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Abstract

Due to slow diagnostics, physicians must optimize antibiotic therapies based on clinical evaluation of patients without
specific information on causative bacteria. We have investigated metabolomic analysis of blood for the detection of acute
bacterial infection and early differentiation between ineffective and effective antibiotic treatment. A vital and timely
therapeutic difficulty was thereby addressed: the ability to rapidly detect treatment failures because of antibiotic-resistant
bacteria. Methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive S. aureus (MSSA) were used in vitro and
for infecting mice, while natural MSSA infection was studied in humans. Samples of bacterial growth media, the blood of
infected mice and of humans were analyzed with combined Gas Chromatography/Mass Spectrometry. Multivariate data
analysis was used to reveal the metabolic profiles of infection and the responses to different antibiotic treatments. In vitro
experiments resulted in the detection of 256 putative metabolites and mice infection experiments resulted in the detection
of 474 putative metabolites. Importantly, ineffective and effective antibiotic treatments were differentiated already two
hours after treatment start in both experimental systems. That is, the ineffective treatment of MRSA using cloxacillin and
untreated controls produced one metabolic profile while all effective treatment combinations using cloxacillin or
vancomycin for MSSA or MRSA produced another profile. For further evaluation of the concept, blood samples of humans
admitted to intensive care with severe sepsis were analyzed. One hundred thirty-three putative metabolites differentiated
severe MSSA sepsis (n = 6) from severe Escherichia coli sepsis (n = 10) and identified treatment responses over time.
Combined analysis of human, in vitro, and mice samples identified 25 metabolites indicative of effective treatment of S.
aureus sepsis. Taken together, this study provides a proof of concept of the utility of analyzing metabolite patterns in blood
for early differentiation between ineffective and effective antibiotic treatment in acute S. aureus infections.
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2010–4284 (HA MF) and K2011-56X-11222-17-6 (MF); Västerbotten County Council Centrala ALF (AJ); and Stockholm County Council ALF-medel (JSC). The funders
had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: anders.johansson@climi.umu.se (AJ); maria.fallman@molbiol.umu.se (MF)

. These authors contributed equally to this work.

" These authors also contributed equally to this work.

Introduction

The intensive use of antibiotics for 60 years has resulted in

a challenge of global scale - the increasing rates of antibiotic

resistance among bacteria. As a consequence, we are now running

out of treatment options for many infections [1,2,3]. Methicillin

resistant Staphylococcus aureus (MRSA) is a prime example of

a common, global, and potentially dangerous pathogen that has

acquired antibiotic resistance [2]. The current situation is

a reminder of past times when little could be done to combat

a S. aureus infection except surgical drainage of infected body sites.

MRSA is resistant to all members of the b-lactam class of

antibiotics including all penicillins, cephalosporins and carbape-

nems, thereby disarming all previous mainstay treatments against

S. aureus. In addition, MRSA is frequently resistant to other

common antimicrobial agents [4].

Worldwide, S. aureus is the most common cause of soft tissue,

skin, and blood stream infection in humans both in society and

hospital settings [4]. Localized disease may range in severity from

harmless skin boils to severe pneumonia, endocarditis, surgical site

infection, or osteomyelitis [5]. The bacterium may spread rapidly

from these local sites into the blood stream causing severe sepsis.

About 30% of patients diagnosed with S. aureus bacteremia die

within 30 days [6,7]. Due to increased frequency of MRSA, the

first line treatment of suspected severe S. aureus infection has been

shifted in many parts of the world from single drug treatment with

penicillinase stabile penicillins to vancomycin, which specifically
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targets MRSA. Despite this, MRSA infections lead to a worse

outcome with increased rates of fatality as compared to infections

by methicillin susceptible S. aureus (MSSA) [1,8].

Due to a lack of timely diagnostics, decisions by physicians

regarding use of antibiotic therapy normally must be based on

clinical symptoms without knowledge of the causative agent or its

resistance status. Consequently, antibiotics with broad antimicro-

bial action are overused for maximizing treatment success. The

evaluation of treatment response is also clinical and can at best be

performed two days after treatment start. The over- and

occasional misuse of antibiotics is continuously driving the

resistance development among bacterial pathogens, and at times

treatment failure remains undiscovered for several days due to an

unexpected bacterial etiology or unforeseen resistance. For these

reasons, new strategies to obtain rapid diagnostics as well as

information on the response to treatment are needed.

In this study we have employed a metabolomics approach

[9,10] for studying S. aureus infection in vitro, in mice, and in

humans. The objective was to develop a new concept for the early

diagnosis of acute bacterial infection and antibiotic resistance.

Samples from bacterial growth media, blood of infected mice and

blood of humans with infection were analyzed with Gas

Chromatography/Mass Spectrometry (GC/MS) followed by

multivariate statistical analysis to reveal metabolic signatures of

infection and the response to antibiotic treatment. Unique

metabolic signatures were found for MSSA and MRSA infection

during growth in vitro, as well as in the animal model. Moreover,

effective antibiotic treatments could be distinguished from in-

effective treatments at early time points. Finally, we assessed the

metabolomic approach using samples from humans with severe

MSSA sepsis and found that S. aureus sepsis was clearly

distinguished from severe E. coli sepsis already at admission to

an intensive care unit. This study provides a proof of concept for

metabolomic methods using GC/MS for the early diagnosis of S.

aureus infection, and determination of antibiotic resistance of the

causative agent.

Materials and Methods

Ethics Statement
The animal experiments were approved by and performed

according to the guidelines of the Swedish Ethical Committee on

animal research in Umeå, Sweden (ethical permissions A81-08

and A90-11). The analysis of blood samples from humans were

approved by the Regional Ethic Board at Karolinska University,

Stockholm, Sweden and written informed consent was obtained

from all participants in the study.

Bacteria
The MRSA and MSSA strains used in this study were both

from blood cultures processed in year 2009 with the instrumented

BD Bactec Plus system at the Clinical Microbiology Laboratory at

Umeå University Hospital, Umeå, Sweden. The MSSA strain was

from a male with a surgical site infection in a shoulder and the

MRSA strain from a male with a wound infection of a hand.

Mice
Eight week old female BALB/c mice (Taconic, Denmark) were

given normal mouse chow and water ad libitum, and were housed

under standard conditions.

Chemicals
All chemicals and compounds were of analytical grade unless

stated otherwise. The 11 internal standards (IS) (isotope labelled)

were purchased; [2H7]-cholesterol, [
13C4]-disodium a-ketogluta-

rate, [13C5,
15N]-glutamic acid, [1,2,3-13C3]-myristic acid, [13C5]-

proline, and [2H4]-succinic acid from Cambridge Isotope Labo-

ratories (Andover, MA, USA); [13C6]-glucose from Aldrich

(Steinheim, Germany); [13C4]-palmitic acid (Hexadecanoic acid),

[2H4]-butanediamine?2HCl (Putrescine), and [13C12]-sucrose from

Campro (Veenendaal, The Netherlands); and [2H6]-salicylic acid

from Icon (Summit, NJ, USA). Silylation grade pyridine and N-

Methyl-N-trimethylsilyltrifluoroacetamide (MSTFA) with 1% tri-

methylchlorosilane (TMCS) were purchased from Pierce Chemi-

cal Co (Rockford, IL, USA). The stock solutions (reference

compounds and IS) were all prepared in 0.5 mg/mL concentrations

in either Milli-Q water or methanol.

In vitro Growth
Three in vitro studies of bacterial growth were performed using

complement inactivated human serum from three different

donors. MRSA and MSSA bacteria were grown over night in

LB (Lurea Broth) and grown in in 37uC with agitation, and the

following day diluted to Optical Density (OD600) 0.02 in 80%

human serum and 20% LB. At OD600 0.2, 1 mg/ml Cloxacillin/

Ekvacillin (Meda AB, Sweden) or 10mg/ml vancomycin (Axelia)

were added to the cultures. Control samples were taken from

cultures with no antibiotics added. Samples were taken 1, 2, and

4 h after the addition of antibiotics.

Mouse Infections
Mice were infected intravenously (i.v.) with 1.26106 CFUs

MRSA or 0.66106 or MSSA in 100 ml PBS. Control mice

received an injection of 100 ml PBS. Both infected and control

mice were given antibiotics i.v. 24 h post infection; 20 or 40 mg/

kg Cloxacillin/Ekvacillin corresponding to 0.4 or 0.8 mg/mouse,

or 110 mg/kg Vancomycin corresponding to 2.2 mg/mouse.

Serum was sampled from the tail vein of all mice in the study

prior to infection (which served as individual uninfected controls),

24 h post infection (p.i.), and at one, three, and six h after the

addition of antibiotics. Serum was obtained by 30 min clotting at

room temperature, followed by centrifugation for 10 min at 94006g. Serum

was immediately frozen and kept at 280uC.

Patient Samples
The human serum samples used in this study were from two

pooled prospective studies of severe sepsis and septic shock

[11,12]. The patients were enrolled at admission to the intensive

care unit (ICU) of Karolinska University Hospital in Huddinge,

a tertiary care facility in Sweden. The diagnoses of septic shock

and/or severe sepsis were defined according to the criteria

proposed by American College of Chest Physicians/Society of

Critical Care Medicine [13]. For the current study, samples

representing patients with blood culture confirmed S. aureus

sepsis (N= 6; all males) or Escherichia coli sepsis (N= 10; 9 males

and 1 female) were included. Venous blood was collected in

vacutainer tubes (Becton Dickinson), was allowed 30 min

clotting time after which it was centrifuged for 10 min at

13006g in a swing bucket centrifuge; before serum separation

and immediate freezing and storage at 280uC. Serum samples

used in this study were obtained at admission, 24 h, 144 h, and

after 2 weeks. Disease severity scores for the two groups of

patients indicated severe disease at admission to the intensive

care unit with median APACHE II score of 20.5 (mean 21;

range 8–37) and 29.5 (mean 29.5; range 11–45) for the S. aureus

and E. coli group respectively.

Metabolomics for Detecting Antibiotic Resistance
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Preparation of Samples for GC/MS Analysis
Samples were divided into batches for the analysis (both

extraction/derivatization and GC/MS analysis). The batches were

selected to include most of the between sample variation with

regards to e.g. subject, time, infection and treatment. Extraction

and derivatization of the samples were carried out according to the

serum protocol for metabolomics available at Umeå Plant Science

Centre (UPSC) [14] and was carried out in the same way for all

included samples, although the volumes varied somewhat between

the different studies. For the in vitro studies 100 ml samples were

used, while in the mouse and human studies, 50 ml was used as

start volumes for the extraction due to difficulties to obtain larger

sample aliquots.

Volumes for the in vitro studies will be stated first followed by the

mouse and human studies respectively in brackets; the same order

is also used for the derivatization section below. For the extraction

the frozen 100 ml (50 ml) aliquots of serum, in Eppendorf tubes

(Sarstedt Ref: 72.690), were first thawed in room temperature and

then put on ice. 900 ml (450 ml) methanol/water extraction mix

(90:10 v/v) including 11 ISs (7 ng/ml), was added to all of the

samples, still on ice, followed by extraction in a bead mill (MM

400, Retsch GmbH, Haan, Germany) for 2 min with a frequency

of 30 Hz after which the samples were again put on ice (in a cold

room 4–5uC) for 120 min. After the cooling the samples were

centrifuged for 10 min at 14 000 rpm (Centrifuge 5417R,

Eppendorf, Hamburg, Germany) at 4uC and then 200 ml
(100 ml) of the supernatants were transferred to GC vials and

evaporated to dryness using a speedvac (miVac, Quattro

concentrator, Barnstead Genevac, Ipswitch, UK). After evapora-

tion the samples were stored in 280uC until derivatization.

Prior to derivatization the extracted samples were run for 5–

10 min in the speedvac to remove any possible condense. 30 ml
(15 ml) methoxyamine in pyridine (15 mg/ml) was added followed

by 10 min of vigorous shaking in a shaking machine and 60 min

heating in an oven at 70uC. The reaction was then continued for

16 h in room temperature. 30 ml (15 ml) MSFTA (N-methyl-N-

trimethylsilyl-trifluoroacetamide) +1% TMCS (Trimethylchlorosi-

lane) was added to all samples for the trimethylsilylation step. The

samples were then vortexed and the reaction time was set to

1 hour in room temperature. Finally, addition of 30 ml (15 ml)
heptane including methyl stearate (15 ng/ml) was done followed by

vortexing.

GC/MS Analysis
GC/MS analysis was carried out based on the protocol

presented by A et al [14]. One ml of each derivatized sample

was injected splitless into an Agilent 6890 (Agilent, Atlanta, GA,

USA) gas chromatograph using an Agilent 7683 auto sampler.

The GC was equipped with a 10 m60.18 mm60.18 mm i.d. fused

silica capillary column, chemically bounded to a 0,18 mm DB5-

MS stationary phase column (J&W Scientific, Folsom, CA, USA).

The injector temperature was 270uC and the purge flow was

turned on after 60 sec with a rate of 20 ml/min. Helium was used

as carrier gas with a flow rate through the column of 1 ml/min.

Temperature programming was used with an initial column

temperature of 70uC for 2 min, then the temperature increased

with 40uC/min up to 320uC where it was held for 2 min. The

effluent from the column was then led to the ion source of

a Pegasus III-TOF-MS (Leco Corp., St Joseph, MI, USA) via

a transfer line with a temperature of 250uC. The temperature of

the ion source was 200uC. An electron beam of 70 eV was used to

generate the electrons at an ionization current of 2.0 mA. 30

spectra/sec were recorded with masses in the range of 60 to

800 m/z until a solvent delay of 170 sec at which point the

acceleration voltage was turned off. The detector voltage was

1500–1700 V. Apart from the study samples, several samples of

methyl stearate in heptane (5 ng/ml) were run to check the

sensitivity of the instrument and a few alkane series samples

(containing C8–C40) were also run to allow calculation of

retention indexes, RI. The analysis time for each sample was

around 15 min.

Data Processing
After GC/MS analysis the data was exported in two formats;

SMP and NetCDF. MATLAB (7.3.0 R2006b and 7.11.0 R2010b,

Mathworks, Natick, MA, USA) was used both for the pre-

processing steps and for the curve resolution by means of

hierarchical multivariate curve resolution (H-MCR) using an in-

house developed script [15]. The pre-processing steps included the

analysis of alkane series, background reduction, smoothing of data

(filtering), alignment of chromatograms with a median sample as

target, and division of chromatograms into time windows. The

result of the curve resolution was a number of resolved

chromatographic profiles (putative metabolites) together with

corresponding mass spectra.

Identification of Metabolites
NIST MS Search 2.0 was used to identify each resolved

compound, by comparing the acquired spectra of these com-

pounds with spectra from authentic standard compounds stored in

mass spectral libraries. The libraries used for the identification

were the in-house mass spectra library database established by

UPSC or the mass spectra library maintained by the Max Planck

Institute in Golm (http://csbdb.mpimp-golm.mpg.de/csbdb/

gmd/gmd.html).

Multivariate Data Analysis
Multivariate data analysis was performed using the computer

software SIMCA (version SIMCA-P+12.0, Umetrics AB, Umeå,

Sweden). Prior to multivariate analysis all data were mean

centered (subtraction of the variable average for all individual

variables) and scaled to unit variance (division of each variable

with its standard deviation). Mean centering allows the multivar-

iate models to merely focus on the inter-variable variation in the

model interpretation. Scaling to unit variance implies that each

variable is given the same chance to affect the model, which makes

sense in a hypothesis generation screening approach as the one

presented here. Principal component analysis (PCA) was used to

get an overview of the data. Orthogonal partial least squares –

discriminate analysis (OPLS-DA) was used to compare metabolic

profiles of different sample classes. Depending on the outcome of

the initial OPLS models additional models were calculated with

altered sample class division. Since three different types of studies

were included the strength of the models was investigated by trying

to find common metabolites between the different studies and then

build models based on only the common metabolites. This was

initially performed by highlighting significant metabolites contrib-

uting to the separation of the classes from the OPLS-DA

covariance loadings (w*) of similar models in each study (initial

criteria for significance 20.04. w* .0.04). As a first filtering step

only metabolites that were common in all three in vitro studies were

used for comparison with the other studies. Metabolites showing

different directions of change (increased or decreased levels) in the

in vitro studies were excluded. The common in vitro metabolites

were compared to the significant metabolites in the mouse and the

human studies. Significant metabolites in the mouse study were

also compared to the metabolites found in the human study. The

final ‘‘common’’ metabolite pattern, being the combined metabo-
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lites common between in-vitro and human as well as between

mouse and human was then evaluated in the human model. It

should be noted that this ‘‘common pattern’’ could not be

evaluated in the mouse and in-vitro model respectively since the

individual contribution from those models not necessarily do

overlap in terms of significant metabolites. The comparison of

identified metabolites was performed mainly by comparing

metabolite identities, but also similarities of mass spectra. Un-

identified metabolites were compared by considering only mass

spectra similarity. All multivariate models were visualized by score

values from the extracted latent variables. For all OPLS-DA

models, score values from the predictive components are shown,

where t [1] p denote score values for the first component (model

dimension) and t [2] p the second component. For the two-class

models, cross-validated score values are shown (indicated as tcv [1]

p). Models including predictions of independent samples are

visualized using both cross-validated and predicted score values

(indicated as tPS [1] cv [1] p). Cross-validated p-values, based on

ANOVA of the cross-validated models, are given for all models to

reveal the statistical significance of the class separation, where the

significance limit was set to p,0.05.

Quantification of Pattern Metabolites
Seven metabolite standards (serine, threonine, homoserine,

ornithine, glutamine, myo-inositol and linoleic acid - all of which

were of similar compound class to the possible biomarkers found)

were used to generate calibration curves (at 6 different concen-

tration levels) in order to quantify the possible biomarkers in the

analyzed samples. Quantification was performed by calculating

relative peak area response ratios (metabolite of interest peak

area/internal standard peak area), after using two modes of

metabolite confirmation: retention time similarity (mostly varied

by a standard deviation less than 5%) and m/z spectra (similarity

was usually greater than 700, where 1000 is a perfect match). Six

internal standards were also present in every sample, namely: D4-

succinic acid, 13C4-a-ketoglutarate, 13C5, 15N-glutamic acid,

13C4-hexadecanoic acid, 13C12-sucrose and D7-cholesterol.

Quantification ions were used to perform the quantification for

each metabolite of interest, as they provide more accurate peak

area ratios when compared to TIC (total ion chromatogram) or m/

z 73 (mass fragment produced from trimethylsilyl derivatization

products) peak area ratios. Additionally, the ions monitored for

quantification were most specific to the analyte of interest,

provided a solid signal-to-noise (S/N) ratio and the least

interference to other ions. RSDs and R2 values were all found

to be within acceptable limits, with R2 values greater than 0.990 in

almost all cases. The limit of detection (LOD) and limit of

quantification (LOQ) were determined manually using the

standards with the lowest concentration i.e. 0.01 mg/L and

reconstructing the respective EIC for each of the seven metabolites

of interest. Detection limits were calculated by determining the S/

N ratio and extrapolating to the S/N=3.3 level (for the LOD) and

S/N=10 level (for the LOQ). The LOD achieved using this

method was 0.0005 mg/L and the LOQ attained was 0.001 mg/L

for the seven standard metabolites. The LOQ was below the

lowest standard, which is in agreement with the concentration

range selected to construct the calibration curve. Table 1 titled

‘metabolic response to antibiotic treatment’ includes the concen-

tration levels determined using the quantification method above in

mg/L. The fold changes in concentration observed in the

metabolites of interest ranged from two-fold to one-hundred fold,

when comparing the two most obvious normal and infection

samples (i.e. 0 h and 144 h).

Results

Bacterial Growth in vitro and Response to Antibiotic
Treatment Produces Unique Metabolomic Signatures
To evaluate if efficiency of antibiotic treatment can be measured

by metabolic profiling of bacterial growth in vitro, we initially

studied methicillin resistant and sensitive S. aureus (MRSA and

MSSA, respectively) grown in presence or absence of cloxacillin or

vancomycin. Overnight cultures of clinical isolates of MRSA and

MSSA were diluted to OD600,0.02 in 80% human heat

inactivated serum with 20% LB and grown to OD600,0.2

(indicated by an arrow; Figure 1A) when each strain was

subdivided into three separate cultures; non-treated bacteria for

continued growth, vancomycin treated bacteria, and cloxacillin

treated bacteria. Both strains were sensitive to vancomycin, which

served as a positive control for inhibition of growth, and translates

to effective treatment of infection in a clinical setting. MSSA

growth was successfully inhibited by cloxacillin (effective treat-

ment), while the growth of methicillin resistant MRSA in

cloxacillin was not inhibited (ineffective treatment) (Figure 1A).

The metabolic profiles were determined for samples taken at

different time points during the culturing (Figure 1B). Samples

were taken during growth with or without antibiotics. Early log

phase samples (OD600 0.2) were used as a reference for untreated

bacteria (Figure 1B). There were 256 putative metabolites detected

by GC/MS analysis. Using multivariate analysis, we observed

differentiating metabolite patterns for effective and ineffective

treatment (Figure 1B). MRSA treated with cloxacillin (ineffective

treatment) displayed the same patterns as untreated MRSA or

MSSA at each time point, indicating metabolites associated with

growing Staphylococci. In contrast, MRSA treated with vancomycin

and MSSA treated with cloxacillin or vancomycin (effective

treatment) displayed patterns consistent with inhibited growth

(effective treatment). Furthermore, to explore the significance of

the difference between the two responses, and to identify

significantly altering metabolites, a multivariate model was

calculated comparing samples belonging to either of the two

responses (Figure 1C). The comparison revealed a significant

separation between the two classes/responses (p = 0.0013). A

separation could be seen already from 1 h after onset of treatment.

We performed three independent experiments (using serum from

three different blood donors) that were analyzed separately. These

separate analyses showed consistent response profiles, thus

validating the metabolic profile (Figure 1B, 1C; and Figure S1

and S2). In total, 32 significantly discriminating metabolites (26

identified and 6 unidentified) were altered between effective and

ineffective treatment according to the model in all three

experiments (Table S1). Thus, we could discriminate between

growing and non-growing bacteria by using metabolic profiling.

Since bacteria sensitive to antibiotics stop proliferation while

resistant strains continue to grow, treatment efficiency by different

antibiotics could be monitored.

Unique Metabolic Profiles of Effective and Ineffective
Antibiotic Treatment of S. aureus in Mice
To evaluate infection associated metabolic profiles in vivo,

BALB/c mice were infected with MRSA or MSSA. Serum was

sampled from all mice before infection, at 24 h p.i. (but preceding

treatment with cloxacillin or vancomycin), and at 1, 3, and 6 h

after antibiotic treatment. Using GC/MS, we were able to detect

474 putative metabolites. Multivariate analysis revealed a distinct

metabolic pattern associated with ineffective antibiotic treatment

(p = 0.00097), i.e. the metabolic profile of samples from MRSA-

infected mice treated with cloxacillin was clearly different

Metabolomics for Detecting Antibiotic Resistance
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Table 1. Metabolic response to antibiotic treatment.

Metabolitea
Change in concentration
with effective treatmentb RIc p-value

Concentration at
0 h (mg/L)d

Concentration at
144 h (mg/L)d

Glutamine q 1768 4.161022 0.095 0.214

Homoserine q 1454 4.161022 0.097 0.000

Inositol Q 2080 5.861022 0.314 0.099

Linoleic acid q 2207 5.561022 0.182 0.003

Ornithine q 1610 2.261022 0.047 0.062

Serine q 1363 7.761022 0.045 0.008

Threonine Q 1384 5.661022 1.187 0.094

aSignificant metabolites for S. aureus antibiotic treatment response common human S. aureus sepsis and mice infected with MRSA and MSSA, and human S. aureus
sepsis and in vitro grown MRSA or MSSA.
bRefers to response to antibiotic treatment, where q/Q indicates a higher/lower metabolite concentration in samples with effective treatment compared to samples
with ineffective treatment (for in vitro experiments and mice infection) and in late time point, 144 h-2 weeks after admittance, compared to acute phase infection
samples, 0–24 h after admittance (for human sepsis).
cRetention index for all metabolites.
dConcentration obtained from direct quantification of the 7 metabolites in a subset of the S. aureus samples shown both for samples in the acute phase (0 h) and in the
late phase (144 h).
doi:10.1371/journal.pone.0056971.t001

Figure 1. Metabolic profiles of samples from in vitro grown MRSA and MSSA in presence or absence of antibiotics. A) OD600 of MRSA
and MSSA grown in absence of antibiotics or in presence of vancomycin, or cloxacillin. Arrows indicate time point for addition of antibiotics. B) OPLS-
DA predictive score vector, t [1] p, for a seven class model based on 256 metabolites showing bacterial growth and response to antibiotic treatment
over time. Mean score values with 95% CI are shown. The two regression lines represent the direction over time for the two metabolic responses. C)
Cross-validated OPLS-DA predictive score vector, tcv [1] p, for a two class model based on 256 metabolites revealing a clear separation (p = 0.0013)
between the two responses (effective and ineffective treatment). Mean score values with 95% CI are shown. The figure demonstrate the result from
one out of three independent experiment (see Figure S1 and S2).
doi:10.1371/journal.pone.0056971.g001
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compared to the others (Figure 2A). Analysis of effective versus

ineffective (MRSA and cloxacillin) antibiotic treatment revealed

distinct metabolite profiles (Figure 2B). In accordance with the

data from the in vitro analyses, the samples from untreated mice

(24 h p.i.) co-varied with the samples of ineffectively treated mice

(MRSA and cloxacillin), i.e. they expressed similar metabolic

profiles, indicating bacterial growth. In contrast, samples from

uninfected mice (pre-infection in Figure 2B) co-varied with

samples of effectively treated mice (MSSA and cloxacillin, and

MRSA/MSSA and vancomycin). This indicates that metabolic

profiling is able to measure success or failure of treatment in vivo.

To explore the statistical significance of the difference between the

two responses, and also to identify potential diagnostic biomarkers,

a model was calculated comparing samples from effectively and

ineffectively treated mice (Figure 2C). The comparison revealed

a separation between the two classes/responses (p = 4.261027)

(Figure 2C). In total 167 significantly discriminating metabolites

(58 identified and 109 unidentified), either significantly increased

or decreased, were detected in the two class model (Table S2). A

comparison of these with the results of the previous in vitro

experiments revealed 9 metabolites (7 identified, 2 unidentified) as

common markers for effective treatment (Table S3). Thus, it seems

feasible to identify common metabolites that indicate treatment

efficiency in both in vitro and in vivo experimental infection systems.

Metabolic Profiling of Human Severe Sepsis Caused by S.
aureus or E.coli
In order to establish if metabolic profiling of blood can be used

to distinguish severe S. aureus sepsis from severe E. coli sepsis in

humans, and to evaluate the effect of antibiotic treatment, we

analyzed clinical samples obtained at an intensive care unit (ICU).

All patients received effective antibiotic treatment at admission (i.e.

b-lactams like cephalosporin and carbapenems). The causative S.

aureus or E. coli was subsequently tested susceptible to the

antimicrobial agents used for treatment. For metabolomic

analyses, samples taken at the arrival to the intensive care unit

(0–24 h) and samples taken after treatment (144 h –2 weeks) were

employed. Metabolic profiling revealed 228 putative metabolites

detected by GC/MS analysis. Using multivariate analysis we

observed differentiating metabolite patterns between S. aureus and

E. coli samples in the acute phase of disease (0–24 h; Figure 3A).

The treatment responses were indeed reflected in the metabolic

profiles with convergence over time (Figure 3A). At the late time

points 144 h –2 weeks after admission, the profiles of S. aureus and

E. coli clustered consistently with successful treatment of both

infections. To verify that metabolomics can be used to distinguish

S. aureus and E. coli sepsis, a multivariate model for the difference

between S. aureus and E. coli samples in the acute phase of disease

(0–24 h after admittance) was calculated based on the 228

Figure 2. Metabolic profiles of serum from mice infected with S. aureus. A) OPLS-DA score plot (predictive score vectors t [1] p vs. t [2] p) for
a four class model based on 474 metabolites showing metabolic profiles of MRSA or MSSA infected mice treated with cloxacillin or vancomycin. The
first and second model components reveal discrimination between the different treatment groups. B) OPLS-DA predictive score vector, t [2] p, for
a seven class model based on 474 metabolites separating the metabolic responses in mice in response to effective or ineffective antibiotic treatment.
Mean score values with 95% CI are shown. C) Cross-validated OPLS-DA predictive score vector, tcv [1] p, for a two class model based on 474
metabolites for biomarker detection (p = 4.2 * 1027) between ineffective versus effective treatment, i.e. MRSA treated with cloxacillin (ineffective
treatment) versus MSSA and cloxacillin and MRSA/MSSA and vancomycin (effective treatment). Mean score values with 95% CI are shown.
doi:10.1371/journal.pone.0056971.g002
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metabolites. The model detected and revealed a clear separation

based on a pattern of 133 significantly discriminating metabolites

(52 identified and 81 unidentified) (model not shown).

A Diagnostic Pattern for Severe Sepsis Caused by S.
aureus
The availability of human samples of severe sepsis allowed us to

use E. coli samples as controls for establishing a S. aureus specific

diagnostic pattern. Out of the 228 metabolites used in the two-

class model for separating early E. coli and S. aureus sepsis in

humans, 133 were significant for the separation. Comparison of

the 133 metabolites with the significant metabolites seen in

ineffectively or untreated S. aureus infections in vitro and in mice

identified 33 metabolites as characteristic for S. aureus infection.

When a model was made on the 33 metabolites, this S. aureus-

associated metabolic profile significantly discriminated acute S.

aureus from E. coli infection in the human samples (p = 0.052)

(Figure 3B, Table S4). Furthermore, this model could also be used

for out-of-sample prediction of sepsis caused by S. aureus in

comparison to E. coli. Importantly, eight samples of human sepsis

were correctly classified to originate from S. aureus or E. coli sepsis

(Figure 3B).

To further explore if metabolomics can detect antibiotic

treatment effect in human samples, a two class model for the

difference between acute and antibiotic treated S. aureus infection

(0–24 h vs 144 h - 2 weeks after admittance) was calculated based

on the 228 metabolites. The separation was based on 126

metabolites that were significantly altered, of which 52 could be

assigned with a molecular identity. By comparing significantly

altered metabolites from human and in vitro samples, and from

human and mice samples, 25 common metabolites indicating

effective antibiotic treatment for S. aureus sepsis were found

(p = 0.069) (Figure 4A, Table S5, S6, and S7). Moreover, this

profile could also be used to predict (diagnose) unknown samples

from one patient with S. aureus sepsis, i.e. this patient was correctly

classified as having acute infection, whereas samples from E. coli

sepsis did not fit into the S. aureus model (p (t-test) = 0.004 and p (F-

test) = 0.0013). Finally the strongest metabolic pattern among the

25 metabolites was determined by finding the combination of

metabolites yielding the best classification model. This resulted in

a pattern of 7 metabolites (Table 1). This pattern was used to

explore the possibility to monitor effective treatment of S. aureus

(p = 0.0022) (Figure 4B). Using this pattern, out-of-sample pre-

diction of acute S. aureus infection was again correct (Figure 4B,

compare with Figure 4A). The relative concentrations of each of

the seven included metabolites (Figure 4C) clearly demonstrate

that it is the combination of the metabolites in a metabolic pattern

that is important to correctly monitor the treatment responses

caused by the infection, not single metabolite concentrations.

Targeted quantification of the seven metabolites using GC/MS

was carried out in a subset of the S. aureus samples (N= 4; two

acute and two late S. aureus samples) and verified the expected

Figure 3. Discrimination between the metabolic profiles of S. aureus and E. coli sepsis in humans and effect of antibiotic treatment.
A) OPLS-DA predictive score plot (score vectors t [1] p vs. t [2] p) for a four class model based on 228 metabolites revealing discrimination of severe
sepsis caused by S. aureus or E. coli in the acute phase. B) Cross-validated and predicted OPLS-DA predictive score values, tPS [1] cv [1] p, for a two
class model, based on 37 metabolites for discrimination of S. aureus and E. coli infection (p = 0.052). Out-of-sample prediction of sera of four patients
at two time points. Mean score values with 95% CI are shown.
doi:10.1371/journal.pone.0056971.g003
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differences in concentration for the metabolites: glutamine,

inositol, ornithine, and threonine, while the concentration changes

of homoserine, linoleic acid, and serine were not verified (Table 1).

However, use of the seven targeted concentration levels as

a pattern resulted in significant separation between acute and

antibiotic treated S. aureus infection in a two class model

(p = 0.00048, Student’s t-test of the cross validated model scores).

Discussion

In an era that was recently denoted ‘‘post-antibiotic’’ by the

Director-General of the World Health Organization, new

concepts for diagnostics of infectious disease and antibiotic

resistance are needed [16]. New approaches that allow for more

precise selection and adjustments of antibiotic treatment regimens

could improve the outcome of severe infections caused by

antibiotic resistant bacteria. First, a diagnostic test that can

determine if the administrated antibiotic treatment of S. aureus is

effective within a few h of initiation could help in optimize the

antimicrobial therapy. Second, early etiologic diagnosis could help

to reduce use of unnecessary antibiotic treatments that further

exaggerates the resistance development and spread among

pathogens. With current diagnostic procedures, it remains un-

known if an infection is caused by MSSA or MRSA during at least

two days until a culture diagnosis including analysis of antibiotic

resistance is completed. Taken together there is a pressing need for

improved diagnostic tests that are faster and can rapidly measure

the success or failure of antibiotic treatment.

In the current study we have explored the potential of using

metabolomics in the diagnosis of acute S. aureus infection and as

a tool to measure success or failure of antibiotic treatment in vitro

and in vivo. Our results are consistent with results from other

disciplines in medical science which have found that metabolomic

profiling of small biomolecules in body fluids can be used to

understand metabolic events resulting from different disease and

physiological conditions [17,18,19,20]. We believe that metabo-

lomics of infections is a promising and emerging approach for

diagnostic purposes, in the early detection of treatment success or

failure, and for obtaining an increased understanding of bacterial

pathogenesis [21,22]. Metabolomic analyses of culture super-

natants from S. aureus grown in vitro could discriminate MRSA

from MSSA, which is likely due to clonal variation. However, the

important finding was that we could monitor efficiency of the

cloxacillin treatment with this method. Similarly, analysis of blood

samples from an experimental infection model in mice using the

same bacterial strains showed that this discrimination was possible

also from samples of an in vivo infection model. The results showed

that it was possible to determine if the bacteria continued to

Figure 4. Monitoring the effect of antibiotic treatment response in S. aureus infection. A) Cross-validated and predicted OPLS-DA
predictive score values, tPS [1] cv [1] p, for a two class model, based on 25 metabolites for discrimination of early and late S. aureus infection
(p = 0.069). Out-of-sample prediction of sera of one patient from two time points. Mean score values with 95% CI are shown. B) Cross-validated and
predicted OPLS-DA predictive score values, tPS [1]c v [1] p, for a two class model based on 7 metabolites for discrimination of early acute and late S.
aureus infection (p = 0.0022). Out-of-sample predictions of sera of one patient at two time points. C) Relative concentration, determined as area under
curve, for seven metabolites constituting the predictive pattern for treatment response in S. aureus sepsis samples. Errors bars represent 95%
confidence intervals around the class average.
doi:10.1371/journal.pone.0056971.g004
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replicate or if their replication was halted by effective antibiotic

treatment in vitro and in vivo. Moreover, by comparing the

metabolic profile indicating effective treatment for the in vitro

MRSA/MSSA experiments and the animal experiments, meta-

bolites that were shared between these infection model systems

could be identified. A metabolic profile of nine metabolites useful

for predicting successful antibiotic treatment was common

between the in vitro and in vivo experiments. We believe that the

existence of shared metabolites indicates a bacterial role for their

alteration, either that the metabolites originate from the bacteria

itself or from bacteria-induced host processes.

Analysis of severe human sepsis assessed only MSSA infections

and not MRSA infection since MRSA is exceedingly rare in

Sweden - the location of this study (less than one percent of

positive S. aureus blood cultures). Nevertheless, the analyses showed

that severe S. aureus sepsis was readily distinguished from severe E.

coli sepsis. The difference in metabolomic profiles was largest at

admission to the ICU, after which profiles in those who survived

the sampled period (14/16) converged over time. The most

obvious interpretation of this finding is that we have been able to

measure the effect of effective antibiotic treatment of both disease

conditions. The distinct metabolic profiles observed at admission

to the ICU were specific for S. aureus and E. coli, respectively. As

the result of effective antibiotic treatment the metabolite profiles

then converged to reflect a recovery from infection shared between

patients admitted with either S. aureus or E. coli. Taken together the

results indicate that metabolic responses are specific to S. aureus or

E. coli infections and that effective antibiotic treatment can be

measured in specimens from patients.

Based on these results we strongly believe that single metabolites

will not be sufficient as biomarkers for infection and effective

antibiotic treatment. Instead, we suggest that a unique metabolic

profile or ‘‘pattern’’ of a number of indicative metabolites is the

important tool for diagnosis. We found that by using a pattern of

seven serum metabolites it was possible to obtain a significant

model, i.e. a latent variable, useful for predicting effective

treatment in humans with severe S. aureus sepsis. By evaluating

the seven metabolites individually it was evident that none of them

alone provided the same level of significance as the combined

pattern. This highlights the value of taking into account the

correlation structure between variables to obtain a stronger and

more robust discriminating pattern, i.e. a latent variable compris-

ing of multiple inter-correlated and co-varying entities. We

validated the robustness and the significance of the latent variable

both by using a cross-validation procedure and by blind

predictions of samples not included in the model calculations. By

using the cross-validated model as a means to decide the

significance we aimed at avoiding the risk of generating an over-

fitted (false positive) model, which is a common criticism of

multivariate approaches used in biological and medical sciences

[9,10]. In addition, this approach made it possible to obtain a fair

estimation of the significance of the latent variable for discrimi-

nating the sample classes. Finally, by making blind predictions

based on the extracted metabolite pattern we could test its

diagnostic potential.

This study is descriptive in nature and we acknowledge that

interpretation of the biological meaning of metabolite changes will

be speculative and can mainly serve for generation of hypotheses.

We discovered a general pattern of increased amino acid

concentrations with effective treatment. Four out of five amino

acids in the seven metabolite pattern (glutamine, homoserine,

ornithine, and serine) increased in approximate concentration

levels in response to effective treatment of S. aureus infection.

Catabolism and muscle wasting are well known to occur during

severe sepsis and it is generally believed that sepsis creates an

energy deficit and that amino acids are consumed during sepsis for

energy production by increased gluconeogenesis in the liver. It is

possible that we have detected a switch away from such a catabolic

state resulting from effective treatment. However, since the

metabolic response was also detected under in vitro conditions,

and the pattern of amino acid consumption differed between S.

aureus and E. coli sepsis in humans, we hypothesize that the

consumption is not only a host related response to sepsis, but is

also mediated by the bacteria. Exoproteases are well-known

virulence factors of S. aureus with a main function of converting

local host tissue into nutrients required for bacterial growth,

making it plausible that we are measuring an effect of S. aureus

proteases degrading human tissue for bacterial nutrition. We posit

that the increased levels of four amino acids in response to

treatment may be a reflection of inhibited S. aureus growth and

amino acid consumption and that there was a time lag before the

activity of bacterial proteases ceased. We acknowledge that this

does not explain why threonine levels decreased rather than

increased. However, the overall pattern found was increased levels

of amino acids.

We also found linoleic acid to be increased in response to

effective treatment of S. aureus infection. This makes biological

sense since linoleic acid is a free fatty acid with an anti S. aureus

effect used by the host for infection defense [23,24]. Linoleic acid

is believed to be an important part of the local host defense of the

skin towards gram positive pathogens such as S. aureus, and our

finding of elevated levels in S. aureus infection therefore would fit

with a host defense role of this metabolite in S. aureus, but not E. coli

infection.

Finally, the decrease in inositol levels upon effective treatment in

mouse and human samples but not in in vitro samples suggests that

the observation is dependent on the interaction between the

bacterium and the host. Inositol is a sugar alcohol and an

important building stone of several secondary messengers in

eukaryotic cells, mediating intracellular signal transduction [25].

Whether the high inositol values in the acute phase (or during

ineffective treatment of mice) is related to the growth of S. aureus in

the host or is a response to heavy tissue destruction causing release

of inositol from damaged host cells is unclear. The S. aureus

genome contains a putative gene encoding inositol monopho-

sphatase that should be capable of dephosphorylating inositol

phosphate to inositol. The gene may have a role in biofilm

formation but the knowledge of inositol in bacteria is generally

scarce [26,27].

The current study was designed to evaluate metabolic

techniques for diagnosing S. aureus infection in three different

settings, each with its distinct advantages and disadvantages. The

target was the identification of metabolites corresponding to

MSSA and MRSA metabolism during antibiotic treatment. The

first setting included in vitro experiments. These avoided the

complication of simultaneously measuring both host and bacterial

metabolism. Although they said little or nothing about host

response, they offered controlled experimental conditions, which

allowed exploration of metabolomic changes during treatment of

S. aureus. In the second setting, the complexity of host response was

added to the mix, in the form of a mice model. Although mouse-

specific metabolic host responses were not our primary interest,

murine experiments provided opportunities to again perform

controlled trials with genetically identical mice, defined doses of

the same bacterial strains and consistent use of the same antibiotic

treatments. Such an approach is not possible in a clinical patient

trial. The third setting was human infection. The main disadvan-

tage in our human model was a lack of MRSA infections (due to
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low incidence in Sweden, where this study was performed), which

precluded a direct comparison with MSSA infections. Despite this,

we consider the analysis of human samples a distinct strength of

this study because; a) they are typical of real clinical situations and;

b) we have included control samples from patients with E. coli

sepsis. The controls help in identifying/discriminating not only

metabolites of severe sepsis but more specifically those of severe

sepsis caused by S. aureus infection. Future studies should include

samples of humans infected with MRSA.

Although we could detect a relatively high number of putative

metabolites in the different models using GC/MS for metabolic

characterization, we noted some limitations with regards to

identification of these compounds as well as in the sensitivity of

the method. GC/MS is considered to be fairly straightforward in

the comprehensive identification of metabolites, by using both

available mass spectral libraries (e.g. NIST08 library) and libraries

built by using authentic standard compounds (in-house libraries).

However, although these libraries are continuously being updated,

they are still far from being complete, resulting in a majority of

detected putative metabolites remaining unidentified (in this study

,60% of the detected peaks remained unidentified). It was also

evident from our analysis that the GC/MS method has limitations

due to the need of derivatization, and thereby the inborn

discrimination of metabolites detected. For future studies we

believe that the use of complementary, and for many types of

metabolites, a more sensitive method such as liquid chromatog-

raphy – mass spectrometry (LC-MS) will be of great value. An

alternative is to use a more targeted approach, where a sub-set of

pre-defined metabolites or compound classes are quantified with

more accurate and precise mass spectrometric methods as well as

increased sensitivity.

Conclusion
In conclusion our results point toward a new way of thinking

regarding identification of biomarkers for point of care diagnostics

in the future. The idea of using metabolite patterns for diagnostics

makes sense since the use of single molecular markers rarely results

in the demanded specificity. By using mathematical modeling

metabolic patterns can be described and explain how large

numbers of metabolites are correlated in a complex biological

system. Here, a direct analogy can be made with making a clinical

diagnosis; something that usually requires a combination of many

different signs, symptoms, facts in a clinical history, and laboratory

tests before a synthesis (a model of disease) points to the correct

diagnosis. The rise in antibiotic resistance levels among bacteria is

increasing the need for rapid recognition of effective or ineffective

antibiotic treatment at early stages of infection, something that

underscores the value of the metabolomics approach. Future plans

include speeding up analysis to enable early monitoring of

treatment. This would constitute a significant improvement with

the potential to reduce mortality from severe infections. Impor-

tantly, a rapid and specific diagnostic method for infection would

also reduce use of unnecessary broad spectrum antibiotics.

Although much work remains before this approach can be put

into clinical practice, the results of this study provide a proof of

concept for metabolomics as a tool for detecting putative

biomarkers for antibiotic resistance.
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Figure S1 Metabolic profiles during in vitro growth of
MRSA and MSSA. A) OD600 of MRSA and MSSA grown in

absence of antibiotics, with vancomycin, or cloxacillin. Arrows

indicate time point for addition of antibiotics. B) OPLS-DA

predictive score vector, t [1] p, for a seven class model based on

237 metabolites showing bacterial growth and response to

antibiotic treatment over time. Mean score values with 95% CI

are shown. The two regression lines represent the direction over

time for the two metabolic responses. C) Cross-validated OPLS-

DA predictive score vector, tcv [1] p, for a two class model based

on 237 metabolites (p = 0.027) between the two responses. Mean

score values with 95% CI are shown.

(TIF)

Figure S2 Metabolic profiles during in vitro growth of
MRSA and MSSA. A) OD600 of MRSA and MSSA grown in

absence of antibiotics, with vancomycin, or cloxacillin. Arrows

indicate time point for addition of antibiotics. B) OPLS-DA

predictive score vector, t [1] p, for a seven class model based on

367 metabolites showing bacterial growth and response to

antibiotic treatment over time. Mean score values with 95% CI

are shown. The two regression lines represent the direction over

time for the two metabolic responses. C) Cross-validated OPLS-

DA predictive score vector, tcv [1] p, for a two class model based

on 367 metabolites revealing discrimination (p = 0.035) between

the two responses. Mean score values with 95% CI are shown.

(TIF)
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aureus sepsis.
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