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Bounds on the Optimal Performance for Jump Markov

Linear Gaussian Systems

Carsten Fritsche, Member, IEEE, and

Fredrik Gustafsson, Fellow, IEEE

Abstract—The performance of an optimal filter is lower bounded by
the Bayesian Cramér-Rao Bound (BCRB). In some cases, this bound
is tight (achieved by the optimal filter) asymptotically in information,
i.e. high signal-to-noise ratio (SNR). However, for jump Markov linear
Gaussian systems (JMLGS) the BCRB is not necessarily achieved for
any SNR. In this paper, we derive a new bound which is tight for all
SNRs. The bound evaluates the expected covariance of the optimal filter
which is represented by one deterministic term and one stochastic term
that is computed with Monte Carlo methods. The bound relates to and
improves on a recently presented BCRB and an enumeration BCRB for
JMLGS. We analyze their relations theoretically and illustrate them on
a couple of examples.

Index Terms—Jump Markov linear Gaussian systems, performance
bounds, statistical signal processing.

I. INTRODUCTION

In recent years, there has been an increased interest in developing

performance bounds that theoretically predict the best achievable

performance for multiple model filtering, i.e., jump Markov systems.

Multiple models are used in various applications ranging from change

detection, sensor fault detection or tracking of maneuvering targets

in air traffic control, see for instance [1], [2].

In multiple model filtering, a discrete parameter representing the

mode of the system is introduced, that evolves according to a jump

Markov process. This discrete state is treated as unknown and either

is estimated together with the continuous valued state vector, or it

is treated as a nuisance parameter, which results in a filter, whose

computational complexity increases exponentially with time. Various

approaches have been proposed to solve both types of estimation

problems, and perhaps the most prominent suboptimal solution that

is widely used in practice today is the interacting multiple model

(IMM) algorithm [3]. While the area of developing filters for such

estimation problems has become relatively mature, the development

of performance bounds has emerged during the last few years and is

mostly related to the Bayesian Cramér-Rao bound (BCRB).

The BCRB for jump Markov systems has been proposed recently in

[4]. The idea is based on evaluating the Bayesian information matrix

for the complete trajectory of state vectors, using a Monte Carlo

(MC) approach. This matrix is then constructed in an elegant way

by marginalizing the discrete mode variables from all the densities

involved, so that it is not necessary to evaluate derivatives with respect

to discrete valued parameters, which cannot be handled. The BCRB

for the current state vector is finally determined from the inverse of

the Bayesian information matrix.

In some cases, the BCRB is tight (achieved by the optimal filter)

asymptotically in information, i.e. high signal-to-noise ratio (SNR),

see Example 1 in [5]. However, for jump Markov systems the BCRB

is not necessarily achieved for any SNR. In [6, p. 96], it is proven

that the BCRB holds only with equality, if and only if the posterior

density is a multivariate Gaussian density. For jump Markov systems,
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however, this condition is generally violated, since the posterior

density is composed of a mixture of densities (Gaussian mixture in

the linear Gaussian case). Thus, the corresponding BCRB must be

lower and might not be tight for such systems.

In [7], a recursive formulation of a BCRB conditioned on a specific

mode sequence is developed, that uses results from [8]. The uncondi-

tional BCRB is then found by computing a weighted average of the

conditional BCRB over all possible mode sequences. Even though

this bound, herein after referred to as Enumer-BCRB, will give a

lower bound on the optimal performance, it might not be tight since

for its derivation the mode sequence is implicitly assumed known.

A tight performance bound for jump Markov linear Gaussian system

(JMLGS) models can be obtained basically by MC integration of the

optimal filter covariance over different realizations of the state and

measurement sequences. A standard approach to do this is to compute

the sample covariance from the error between the optimal filter’s

posterior mean and the true state. However, this will need coarse

approximations, and in any case has a large variance. We call this

the direct approach. Our bound (or rather numerical implementation

of the expected value of the optimal filter covariance) is computed as

a sum of two terms. The first one is deterministic and the same as the

Enumer-BCRB, and can be computed efficiently. We point out that

this term can be lower bounded by linear in time approximations.

The other term is related to the spread of the means contribution

in variance computations, and it is computed with MC methods.

The sum of these terms gets a lower total variance than the direct

approach, in particular when the first term dominates. We illustrate

our new bound on a couple of examples, and compare it to the

Enumer-BCRB, BCRB and the actual performance of the optimal

filter and a common approximative filter.

II. SYSTEM MODEL

Consider the following discrete-time JMLGS, that is described by

the following process and measurement equation

xk = Fk(rk)xk−1 + vk(rk), (1a)

zk = Hk(rk)xk +wk(rk), (1b)

where zk ∈ R
nz is the measurement vector at discrete time k and

xk ∈ R
nx is the state vector and F and H are arbitrary linear

mapping matrices of appropriate size. The process and measurement

noise vectors vk ∈ R
nv and wk ∈ R

nw are mutually independent

white processes distributed as vk(rk) ∼ N (µk(rk),Qk(rk)) and

wk(rk) ∼ N (mk(rk),Rk(rk)). The mode variable rk denotes a

discrete-time Markov chain with s states and transition probability

matrix Pr{rk|rk−1}. At times k = 0 and k = 1, prior information

about the state x0 and mode r1 is available in terms of the probability

density function (pdf) p(x0) and probability mass function (pmf)

Pr{r1}. The initial state x0 is assumed to be Gaussian distributed

with mean x̂0 and covariance matrix P0. In JMLGS, the estimation

of xk is of primary concern, whereas the mode variable rk is often

seen as an unknown nuisance parameter that appears in the problem

formulation.

In the following, let x0:k = [xT

0 , . . . ,x
T

k ]
T and z1:k = [zT1 , . . . , z

T

k ]
T

denote the collection of states and measurement vectors up to time k.

Furthermore, let the sequence of mode variables at time k be given

by ri1:k = (ri1, r
i
2, . . . , r

i
k), where i = 1, . . . , sk. The gradient of a

vector u is defined as ∇u = [∂/∂u1, . . . , ∂/∂un]
T and the Laplace

operator is defined as ∆t

u = ∇u[∇t]
T. The operator Ep(x){·} or

equivalently Ex{·} denotes expectation and the subscript indicates

the pdf (or pmf) that is used in the expectation.
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III. PREVIOUS WORK

In this section, previous work on lower bounds for JMLGSs are

briefly discussed. The optimal filter is revisited and it is shown, how

this filter can be related to the computation of the BCRB.

Optimal Filter: It is well known that the posterior pdf of

JMLGSs is given by a Gaussian mixture

p(xk|z1:k) =
sk
∑

i=1

Pr{ri1:k|z1:k} p(xk|z1:k, r
i
1:k), (2)

where Pr{ri1:k|z1:k} ∝ p(z1:k|r
i
1:k)·Pr{ri1:k}, and p(xk|z1:k, r

i
1:k) =

N (xk; x̂
opt,i

k ,Pi
k) hold. Here, x̂

opt,i

k or equivalently x̂
opt,i

k (z1:k) or

x̂
opt

k (z1:k, r
i
1:k) is referred to as the conditional optimal filter (or esti-

mator). The (unconditional) optimal filter (or estimator) provides an

analytical solution for computing (2) recursively, where the posterior

moments x̂
opt,i

k , Pi
k as well as the model likelihood p(z1:k|r

i
1:k) are

calculated using a Kalman filter that is matched to the specific mode

sequence ri1:k [9], [10]. The conditional mean x̂
opt

k and covariance

matrix Pk for xk, given the measurements z1:k, serve as optimal

filter outputs and are given by

x̂
opt

k ≡ x̂
opt

k (z1:k) =

sk
∑

i=1

Pr{ri1:k|z1:k} x̂
opt,i

k , (3)

Pk =
sk
∑

i=1

Pr{ri1:k|z1:k}
[

P
i
k + [x̂opt

k − x̂
opt,i

k ][x̂opt

k − x̂
opt,i

k ]T
]

.(4)

We point out that in the optimal estimator the unknown mode

sequence r1:k is not directly estimated. Instead, the optimal filter

enumerates over all possible mode sequences ri1:k which leads to a

filter complexity that increases exponentially with time k.

Bayesian Cramér-Rao Bound: The BCRB provides a lower

bound for any estimator x̂k(z1:k) on the mean square error (MSE)

matrix M(x̂k). It is defined as the inverse of the Bayesian informa-

tion submatrix Jk,

M(x̂k) ≡ Ep(xk,z1:k){[x̂k(z1:k)− xk][·]
T} ≥ [Jk]

−1, (5)

where the matrix inequality A ≥ C means that the difference A−C

is a positive semidefinite matrix [6]. Recently, a recursive algorithm

has been proposed to evaluate the BCRB for jump Markov nonlinear

systems, where the mode rk enters only into the process model,

and which includes (1a) as special case [4]. The idea of [4] is to

first evaluate the Bayesian information matrix J0:k of the complete

state trajectory x0:k using an MC method, and then determine the

BCRB matrix B1, which is defined as the the (nx ×nx) lower-right

submatrix of [J0:k]
−1.

Alternatively, it is possible to evaluate the Bayesian information

submatrix Jk directly by using the optimal filter, yielding

Jk = Ep(xk,z1:k)

{

[∇xk
p(xk|z1:k)][∇xk

p(xk|z1:k)]
T

[p(xk|z1:k)]2

}

. (6)

The inverse of Jk will then give another BCRB matrix B2, herein

after referred to as marginalized BCRB (M-BCRB), which relates

to B1 according to B2 ≥ B1, see [11] for a proof. For JMLGS,

analytical expressions for evaluating p(xk|z1:k) and its gradient are

available, which can be computed from the optimal filter recursions,

cf. (2). In this case, Jk can be approximated numerically according

to

Jk ≈
1

N

N
∑

j=1

[∇xk
p(x

(j)
k |z

(j)
1:k)][∇xk

p(x
(j)
k |z

(j)
1:k)]

T

[p(x
(j)
k |z(j)1:k)]

2
, (7)

where x
(j)
k and z

(j)
1:k , j = 1, . . . , N are independent and identically

distributed (i.i.d.) samples, such that (x
(j)
k , z

(j)
1:k) ∼ p(xk, z1:k). The

gradient ∇xk
p(xk|z1:k), required to evaluate (7) is given by

∇xk
p(xk|z1:k) =

sk
∑

i=1

Pr{ri1:k|z1:k} [∇xk
p(xk|z1:k, r

i
1:k)], (8)

with ∇xk
p(xk|z1:k, r

i
1:k) = −N (xk; x̂

opt,i

k ,Pi
k) [P

i
k]

−1 [xk−x̂
opt,i

k ].

Enumeration Bayesian Cramér-Rao Bound: The enumeration

method [7], [12] provides a lower bound on the MSE matrix for any

conditional estimator x̂k(z1:k, r1:k). The idea of this method is to

lower bound the conditional MSE matrix by the following expression:

Ep(xk,z1:k|r
i
1:k

){[x̂
i
k(z1:k)− xk][·]

T} ≥ [Ji
k]

−1, (9)

where x̂i
k(z1:k) or equivalently x̂k(z1:k, r

i
1:k) denotes the conditional

estimator of a particular mode sequence ri1:k, and where Ji
k or

equivalently Jk(r
i
1:k) denotes the conditional Bayesian information

submatrix [7], [12]. By taking into account that the unconditional

MSE matrix is related to the conditional MSE matrix through the

smoothing property of expectations, i.e.

Ep(xk,z1:k){[x̂k(z1:k, r1:k)− xk][·]
T} =

sk
∑

i=1

Pr{ri1:k}Ep(xk,z1:k|r
i
1:k

){[x̂
i
k(z1:k)− xk][·]

T}, (10)

the authors in [7], [12] develop an unconditional BCRB for any

conditional estimator x̂k(z1:k, r1:k), which is given by the following

expression:

Ep(xk,z1:k){[x̂k(z1:k, r1:k)−xk][·]
T} ≥

sk
∑

i=1

Pr{ri1:k} [J
i
k]

−1. (11)

The Enumer-BCRB given in (11) can be seen as an average bound

for conditional estimators, since it averages the bound given in (9)

over all possible mode sequences. It is stated in [7], [12] without

giving a proof that the Enumer-BCRB will be overly optimistic, i.e.

it cannot be reached by any unconditional estimator x̂k(z1:k). We

note, that this fact can be proven, i.e. it can be shown that

M(x̂k(z1:k)) ≥ Ep(xk,z1:k){[x̂k(z1:k, r1:k)− xk][·]
T}

≥
sk
∑

i=1

Pr{ri1:k} [J
i
k]

−1. (12)

holds, by interpreting (12) as an instance of the bound by Miller

and Chang, where r1:k is treated as a nuisance parameter appearing

in the problem formulation of JMLGSs, see [11] and references

therein. The proof is then given by Lemma 2 of [11].

Even though the bounds presented in this section will lower bound

the performance of any estimator x̂k(z1:k), it is not clear when these

bounds are tight. The aim of this paper is to develop a bound that is

always tight. It will be shown that the new bound is related to the

optimal filter covariance and that it generalizes the Enumer-BCRB.

IV. THE NEW PERFORMANCE BOUND

In this section, the main result is presented which is given by the

following theorem:
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Theorem 1. A bound on the MSE matrix is given by

M(x̂k) ≥
sk
∑

i=1

Pr{ri1:k} [J
i
k]

−1

+Ep(z1:k)







sk
∑

i=1

Pr{ri1:k|z1:k}[m
i
k(z1:k)][·]

T







, (13)

where mi
k(z1:k) = x̂

opt

k (z1:k)− x̂
opt,i

k (z1:k).

Proof: See Appendix.

Remark 1. The second sum component in (13) is known as the

expected value of the “spread of the means term”. If this term is

neglected we arrive at the Enumer-BCRB, cf. (12). Since the expected

value of the spread of the means term yields a positive semidefinite

matrix, it follows (without proof) that the new bound is tighter than

the Enumer-BCRB.

Corollary 1. The expected value of the conditional covariance matrix

Pk of the optimal filter, cf. (4), satisfies the bound given in Theorem

1 with equality and is given by

M(x̂opt

k ) ≡ Ep(xk,z1:k){[x̂
opt

k (z1:k)− xk][·]
T} = Ep(z1:k){Pk}.

(14)

Numerical Approximation of the Performance Bound: This

section is devoted to the evaluation of the expression given in (13).

For the model given in (1), the conditional Bayesian information

submatrix Ji
k can be computed for k ≥ 1 from the well-known

recursive relationship [7], [12]:

J
i
k =

[

Qk(r
i
k) + Fk(r

i
k) [J

i
k−1]

−1
F

T

k(r
i
k)
]−1

+H
T

k(r
i
k) [Rk(r

i
k)]

−1
Hk(r

i
k), (15)

where J0 = P−1
0 . Note, that the above expression can be rewritten

with the matrix inversion lemma into several different forms depend-

ing on the sizes nx and nz , where Qk(rk) might need to be factorized

if nv < nx, see for instance [12], [13]. Since the computational

complexity of evaluating the first sum in (13) grows exponentially

with time k, the above described approach is feasible only for small

values of k. For large values of k, an MC approach should be

used which was suggested in [14]. The evaluation of the expected

value of the spread of the means term is more demanding, since

it involves the computation of a complicated expectation involving

a high-dimensional integral. Here, an MC integration approach is

proposed to approximate the expectation numerically, yielding

Ep(z1:k)







sk
∑

i=1

Pr{ri1:k|z1:k}[m
i
k(z1:k)][·]

T







≈

1

N

N
∑

j=1

sk
∑

i=1

Pr{ri1:k|z
(j)
1:k}[m

i
k(z

(j)
1:k)][·]

T, (16)

where z
(j)
1:k , j = 1, . . . , N are i.i.d. samples such that z

(j)
1:k ∼ p(z1:k).

A pseudocode for the computation of the newly proposed bound is

given in Algorithm 1.

Computational Complexity Comparison: The computational

complexity of the new performance bound increases exponentially

with sk. Compared to the Enumer-BCRB, an additional stochastic

term given by (16) has to be evaluated, whose complexity is

proportional to N · sk. The complexity of the M-BCRB is similar

to that of the new performance bound, since the M-BCRB also

requires the evaluation of the optimal filter recursions. The Bayesian

information matrix, whose inverse gives the BCRB, is constructed

recursively with a complexity that is proportional to N · s · k.

However, this approach requires a costly computation of a matrix

inverse, whose dimension increases linearly with time k.

Monte Carlo Variance Reduction: According to Corollary 1,

the new performance bound approximates the MSE matrix of the

optimal filter. Let M1(x̂
opt

k ) denote an MC estimate of the MSE

matrix using the proposed approach, and let M2(x̂
opt

k ) denote an MC

estimate of the MSE matrix using the conventional direct approach,

given by

M2(x̂
opt

k ) =
1

N

N
∑

j=1

[x̂opt

k (z
(j)
1:k)− x

(j)
k ][x̂opt

k (z
(j)
1:k)− x

(j)
k ]T, (17)

where x
(j)
k denotes the true state vector at the j-th MC run. Fur-

thermore, let M1,n = [M1]n,n and M2,n = [M2]n,n denote the

corresponding MSE for estimating the n-th element of xk, denoted

as xk,n, and where [A]i,j denotes the matrix element at the i-th row

and j-th column. Then, the MC variance for computing M1,n and

M2,n relate to each other according to the following proposition.

Proposition 1. The MC variances of M1,n and M2,n satisfy the

following inequality

Varx,z(M2,n) ≥ Varz(M1,n) (18)

Proof: See Appendix.

Thus, with the same number of MC runs, the variance in the

estimates using the proposed approach can be decreased as compared

to the direct approach. As an alternative, it is also possible to compute

an MC estimate of the MSE matrix from the relation

M3(x̂
opt

k ) ≈
1

N

N
∑

j=1

P
(j)
k , (19)

see Corollary 1, where P
(j)
k denotes the covariance matrix es-

timate of the optimal filter at the j-th MC run, cf. (4). By

letting M3,n = [M3]n,n = 1/N
∑N

j=1[g4(z
(j)
1:k) + g1(z

(j)
1:k)]

with g4(z1:k) =
∑sk

i=1 Pr{ri1:k|z1:k}[P
i
k]n,n and g1(z1:k) =

∑sk

i=1 Pr{ri1:k|z1:k}[x̂
opt

k,n(z1:k)− x̂opt,i

k,n (z1:k)]
2, the MC variance for

computing M1,n and M3,n relate to each other according to the

following proposition.

Proposition 2. The MC variances of M1,n and M3,n satisfy the

following inequality

Varz(M3,n) ≥ Varz(M1,n) (20)

if and only if Varz(g4(z1:k)) + 2 · Covz(g4(z1:k), g1(z1:k)) ≥ 0

Proof: See Appendix.

The above given constraint condition is satisfied if g1(z1:k) and

g4(z1:k) are positively correlated. For the most general model,

however, it might be hard to prove theoretically that the constraint

condition always holds. As a practical approach, it is therefore

suggested to approximate the constraint condition via the respective

sample (co-)variance expressions.

V. PERFORMANCE EVALUATION

The newly proposed bound, cf. Theorem 1, is compared to

the following bounds and filter performances: 1. The BCRB and

M-BCRB, cf. Section III; 2. The conservative Enumer-BCRB,

cf. Section III; 3. The optimal filter using the direct approach

M2, cf. Section III, which coincides with the newly proposed

bound according to Corollary 1; 4. The IMM filter [3], which is a

state-of-the-art algorithm for the chosen problem.
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Algorithm 1 Pseudocode for the computation of the newly proposed

bound

(1) At time k = 0, generate x
(j)
0 ∼ N (x0; x̂0,P0) for j = 1, ..., N ,

where P0 gives the new bound.

(2) For k = 1, 2, . . . , and j = 1, . . . , N do:

– If k = 1, then generate r
(j)
1 ∼ Pr{r1}. In all other cases

generate r
(j)
k ∼ Pr{rk|r

(j)
k−1} and set r

(j)
1:k = [r

(j)
1:k−1, r

(j)
k ].

Furthermore, generate x
(j)
k ∼ p(xk|x

(j)
k−1, r

(j)
k ), z

(j)
k ∼

p(zk|x
(j)
k , r

(j)
k ) and set z

(j)
1:k = [z

(j)
1:k−1, z

(j)
k ].

– Evaluate the RHS of (13) as follows to obtain the new

bound:

∗ First sum component: For i = 1, . . . , sk, evaluate

Pr{ri1:k} in closed-form, see equation (5) presented in

[7]. Evaluate Ji
k according to (15).

∗ Second sum component: Evaluate x̂
opt

k (z
(j)
1:k, r

i
1:k),

Pr{ri1:k|z1:k} and x̂
opt

k (z
(j)
1:k), cf. (3). Approximate

numerically the expected value of the spread of the

means term by (16).

Simulation Scenario: The performance is evaluated by means

of simulations. Here, the example proposed in [4] is used, where

a maneuvering target tracking scenario is considered. The target’s

movement is assumed to be in one dimension with state vector

xk = [xk, ẋk, ẍk]
T, representing position, velocity and acceleration,

respectively. Further, it is assumed that the target’s movement can

switch between a nearly constant velocity model and a nearly constant

acceleration model. The state transition matrix and the process noise

covariance matrix of the nearly constant velocity model are given by

Fk(1) =





1 T 0
0 1 0
0 0 0





and

Qk(1) = s1





T 3/3 T 2/2 0
T 2/2 T 0
0 0 1



 ,

where s1 = 2 is the power spectral density. The state transition

matrix and the process noise covariance matrix of the nearly constant

acceleration model are given by

Fk(2) =





1 T T 2/2
0 1 T
0 0 1





and

Qk(2) = s2





T 5/20 T 4/8 T 3/6
T 4/8 T 3/3 T 2/2
T 3/6 T 2/2 T



 ,

with power spectral density s2 = 0.4. It is further assumed that

every T = 5 s, noisy measurements of the position state xk

are available. The measurement model and the corresponding

measurement noise variance are assumed to be Hk = [1, 0, 0] and

Rk = 50. The mean and covariance of the prior density p(x0) are

given by x̂0 = [2, 2, 2]T and P0 = diag([1, 1, 1]). The initial mode

probabilities are set to Pr{r1 = 1} = 0.5 and Pr{r1 = 2} = 0.5 and

the transition probabilities are given by Pr{rk = 1|rk−1 = 1} = 0.9
and Pr{rk = 2|rk−1 = 2} = 0.9, respectively.

Simulation Results: In this section the simulation results are

presented. All bounds and filters have been initialized with x̂0 and

P0. The new bound is computed using Algorithm 1. The MSE matrix

of the IMM filter is approximated numerically using the conventional

direct approach, cf. (17). The Enumeration-BCRB has been evaluated

analytically. For all other bounds and filters, a total of N = 50 000
MC runs are performed.

The results for position, velocity and acceleration are given in Fig. 1

(a)-(c). It can be observed that the optimal filter using the direct

approach and the computationally less complex IMM filter have

approximately the same performance. The newly proposed bound

matches the optimal performance as expected, while the Enumer-

BCRB, the BCRB and M-BCRB yield too conservative bounds. As

expected, the M-BCRB is tighter than the BCRB. The difference

between the BCRB and the Enumer-BCRB is discussed in [4]. The

difference between the new bound and the Enumer-BCRB is a result

of the missing spread of the means term. The contribution of the

spread of the means term will be small and thus the difference

between the two bounds will be small, if the posterior pdf p(xk|z1:k),
which is a Gaussian mixture for models of the form (1), can be well

approximated by a single Gaussian density. However, if the contri-

bution of the spread of the means term is large, then the difference

between Enumer-BCRB and the optimal performance will be large.

In Fig. 1 (d), the constraint condition of Proposition 2 has been

evaluated, in order to check whether the newly proposed bound (M1)

is superior to the optimal filter covariance averaging approach (M3)

in terms of MC variance. From the results it can be concluded that

the newly proposed bound has a lower MC variance for estimating

position and velocity, while for the acceleration the optimal filter

covariance averaging approach yields lower MC variance.

VI. DISCUSSION

In this section, the differences between the new bound, the M-

BCRB and the Enumer-BCRB are discussed. While the difference

between the new bound and the Enumer-BCRB can be explained by

the missing spread of the means term, it is not clear how the M-

BCRB is related to the new bound and the Enumer-BCRB. It has

been shown in the previous section that the Enumer-BCRB may be

tighter than the M-BCRB. However, this is not always the case as

the following example illustrates.

A JMLGS with scalar state and measurement equation is investigated,

where the mode variable rk ∈ {1, 2} enters only into the process

noise. This system can be written as

xk = xk−1 + vk(rk), (21a)

zk = xk +wk. (21b)

The measurement noise is set to wk ∼ N (0, 5), the initial state

is Gaussian distributed with x0 ∼ N (5, 10) and the initial mode

probabilities are set to Pr{r1 = 1} = 1/2 and Pr{r1 = 2} = 1/2,

respectively. The mode-dependent process noise is Gaussian dis-

tributed according to vk(rk) ∼ N (µk(rk), Qk(rk)). In the following

simulation study, the process noise of mode rk = 1 is set to

vk(1) ∼ N (0, 5). The mean of the process noise of the second

mode rk = 2 is varied and the variance is chosen according to the

following two experiments:

• Experiment 1: vk(2) ∼ N ([0, 40], 5),
• Experiment 2: vk(2) ∼ N ([0, 40], 20).

For the ease of explanation, the different bounds introduced in Section

V are evaluated only for k = 1 and the results are compared to the

optimal filter using the direct approach. In Fig. 2, the results for the

two different experiments are shown. For both experiments, it can be

observed that the MC variance of the new approach (M1) is smaller

than the MC variance of the direct approach (M2). The results

further show that for changing µ1(2) the Enumer-BCRB is constant,

which is a result of the fact that the computation of the Enumer-

BCRB is independent of µ1(r1). The differences between the new
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Fig. 1. RMSE vs. time step for (a) Position, (b) Velocity and (c) Acceleration
based on N = 50 000 MC runs, and (d) Constraint condition of Proposition
2

bound and the Enumer-BCRB are due to the missing spread of the

means term. Especially for 5 ≤ µ1(2) ≤ 20, the contribution of the

spread of the means term is large and the Enumer-BCRB gives a poor

prediction of the optimal performance. However, for µ1(2) ≥ 20 the

contribution of the spread of the means term becomes negligible and

the Enumer-BCRB is able to predict the optimal filter performance.

For Experiment 1, the M-BCRB is tighter than (or equal to) the

Enumer-BCRB. Especially for µ1(2) ≤ 7, the M-BCRB is able to

predict the optimal filter performance. However, as µ1(2) increases

further, this is no longer the case and at approximately µ1(2) ≥ 10
the M-BCRB starts to decrease and approaches the Enumer-BCRB.

This behavior can be explained as follows. As µ1(2) increases further,

the two models p(z1|r
i
1) = N (z1; 5+µ1(r

i
1), 20) become separated

in the sense that

p(z1) =
∑

rn
1

Pr{rn1 } p(z1|r
n
1 ) ≈ Pr{ri1} p(z1|r

i
1), (22)

which means that as long as z1 ∼ p(z1|r
i
1), then p(z1|r

i
1) >>

p(z1|r
n
1 ) must hold for rn1 6= ri1. In this case, it follows that

Pr{ri1|z1} ≈ 1 and Pr{rn1 |z1} ≈ 0 for rn1 6= ri1 must hold, so

that the posterior density can be approximated as

p(x1|z1) =
∑

r1

Pr{rn1 |z1} p(x1|z1, r
n
1 ) ≈ p(x1|z1, r

i
1). (23)

Inserting (22) and (23) into the definition of Jk, cf. (6), yields the

scalar quantity

J1 = Ep(z1){Ep(x1|z1){∆
x1

x1
log(p(x1|z1))}}

≈ EPr{r1}{Ep(x1,z1|r1){∆
x1

x1
log(p(x1|z1, r1))}}

= EPr{r1}{J1(r1)}. (24)

Inversion of J1 gives the M-BCRB, which can be related to the

Enumer-BCRB according to Jensen’s inequality,

[J1]
−1 ≈ [EPr{r1}{J1(r1)}]

−1 ≤ EPr{r1}{[J1(r1)]
−1}. (25)

For Experiment 1, the above relation holds with equality since

both, the mode probabilities Pr{r1} and the conditional Bayesian

information submatrices J1(r1) are chosen to be equal. In Experiment

2, however, the matrices J1(r1) are different, so that the Enumer-

BCRB will be tighter than the M-BCRB for large µ1(2). For small

µ1(2), the reverse is true. A generalization of (25) in terms of

Bayesian information matrices J0:k can be found in [4]. A somewhat

different interpretation in terms of Bayesian information submatrices

Jk will be given below for the sake of completeness. Assume that for

(xk, z1:k) ∼ p(xk, z1:k|r
i
1:k), the joint density p(xk, z1:k) satisfies

the following approximation

p(xk, z1:k) =
∑

rn
1:k

Pr{rn1:k} p(xk, z1:k|r
n
1:k) (26)

≈ Pr{ri1:k} p(xk, z1:k|r
i
1:k), (27)

where the conditional joint density is given by

p(xk, z1:k|r
i
1:k) = p(z1:k|r

i
1:k) p(xk|z1:k, r

i
1:k). (28)

The approximation in (27) can be interpreted such that if (xk, z1:k) ∼
p(xk, z1:k|r

i
1:k), then the pdf p(xk, z1:k|r

i
1:k) of that particular mode

sequence must be much larger than the pdfs p(xk, z1:k|r
n
1:k) of all

other remaining mode sequences. Inserting (27) and (28) into the

definition of the Bayesian information submatrix, cf. (6), yields

Jk ≈ EPr{r1:k}{Ep(xk,z1:k|r1:k){∆
xk
xk

log p(xk|z1:k, r1:k)}}

= EPr{r1:k}{Jk(r1:k)}. (29)

As a result, the M-BCRB and the Enumer-BCRB can be related via

Jensen’s inequality to each other, yielding

[Jk]
−1 ≈ [EPr{r1:k}{Jk(r1:k)}]

−1 ≤ EPr{r1:k}{[Jk(r1:k)]
−1}.

(30)

Note, that the example presented in this section is included in

the formulation (27) as a special case. Another important special

case occurs, when the measurements are mode-independent and the

posterior densities p(xk|z1:k, r
i
1:k) are substantially different, i.e.
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Fig. 2. RMSE at time step k = 1 vs. µ1(2) assuming (a) Q1(2) = 5 and
(b) Q1(2) = 20, based on N = 50 000 MC runs.

if (xk, z1:k) ∼ p(xk, z1:k|r
i
1:k), then the pdf p(xk|z1:k, r

i
1:k) of

that particular mode sequence must be much larger than the pdfs

p(xk|z1:k, r
n
1:k) of all other remaining mode sequences. This case

occurs, for instance, when the corresponding covariances differ from

each other such that Pi
k << Pn

k holds for all rn1:k 6= ri1:k, see [4]

for an intuitive example.

VII. CONCLUSION

We have considered various performance bounds for the nonlinear

filter problem. Our aim is to lower bound the MSE matrix of the

state estimate using MC methods for the particular case of JMLGS

models. For N MC runs, we can compute:

• The MSE matrix M2(x̂k) from any approximative linear filter

x̂k using the direct approach, cf. (17). We used IMM for

illustration.

• The MSE matrix M2(x̂
opt

k ) for the optimal filter using the direct

approach, cf. (17).

• The FIM Jk using the optimal filter, cf. (6), whose inverse B2 =
[Jk]

−1 gives the M-BCRB.

As N → ∞, these obviously relate as M2(x̂k) > M2(x̂
opt

k ) ≥ B2.

The disadvantage of direct approaches is a huge computational burden

and a large variance from the MC integration. There are two remedies

suggested in literature. One is based on approximating the BCRB

using MC methods, see Section III. This yields a quite conservative

bound B1 for multimodal posterior distributions, which relates to the

M-BCRB according to B2 ≥ B1. The Enumer-BCRB computes one

term of the expected covariance based on averaging covariances from

Kalman filters conditioned on each of the possible mode sequences,

see Section III. This term is deterministic and straightforward to

compute. However, one positive semidefinite term is neglected in the

derivation. We derive the proper expression, and suggest a MC based

approach to compute the second term, see Section IV. Simulation

results show, that the newly proposed bound is tighter than the M-

BCRB, BCRB and Enumer-BCRB. Furthermore, it is demonstrated

that the new bound is able to predict the optimal performance with

a much lower MC variance than this is possible using the optimal

filter and the direct approach.
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APPENDIX

Proof of Theorem 1: For notational convenience the estimator’s

dependency on the measurements is omitted in the following. By

making use of the smoothing property of expectations, cf. (10), the

expression on the left hand side of (5) can be rewritten as

M(x̂k) = Ep(xk,z1:k){[x̂k − xk][·]
T}

=

sk
∑

i=1

Pr{ri1:k}Ep(xk,z1:k|r
i
1:k

){[x̂k − xk][·]
T}.(31)

This expression can be further manipulated by replacing x̂k on the

RHS by the optimal estimator x̂
opt

k and by additionally including the

conditional optimal estimator x̂
opt,i

k , yielding

M(x̂k)

≥
sk
∑

i=1

Pr{ri1:k}Ep(xk,z1:k|r
i
1:k

)

{

[

[x̂opt

k − x̂
opt,i

k ] + [x̂opt,i

k − xk]
][

·
]

T
}

=
sk
∑

i=1

Pr{ri1:k}Ep(xk,z1:k|r
i
1:k

){[x̂
opt,i

k − xk][·]
T}

+
sk
∑

i=1

Pr{ri1:k}Ep(xk,z1:k|r
i
1:k

){[x̂
opt

k − x̂
opt,i

k ][x̂opt,i

k − xk]
T}

+

sk
∑

i=1

Pr{ri1:k}Ep(xk,z1:k|r
i
1:k

){[x̂
opt,i

k − xk][x̂
opt

k − x̂
opt,i

k ]T}

+
sk
∑

i=1

Pr{ri1:k}Ep(z1:k|r
i
1:k

){[x̂
opt

k − x̂
opt,i

k ][·]T}. (32)

Note, that the expectation w.r.t. z1:k cannot be dropped, since the

estimators depend on the measurements. Further simplification of (32)

is possible by taking into account that

Ep(xk,z1:k|r
i
1:k

){[x̂
opt

k − x̂
opt,i

k ][x̂opt,i

k − xk]
T}

= Ep(z1:k|r
i
1:k

){Ep(xk|z1:k,r
i
1:k

){[x̂
opt

k − x̂
opt,i

k ][x̂opt,i

k − xk}]
T}

= Ep(z1:k|r
i
1:k

){x̂
opt

k x̂
opt,i,T

k − x̂
opt

k Ep(xk|z1:k,r
i
1:k

){x
T

k}

−x̂
opt,i

k x̂
opt,i,T

k + x̂
opt,i

k Ep(xk|z1:k,r
i
1:k

){x
T

k}}

= 0 (33)

holds, where the last equality follows from the fact that

x̂
opt,i

k = Ep(xk,z1:k|r
i
1:k

){xk} (34)

is satisfied. In a similar manner, it can be shown that

Ep(xk,z1:k|r
i
1:k

){[x̂
opt,i

k − xk][x̂
opt

k − x̂
opt,i

k ]T} = 0 (35)

holds. Note, that the zero equalities in (33) and (35) follow from the

projection theorem, which states that the estimate is orthogonal to the

estimation error. By further taking into account that the last sum in
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(32) can be rearranged using Bayes rule, (32) can be finally rewritten

as

M(x̂k) ≥
sk
∑

i=1

Pr{ri1:k}Ep(xk,z1:k|r
i
1:k

){[x̂
opt,i

k − xk][·]
T}

+Ep(z1:k)







sk
∑

i=1

Pr{ri1:k|z1:k} [x̂
opt

k − x̂
opt,i

k ][·]T







. (36)

The first sum in (36) is the contribution of the conditional optimal

estimator x̂
opt,i

k to the bound. The second sum in (36) is known as the

expected value of the “spread of the means” term which takes into

account the deviation between the optimal estimators x̂
opt

k and x̂
opt,i

k .

By making use of (9), which holds with equality for the conditional

optimal estimator, a new bound for any estimator x̂k is then given

by:

M(x̂k) ≥
sk
∑

i=1

Pr{ri1:k} [Jk(r
i
1:k)]

−1

+Ep(z1:k)







sk
∑

i=1

Pr{ri1:k|z1:k} [x̂
opt

k − x̂
opt,i

k ][·]T







(37)

which concludes our proof of Theorem 1.

Proof of Proposition 1: For the direct approach, the MC

variance can be expressed as

Varx,z(M2,n) =
Varx,z(g2(xk,n, z1:k))

N
, (38)

with g2(xk,n, z1:k) = [x̂opt

k,n(z1:k) − xk,n]
2, and where

Varx,z(g2(xk,n, z1:k)) is a short-hand notation for

Ep(xk,n,z1:k){(g2(xk,n, z1:k) − Ep(xk,n,z1:k){g2(xk,n, z1:k)})
2}.

Similarly, the MC variance of the proposed approach is given by

Varz(M1,n) =
Varz(g1(z1:k))

N
, (39)

with g1(z1:k) =
∑sk

i=1 Pr{ri1:k|z1:k} [x̂
opt

k (z1:k)− x̂opt

k,n(z1:k, r
i
1:k)]

2.

The numerator of (38) can be rewritten by using the law of total

variance, yielding

Varx,z(g2(xk,n, z1:k)) = Ez{Varx|z(g2(xk,n, z1:k))}

+Varz(Ex|z(g2(xk,n, z1:k))). (40)

We note that Ex|z(g2(xk,n, z1:k)) is the optimal filter variance for

estimating xk,n. Hence, we can write

Varz(Ex|z(g2(xk,n, z1:k))) = Varz(g3(z1:k)), (41)

where g3(z1:k) = g4(z1:k) + g1(z1:k), with g4(z1:k) =
∑sk

i=1 Pr{ri1:k|z1:k} [P
i
k]n,n. We further take into account that

g4(z1:k) can be replaced by the equivalent deterministic expression
∑sk

i=1 Pr{ri1:k} [J
i
k]n,n, yielding

Varx,z(g2(xk,n, z1:k)) = Ez{Varx|z(g2(xk,n, z1:k))}+Varz(g1(z1:k)).
(42)

Since Ez{Varx|z(g2(xk,n, z1:k))} ≥ 0, we can finally prove that

(18) holds.

Proof of Proposition 2: The MC variance of M3,n is given by

Varz(M3,n) =
Varz(g3(z1:k))

N
, (43)

where g3(z1:k) = g4(z1:k) + g1(z1:k), with g4(z1:k) and g1(z1:k)
defined in (41) and (39). The numerator of (43) can be equivalently

expressed as

Varz(g4(z1:k) + g1(z1:k)) = Varz(g4(z1:k)) + Varz(g1(z1:k))

+2 · Covz(g4(z1:k), g1(z1:k)). (44)

Under the constraint that

Varz(g4(z1:k))+2 ·Covz(g4(z1:k), g1(z1:k)) ≥ 0 is fulfilled, we can

finally prove that (20) holds.
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