinder procedure is noted as follows3: 

 Defining the direction vector (     ) that is gained after applying least squares to above 

general equation. 

 Knowing (     ) and using       coefficients, the initial value for (        ) can be computed. 

 From equation of coefficient  , the initial estimation for radius     will be calculated. 

 As we assumed a cylinder along Z-axis, the data should be transformed by a rotation matrix 

derived from the direction vector. 

 Computing the distances from all points (        ) to the cylinder. 

 Solving the least squares system, which minimises the distances between the point cloud and 

the cylinder. 

 Updating the location of the initial origin point 

 Repetition of the so-called steps until the system has converged to the limit value. 

 

                                                           
3
 http://www.caves.org/section/commelect/DUSI/openmag/pdf/SphereFitting.pdf [Accessed 4 June 2012]. 

Figure 7: The figure shows the fitted 

cylinder to generated sample cylinder 

points with radius of 40 units and origin 

point in (0, 0, 35); the red points are 

representing the sample point cloud. 

http://www.caves.org/section/commelect/DUSI/openmag/pdf/SphereFitting.pdf
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1.6 Overview of fuzzy logic systems 

Basically fuzzy logic has two different meanings, in a narrow sense it is a logical system, which is an 

extension of a multivalued logic, however, in wider meaning it expresses the fuzzy sets theory, which 

relates to classes of objects with unsharp boundaries in which membership is a matter of degree 

(MATLAB documentation). Generally, fuzzy logic analyses the number of input data in some steps and is 

resulted by output; the mathematical shape of this output may vary based on the type of used fuzzy 

logic. In the other words, fuzzy logic is a convenient way to map an input space to an output space. 

Being conceptually easy to understand, offering flexibility, being tolerant to imprecise data, modelling 

non-linear functions and depending on natural language are the outstanding advantages of fuzzy logic.  

The mapping mechanism of input space to output space in fuzzy logic is carried out based on performing 

a list of if-then statements, which are called rules. The input and output terms of rules should be defined 

carefully to be able to build as efficient a rule as possible. As a summarize of the fuzzy inference 

concept, fuzzy inference is a method that interprets the values in the input vector and, based on some set 

of rules, assigns values to the output vector (MATLAB documentation). 

Fuzzy systems are usually founded by few concepts, which are explained concisely as follows, it should 

be mentioned that all these concepts are explained with related examples in the MATLAB 

documentation. MATLAB has a broad and efficient toolbox for creating and performing a fuzzy logic 

system and some aspects of this are explained in this overview section. 

 Fuzzy sets: a set without a crisp, clearly defined boundary. 

 Membership Function (MF): is a curve that defines how each point in the input space is mapped 

to a membership value (or degree of membership) between 0 and 1. In the MATLAB toolbox 

there are 11 different built in membership function types, which are built based on the piece-

wise linear function, the Gaussian distribution function, the sigmoid curve and the quadratic, 

cubic polynomial curves. 

 Logical operations: the input values to the system are connected to each other for making rules 

using logical operations of AND for fuzzy intersection or conjunction, OR for fuzzy union or 

disjunction and NOT for fuzzy complement, these operations for two values of   and   are 

defined classically as         ,          and     respectively. Figure 8 depicts graphically 

how they work. 

 

 
 

 
Figure 8: Graphically presents the logical operations in fuzzy logic system; the picture is adapted from 

MATLAB documentation. 
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 If –Then rule: these statements are used to formulate the conditional statements that comprise 

fuzzy logic. The if-part of the rule is called the antecedent or premise, while the then-part is 

called the consequent or conclusion. For interpreting these statements, first, the antecedent 

should be evaluated, which involves fuzzifying the input and applying any necessary fuzzy 

operators. In the second step, the results should be applied to a consequent, which is known as 

implication step. 

Types of fuzzy inference systems (FIS) 

There are two different types of fuzzy inference system defined in the MATLAB toolbox, Mamdani and 

Sugeno. The Mamdani method was proposed by Ebrahim Mamdani in 1975 as a solution to control a 

steam engine and boiler combination by synthesizing a set of linguistic control rules obtained from 

experienced human operators (MATLAB documentation). His method is the most commonly used 

method of fuzzy logic. The Sugeno method was developed by Takagi-Sugeno-Kang in 1985. Both 

approaches are similar to each other in all steps except the outputs in which the Sugeno output 

membership functions are either linear or constant and the Mamdani-type inference, expects the 

output membership functions to be fuzzy sets. It should be noted that these two types are able to 

convert to one another in MATLAB, by a single command. The fuzzy inference process consists of five 

steps and as mentioned are the same for both methods. 

1. Fuzzification of input variables: The first step is to take the inputs and determine the degree to 

which they belong to each of the appropriate fuzzy sets via membership functions. 

2. Application of the fuzzy operator (AND or OR) in the antecedent: as explained before, in this 

step, logical operators are used to derive a value as a result based on mathematical operations. 

3. Implication from the antecedent to the consequent: The implication function modifies the fuzzy 

set to the degree specified by the antecedent. The most common ways to modify the output 

fuzzy set are truncation using the     (minimum) function or scaling using the      (product) 

function. 

4. Aggregation of the consequents across the rules: In this step, the fuzzy sets, which are 

representing the outputs of each rule are combined to a single fuzzy set as a result (only in 

Mamdani type).  

5. Defuzzification: the input of this step is an aggregated fuzzy set from the previous step and the 

output is a single number. This step is different for Mamdani and Sugeno types, as in the 

Mamdani-type the input fuzzy set for defuzzification is an aggregated membership function, so 

the output value would be computed by one of the built-in functions such as the centroid of the 

area under the curve (the most common function for defuzzification in Mamdani) while in 

Sugeno-type the final value is computed based on a value of each rule and assigned weight as 

this formula: 

                                                                          
∑     

 
 

∑   
 
 

                                                          (1-37) 

where   is the number of rules,    is the value of each rule and    is the weight value.  
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All these steps are graphically explained in Figure 9 for Mamdani type. 

 

1.6.1 Building the Fuzzy Inference System (FIS) in MATLAB 

In the MATLAB toolbox for fuzzy logic, there is a capability to develop a FIS, either using GUI interface or 

writing codes, it is also possible to create a system as an interface and edit the source codes or evaluate 

the final outputs. Building and interpreting such a system is feasible by the following five steps. 

1. FIS editor: specifying the number of input and output variables with their corresponding names. 

2. Membership Function (MF) editor: defining the shapes of all the membership functions 

associated with each variable. 

3. Rule editor: forming new rules or editing the existing rules, which are defining the behaviour of 

the system.  

4. Rule viewer: in this step, the system gives us an overview of what has been performed from the 

beginning, all the rules, the result of the aggregation step and also the defuzzified value can be 

seen in that window or can be extracted by using built in codes. 

5. Surface viewer: the dependency of one output on one or two inputs is plotted in a window. 

 

 
Figure 10: Fuzzy Inference System (FIS) in MATLAB 

Figure 9: The diagram illustrates the 

general process (steps 1 to 5) of the 

Mamdani type; the arrows show the 

sequence of process. The number of rows 

is denoted by the number of rules and as 

can be seen from the picture the output is 

computed through a centroid function. 

The picture is adapted from MATLAB 

documentation. 
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2 Materials and Methods 
 

In this study, the author writes all algorithms for detecting trees and identifying their corresponding 

species in MATLAB (a high-level language and interactive environment for numerical computation, 

visualization, and programming developed by MathWorks®). Manipulation of data is carried out by 

Cyclone (3D Point Cloud Processing Software developed by Leica Geosystems) and DPM (developed by 

Visimind AB for LiDAR data processing) software. In the validation part, Arc GIS 10.0 and Quantum GIS 

are used for doing some analysis and converting shape files to .kmz files.  

2.1 Study area and data 

The data for the thesis work was provided by the Visimind Company, which is a company based in 

Sweden and is dealing with remote sensing (laser scanning), photogrammetry and GIS. From their last 

scanning project, two forestial areas near Stockholm and Borås (in south west of Sweden) are used. The 

first part of thesis is focused on tree detection. The test area shown in Figure 11 is chosen from an area 

located in the east side of Stockholm. The selected area covers 2100 m2 of forest. Further analyses were 

performed on the other test sites with a total area 3000 m2, which can be seen in left picture of same 

figure.  

 
Figure 11: The left picture shows three different test areas represented by tree symbols around Stockholm and the 

right picture shows the zoomed image of test area, which is located in the east side of Stockholm near to Värmdö 

town. The inner picture illustrates the point cloud of area. 

In both test areas, either east or south west of Sweden, more than 70 percent of tree species belongs to 

coniferous trees like pine and spruce and the rest are broad-leaf  and deciduous trees like birch, oak and 

aspen. In the first part, we are not interested in tree types and the goal is determining the number of 

trees to be able to perform clustering methods. 

In the second part of the study, the data was used for tree species categorization. For this purpose, the 

species of several trees in the reference site were distinguished by field measurements using GPS 

technique (Figure 12a) and for further accuracy, all measured points were checked with their related 

images taken at the time of scan. DPM has such capability to show laser data and images of scanned 

area in different windows. As shown in Figure 13, the right picture represents one of the scanned areas 
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with corresponding tree species names for distinguished trees. The reference sites are located near to 

Borås and Lerum cities, south west of Sweden. Totally 280 trees were distinguished in sites and used as 

reference trees. Despite 280 known-species trees, 123 trees were used in this study because of dense 

forests in which trees grow very close to each other and make it difficult to export laser points of single 

trees among others. In Figure 14, sample exported tree points from each species was shown. Finally, 33 

birch, 45 pine, 40 spruce and 5 oak trees were exported for performing the second part of this study.   

 
Figure 12: Picture (b) shows spruce trees in the test area, which was taken during field measurement and picture 

(a) was taken during measuring by GPS. 

 
Figure 13: Test areas close to Borås and Lerum cities in south west of Sweden are shown in the left picture, the 

areas with known-tree species are shown by green tree symbols and the right picture shows the point cloud of the 

area with coordinates of distinguished trees, which are shown inside the point cloud as label of trees. 
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Figure 14: Exported laser points for different tree species, which exist in the test areas. 

As mentioned before, this thesis is carried out based on two sets of laser scanning data, which belong to 

an area near Stockholm called Mellan data and data acquired from west part of Sweden called Väst data 

in the Visimind database. The Mellan data was acquired by using a RIEGL VQ-480 scanner during 

September 2011 and Väst data was obtained using the RIEGL VQ-380 scanner in early October of the 

same year. So the laser data can be considered as leaf-on data. The specification of both scanners with 

corresponding computed point density of data is written in Table 1. These scanners are developed by 

the RIEGL Company under V-Line series of laser scanning engines in 2010; their mechanism of working is 

based on a fast rotating multi-facet polygonal mirror, which provides fully linear, unidirectional and 

parallel scan lines (RIEGL website4).    

The exported information from the laser data include three coordinates of points (X, Y, Z), RGB values 

and intensity values, also the coordinates were projected to SWEREF 99 (Swedish Reference Frame 

1999) coordinate system.      

Table 1: The specification of RIEGL scanners used for producing laser data from test areas is shown. 

Type of 
Scanner 

Laser Pulse 
Repetition 
Rate (PRR) 

Field Of 
View (FOV) 

Swath 
Width 

Flight 
Altitude 

Helicopter 
Speed 

Point 
Density 

RIEGL VQ-
380 

200 kHz 100˚ 160 m  65 m  55 km/h 35 pts/m2 

RIEGL VQ-
480 

200 kHz 60˚ 130 m  110 m  55 km/h 35 pts/m2 

For filling the specification of Table 1, the information for helicopter speed was not available in the flight 

documents of the Visimind Company, so using the published specification of scanners in RIEGL website 

and using other known information, the speed is derived from the graph shown in Figure 15. 

                                                           
4
 www.riegl.com  

http://www.riegl.com/


26 
 

 
Figure 15: The specification of VQ-380 and VQ-480 scanners published by RIEGL and derived speed amount using 

the relation between point density, speed and flight height for so-called scanners with 200 kHz laser frequency. 

The yellow lines and boxes were drawn by the author. 

2.2 Detecting the number of trees 

As explained in the previous sections, there are different methods to derive the number of existing trees 

in forestial or urban areas and mostly are being counted based on aerial images or the interpolated 

surface of canopy. In the algorithm, which is written for this thesis to perform tree detecting, the study 

area is considered as a matrix so the X and Y coordinate of an area is represented by the rows and the 

columns of a matrix; here the elevation element of area is ignored. In the second step the area based on 

its shape and how it extends (along X direction or Y), the matrix would divide to different strips in which 

the width of the strips has direct relation with the average crown-diameter of the existing trees in that 

area. In other words, the area is assumed to be made of several strips in which trees are located along 

one line beside each other and this can be described as a profile of that strip. The idea came from the so 

called DPM software that has such a capability to show the selected scanned area as a cross section, 

which makes it easier for the viewer to determine the number of trees; this is shown in Figure 16. 

Nowadays the other new developed software, which is concerned about laser scanning data, has or 

adds a feature to perform cross section on point clouds. The cross section feature can be applied in 

either urban or forestial areas for detecting trees; for instance the number of trees along one street 

inside the city can be considered as an object for applying this method; a strip with a width of tree 

crown-diameters and the length of selected part of street would be a representer of that area. In Figure 

17, the selected forestial area is shown, which is divided to six strips and the profile line is drawn based 

on the outer surface of the tree row. For this area, the width of the strips is computed based on the 

crown-diameter of the sample measured trees of spruce, pine and birch in that area, which is six meters 

and cross sections are generated along the X direction. It should be mentioned that the X and Y axes 

represent the length and width of the strips, respectively and the Z axis shows the height of trees.  
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Figure 16: Cross section for selected part of laser data created by DPM. 

 

 

 
Figure 17: Divided area to five strips and profile curve is drawn on cross section of strip 4. 
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Local Maxima and Local Minima 

The main objective of dividing the area into strips is to be able to find the number of trees in each strip 

because for performing clustering analyses, the number of clusters should be determined in advance. As 

shown in Figure 17 the drawn profile curve on trees is including several maximum points that can be 

interpreted as top points of trees, so the maximum points would lead to top-coordinates of any 

detected tree in its corresponding strip. The written algorithm for this purpose, firstly finds the outer 

points of laser data, which are the peak points of all existing points in short intervals of X coordinates. In 

the second step, each exported outer point is being compared in aspect of Z value with its back and 

front points to being classified as local maxima, local minima or none of them. The pseudo code is as 

follows: 

a) if peak(i) < peak(i-1) and peak(i) < peak(i+1) then peak(i) is 

Local Minimum 

b) else if peak(i) > peak(i-1) and peak(i) > peak(i+1) then peak(i) 

is Local Maximum  

c) else peak(i) is an ordinary outer point 

Modified Local Maxima (Seeds) 

Usually trees do not have fixed and defined behaviours in their growth and they are not following any 

specific rules. The developed algorithms for tree detection are tested on several areas and it is noticed 

that the local maxima point clouds do not define accurately the top points of the trees. The spread out 

branches of some trees lead to more than one local maximum for one tree. Therefore, two filtering 

steps were added to the algorithm to decrease the influence of redundant local maxima points in 

clustering.  

 In the first approach, the distances between pairs of local minima and maxima points are 

computed in X-Z plane, in other words, any local maxima point is being compared with two local 

minima points before and after that point. If those distances exceed two meters and the point 

belongs to previously computed local maxima group, that point would be selected as Modified 

Local Maxima, which is called Seed for clustering. The threshold distance is determined 

empirically based on the trial and error method on several test strips and finally the optimum 

value of two meters was obtained. Hence, it is probable to get different threshold value in other 

type of forests.  

 As explained before, when we involve the large area, we divide it into several strips, but a 

problem would occur if a tree is located in the boundary of two strips. In this case, two strips 

would have a partial point cloud of one tree and in each strip, a local maxima point would be 

allocated to that partial point cloud; for removing such redundant points, the second approach 

was developed for filtering based on all possible distances between local maxima points in X-Y 

plane. The chosen threshold is 2.0 meters, which is determined based on narrowest crown 

diameter of reference trees. Age and type of trees as well as forest density are major factors to 

determine such a threshold value for filtering data. The input of this method is the modified 
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local maxima of all strips from previous filtering step. Figure 18 and Figure 19 show the result of 

these two filtering algorithms for one strip. The pseudo code for X-Y filtering and exclusion of 

redundant points is as follows:   

a) Set i = 1 

b)  Compute the Euclidean distance Dij between any local maxima 

point Pi and all other remaining points 

c) Define threshold distance Dth  

d) If Dij > Dth select point Pi as a local maxima point and assign 

to seed matrix, else reject Pi   

e) Increment i = i + 1 

f) Continue the loop until all distances from all points are 

being compared with threshold value. 

 
Figure 18: Picture b) shows the local minima and maxima points in blue and red squares, respectively. These points 

are derived from the green outer points, which are exported from the point cloud of strip, shown in the upper 

picture (a). In picture a) the result of X-Z filter are shown as seed points by red circles, which are representing the 

top points of each tree and can be counted as the number of trees in each strip. 

 

Figure 19: Modified Seeds exported from the 

second filtering (X-Y) step for the same area of the 

previous Figure. The local maxima points having 

less than 2 meters distance to each other are 

plotted in red colour. One of those red points 

located beside each other, is chosen as the 

modified seed point. These points also delineate 

the number of trees in the investigated area. 
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2.3 Clustering algorithms 

2.3.1 Unsupervised K-means clustering   

As outlined in the introduction part, the K-means is an iterative partitioning-based method that requires 
the user-specified target number of clusters (K). The algorithm generates K data points representing 
cluster centers or centroids. An iterative partitioning loop is then executed to carry out the clustering. In 
first study, the Unsupervised K-means approach is applied to data set, in this method the number of 
random initial point is kept equal to the number of external seed points to get the same number of 
clusters as other methods. The initial points are created randomly by algorithm.     

2.3.2 Supervised K-means clustering 

This approach is called supervised because of using external seed points as initializing points for the 

algorithm. The modified local maxima points, which were detected and prepared in the previous section 

are going to be used as external seed points for this method. The K-means approach uses those points 

as initial points for starting the iterative procedure of clustering. 

Using clustering methods in forestial areas for clustering the whole height of individual trees is not 

completely possible. In dense forests, the trees are so close to each other that in the middle section of 

the trees, it is difficult to draw a boundary for tree crowns. Applying clustering methods for separating 

the whole tree would not be efficient and usually some points from neighbouring trees are clustered as 

one tree. Therefore, we decided to test methods on the top 60 percent of height for less dense forest 

areas and top 40 percent of height for dense areas. It should be mentioned that for the area, where 

there are gaps between trees as urban areas, the algorithm could be run for whole height. In addition, it 

is noted that K-means works well when a data set has compact or isolated clusters (Mao & Jain, 1996). 

The pseudo code of Supervised K-means applied on a 3-dimendion data set is given below (Gupta, 

2010): 

a) Set i = 1 

b) Define external seed points as a set of K-means C1(i), C2(i),…, 

Ck(i) 

c) For each point Pi compute the distance D (between Pi and Ck(i), i 

= 1:k) then assign Pi to cluster Cj based on nearest Euclidean 

distance 

d) Increment i = i + 1 and update Cj to get new set of Ck(i) 

e) Repeat steps a) to d) until Ck(i) = Ck(i + 1) for all k 

2.3.3 Hierarchical clustering  

The principle of this clustering method is completely explained in section 1.2.1. Here it should be noted 

that the weighted average distance (WPGMA) method used as a component of the linkage function for 

applying hierarchical clustering on a data set. There is no input as seed points for this approach but it 
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works based on the investigated similarities between objects; for getting a result, which can be 

compared with the results of K-means, the number of desired clusters is given as input to this algorithm, 

so the dendrogram has been cut based on the given cluster number. It is also possible to get clusters 

without defining number of groups, by using inconsistency values. 

2.4 Validation procedures for tree detection and clustering 

For validating the result of this part of the thesis work, which consists of detecting tree tops and 

clustering using three methods, different types of accuracy assessment are used. 

1. For expressing accuracy of tree detection in percent, two types of accuracy classes are 

commonly used. The first type is user’s accuracy, which is equal to sum of correctly detected 

trees divided by all detected trees and second type comes from dividing sum of correctly 

detected trees by sum of reference tree tops, which is called producer’s accuracy. It shows the 

probability that the reference trees are detected correctly (Gupta, 2010). In this study it was 

not possible to validate the results by reference trees due to lack of field measurements, 

instead the first type of accuracy class was used, and the detected trees were compared visually 

by original LiDAR data in Cyclone and DPM. 

2. In the second step, the obtained results were compared with the results from DPM. The 

comparison was performed in ArcGIS. The accuracy assessment was carried out in two levels 

explained in detail in section 3.1.2. In the first level of assessment, point shapefiles, which are 

visually overlaid, counted as exactly matched trees. In the second level, a buffer of 2.5 meters 

was created for DPM points and detected tree points from the thesis method located in that 

zone, were counted as nearly exactly detected trees. A brief explanation of how the tree 

detection tool is working in DPM is written below: 

Tree detection tool in DPM 

By selecting an area of laser points in the tree detection tool of DPM, it creates a normalised digital 

surface model (nDSM) of canopy of trees. Using neighbour analysis of each pixel, it finds the pixel with 

higher value as centre point, and starts watershed method to find all pixels, which are less than that 

pixel and assigns them to one tree, this procedure is performed iteratively for whole nDSM and detected 

trees are delineated by cylinders. The height of trees computed from the subtraction of digital surface 

model (DSM) and the digital terrain model (DTM) for the central pixel (Figure 20). 
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Figure 20: Tree detection by DPM software. 

3. Precision analysis was performed for data sets in which three type of clustering methods were 

applied to find out the best approach for clustering based on mean silhouette and mean 

standard deviation values of all clusters. In addition, the user’s accuracy can be computed from 

dividing the sum of correctly and completely clustered trees by the number of clusters, which 

was carried out visually. 

2.5 Tree species classification 

The second part of this study involves tree species identification based on an algorithm developed by 

the author. After detecting the trees, it is required to classify the types of trees. As noted before, for this 

purpose different authors did use different approaches; the most usual technique is using spectral and 

aerial images for identifying tree species. Here in this study, we use only laser point data for both, tree 

detection and species classification. This data is usually obtained by scanning the determined area by a 

helicopter or aircraft in any time of the year and depending on the flying season, two different data sets 

(leaf-on or leaf-off) are obtained. Although it is ideal to get benefit of both types of data, usually one 

type is accessible for any area. In this study, the leaf-on data is used and as our studied sites are 

combined by both deciduous and coniferous trees, so leaf-on data would provide more detailed 

information of deciduous trees. In spite of other studies, the geometric shape of trees is playing a 

significant role in our algorithm. As mentioned by (Ko et al., 2009), LiDAR point clouds do not only 

provide us information about the surface shape but also some useful information can be derived from 

the inside of the crown that is worth to be considered.     

As mentioned in section (2.1), three species of trees (birch, spruce and pine) were extracted as  

reference trees for testing our algorithms and finally the accuracy assessment was performed based on 

those trees. Several algorithms were developed for performing analysis on both, outer surface of trees 

and inner point clouds. Finally, a fuzzy logic system is used for aggregating the different methods for 

getting a unique result. It should be mentioned that we performed clustering methods on the upper half 

of the point clouds and as we will apply the obtained fuzzy model on clustered tree points in the final 
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step for identifying species, so the same portion of individual reference trees is involved for defining 

optimum fuzzy model. 

2.5.1 Fitted shape analysis 

For classifying tree species, their shape characteristics are analysed in this section by fitting a 3D 

geometric model to the point cloud. These shapes are fitted based on the least squares method and 

minimising the Euclidean distance of all points to the shape surface as explained in section (1.5). Three 

geometrical shapes of cone, sphere and cylinder are fitted and their corresponding standard error, 

which represents how precise the fitting is, saved for further computations. These three shapes were 

chosen because deciduous trees are associated with spherical crowns and coniferous trees are 

associated with conical and cylindrical shapes (Horn, 1971). Cylinder shapes can present columnar tree 

types such as European hornbeam, Lombardy poplar, quaking aspen, etc.; trees with wide base and 

narrower top that are known as pyramidal species can be presented by cone shapes like American 

beech, American holly, bald cypress, spruce, cucumber magnolia, fir, linden and sweet gum. Globe type 

trees with rounded shape canopies such as American hornbeam, American yellowwood, oak, maple, 

flowering dogwood, hackberry and redbud are good options for being tested with sphere modelling. It 

should be denoted that this algorithm, which fits three shapes at the same time to tree points, is applied 

to all of exported trees individually. Figure 21, shows how it works for one sample tree. In our reference 

tree set, there are five oak trees, which were extracted from the study site, for species analysis. As we 

could not find enough oak trees for involving in the species classification process, those trees were 

ignored. Despite ignoring those species, for proving efficiency of the written algorithm in classifying 

deciduous-coniferous trees, those five oak trees were used for comparing spherical and cylindrical fitting 

with corresponding standard error values. As expected and can be seen in Figure 22, the spherical model 

works better for recognizing these deciduous trees. 

 
Figure 21: Three geometrical shapes are fitted to tree point cloud and the standard error for each fitting shape is 

printed above each plot. 

http://www.bhg.com/topics/lawn-and-garden/trees-and-shrubs/spruces.htm


34 
 

 
Figure 22: The algorithm was applied to the oak tree and it is clear from the standard error values, which are 

mentioned as Sigma0, that the spherical shape is the better estimation for oak tree due to its spherical crown. 

2.5.2 Hull ratio calculation 

Convex hull is the other factor for deriving more information from geometrical shape of trees. In 

mathematics, an object is called convex if for every pair of points within the object, every point on the 

straight line segment that joins them, is also within the object. Formally, the convex hull of a set X of 

points in Euclidean space is the smallest convex set that contains X. Implementing convex hull on 

individual tree points, yields a volume of tree crown and combination of triangular patches, which made 

the hull. Defining the hull ratio concept, a numerical estimation of the tree crown shapes can be 

achieved as follows: 

                                                                          
     

     
 

      

 
                                                               (2-1) 

where       

       is the volume of the convex hull of the tree crown. 

       is the surface area of the convex hull, which is computed as the sum of all triangular facets 

comprising the hull.     

        is the height of tree crown, which is computed as the difference of maximum and 

minimum height of tree (Ko et al., 2009). 

 

This number is equal to 3 for a presumed sphere and by deforming the shape this number would also 

change to a larger value. The hull ratio is used in this study for investigating the sphere nature of trees, 

the closer to 3, the more spherical the tree shape is. This would be a good factor to distinguish 

deciduous trees such as oak, maple and hornbeam. Figure 23 shows a convex hull of one sample tree. 

http://en.wikipedia.org/wiki/Straight_line
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Figure 23: A convex hull, which is drawn for a spruce crown, the printed hull ratio value, shows how much this 

crown shape differs from a completely spherical shape. The left picture shows the LiDAR point data of a spruce 

crown. 

2.5.3 Density calculation 

As already explained, LiDAR data may provide us with useful information about inner structure of trees 

and as we know, laser beams could not penetrate so deep in the trees with very dense leaves on their 

top part so the idea has been formed to test one of common concepts of data mining on trees. Point 

Density in data mining is a general concept being performed on data based on its different types. Grid 

density, Sphere density and Kernel density are different sub sections of point density5. Grid density is 

the equivalent of the traditional number density in which Space is split into cells, and the density in each 

cell is simply the number of reference points contained in it. For sphere density, the number of points in 

a sphere around the target point is counted. A kernel is a weighting function whose value is 1 at the 

centre and which falls off to zero the further you get away from its centre. To calculate the kernel 

density, a kernel is placed at each point in the point set. The density of a point is then defined as the 

sum of all kernel functions at that point. For this study, Sphere density was used for finding out how 

dense the different species of trees are, for instance it is expected to get a lower density value for birch 

trees due to their sparse branches versus dense leaves of pine trees, which may lead larger density 

value. Generally, in sphere density the number of points within a sphere around target point is being 

counted as point density. The work flow of computing point densities in our developed algorithm is as 

follows: 

 The Euclidean distances between all points of the tree crown are computed. 

                                                           
5
 http://www.florianbrucker.de/index.php?p=pointclouddensities   

http://en.wikipedia.org/wiki/Kernel_%28statistics%29
http://www.florianbrucker.de/index.php?p=pointclouddensities
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 The threshold number as radius of sphere, which defines the boundary of neighbourhood for 

each point, should be defined. For this study, a radius of 20 cm was empirically chosen. It 

should be mentioned that this number would vary in analysing different data sets. 

 Points with distances equal or less than 20 cm according to other points are selected. 

 And finally               
                         

                    
 

2.5.4 Slope changes 

The last factor, which was developed for species identification, analyses the superficial shape of tree in 

the projected X-Z plane.  When the trees are projected into 2D planes, their geometrical shape can be 

described mathematically according to the slope changes of the outer surface shape. For instance, the 

outer surface of spruce is smooth and depicts sharp slopes in both sides while pine trees have branches 

spreading out, which cause more dents and gentle slopes. As can be seen in Figure 24, which shows a 

spruce and a pine tree, the algorithm divided the trees to seven sections and found the outer points in 

each section. Then the gradient of the sections is computed using the extracted points . In the next step, 

the sign of the gradients are analysed to find how many times the slopes are changed. More irregular 

shapes of the tree yields a greater number of different signs. It is expected for the pine trees to get more 

irregularities than spruce. In addition, the average slope of the tree in both sides can be computed for 

further use. 

 

2.6 Fuzzy logic based tree species classification 

As explained in the previous sections, for identifying tree species from LiDAR data, four different 

methods were used but due to the lack of a clear and distinct boundary in the output result of each 

method, we could not be able to decide exactly about the species of trees. In other words, any single 

method was not completely sufficient for determining the tree types because there is always a common 

range of outputs between two or three spruce, pine and birch trees. Hence, it is crystal clear that using 

only an individual approach for species classification would lead to low accuracy. The simple solution 

was aggregating the outputs of all methods, but the system, which could be efficient for this purpose, 

was a matter of decision. It has been decided to use a fuzzy logic system due to its popularity and 

efficiency in gathering fuzzy sets without clearly defined boundaries. The Fuzzy logic system in MATLAB 

Figure 24: Image (a) shows one 

spruce tree with smooth outer 

surface versus image (b) that 

illustrates a pine tree with more 

dents and irregular shape. The 

different colours of the point 

cloud show so-called seven 

sections and red circles are 

representing outer points in each 

section. 
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is supported by GUI interface so rather than programing for inserting data, one can use that interface 

facility. 

The workflow of building fuzzy inference system for this study is explained in several steps as follows: 

First; the number of input and output variables should be determined as well as the FIS method for 

analysing the data. Our goal is to determine the species of trees such as birch, spruce or pine, based on 

the concepts of fuzzy systems. Sugeno type fuzzy inference fulfils our requirements as it is used for 

constant output variables. Four methods, which were already explained, are defined as input variables 

and it should be mentioned that the 3D shape fitting method, comprises three different approaches, so 

totally six variables are defined as shown in Figure 25. Three constant variables are also defined as 

output in the FIS editor window. 

 
Figure 25: Six input variables (Point Density, Hull Ratio, Slope Changes, Fitted Cone, Fitted Cylinder and Fitted 

Sphere) and three output variables (pine, spruce and birch) are defined in the FIS editor window. 

Second; the membership functions should be defined for each variable; birch, spruce and pine are three 

MFs for each variable in this fuzzy system. These MFs are usually defined based on the built-in function 

types. In this study, two basic and simple function types were used, trimf and trapmf. These types were 

chosen based on the output histogram shape of each method. For instance, the result of the density 

calculation method is shown by the histogram in Figure 26, which defines the type of MFs. The 

triangular-shaped function (trimf) defines a triangular curve with two parameters for locating feet part 

and one parameter for defining the peak point of triangle. The equation of this function can be written 

mathematically as equation 2-2, where   is a vector data,     are feet parameters, and   defines the 

peak parameter:     
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                                                                   (2-2) 

The trapezoidal-shaped function (trapmf) is also used for some other data with a histogram-shape of 

trapezoidal and is defined by     as feet parameters, and     as parameters locating shoulders as 

presented by the following equation: 
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                                                                   (2-3) 

The range of input space for each variable is derived from its corresponding scatter plot, which was 

drawn separately for each method as shown in Figure 26. Each point in the input space is mapped to a 

membership value (between 0 and 1) by the membership function curve, in other words, the MF curve 

defines the probability of any point in the input space.   

 
Figure 26: The scatter plot and histogram are drawn for each variable (in this picture for Point Density) to model 

the shape of the output data from each method for defining MF curves and input space range. It should be 

mentioned that histograms are created after removing outliers.      

 
Figure 27: The MFs are drawn for point density variable based on data shown in Figure 26. 
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Third; the rule editor is a core part of the fuzzy system in which all rules for building an efficient system 

are defined. As noted before, if-then rules are being applied to all defined variables and using logical 

operators, several variables can be involved in one rule. There is no limitation on defining rules but they 

should be defined in such a way to lead to optimum output. In addition, the parallel nature of the rules 

is one of the important aspects of the fuzzy system so the order of rules does not have any influence on 

the final output. 

In our study, the mathematical equivalency of “min” and “max” were chosen for logical operators of 

“And” and “Or” respectively. Using six variables, seven equally weighted rules were defined as follows:  

 If (Point-Density is Birch) and (Hull-Ratio is Birch) and (Slope-Changes is Birch) then (Species is 

Birch) (1)  

 If (Point-Density is Spruce) and (Hull-Ratio is Spruce) and (Slope-Changes is Spruce) then (Species 

is Spruce) (1)  

 If (Point-Density is Pine) and (Hull-Ratio is Pine) and (Slope-Changes is Pine) then (Species is Pine) 

(1)  

 If (Point-Density is Birch) and (Fitted-Cone is not Spruce) then (Species is Birch) (1)  

 If (Point-Density is Spruce) and (Fitted-Cone is Spruce) and (Fitted-Cylinder is Spruce) and (Fitted-

Sphere is Spruce) then (Species is Spruce) (1)  

 If (Point-Density is Pine) and (Fitted-Cone is not Spruce) and (Fitted-Cylinder is Pine) and (Fitted-

Sphere is Pine) then (Species is Pine) (1)  

 If (Point-Density is not Birch) and (Slope-Changes is Pine) and (Fitted-Cylinder is Pine) and (Fitted-

Sphere is not Birch) then (Species is Pine) (1)  

Based on the fuzzy inference system concepts in the Sugeno type for each rule, first, the inputs are 

being fuzzified, then fuzzy operations would be applied to the fuzzified inputs and the final output of the 

system would be the weighted average of all the rules outputs. This rule set, which comprises seven 

rules has been selected among twelve other sets, i.e. based on the final evaluation of the system, this 

set with this combination of rules has achieved a higher degree of accuracy amongst other sets.  
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3 Results and Discussions 
 

 

3.1 Tree Detection 

For the first part of this thesis work, three areas named A, B and C are involved. The first two areas (A 

and B) are large areas with the approximate size of 30 (m) * 70 (m), while area C is a strip with the width 

of 6 meters and length of 60 meters. According to the methodology part for doing analysis on large 

areas, they are divided into several strips with optimum width. Definition of the optimum width 

depends on the forest density and tree species. The average crown diameter of measured sample trees 

in the area, gives the strip width. Those strips for each area are named by indexes (A1, A2 …). It should 

be noted that for running the X-Y filtering algorithm on the so called areas, three different thresholds 

were used: for area A, the threshold of 2.0 meters was used because of more pine trees, area B is 

analysed with a threshold of 1.5 meters due to lots of spruce trees and finally 2.5 meters was used as 

the threshold for the X-Y filtering of area C because of birch and oak trees. Figure 28 shows the filtering 

result for area A. 

 
Figure 28: Accumulation of all local maxima points from all strips of area A in red and green points. Red points 

show the local maxima points, which are detected in a close distance of 2 meters to each other. Blue squares 

represent the result of filtering and chosen points as modified local maxima to use as external seed points in 

clustering. 

In Figure 29, area A is shown with its detected trees in two different views for better visualization. 
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Figure 29: The detected trees in area A are shown as a red star, which represent the tree top points. Picture (a) is 

the side view of the area and picture (b) shows the top view of the area. It should be mentioned that red points are 

used as external seeds for clustering that is why they are called as modified seeds in the legend.   

In this section the results of applied algorithms on data for tree detection, clustering procedures and the 

results of the validation part, are being discussed in three assessment types as follows:  
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3.1.1  User’s accuracy 

For evaluating the results and accuracy assessment, the modified seeds representing trees were 

imported into the Cyclone software where the trees were identified visually. The numbers of correctly 

detected trees were used for computing the user’s accuracy percentage. Table 2 shows the result of this 

accuracy. The filtering processes were carried out on all indexed strips individually, so the total sum of 

detected trees in strips is not necessarily the same as detected trees in their corresponding area. In 

other words, every strip is treated individually for accuracy assessment. As can be seen in the table, the 

average accuracy is 93%. Due to lack of field measurements for determining reference trees, the 

calculation of producer’s accuracy was not possible. 

Generally, the ability of this method in finding the short trees, which are dominated by larger trees, can 

be considered as an advantage. As mentioned before in the other methods the tree canopy is analysed 

from top view, so many young or short trees are being hidden from investigation in dense forests. The 

other issue that should be noted is defining a threshold for the filtering analysis. It is clear from Table 2 

and Table 3 that the algorithm could not find all trees in each strip. This problem can be explained by the 

threshold value. In dense forests with different species of trees, if the threshold value is chosen 

according to the crown diameter of older or wider trees, then the younger trees with narrow crowns 

would hide or delineate wrongly and vice versa. If the threshold is being determined based on narrow 

crown trees, then the other older trees would be detected as more than one single tree. Usually the 

threshold value for coniferous forests is 1.5-2.5 meters while for broadleaved trees or older trees is 2-5 

meters, based on our own data and study. The problem of dense forest was also mentioned in works 

carried out by Woulder et al. (2000), Maltamo et al. (2004), Tiede et al. (2008) and Gupta (2010); they all 

have a consensus on limitation of using local maxima for crown delineation specially in dense and highly 

structured forest.     

Table 2: Number of detected trees in different areas and strips with computed accuracy based on correctly 

detected trees. 

Area Name 
(Strip) 

No. of Detected Tree Top Points No. of Correctly Detected 
Trees 

User’s Accuracy 

A 61 54 88% 

A1 11 9 82% 
 A2 13 12 92% 

A3 13 13 100% 

A4 16 14 87% 

A5 16 14 87% 

B 95 90 95% 

B1 20 19 95% 

B2 22 22 100% 

B3 26 24 92% 

B4 22 21 95% 

B5 13 13 100% 

C 11 11 100% 

Total average of User’s Accuracy 93% 
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3.1.2 DPM comparison 

In the second type of the assessment, our results are compared with the DPM results. The comparison 

was divided into two classes: exact and nearly exact. Class exact, means that the detected trees coincide 

exactly with the trees detected by DPM. Class of nearly exact covers the detected trees in 2.5 meters 

buffer zones of detected trees by DPM. The rest of the trees belonging to the range of more than 2.5 

meters distance are not involved in our accuracy assessment. The computed accuracy shows the 

percentage of matching trees between the DPM and the thesis method in both classes of exact and 

nearly exact. The overall accuracy is computed as 85% for our trees, which match with the DPM result. 

In the other step, the number of trees in each area is counted visually in Cyclone so as it can be seen in 

Table 3, the overview comes from the number of detected trees from the thesis method, DPM and 

Cyclone. Based on the statistics of Table 2 and Table 3, it can be computed that the developed algorithm 

can reach up to 90% accuracy in detecting trees. This percentage shows the total accuracy, which comes 

from dividing correctly detected trees from Table 2 by visually inspected and detected trees from 

Cyclone (Table 3) for each strip. Statistics in detail are expressed in Table 3. Figure 30 shows the areas 

with detected tree points in Quantum GIS software. 

Table 3: The number of detected trees from thesis method, DPM software and visually detected from Cyclone. This 

table also shows an accuracy of matching detected trees from DPM and thesis method. 

Area Name 
(Strip) 

No. of Detected Trees Comparison with DPM 

Thesis 
Method 

DPM Visually by Cyclone Exact Nearly Exact 
(≤2.5) 

Accuracy 

A 61 51 62 24 14 74% 

A1 11 12 11 1 5 50% 

A2 13 10 14 6 1 70% 

A3 13 14 15 8 1 64% 

A4 16 9 17 6 3 100% 

A5 16 6 14 4 2 100% 

B 95 56 108 39 12 91% 

B1 20 7 16 5 2 100% 

B2 22 11 24 9 1 91% 

B3 26 17 32 12 4 94% 

B4 22 14 23 14 0 100% 

B5 13 7 14 2 4 86% 

It is obvious from the above table that the number of detected trees from the thesis method is quite 

close to the number of visually detected trees, and in some areas such as B, there is a significant 

difference between the detected number of trees in DPM and Cyclone while the thesis method has 

given a better result. It should be noted that both areas of A and B have around 2000 m2 area while B 

has 108 trees versus 62 trees of A, which confirms the high density of B. 
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Figure 30: Area B is shown by a blue boundary at top of the picture and area A is shown with red boundary below 

it. The green points are detected trees using the thesis method while the small orange points are showing the 

trees from DPM and orange circles around those orange points define 2.5 meters buffer zone of those trees. 

3.1.3 Comparison of clustering methods 

Three types of clustering methods were applied on all of the strips to get a better overview of these 

method’s results on real data. The two areas of A and B are not involved in this experiment because for 

running the hierarchical method on a large data set, it is required very large amount of memory, which 

is not available in my device. Results of all three methods are compared with each other based on the 

silhouette value, which is a measure of clustering goodness. These results are written in Table 4.  

Table 4: Mean silhouette value for all clusters of each strip is obtained for all three methods. Analysis is performed 

on top 50 percent of tree points. 

Area Name (Strip) 
Mean Silhouette Value 

Unsupervised K-means Supervised K-means Hierarchical 

A1 0.6212 0.6198 0.5187 

A2 0.5034 0.4715 0.3335 

A3 0.5258 0.5191 0.4814 

A4 0.5368 0.5157 0.3764 

A5 0.5128 0.5152 0.3839 

B1 0.5014 0.4717 0.3795 

B2 0.5019 0.4881 0.3291 

B3 0.4406 0.4532 0.3097 

B4 0.4478 0.4457 0.2986 

B5 0.5224 0.5615 0.3844 

C 0.6343 0.6573 0.6002 
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Unsupervised K-means 

In the first experiment, the normal K-means method was applied on the upper section (50 percent) of 

tree points without any external seeds, so the K-means based on its mathematical structure has 

performed clustering to reach desired number of clusters, which is a common input to all three 

methods. It is clear from Table 4 that the average amount of silhouette value for the unsupervised 

method is more than the value of other methods but it does not necessarily mean better clustering of 

trees due to the mathematical nature of the silhouette value. Normal K-means treats the points as a 

bunch of objects for clustering and as it does not have any pre-defined initial points for starting the 

clustering, so in each iteration, it starts with a new set of initial points. For instance in five iterations, it 

computes five different “sum of distances” values and therefore it gives five different cluster centers. It 

is crystal clear that the value of silhouette would be changed in each iteration (the silhouette value in 

Table 4 comes from the first iteration). Furthermore, the result of unsupervised clustering for one tree-

area is shown in Figure 31(a) and easily the difference of results can be visualized. As a conclusion, this 

method is not reliable for clustering trees in comparison with supervised K-means. 

 Supervised K-means 

Opposite to the previous method, in the supervised K-means the position of initial seeds, cluster 

centroids and sum of distances are fixed and do not change during replications. In this method the 

number of clusters and position of initial points are given as seed points, it was hypothesized that due to 

the use of external seed points, K-means gives better clustering result; the output of this method is 

shown in Figure 31(b), which can be compared with other results. In the case of the other strips after 

careful visual investigation, it is found that this method works better in clustering. As known from 

previous studies and the concept of K-means clustering, it is obvious that all clustering methods 

especially K-means, work well for compact and isolated ALS data. It is noticed from the results that in 

dense forests, where the trees are close to each other, the cluster of one tree spreads to the 

neighbouring trees, so for decreasing this effect other experiments were carried out by reducing the 

height of the data zone from 50% to 40%. In this case, although the better silhouette values were 

obtained as well as better grouping, some of the trees with low height were ignored from the clustering 

process. 

Hierarchical Clustering      

Referring to Table 4, the silhouette value for hierarchical clustering is smaller than the other two 

methods. It is also clear from the visual inspection in Figure 31, that the hierarchical method works more 

efficiently than unsupervised K-means in tree clustering. In less dense areas with isolated trees, the 

hierarchical approach yields the same result as the supervised K-means. The main drawback of the 

hierarchical method is the computational time. Because of creating a dendrogram, which links all points 

to each other, the hierarchical method requires huge memory for clustering. As we usually deal with 

large amount of airborne data in forestial analysis, this method would not be as efficient as K-means. 

The result of clustering with this method is illustrated in Figure 31(c). 
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Figure 31: The first set of pictures (a) shows the result of clustering for the Unsupervised K-means method. In each 

set, the right picture shows a 2D scatterplot versus left picture, which shows a 3D plot of same area, dark green 

points belong to ground and part of trees, which are not involved in clustering. In set (a), the hollow squares 

illustrate the centre points of clusters. Set (b) shows the result of supervised K-means, the star points on top of 

each tree represent external seed points for clustering initializing. Two pictures of set (c) show the clustering result 

of Hierarchical approach.   

It is obvious that based on the clustering results from the above figure and mathematical concept of 

each method, the supervised K-means approach is more efficient than other methods. The result of 

supervised K-means, shows only few points that were grouped from neighbouring trees as one 

individual tree due to very close distance of those trees. 
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3.2 Tree Species Identification 

For performing the second part of this study, the species of 118 trees were identified and corresponding 

LiDAR data were extracted from the point clouds. All developed methods were tested on individual trees 

and a specific value from each method was saved for further computations. Three standard error values 

of fitting different shapes, point density ratio, hull ratio and number of slope changes were saved for 

each tree as specification of that tree for the evaluation step. As mentioned in the previous section, the 

range and histogram-shape of results of each method provide necessary information for defining the 

membership functions and finally running the fuzzy system. Looking on Figure 32, all defined MFs for 

variables can be seen. Based on those MFs, seven rules were developed and the result of the rules 

aggregation is represented in the Rule Viewer window in Figure 33. The Rule Viewer window displays a 

road map of the whole fuzzy inference process. In other words, all the concepts of FIS are shown in this 

window, from fuzzifying the inputs to defuzzifying the output. This window provides us with a final 

defuzzified value of output for any input values, with sliding red lines for each input or inserting 

different input values we can see the changes of the defuzzified number. As we defined our output as 

constant parameters of 1, 2 and 3 for birch, spruce and pine respectively, it is obvious to obtain a final 

result in range between 0 and 3. With a simple condition, which is coded, the species of tree are 

analysed and computed as constant numbers by entering the six specification values of one tree.   

1.                         
     
⇒                        

2.                          
    
⇒                        

3.                          
    
⇒                      

 
Figure 32: All defined MFs for each variable are shown in this image as well as the FIS type and number of rules. 
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Figure 33: The Rule Viewer window in which six left columns representing input variables and seven rows 

illustrating the seven defined rules. Each rectangle in the right column shows the implicated result of that row 

(rule) and finally the lower rectangle depicts the aggregated result, graphically and the numerical result is shown 

on top of that column. By sliding the red line, one can see the changes in both numerical and graphical final result. 

Blank rectangles in each row show variables, which are not involved in that rule. 

3.2.1 Model validation 

The Fuzzy inference system is expected to provide us with an optimum model, which aggregates the 

result of all methods and yields an as accurate as possible output. For validating the model, the 

reference trees are evaluated by the current model. The evaluation experiment is carried out in two 

levels. In the first level, the trees are divided into three species of birch, spruce and pine for evaluating 

the number of correctly identified species. In the second level, the trees are classified more generally to 

coniferous and deciduous species. As most of the previous studies were carried out on classifying 

coniferous-deciduous types, the second level of evaluation was performed to obtain a value for 

comparing. The results of these experiments are shown in Table 5 and Table 6. 

Table 5: The confusion matrix shows the percentage and number of classified species; totally 33 birch, 42 pine and 

38 spruce trees were involved in the accuracy assessment experiment. 

Classified 
Birch Norway spruce Scots pine 

Overall Accuracy 
No. % No. % No. % 

Birch 24 73  3 8 1 2  

Norway spruce 4 12 33 87 11 26  

Scots pine 5 15 2 5 30 72  

Proportion correct 73 % 87 % 71 % 77 % 
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Table 6: The percentage and number of classified coniferous-deciduous species are shown. 

Classified 
Deciduous Coniferous 

Overall Accuracy 
No. % No. % 

Deciduous 24 73 4 5  

Coniferous 9 27 76 95  

Proportion correct 73 % 95 % 84 % 

It is obvious from Figure 32 that none of the methods can succeed in partitioning completely. However, 

from Table 5, it can be interpreted that the aggregation of the methods by the fuzzy inference system 

resulted to overall 77% of accuracy. Although evaluating this model by hundreds of trees may affect the 

overall result, it should be considered that more samples would define better and more accurate 

membership functions. 

Table 5 also reveals the fact that spruces are classified more accurately; this can be proved by referring 

to MFs and results of the methods, because the cone and sphere fitting approaches were very efficient 

in detecting spruce types as can be seen in Figure 32. In the same picture it is shown that cone fitting, 

could not recognize pine and birch trees so their MFs overlapped each other while the point density 

method can define a rather distinct range for birch and pine trees. 

The worth case was taken place in the cylinder fitting method that despite the expectation of obtaining 

better result for pine trees, which supposed to have cylindrical shape nature, all three types were laid in 

the same ranges of the standard error aspect.  

The hull ratio method was rather efficient in spruce detection and the outcome of the slope changes 

approach was used as an auxiliary factor for determining spruce and pine trees. 

These results from only LiDAR points express the fact that by using other data sources of remote sensing 

such as spectral images, aerial photos and thermal images, it is decisive to attain very high accuracy in 

the field of tree species classification.         

3.2.2 Applying obtained model on test area 

As a final step in this study, the obtained model from the fuzzy system, which provides us with the 

mentioned accuracy results in Table 5 and Table 6 is applied to one of the test areas. In this test area, 

the number of trees has been detected already by using the algorithms explained in section 2.2. Using 

the detected tree top points as initial seeds for clustering, the group of laser points, which belong to 

each tree is extracted from the test site. It should be noted that the optimum clustering results were 

obtained using supervised K means algorithm as explained in section 2.3.2. The extracted tree clusters 

are used as input data for running the algorithms of six methods for tree species identification. As a final 

result those six variables for each tree are implemented in a fuzzy model and the corresponding species 

of any tree were determined. In Figure 34, each species are represented by specific colour for better 

visualization. The accuracy of detected trees is being investigated in section 3.1 for this test site, but due 
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to lack of information about tree species in so called area, the accuracy assessment of the determined 

species are not possible.    

 
Figure 34: Detected trees and their species are shown for test area A. The green points are raw laser points, which 

illustrate tree and ground points together. Black points represent detected trees in this area and blue, red and 

yellow circles around those black points, show the species of each detected tree as pine, birch and spruce 

respectively.    

The accuracy of determining tree species in dense forestial areas can be influenced by three factors. 

Based on developed algorithms in this study, first of all it is inevitable to face with error in detecting 

correct tree top points, clustering may cause the second level of error in this approach in a case that 

some irrelevant points being clustered as one single tree points, which consequently would affect the 

result of six algorithms of species identification. As a third source of error, the fuzzy model can be 

outlined, as mentioned the obtained model does not provide 100% accuracy for species distinguishing. 

Another point that should be emphasized is that due to dividing species to three classes of birch, spruce 

and pine, it is probable to find some other species, which are identified as one of those mentioned 

species, however the portion of other species trees may not exceed a few percent in a large forest area 

due to the nature of the Swedish forests. 

 

 

 

 

 

 

   



51 
 

4 Conclusions and future works 

 

 

Using LiDAR data for forestial areas and developing some algorithms, which use such kind of data, could 

end up in good results in determining the forest inventories. This thesis work was performed based on 

LiDAR data to find a rapid and accurate solution for determining two features of forest inventories: the 

number of trees and their species. As can be noticed from previous studies, a considerable progress has 

been achieved in this field using different methods. In this study, most concentration was given to laser 

point data. Using this type of data, a bunch of algorithms were written and developed by the author to 

detect trees and identify their species in forests. 

In general, the main factors that have most influence in determining the number and shape of trees are 

the LiDAR point density, the forest conditions in which tree grows, the terrain type, the crown cover and 

the tree density. Usually, outliers create a problem in tree detection, removal of which from the raw 

data significantly can improve the algorithm performance and output quality (Gupta, 2010). Apart from 

these parameters, the impact of data acquisition time should not be forgotten; in other words, separate 

processing of leaf-on and leaf-off data can lead to better results in tree estimation and species 

discrimination.  

As a conclusion for the first part of this study, which is conducted by single tree detection algorithms, 

the impact of the threshold value in the filtering process, should be noted. Setting the threshold 

distance becomes more difficult with increasing forest complexity. Normally, this value is lower for 

younger trees with narrow crown at the top compared to relatively older trees with wider crown and 

intermittent peaks at the top. Therefore, the significance of pre-knowledge about test areas should not 

be ignored due to its influence on setting variables. In case of clustering methods, which two main 

approaches were tested in this study, the traditional K-means method generates bad clustering because 

of its randomized process. The hierarchical approach has a good result in grouping when it has been 

applied to set of data in which trees are separate from each other. The supervised K-means algorithm is 

comparatively good for portioning the objects when the user has control over the seeding, so the tree 

top points, which were detected as local maxima are used as an external seed points for performing 

supervised K-means algorithm in this study. Finally comparing obtained results for detected trees with 

the results of DPM software for the same area and achieving more than 85% precision was an 

encouraging result for the developed algorithms in this study.  

Species identification of detected trees was carried out in this study based on a model obtained from a 

fuzzy logic system, which aggregated the result of six different methods for defining an efficient model. 

Those six applied methods, investigated tree shapes from a different point of view, so aggregating the 

results is a matter of consideration. In the rule defining step of the  fuzzy system, it is important that the 

rules are being well-defined because of its direct effect on the validation step of the model, so careful 

inspecting of the membership functions of each method can give the user more knowledge for 
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performing this step (defining rules). For identifying species, more reference trees would lead to a more 

precise model due to the statistical reasons that a larger sample of data provides more confident results. 

Finally, it should be mentioned that the obtained results present the accuracies of detected trees and 

their identified species in the limited number of test areas with few determined reference trees and 

using only laser point data as input of algorithms. It is crystal clear that these results could not reflect 

the best results in this field (tree detection and species identification), but can be considered as a 

motivation for expanding developed algorithms by using other sources of data such as spectral images, 

intensity values, thermal images, etc., and applying them on different forestial areas for identifying 

more species rather than three specific types. As mentioned before, these algorithms were developed 

for applying on Swedish forests, which are mainly covered by coniferous types, therefore using variate 

data sources, especially images would make it possible to run our algorithms on tropical forests also. 

In a further step, automatic classifying of all natural and man-made objects from LiDAR data and images 

would be considered as a future attempt for developing this study.          
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