
Cross platform applications
with HTML5

Hampus Svedestedt

February 10, 2013
Master’s Thesis in Interaction Technology and Design, 30 credits

Supervisor at TFE-UmU: Kalle Prorok
Examiner: H̊akan Gullikson

Ume̊a University
Department of Applied Physics and Electronics

SE-901 87 UMEÅ
SWEDEN

Abstract

This thesis was made for Cybercom in Östersund. They wanted an evaluation of HTML5
cross platform applications which studied HTML5 features as well as JavaScript libraries
and frameworks. The resources put into mobile application development can be reduced by
making applications that can work on all platforms instead of only natively. These types of
applications are called cross platform applications and can be developed with specific tools.
One way to develop cross platform applications is by using HTML5, which can either be
used as a web application or packed into native applications using plug-ins. The purpose of
this thesis was to create a mobile web app that can save maps to be used offline. The work
was done by evaluating frameworks for web applications. Frameworks that provide user
interface elements and features similar to those in native applications, and libraries that
render maps served by map servers. Development environments for web development were
also tested and evaluated. The results of the research and development were documented
experience, and a HTML5 application that shows a map, has GPS functionality and can be
used offline.

ii

Contents

1 Introduction 1

2 Problem Description 3

2.1 Problem Statement . 3

2.2 Goals . 3

2.3 Purposes . 3

2.4 Methods . 4

3 Method 5

3.1 Planning . 5

3.2 Scrum . 5

3.2.1 Roles . 5

3.2.2 Backlog . 6

3.2.3 Sprints . 6

4 Requirement studies 9

4.1 JaktAppen . 9

4.2 Building a backlog . 10

4.3 Discussion . 11

5 Designing mobile web applications 13

5.1 Introduction . 13

5.2 HTML5 . 14

5.2.1 Background . 14

5.2.2 Geolocation API . 15

5.2.3 Canvas . 16

5.2.4 Offline Storage . 17

5.3 CSS3 . 20

5.3.1 Background . 20

5.3.2 Media Queries . 20

5.4 JavaScript . 21

5.4.1 Background . 21

iii

iv CONTENTS

5.5 Discussion . 21

6 Evaluation of libraries and frameworks 23

6.1 Introduction . 23

6.2 Mapping libraries . 23

6.2.1 Tile5 . 23

6.2.2 OpenLayers . 24

6.2.3 Leaflet.js . 24

6.2.4 Other libraries . 25

6.3 Enhanced features and graphical interfaces 25

6.3.1 jQuery Mobile . 26

6.3.2 jQTouch . 27

6.3.3 Dojo . 28

6.3.4 Sencha Touch . 29

6.4 Discussion . 30

7 Tools for development 31

7.1 Titanium Studio/Aptana Studio 3 . 31

7.2 Sencha Architect . 33

7.3 Text editors . 34

7.4 Discussion . 35

8 Results 37

8.1 Method and process . 37

8.2 The finished application . 37

9 Conclusions 41

9.1 Goals and project management . 41

9.2 Implementation . 41

9.3 JavaScript . 42

9.4 Limitations . 42

9.5 Future work . 42

10 Acknowledgements 45

References 47

List of Figures

4.1 The Main screen of the JaktApp Android application. 9

4.2 A screenshot of the Scrum Backlog and the sprints. 11

7.1 The Titanium Studio layout . 31

7.2 The Aptana Studio 3 layout . 32

7.3 The Aptana Project Explorer . 32

7.4 The Aptana Code view . 33

7.5 The Sencha Architect layout . 33

7.6 The Sencha Architect design editor . 34

7.7 The Sencha Architect code editor . 34

7.8 The Sencha Architect toolbar . 35

7.9 The Sencha Architect project inspector . 35

7.10 The Sencha Architect function editor . 35

7.11 The Sencha Architect configuration box . 36

7.12 A Notepad++ Window . 36

8.1 The JaktAppen Layout . 37

8.2 The GPS tool bar . 38

8.3 The user’s location . 38

8.4 The Storage tool bar . 39

8.5 Marking map tiles . 39

v

vi LIST OF FIGURES

Chapter 1

Introduction

A big problem with developing applications for mobile devices is platform fragmentation[58].
That means that there are many different mobile platforms (Android, iOS, Windows Phone
and more) that are further divided by the different versions available[1][17]. Users with
older hardware are left without support and updates as newer devices are put out on the
market[29]. Most if not all of these platforms are based on differing programming languages
and frameworks such as Objective-C for iOS, JAVA converted by Dalvik for Android and
.NET for Windows Mobile. This means that the developer has the choice between limiting
the solution and only aim for a minor part of the spectra or to develop for more platforms to
reach as many users as possible. To maximize the amount of possible users, the developer
has to create an application for each platform and make sure that they are backwards
compatible so that users with older devices can use them. Because of the fragmentation
some companies have turned to cross-platform solutions that work on several platforms with
a minimum of adaptation[31][47]; this is done to save time and resources on development.
One way to create cross-platform applications is to use HTML5 and create a mobile adapted
web application that can be saved to device and used as a normal mobile application.
The purpose of this thesis was to analyze the implementation of HTML5 support in the
standard browsers of mobile devices, find and compare JavaScript frameworks that help
development and test developer tools. This is done in order to gain information for a in-
company knowledge database of web app applications. After a knowledge base was acquired,
the HTML5 support on mobile devices was to be tested. The purpose of this was to see if
it is mature enough that a full scale application in HTML5 can work as well on multiple
platforms as an application developed for a single platform does natively. This project was
done at Cybercom Group AB in Östersund. Cybercom Group is a global consultancy that
has 19 offices in eight countries around the world and delivers business solutions, primarily
in telecom management, connected devices, Internet services and security.

1

2 Chapter 1. Introduction

Chapter 2

Problem Description

2.1 Problem Statement

The problem was to to create a prototype for a lightweight application. This application was
to be able to handle online maps and to cache map tiles locally so that a user could navigate
a selected area without network connection. The prototype and study was meant to build an
in-office knowledge base for HTML5 web application development. This was sought after as
there have not been any major development in HTML5 thus far in the Cybercom Östersund
office. The subject of this thesis is a study of the current state of HTML5 support on different
platforms, frameworks to help application development, libraries for map handling and tools
to streamline development. If the prototype could not be completed due to limitations in
the HTML5 implementation then the reasons for why, possible workarounds and future
possibilities was to be noted and studied. As the Östersund office of Cybercom is currently
developing a online type of community that is based around maps, this prototype can be
seen as a step towards a mobile version of their system.

2.2 Goals

The main goal was to develop a streamlined HTML5 application that acts like a native
application. If this goal cannot be reached then as much as possible of the functionality
should be implemented. Beyond the main goal, secondary goals are to test, implement and
evaluate:

– Frameworks that provide graphical design and simplify the development

– Different methods of map handling (online/offline)

– Solutions for offline storage (database/cache)

– Scalability in form of resource handling, version handling and screen size

The last goal is to test developing tools/environments that can streamline the development.

2.3 Purposes

The purpose of the work is for Cybercom to get a knowledge database to base their future
application development on. HTML5 is a pretty new technology and there have not been

3

4 Chapter 2. Problem Description

any major development for the technology in the Östersund office of Cybercom. The purpose
of this thesis is to state if HTML5 is mature enough for major development. If it is mature
enough the thesis can be used as a stepping stone into the technology, giving a starting point
and showing how to avoid obstacles. If HTML5 is too immature to work with then the thesis
will give information on why that is and what to expect in future implementations.

2.4 Methods

The work in this project was done through a Scrum-method[48] using two week long de-
velopment periods called sprints. This is a method for managing software projects and
development and was used to set up what to do between meetings and the priorities of the
tasks.

Chapter 3

Method

This chapter presents the planning work and method (Scrum). The planning and method
formed the way the work was laid out and made clear what tasks to do and in what order.
Scrum ensured the quality of the project as the priority order was set up to make sure that
the most important pieces made it into the finished application while those less important
would be implemented if there was time left at the end of the project.

3.1 Planning

The planning phase was a period of time where the goals of the project were set. The roles
and other parts of the Scrum setup such as milestones and timespan and sprint length was
decided upon and a backlog of tasks was put up.

3.2 Scrum

Scrum is a method for managing software projects and product or application development[48].
It is an iterative and incremental agile software development that has earned a lot of praise
and use since it emerged in 1986[56]. It is meant to increase the speed and flexibility of
development with a process that is performed by a team of members with varying talents
and expertise during overlapping phases working together towards a common goal. Scrum
is basically built around roles and sprints where roles decide what your objective is in the
larger scheme and sprints are the phases that divide the work. The people working in a
scrum project have a backlog of tasks to do, these are ordered by priority and each person
gets a list of tasks to do per sprint.

3.2.1 Roles

The Scrum method has roles with differing objectives, there are three roles in total: Product
Owner, Scrum Master and Development Team.

Product Owner

The product owner represents the company or people that have put resources into the project
and have something to lose if it fails. The product owner is responsible for the project’s
success and thus needs to present what the stakeholders and customers want. Members

5

6 Chapter 3. Method

of the scrum team should do end-user centered tasks such as user stories, prioritize them
and add them to the project backlog. In this project the supervisor at Cybercom was the
product owner.

Scrum Master

The scrum master is the person clearing the way for the developers so that they can do
their work and deliver at the end of each sprint. This does not mean that this person is the
team leader, just that the purpose of the role is to make sure that there are no distractions
that may interrupt the work process and make the developers lose their focus. The scrum
master also makes sure that the scrum process is used in a correct way. In this project the
supervisor at Cybercom was the scrum master.

Development Team

The development team are the people responsible for finishing the tasks of the project
backlog and deliver something potentially shippable at the end of each sprint. The developers
are 3-9 people with different expertise that do the actual work. They are self organized but
may communicate with the project managers. In this project the author of the thesis was
the development team.

3.2.2 Backlog

A study was made to create a backlog of user stories to work from during the project.

Project backlog

The project backlog is a list of tasks to do for a project to be finished. It is ordered by the
product owner after individual priorities such as “what needs to be done first” and “what
is most important to have in the finished product”. The backlog items are often written in
story-form such as “the user wants to see a map” and have estimates of the time needed
to finish them and their estimated business value. The estimates are so that the product
owner has an overview of how much actual work there is left to do.

For this thesis the tasks were ordered in priority ranging from “Needed” to “Only if
there is some time left at the end” and the business was the amount of knowledge gained
per task.

Sprint backlog

The sprint backlog is a list of tasks that the developers need to finish during a sprint. This
backlog is put together at the start of a sprint. The development team will select tasks from
the top of the project backlog and ask themselves “can we do this as well?”. This continues
until the team members decide that they have enough to do during the sprint. The amount
of tasks selected has to be balanced against the amount of work and time that is left for the
project. If the development is behind schedule then more tasks needs to be completed.

3.2.3 Sprints

A sprint is a defined period of time where development is taking place during a scrum project.
A sprint can last between a day and a month depending on the format, development form
and total development time. The sprint is only as long as the set up time limit. If the sprint

3.2. Scrum 7

backlog is not emptied at the end of a sprint the remaining tasks are pushed forward into
the following one and the reasons for missing the delivery time are written down as lessons
learned. The finished tasks are added to the total sum of finished items and must be in a
usable condition even if the project owner decides not to release the product. Before each
sprint the scrum team has a meeting where the goals are set up as an estimate of what the
team can manage for the sprint. After the sprint there is a retrospective meeting where the
progress is evaluated and positive and negative lessons are identified and used to better the
work in upcoming sprints. During this thesis the length of the sprints were 2 weeks, the
tasks were chosen by the supervisor and the author at the start of a sprint. At the end of
every sprint there was a meeting discussing how the work had progressed and what needs
to be done differently.

8 Chapter 3. Method

Chapter 4

Requirement studies

This chapter will present the work that went into creating a foundation for the development
of the web application. The foundation was based on research and background studies and
used to build the project backlog for the Scrum development method.

4.1 JaktAppen

To get something from which to base the work, a requirement study was done. It was
mostly done by reading through design documents, looking through code and using an older
in-house android application on a mobile device to find inspiration for the work on the web
application. The application is called JaktAppen4.1 and was developed in-house as a study
for what is possible to do with maps in applications for Android devices. It is an application
that is supposed to help hunters out in the forest by giving them a map with updated
information about their hunting party and provide them with means of communicating
with the other people in the party. It is not finished but a lot of the planned functionality is
in place. The JaktAppen application’s main view is a map view that uses Google maps and

Figure 4.1: The Main screen of the JaktApp Android application.

has GPS functionality, a compass and an indicator showing the information to the user. If

9

10 Chapter 4. Requirement studies

there is further functionality in the main view, it could not be accessed as the application
crashes as soon as a user interacts with it. The other views are a contactlist supposed to
contain the people in the hunting party and a list of the chat messages sent between the
users. The last views are to provide means for contacting other users as the application has
a focus on communication. The plan was to have a dedicated server to handle the traffic of
users communicating and information sent by the application to update the map views with
current information about the hunt. The communication was supposed to work through
a chat channel for the hunting party. The chat channel would use contacts specific to the
application. According to the design documents there were ideas for interesting features
going into the application, such as: As a user I

– can watch the selection or the map while offline

– can see the members of the hunting party on the map

– can see the borders of the chase on the map

– can see the dog on the map

– can send and receive messages from other users

– want to call my dog to hear what’s going on

– want to share photos and video with other members of the hunting group

– want to register my killing or damaging shots on the map

– want to share the results of the day via social media

Not all of these features are in the current version of the application and some of them
may not make it into the final version when/if it is finished. The JaktAppen application is
currently in development limbo and might be released in the future.

4.2 Building a backlog

The backlog was started with a brainstorming meeting between the author and the super-
visor where the goals and basic features were planned out and rewritten as user/developer
stories. The features suggested in the design documents and found in the application were
also turned into user/developer stories and added to the project’s scrum backlog no matter
how unrealistic they were.

The tasks of the backlog were ordered in order of priority. The backlog list was ordered
in the order that the features needed to be implemented for the application to work as soon
as possible. The features that was deemed less necessary for the application to work was
given less priority and put lower down on the backlog and the features that was not deemed
very necessary at all were put even lower. The latter were features such as “As a user I
want to call my dog to hear what’s going on” which points to attaching a mobile device to
the gun-dog. Lower priority meant that the feature is less likely to be added into the final
version of the web application.

4.3. Discussion 11

Figure 4.2: A screenshot of the Scrum Backlog and the sprints.

4.3 Discussion

JaktAppen is where the idea for this project came from. As the original application was an
experiment to see if it was possible to do a functioning map application for Android, this
thesis can be seen as the follow-up as it is focused on making a foundation for developing
a cross platform map application. The idea of having a mobile application to compliment
the map based desktop applications being developed is good but an application built for
providing map support for hunters would need some user studies and interviews to find
out what features are wanted and how they would be used. A chat client might not be a
feature that many hunters would prioritize as they already have working communication
systems. The middle of the forest where a lot of hunting is taking place in not an ideal
environment for using services that are based on connectivity and access to mobile networks
such as chats and dynamic updates. Features such as having the mobile device setting
off alarms after picking up the sounds of dogs, which are pointing for prey is intriguing
but might be hard to implement. The backlog was used to manage the project and, using
the JaktAppen application for inspiration, helped filling it out with tasks to do during
development. Ordering the list made sure that the less mature and non achievable tasks of
the backlog were pushed back to be looked at if there was time to spare at the end of the
development process. The tasks that were vital for the application to work were put in the
top of the stack, to be done as soon as previous tasks were finished.

12 Chapter 4. Requirement studies

Chapter 5

Designing mobile web
applications

This chapter will present a study of the cornerstones of modern web development. The study
was made to have a better understanding of the technologies before development started.
The study focused on getting an understanding of the basics and finding features that could
help development.

5.1 Introduction

With the number of platforms around that all need applications and development specifically
geared towards them, cross platform solutions are interesting to developers. This is because
the platforms come with their own developing languages and API (Application Programming
Interface) that connects their software to their hardware. A native application will only work
on the OS it is native to, so one application has to be made for each OS. There is time and
resources to save by using a cross platform solution as it only has to be made once and will
function on most platforms.

HTML5 can be used as a cross platform technology as a mobile web application basically
is a web page which is rendered exactly the same on every browser as long as they follow the
HTML standard[36]. HTML5 is under development and scheduled for release in 2014[57]
so the version available to users and developers currently is a beta of the final version.
This means that there are features coming and going as they push updates to the API.
Because of this, web browsers are trailing in development as they have to respond to what
happens to the standard[22]. As more people are using the desktop versions of the browsers,
they have a higher priority feature wise. That leaves the mobile browsers further behind
for feature support. So currently, features that are in the beta API cannot be used in
web pages aimed towards desktop browsers as they do not support them and that features
that desktop browsers support are not supported by mobile browsers. While developing a
web application for mobile use, there is a greater need to make sure that the features used
actually work on the intended platforms than when developing for desktop browsers. To add
to the fragmentation, mobile browsers developed by different companies are not equally far
along in HTML5 API implementation and may even render CSS (Cascading Style Sheets)
differently. When developing a native application there is less risk of fragmentation as long
as the application is backwards compatible. Another difference between browsers is their

13

14 Chapter 5. Designing mobile web applications

JavaScript engines and some browsers may process JavaScript faster than others[39]. The
JavaScript engines can not compete with a native applications support for multi-threading
and hardware acceleration so performance heavy applications are better of as native.

As as web application basically is a web page, access to everything a native application
can access would be a security problem[55]. That means that web applications can not
access hardware such as a camera or files on the device memory as long as they are not
bundled as an actual native application.

5.2 HTML5

HTML (Hypertext Mark-up Language) is the language that provides the framework and
information for a web page or web application and tells the browser how it should be
structured and presented. The language is in constant development and the newest version
(5) is still under development and brings a lot of new features. This section will present
some history, the features that was considered for use in the development and the current
limitations.

< !DOCTYPE html>
<html>

<head>
<t i t l e>My Page</ t i t l e>
<l ink rel=” s t y l e s h e e t ” href=”mycss . c s s ” />

</head>
<body>
<div id=”page”>

<header>
<h1>My T i t l e</h1>

</ header>< !−− /header −−>
<div id=” content ”>

<p>Hel lo World</p>
</div>< !−− /content −−>

</div>< !−− /page −−>
</body>
</html>

Code 5.1: A basic HTML page

5.2.1 Background

Tim Berners-Lee invented the web in 1989 to be used as a system to link references in
research papers to the referenced paper[19]. To do this he used his knowledge in document
and text processing and started developing a Web browser that used hypertext. Hypertext is
text displayed on a computer with links to other text that the user can access. His prototype
Web browser was ready in 1990. From 1990 to 1993 development was going forward and in
1993 the first proposal for a HTML specification was presented. In 1994 the World Wide
Web Consortium (W3C) was founded to try to enforce compatibility and agreement around
adopting the HTML standards so that they are rendered similarly[52]. Many proposals for
standards were put forward during the 90’s and HTML was finally standardized in 1998 with
HTML 4.0. HTML was written to not stop rendering when stumbling over an error and the

5.2. HTML5 15

W3C thought that was a problem so a stricter version XHTML was put forward in January
of 2000 as a reformulation using XML. XHTML was harsher and brought error handling
that caused a faulty page to stop loading and show an error message. This was something
that developers and users thought of as a hassle so they ended up still using the old HTML
4 standard but encapsulated in a XHTML structure. W3C considered themselves finished
with HTML 4 and started developing a follow up to XHTML that left HTML 4 behind.
During their development a group of W3C developers jumped ship and started developing
a follow up to HTML and XHTML that followed HTML 4.0 as that was what the public
wanted. In 2006 W3C got involved in developing HTML again and in 2007 they recognized
HTML5 as the next standard of HTML. Finally in 2009 they stopped working on their own
version of XHTML, XHTML 2. The purpose of HTML5 is to evolve the HTML specification
by adding technologies to phase out external libraries and peripherals such as the need of
using Flash to present video and also help users by incorporating existing procedures such as
<div id=“header”>and <div id=“footer”>with tags <header>and <footer>[53][40]. Code
5.1 is an example of a basic HTML page. As the doctype is set to html the page is defined as
a HTML5 page. The page includes the new header tag to be used to define were the header
information should be placed. This section will present features of HTML5 and evaluate
them. As the HTML5 specification is extensive, only features considered interesting for the
development are presented. These features were interesting due to being solutions to the
goals put forward for the project:

– Geolocation API

– Canvas

– Various solutions for Offline Storage

5.2.2 Geolocation API

Geolocation is an API that lets the web page get hold of the users position. The code 5.2
shows how to set Geolocation up[13]. It has three functions:

– getCurrentPosition

– watchPosition

– clearWatch

With getCurrentPosition you get the current position of the user. In a desktop solution
this is usually approximated to the position of the ISPs base station. In a mobile solution
the position is received from the GPS of the device and finds the actual position of the user.

The watchPosition function sets a variable that will be called at a set interval with the
current position so it can be used to track the users movement. This function has no effect
on a desktop solution as the position will not change as long as the user do not connect
to a different ISP. On a mobile solution this function is very effective as it can be used to
create GPS functionality in a web application. The last function clearWatch just clears the
watched variable and stops the GPS. This API was used to add GPS functionality to the
application.

function getLocat ion ()
{

3 // Function for getting the current position
nav igator . g e o l o c a t i on . ge tCurrentPos i t i on (showPosit ion) ;

}

16 Chapter 5. Designing mobile web applications

function showPosit ion (po s i t i o n)
{

8 // Function for showing the current position on the map
// position has the current position data :
// position . coords . latitude and position . coords . longitude

}
function scro l lMap (po s i t i o n)

13 {
// Scrolls the map so that it is always
// centered at the users position .
// Position holds :
// position . coords . latitude , position . coords . longitude

18 }
var watchId ;
function watchLocation ()
{

// Request repeated updates that tracks
23 // the user and calls scrollMap on each update .

var watchId =
nav igator . g e o l o c a t i on . watchPos it ion (scro l lMap) ;

}
function clearWatchLocation ()

28 {
// Cancels the position updates
nav igator . g eo l o c a t i on . clearWatch (watchId) ;

}

Code 5.2: An example of Geolocation implementation

5.2.3 Canvas

A canvas is an HTML5 element that contains a bitmap canvas on which graphics can be
drawn. It can only be drawn on by accessing the canvas context with JavaScript, the element
is just a container of the graphics and has no drawing abilities[9]. The HTML5 canvas can
be used for drawing either graphics or images and the context can be turned into data URLs
for offline storage. For an image to be turned into a data URL, it either has to be hosted on
the same server as the site or the server being cross server linked to has to allow it. This is
for security reasons as otherwise it would be very simple to write scripts that download all
images from web sites automatically. If the server allows for images to be handled through
cross origin they can be made available for modification by setting the image element’s
crossOrigin variable to “anonymous” before loading the image into it.

// Create a new canvas and get the context to draw upon .
var canvas = new Canvas () ;
var ctx = canvas . getContext (’2d ’) ;

4 // Create an image .
var img = new Image () ;
// Get the url to the image
var imgurl = ”example . net / p i c tu r e . jpg ” ;
// Set the image to handle its content as if it was on

9 // the same server
img . c r o s sOr i g i n = ”Anonymous ” ;
// Load the image from the url into the Image element
img . s r c = imgurl ;
// When the image is loaded , draw it on the canvas context .

14 img . onload=function ()
{

ctx . drawImage (img , 0 , 0) ;
}

Code 5.3: How to load an image to a canvas

5.2. HTML5 17

5.2.4 Offline Storage

As this application was to be able to run in offline mode, parts of it had to be saved locally
on the device. As a map with several layers of tiles for different zoom levels takes up a
lot of space there had to be a way to select an area and save just those tiles. Something
to think about is the file size limit for offline storage. All of the offline storage solutions
share a standard 5MB limit on the amount of data that can be saved locally[21]. Some of
the technologies can have their individual file size limits increased for users using select web
browsers. In such a case the user is asked to allow the increase through a prompt and has
to accept for it to work. The limit for WebSQL[10] can be increased to 25MB if the user
allows it and Firefox’s limit for IndexDB can be extended to 50MB if the user allows it.

Web Storage

Web storage is the combination of localStorage which allows for data to be saved locally
and used while the web application is offline and session storage which allows for data to be
saved during a session[10]. Both of them are key-value arrays that store strings. They are
not databases and thus scale badly as you put a lot of objects into them. Problems that can
arise using web storage are that saved objects may be dropped because secure transactions
are not implemented. Another problem is that there is no way of knowing how much of the
5MB quota is used. This is especially problematic when using Web Storage coupled with
Offline Cache since the cache cuts into the available space. The only way to get an idea
of how much free space there is left is to count the objects saved and make an estimate
calculation or to fill the remaining space with data of known size until the storage is full to
get an approximation.

var s to rage ;
function i n i t S t o r a g e ()

3 {
// Test if the browser supports storage
i f (typeo f (Storage)!=” undef ined ”)
{

// The browser supports local Storage
8 // so set it to a variable

s to rage = window [’ l o ca lS to rage ’] ;
} e l s e
{

// The browser does not support local Storage
13 a l e r t (” Sorry ! No web s to rage support . . ”) ;

}
}

Code 5.4: How to set up Local Storage

The code 5.4 shows an example of how to set up localStorage for a web page. The check
for browser support is to stop the web page from crashing if it does not support localStorage.
This can be used to deactivate the parts of the page that uses localStorage to avoid errors.
When the web storage is initiated it can be used with functions such as in code 5.5. To
be safe it is best to check for browser availability in the functions as well as catching the
exceptions that can be thrown from loading to keep the page stable.

function saveInStorage (key , va lue)
{

// Check that the browser supports localStorage
// If not skip the function

5 i f (! window [’ l o ca lS to rage ’]) return ;
// If the browser supports localStorage
// save the value at the key
s to rage . set I tem (key , va lue) ;

}

18 Chapter 5. Designing mobile web applications

10 function loadFromStorage (key)
{

// Check that the browser supports localStorage
// If not skip the function
i f (! window [’ l o ca lS to rage ’]) return ;

15 t ry {
// If the browser supports localStorage
// try to get the value with the key
var t i l eData = sto rage . getItem (key) ;
return t i l eData ;

20 }
catch (e){

// If the localStorage has not any value
// at the wanted key , return null ;
return nu l l ;

25 }
}

Code 5.5: An example of Local Storage implementation

IndexedDB

IndexedDB is a flat-file database that holds objects of any type[14]. It is not a SQL database
and the queries are using the NoSQL language. It can store more data than Web Storage
and is more scalable than Web Storage. The problem with IndexedDB is that it is still
an experimental technology that is barely implemented for desktop browsers and not at all
implemented on mobile browsers. Because of that there is no reason to use it for an mobile
application.

Application Cache

< !DOCTYPE html>
<html mani fe s t=”myappcache . cache ”>
<body>

//The content o f the document
</body>
</html>

Code 5.6: A HTML page with an Application Cache manifest

Application cache is a way to cache a homepage by downloading all the files listed on a
manifest[11]. It is added to a web page by adding “manifest=” and the name of a cache
manifest file to the first html tag as in code 5.6. As shown in code 5.7 the first line of the
manifest file has to be “CACHE MANIFEST” or else it will not work. There are three
different tags used for the cache manifest: “CACHE”, “FALLBACK” and “NETWORK”.
The “CACHE” tag is used to list the files that should be cached but can be skipped as the
files can just be listed under “CACHE MANIFEST”. The “FALLBACK” tag is where the
files that should be called if an online resource is requested while the site is offline are to be
listed. Under the “NETWORK” tag the files that are always going to be requested from a
server should be listed. Placing an asterisk under the “NETWORK” tells the browser that
all files that are not cached should always be loaded from a server. A thing to have in mind
is that Application Cache may work differently on different browsers. Not using putting an
asterisk under the “NETWORK” and instead put a link to a folder holding data worked
correctly in Google Chrome but did not work at all in Mozilla Firefox. If a homepage is
to be cached using offline cache then it needs to be small enough to fit within the 5MB
quota, otherwise it cannot cache all the required files. While using JavaScript frameworks

5.2. HTML5 19

such as Dojo with a lot of features and files all script files that are used needs to be cached,
otherwise the site will not work as intended when used offline.

CACHE MANIFEST
// L i s t the f i l e s that should be cached except the main page
mycss . c s s

NETWORK:
// L i s t the f i l e s that should not be cached
∗

FALLBACK:
// Fal lback f i l e s i f the page i s not a v a i l a b l e
o f f l i n e . html

Code 5.7: An example of a cache manifest

WebSQL

WebSQL is an HTML5 implementation of a SQLite database handler that can create ma-
nipulate webpage specific client side SQL databases[7]. The problem with WebSQL is that
W3C has stopped supporting it in support for IndexedDB and Web Storage, has no support
in the newest versions of Internet Explorer and Firefox and it will most certainly be phased
out in future versions of browsers from other developers. Code snippet 5.8 shows how to
setup a a database and execute a query.

// Create a function to prepare the database
function prepareDatabase (ready , e r r o r)
{

4 // Returns a handle to the database
// If the database do not exist it will be created
return openDatabase (’ documents ’ , ’ 1 . 0 ’ ,
’ O f f l i n e document storage ’ , 5∗1024∗1024 ,
function (db)

9 {
db . changeVersion (’ ’ , ’ 1 . 0 ’ , function (t)
{
// Create a database table
t . executeSq l (’CREATE TABLE example (id , name) ’) ;

14 } , e r r o r) ;
}) ;

}
// Call the database setup
prepareDatabase (

19 function (db)
{

// If the database call succeed
// execute the query
db . readTransact ion (function (t)

24 {
t . executeSq l (’SELECT COUNT(∗) AS c FROM example ’ ,

[] , function (t , r)
{

// Handle the results
29 } , function (t , e)

{
// couldn ’t read database
// Handle errors

}) ;
34 }) ;

} ,
function (e)
{

// error getting database
39 // show error message

20 Chapter 5. Designing mobile web applications

}
) ;

Code 5.8: How to setup WebSQL

5.3 CSS3

CSS (Cascading Style Sheets) is a style sheet used to describe how the information in a
HTML or XML document should be presented[8]. CSS3 is the third version of CSS and has
been in development since 1998. CSS is designed to be a separation between content and
design in a way that improves flexibility, allows for multiple pages to share the same design
document. CSS3 brings a lot of new features which enrich the style sheets with things that
needed to be done with JavaScript frameworks or different CSS hacks before. This section
will present the background of CSS3 and describe features interesting to the project.

5.3.1 Background

As the development of HTML went on there arose a need for more design functionality[37].
The design functionality that existed was bound to the HTML document and had to be
added for each element. To have the same design for other pages the design tags had to be
transferred over manually. As more design capabilities were added to give more control over
site appearance the HTML got more complex and a need emerge, to separate the document
styling from the document presentation. Nine different proposals for style sheets was put
forward and two were accepted and used as a foundation for what would become CSS. The
first CSS specification was finalized in 1996. It took more than three years for browsers to
support it fully. Two years later the second level specification was published in 1998 and and
an update, level 2.1, published in 2004. The earliest CSS3 draft was published in 1999 and as
of July of 2012 four drafts out of fifty have been published as formal recommendations and
most of CSS3 is supported by the major browsers. There will not be any CSS4 because CSS3
refers to everything published after 2.1[35]. There are level 4 drafts of CSS features but as
of CSS3, the language is split up into individual modules that can be updated individually.
This means that the draft levels only refer to the age of the module, not the version of the
language as a whole. It would be appropriate to just drop the version number and just refer
to the language as CSS. An intriguing feature of CSS3 is that it can be used to phase out
Flash and some JavaScript libraries as it has support for movement, animations and user
interaction[12].

5.3.2 Media Queries

This is a powerful feature to use for mobile web applications[15]. You can specify specific
CSS queries that change the design depending on different features of the sceen. One query
can be done towards the screen resolution. With that the size of of HTML elements can be
changed depending on the resolution of the screen as in code snippet 5.9. This is useful since
there is no standard device screen resolution and the application is supposed to be shown as
one page without any scrollbars. Other things that can be queried towards is screen aspect
ratio, what type of projection the screen uses or what orientation the screen has and if the
screen is in color or not.

/∗ he ight sma l l e r than 950 ∗/
@media s c r e en (max−he ight :950 px)

5.4. JavaScript 21

{
/∗ i f the he ight i s sma l l e r than 950

s e t the he ight o f the map element to 900px∗/
#map{

he ight :900 px ;
}

}
/∗ he ight sma l l e r than 800 ∗/
@media s c r e en (max−he ight :800 px)
{

/∗ i f the he ight i s sma l l e r than 800
s e t the he ight o f the map element to 550px∗/

#map{
he ight :550 px ;

}
}

Code 5.9: Two behaviors for different screen sizes

5.4 JavaScript

JavaScript is an objective script language that is most commonly used embedded in or
included from HTML pages. It is used to build advanced functionality into web pages such
as enhanced user interfaces and dynamic websites.

5.4.1 Background

JavaScript was originally developed for Netscape during their Web browser war with Mi-
crosoft as a competitor to Microsoft’s Visual Basic which is a code language aimed towards
nonprofessional developers[16]. It was shipped under the name LiveScript in beta releases
of Netscape Navigator 2.0 in 1995 but was renamed JavaScript for the official release. The
name JavaScript caused confusion as it gives the impression that the name is built from
the Java programming language. The name has been interpreted as a marketing ploy due
to support for Java was being added to the Netscape browser at roughly the same time.
JavaScript was a widespread success and Microsoft added support for it the next year but
called it JScript due to trademark issues. Since then JavaScript has been used as background
code base to go to for dynamic web solutions as the industry standard for client-side script-
ing. Today, the JavaScript development is handled by the Mozilla foundation on license
from Oracle Corporation and an ongoing standardization by Ecma International process
makes sure that it is processed similarly by are browsers. The next chapter will present the
features of the JavaScript libraries and frameworks that were under consideration for the
development part of this project.

5.5 Discussion

This section will present the thought process behind the selection of features used in the
development. The choice of including Geolocation API or not was an easy one. If there is a
need for GPS functionality it is very simple to plug it in and get coordinates from the API

22 Chapter 5. Designing mobile web applications

functions, then just plug them into the map engines. The canvas element was used to draw
map tiles on for the application. The tiles could have been drawn in image elements but
they can not be turned into data URLs without first being loaded into a canvas object, so it
was easier to work with canvas elements from the beginning. It was chosen instead of using
plain images as the nature of the project was ”the more HTML5 experience the better” also
the most of map engines drew graphics on canvas elements layered over the map tiles as a
standard so mashing them together and drawing everything on the same layer just made
sense. During the development it became clear that the map server that was planned for
the project would not work. The server did not support cross server image manipulation
which made saving map tiles impossible as it blocked turning canvas data into data URL’s.
A solution for this would be to install a Node.js client made to handle the images directly on
the server. This was not possible as the server was setup to deliver images for Cybercom’s
live web map platform and new code may cause it to be instable. Another possible solution
was to download the images with the HTML5 feature Web Workers. But that feature is not
supported by Android browsers, so it did not work. The offline solution chosen for the project
was to use offline cache for static objects and web storage for dynamic objects. A static file
limit was set up to make sure that the Web Storage did not overflow. Overflowing would
throw an exception and would cause the tiles to be saved in weird patterns. IndexedDB
could not be used as it was not supported for mobile browsers. WebSQL was considered for
development but was finally not chosen due to not being supported by W3C. This means
that WebSQL eventually will be phased out and end up not working. The only CSS3 feature
that was really considered was media queries as the rest of the design was supposed to be
built by design pieces brought by UI frameworks. Media queries is very a powerful asset and
helps a lot as the web applications are supposed to be run on devices with varying screen
sizes. They allow for the application to adapt to different screen sizes so that the users do
not have to zoom the page to access the functionality. The JavaScript did not need any
examples as it had been featured in the HTML5 section and as it will be featured further
in the upcoming chapters.

Chapter 6

Evaluation of libraries and
frameworks

This chapter will present the frameworks and libraries that are under consideration for use
in the development. The frameworks were chosen due to their functionalities, which were
considered useful for reaching the goals of the project.

6.1 Introduction

JavaScript frameworks and libraries are codebases that act as plug-ins of features and provide
an easy way to add more advanced functionality to a web page without having to build
everything from scratch. The frameworks are often freeware projects that are available for
use and further development. There are a lot of libraries created for almost any functionality
sought after by a developer. This chapter will present some libraries and frameworks that
were considered for use in the development of this project and an evaluation to decide what
part to finally include.

6.2 Mapping libraries

As the map was supposed to be the central part of the application it was important to have
a good map library which renders the map quickly and takes up a small space on the web
page. This is because then it can be stored within the 5MB offline file size limit while leaving
space for the frameworks and map tiles. These are the map engines that were considered
for this project:

– Tile5

– OpenLayers

– Leaflet.js

6.2.1 Tile5

Tile5 is a map library fully written in HTML5[42]. It is able to take maps from different
map providers, style them and present the tiles as canvas layers or WebGL objects. It is

23

24 Chapter 6. Evaluation of libraries and frameworks

fast at rendering, the rendering looks good and the files are not big. This map library is in
an alpha stage of development and the documentation is sparse or simply nonexistent. As
a help to get anywhere with Tile5 there are extensive examples with a lot of code[43]. The
function drawing the map layer in the examples takes maps from a Cloudmade, which is a
service provider that among other things provides access to different map engines, and an
API-key which is needed for the maps to be rendered[41]. There are no examples where a
map-provider besides Cloudmade is used so using a custom map server, which is the intent
of this thesis, is plain guesswork. The standard call of creating a map layer (code 6.1) takes
a pre-defined map service (generator) and an api key. This means that using a custom map
server would mean a re-write of the code.

// Create a map within a <div > named mapContainer
2 map = new T5 .Map(’ mapContainer ’ , {

padding : ’ auto ’
}) ;

// Create a layer of tiles upon the map
7 map . l ay e r (’ t i l e s ’ , ’ t i l e ’ , {

generator : ’ osm . cloudmade ’ ,
// demo api key , register for an API key

// at http :// dev . cloudmade . com /
apikey : // insert api key here

12 }) ;

Code 6.1: A basic Tile5 setup

6.2.2 OpenLayers

OpenLayers is the goto map library when you want a magnitude of tools and support[46].
Basically OpenLayers supports every map provider and most web frameworks have built in
support of it. Basically, if a server can provide maps then OpenLayers can render them.
It is a stable library that incorporates everything a user and a developer would want out
of a map renderer feature wise and documentation wise[44][45]. Everything about it is
well documented and easy to get working. Problems with it is that it may be too big to
incorporate in a mobile web application with offline support as the whole library needs to
go offline. If there is a need to render tiles as canvas elements, a rewrite of some files the
current release would be needed. The last problem of OpenLayers is that it need a large
amount of resources because of how big it is which can be a problem for mobile devices.

var map ;
2 // A function that sets up the map with tiles

// This function should be called when the page is loaded .
function i n i t (){

// Creates a new map in a <div > named map
map = new OpenLayers .Map(’map ’) ;

7 // Creates a layer containing the tiles
var wms = new OpenLayers . Layer .WMS(

”OpenLayers WMS” ,
”http : // vmap0 . tiles . osgeo . org / wms / vmap0 ?" ,
{ l a y e r s : ’ bas ic ’}

12) ;
map . addLayer (wms) ;

}

Code 6.2: A basic OpenLayers setup

6.2.3 Leaflet.js

Leaflet.js is a lightweight mapping library that only does the very basics but does them
well[5]. It is small in size and renders maps quickly and beautifully. It has a good, unfinished

6.3. Enhanced features and graphical interfaces 25

API documentation, that is easy to understand and has plenty available plug-ins for added
functionality[4]. Problems are that it is not supported by as many systems as OpenLayers is
and has not got as many features, it does not support all kinds of projections and that it is
still a beta version. The version evaluated for this project does not provide drawing tools but
it is probably coming in an upcoming release. It does not render map tiles as canvas elements
from scratch but the functionality can be added by overwriting the drawTile function and
adding configurations for drawing the images on a canvas[6].

1 // Set up a map in a <div > called map and set settings
// such as projection and allowed zoom levels .
var map = new L .Map(’map’ ,{ c r s : L .CRS. EPSG3857 ,

a t t r i bu t i onCont r o l : f a l s e , minZoom : 6 , maxZoom : 12}) ;

6 // Set up a layer for the map that renders the tiles
// on canvas elements
var u r l =

” [mapserver] ”
var canvas layer =

11 new L . Ti leLayer . Canvas (ur l ,
{maxZoom : 18 , scheme : ’ xyz ’ }) ;

map . addLayer (canvas layer) ;

16 canvasTi l e s . drawTile =
function (canvas , t i l ePo i n t , zoom) {

var ctx = canvas . getContext (’2d ’) ;
// Get the url to the tile image for the current canvas
var imgurl = ” [mapserver]/{0}/{1}/{2} . png ” . format (

21 zoom , t i l e P o i n t . x , (t i l e P o i n t . y)) ;

// Create a new image
var img = new Image () ;

26 // Set the image to use cross origin permissions
img . c r o s sOr i g i n = ”Anonymous ” ;

// Write the cross server image to the image
img . s r c = imgurl ;

31

img . onload = function () {
// draw the tiles on the canvas when the
// image has loaded
ctx . drawImage (img , 0 , 0) ;

36 }
}

Code 6.3: A basic Leaflet.js setup rendering on canvas elements

6.2.4 Other libraries

Some testing was made on MapsScript[38] and Kothic JS[18] but they did not provide
the functionality the project needed. MapScript was more of a server script library and
the Kothic map library was more geared towards map styling. After testing, no further
development was done with these frameworks.

6.3 Enhanced features and graphical interfaces

This section will present frameworks and a plug-in that was considered for additional func-
tionality and graphical styling. The frameworks and plug-in were chosen for ease of use, the
amount of featured UI elements, the look of the graphical UI and size of the files due to the
file limit of the offline storage. The ones that were considered for this project were:

26 Chapter 6. Evaluation of libraries and frameworks

– jQuery Mobile

– jQTouch

– Dojo

– Sencha Touch

These frameworks are built to provide a mobile-optimized code base and interface that
works and looks the same on an assortment of different mobile platforms. They are mostly
optimized around touch functionality with many different widgets, layouts and features
that imitate their counter-parts in native applications on mobile platforms. The difference
between the frameworks are which code bases they are based on and the scope the developers
are aiming for. What they have in common are that they are one page solutions. That means
that the whole applications is built around a single HTML page separated into different views
as in code: 6.4. This means that the whole application gets loaded at the same time and
the secondary views are hidden until called for. Dojo, Sencha and the jQ frameworks have
their own codebases and and because of that each has new syntax to learn and get used to.
As some of the frameworks are big both content wise and and file size wise there is a need
to build a mimimized version of the chosen framework that is specifically adapted to suit
the web page. This is done by setting up a shell script that collect the specific JavaScript
files used in a web page and packs them into a single minimized file by cutting away spaces
and comments.

<body>
< !−− page 1 −−>
<div id=”page1” data−dojo−type=” dojox . mobile . View”>

< !−− page 1 content −−>
</div>

< !−− page 2 −−>
<div id=”page2” data−dojo−type=” dojox . mobile . View”>

< !−− page 2 content −−>
</div>

< !−− page 3 −−>
<div id=”page3” data−dojo−type=” dojox . mobile . View”>

< !−− page 3 content −−>
</div>

</body>

Code 6.4: A one page setup

6.3.1 jQuery Mobile

JQuery Mobile is a framework built by the jQuery foundation and adapted for mobile
development[34]. It is aimed towards making mobile web application development easier for
people that are used to using jQuery[33] for web development. The development is focused
on optimizing touch control and being supported by as many mobile devices and browsers
as possible as. JQuery Mobile uses the HTML5 data attribute to specify how interface
elements should be rendered by setting them to the appropriate role. In code snippet 6.5

6.3. Enhanced features and graphical interfaces 27

this is done for example by setting a headers data-role to “header”. After giving an element
a role it will automatically have the specified behavior as well as look[32].

<body>
<div data−r o l e=”page”>

<div data−r o l e=” header ”>
<h1>My T i t l e</h1>

</div>< !−− /header −−>

<div data−r o l e=” content ”>
<p>Hel lo world</p>

</div>< !−− /content −−>

</div>< !−− /page −−>

</body>
</html>

Code 6.5: A basic jQuery Mobile page

6.3.2 jQTouch

JQTouch is a plug-in that adds functionality to a web page and adapts it for mobile web
development[20]. JQTouch is open source and is aimed towards mimicking mobile platform
behavior and being as light weight as possible. JQTouch supports the zepto.js[28] framework
as well as JQuery[33] for browsers using WebKit. Zepto is a slimmer framework adapted for
WebKit browsers (Safari, Chrome, Safari mobile, android browser). The syntax is similar
to jQuery but as it is only aimed towards WebKit[54], it has a 50% smaller file size wise.
JQTouch uses the class and id attributes of HTML coupled with CSS as normally done in
web development to render the user interface elements. The implementation of a jQTouch
page is shown in code 6.6 with the class attribute specifying how to render the UI elements.
Setting the class attribute will also bind the element to the appropriate behavior.

<body>
<div id=” j q t ”>

<div id=”home”>
<div class=” too lba r ”>

<h1>Hel lo World</h1>
<a href=”#i n f o ” class=

” button add s l i d e u p ”>
S e t t i n g s

</div>
<div id=” content ”>

<p>HELLO</p>
</div>

</div>
<div id=” i n f o ”>

<div class=” too lba r ”>

28 Chapter 6. Evaluation of libraries and frameworks

<h1>About</h1>
Cancel

</div>
</div>

</div>
</body>

Code 6.6: A basic jQTouch Mobile page

6.3.3 Dojo

Dojo is a large web page framework that amongst other things have mobile browser part
(dojox)[26]. Dojo is separated into three parts dijit[23], dojo[24] and dojox[27]. Dijit is
the widget part of the library[23], dojo is the base library[24] and dojox is a library for
graphics and the also the mobile optimized part of the library[27]. For a web application
to work the whole library is still needed as the main parts of the dojo library is used to
connect everything together. This means that this library will take up a lot of space on the
server and will take up a lot of space in the offline storage for it to work while cached. The
dojo framework changed their syntax with the last update and their API documentation is
not very updated because of that. Another thing with the documentation that can cause
problems for a new user is that it is just clean references to the functions and variables
with just the plain names and no explanation for how they are used or any example code
snippets. A basic Dojo page looks like in code: 6.7 and has custom data attributes to mark
where the UI elements should go as called “data-dojo-type”[25]. For Dojo to render the user
interface a parsing function needs to be implemented. The parser goes through the code and
adds graphical styling to elements with the appropriate attributes. The render call looks
like 6.8. If a UI element is wanted then it needs to be included within the require call as
well as in the function that starts the parser. If not included in the call the element and
its functionality will not be loaded and the page will not work as it should. The standard
theme of dojo mobile makes the layout look like if it was a native iPhone application but if
queried the renderer will choose a theme for the application that makes it looks like it was
made for the currently used platform.

<body >
<div id=”mapview” data−dojo−type=” dojox . mobile . View”>

<div id=” headerdiv ” style=” he ight : 45 px ; ”>
<h1 data−dojo−type=” dojox . mobile . Heading”>

<div data−dojo−type=
” dojox . mobile . ToolBarButton”

data−dojo−props=” l a b e l : ’ Toolbar ’ ,
onCl ick : generateToolBar ”

class=”mblDomButton” style=
” f l o a t : r i g h t ; ”>

</div>
Example

</h1>
</div>
<div id=” content ” data−dojo−type=” dojox . mobile . View”

data−dojo−props=” s e l e c t e d : t rue ” >
</div>

6.3. Enhanced features and graphical interfaces 29

</div>
</body>

Code 6.7: A basic Dojo Mobile page

1 r e qu i r e ([
/∗This c a l l s the f i l e s r equ i r ed to
render the page ∗/
// the parser that parses the page
// for it to render

6 ”dojox /mobile / par s e r ” ,
// The overall mobile library
”dojox /mobile ” ,
// Needed to render a tab bar
”dojox /mobile /TabBar” ,

11 // Needed to render a button
”dojox /mobile /Button ” ,
// Compatability checker
”dojox /mobile /compat”
// Calls the render on page load

16 , ” dojo /dom−a t t r ”
, ” dojo /domReady ! ”
] ,
// Calls the code within the included files
function (mobi leParser , TabBar , dm, domAttr , compat) {

21 // Parse the page !
mobi leParser . parse () ;

}) ;

Code 6.8: The call to render a Dojo page

6.3.4 Sencha Touch

Sencha Touch is a commercial framework with two free versions available[50]. It is built
specifically for mobile web applications but the files can be converted to work as a native
with tools bundled with its tool kit. Sencha Touch only works for WebKit based browsers
and therefore do not support Firefox or Firefox Mobile. This framework is set up with
a main HTML page that is empty except for calls to the JavaScript source code. The
source code as in 6.9 sets up the page by generating the ui and other graphical elements
from the code and showing it in the browser[51]. The code file should also contain all the
wanted functionality. This separates the framework from the others as their solutions are
focused around the HTML page containing the user interface because Sencha Touch is more
based around plain coding than they are. Sencha Touch can be set up to mimic the device
specific themes and effects of the currently used device. Sencha has a development tool for
developing Sencha web pages and web applications.

1 Ext . d e f i n e (’MyApp. view .MyTabPanel ’ , {
extend : ’ Ext . tab . Panel ’ ,
c on f i g : {

i tems : [
{

6 xtype : ’ conta iner ’ ,
t i t l e : ’Tab 1 ’ ,
i tems : [

{
xtype : ’ panel ’

11 }
]

} ,
{

xtype : ’ conta iner ’ ,
16 t i t l e : ’Tab 2 ’

} ,

30 Chapter 6. Evaluation of libraries and frameworks

{
xtype : ’ conta iner ’ ,
t i t l e : ’Tab 3 ’

21 }
]

}
}) ;

Code 6.9: A basic Sencha Touch page

6.4 Discussion

For this project a lot of experimentation was done before finding a final solution to go with
for the final development. The map engine selection was the most difficult trial. It begun
with MapScript that seemed promising, was hard to start working with and in the end did
not have any of the wanted functionality and went on to OpenLayers. OpenLayers is a great
mapping library that has everything for a mapping web service. The problem is the size
and performance as it is to heavy for a mobile mapping service. A problem with finding a
new mapping library was that other libraries lacked the documentation and features that
OpenLayers had. A lot of mapping libraries are not well documented so it is difficult to get
started. If it takes extensive detective work or trial and error to get something working, it
does not matter how great advertised features might be. The Tile5 author acknowledged the
problems with his library and documentation. He explicitly told users to look for another
library for these things, Leaflet.js. Leaflet.js is everything a mobile web application developer
could want. It has a clean design, it is lightweight, it is fast and it is easy to work with. As
soon as the testing of Leaflet began it was clear that it was the obvious choice to go with. A
problem with Leaflet was the lack of support of specific map projections. This was solved by
experimenting with the projections available. The Cybercom mapping server provided tiles
in the opposite direction of how the Leaflet rendered them so the tiles were laid out upside
down. This was fixed by inverting the renderer. For frameworks the choice was hard. All of
them do the same thing but with different syntaxes. If a developer is comfortable with the
jQuery syntax then a jQuery based framework is the best to work with as Dojo and Sencha
Touch are harder to get started with. If a developer has no prior experience with jQuery
then frameworks are equally suitable for development. The author was not used to jQuery
so the Dojo and Sencha Touch was more suited for this project. The way to design the GUI
in Sencha Touch is different from the other frameworks and can be a reason to not pick
it for development. This is because both web development and application development is
usually based around using separate files for the graphical parts that users see and handles.
Applications for Android and iPhone uses XML formatted interface files that can be edited
either through writing the tags manually in a text-editor or with WYSIWYG editors that
is included with the developer kits. What the developer favors is left to personal taste but
the author preferred having the graphical interface left mostly separate from the code. This
led to the development being done with the Dojo framework even though the file size led
to a compromise that limited the amount of tiles that could be stored offline. This was
because most of the Dojo JavaScript files had to be cached for the page to work without an
active connection. Building customized JavaScript libraries with scripts to minimize them
was quite complicated. The author did not get it to work the way it was intended which
turned into a problem due to the offline storage limit.

Chapter 7

Tools for development

An environment was needed for development and thus a study was done before it started to
find tools suitable for HTML5 development. The author was interested in freeware devel-
opment solutions before solutions costing money. These were the environments considered
for the project:

– Aptana Studio 3

– Titanium Studio

– Sencha Architect

7.1 Titanium Studio/Aptana Studio 3

Figure 7.1: The Titanium Studio layout

Aptana Studio 3[2] is a web development tool built from the open source project Eclipse
which is a large development studio that handles a lot of different languages and is widely
used. Aptana has a support for a wide array of web development technologies such as
HTML5, CSS3, JavaScript, Ruby, Rails, PHP and Python. Titanium Studio[3] is built

31

32 Chapter 7. Tools for development

Figure 7.2: The Aptana Studio 3 layout

from Aptana as both are made by Appcelerator. It is basically the same program as Ap-
tana in both functionality and looks (figure 7.2 and figure 7.2) but has extra support for
Appcelerator’s cross-platform framework that uses JavaScript to build applications. The
Appcelerator cross-platform JavaScript code is compiled into code that runs natively on
the most popular platforms. The addition of support for the Appcelerator specific features
has caused the developers to add a login screen to Titanium Studio which forces the user
to register an account on their web page to access the program. This feature is absent in
Aptana Studio 3 which makes it the better choice of the two for web applications or web
development.

Figure 7.3: The Aptana Project Explorer

The layout of Aptana Studio and Titanium Studio has a Project Explorer to the left
(figure 7.3) that contains all the files of the project and a tabbed Code View to the right
(figure 7.4). Aptana Studio and Titanium Studio both have suggestion lists for variables,
tags and functions and they warn when the users misspell things. When a user runs a web
page or web applications from these developing tools they set up a dummy local server
that runs them as if they were actually on a server. This is great for debugging web pages
without having to upload new files to a test server. There is no way to start this debug
server on a connected mobile device. Debugging the mobile web applications on a mobile
device can be done by uploading it to an actual web server or to package the application as
a native application with a HTML5 to native bundler.

7.2. Sencha Architect 33

Figure 7.4: The Aptana Code view

7.2 Sencha Architect

Figure 7.5: The Sencha Architect layout

Sencha Architect is an editor that is used to create Sencha web and mobile applica-
tions using their frameworks[49]. Additional functionality can be added by including other
JavaScript libraries but every project built with Sencha Architect will use a Sencha library.
The layout of Sencha Architect is really clean and sleek (figure 7.5).

The editor has two modes: design (figure 7.6) and code (figure 7.7). The design mode is a
graphical, drag and drop, WYSIWYG editor where the user can put the wanted functionality
from the tool bar (figure 7.8) directly into a board the size of a custom mobile device screen.
Once the functionality is added to the design mode the code for it is automatically added
to the code mode as well as showing up in the project inspector (figure 7.9). Settings for
the graphical functionality can not be changed or added to through editing the project’s
JavaScript code. The settings can just be reached by selecting a feature and have its settings
values show up in the configuration box (figure 7.11). This is because the code in code mode

34 Chapter 7. Tools for development

Figure 7.6: The Sencha Architect design editor

Figure 7.7: The Sencha Architect code editor

is read only. Code can only be edited by manually adding a function to the project (through
drag-and-drop) and giving it a name through the configuration box. Once a function is
added, clicking it lets the user reach the function editor (figure 7.10) and can edit the code
for that single function. This takes some time to get used to and can be interpreted as
the software needlessly limiting the user’s access to the raw code. The function editor has
functionality for reporting errors and coming with suggestions for variable and function
names. Sencha Architect supports starting the project on a mobile device connected to the
computer but it can be a problem previewing the project in a web browser.

7.3 Text editors

A text editor is a basic tool for developing web services. There are a lot of different text
editors and some are more advanced than others. Some of them have syntax marking and
help with debugging, others are just handle text plainly. An advantage of using a plain text
editor is the ease of starting up the program for a quick edit or for just typing code quickly
if the added functionality of a real development program is not needed. During the work of
this thesis the text editor Notepad++ (figure 7.12) has been used both for development and
for documentation[30]. Notepad++ is a very flexible editor that features syntax coloring for
over 50 languages and a lot of other functionality needed for basic to advanced text editing.
If additional functionality is wanted it is entirely possible to add it to the program with a
plug-in. A text editor can not fully replace a development studio as it normally lacks the
overview and work flow that a good development tool provides.

7.4. Discussion 35

Figure 7.8: The Sencha Architect toolbar

Figure 7.9: The Sencha Architect project inspector

7.4 Discussion

As the project was not to use the Sencha Touch library, Sencha Architect was not considered
suitable for the project. If Sencha Touch was considered for the project Sencha Architect
would still not be used due to the clunky feel it gives by limiting the access to the code.
The reasoning behind limiting the access to the code is to keep the interface data separate
from the code so that programming functionally will not mess it up which could render the
design mode unusable. The “security” gained from this decision is minimal compared to the
accessibility and time lost due to it and shows limitations in the program. Another reason
why limiting users from editing the code in Sencha Architect is strange is that users can
develop Sencha applications with other development tools. Using another development tool
would let the developer access the code at any time, which makes them the better choice
and leaves Sencha Architect superfluous. The author was used to the layout of programming

Figure 7.10: The Sencha Architect function editor

36 Chapter 7. Tools for development

Figure 7.11: The Sencha Architect configuration box

Figure 7.12: A Notepad++ Window

environments built from Eclipse so the Aptana Studio 3 and Titanium Studio environments
were preferred. Appcelerator wants to know who are using their JavaScript based cross
platform solutions and thus the user needs an account on their web page to use Titanium
Studio. When the program loads the user gets prompted to type in their username and
password to access the environment. Because of that Aptana Studio 3 is the better choice
as long as the extra functionality is not wanted. The development was done in Aptana Studio
3 and in Notepad++ and other text editors if done on other computers where Aptana was
not installed.

Chapter 8

Results

This chapter will present the results of the research and show and describe the resulting
web application.

8.1 Method and process

The development environments used were Titanium Studio and Notepad++. The frame-
works and libraries used were Dojo and Leaflet.js

8.2 The finished application

The user interface of the finalized application 8.1 is similar to the interface of Jaktappen
but has a status bar with extra buttons added to the main view and the tab bar moved to
the bottom of the screen. The user interface was built using the Dojo framework and the
whole page, except the map, is automatically cached on load. Once cached the page will
load if there is no connection. The tab bar is for navigation purposes and lets the users

Figure 8.1: The JaktAppen Layout

37

38 Chapter 8. Results

reach all the views. The map view is the pre-selected standard view and will be the first
view to load when accessing the application. The “Functionality” and “Settings” views are
currently not implemented. The buttons on the status bars gives access to new tool bars.
The GPS button gives access to a tool bar (figure 8.2) that holds GPS functionality and the
storage button gives access to the tool bar (figure8.4) of saving map tiles to be used whilst
offline. The map screen itself is map from Open Street Maps handled by the Leaflet.js plug-
in. The GPS tool bar8.2 has two buttons; the first button is for locating the user, pressing

Figure 8.2: The GPS tool bar

it shows the user’s location on the map with a red circle (figure 8.3). The second button
is for activating/deactivating the GPS tracking which tracks user movement on the map by
having the circle move over the map. The Storage tool bar (figure 8.4) has 4 buttons that

Figure 8.3: The user’s location

control the functionality of the storage system. The map tile storage can save marked map
tiles to be used while offline. The tiles are marked by activating the tile marking mode by

8.2. The finished application 39

pressing the “Mark On/Off” button. This will put a red border (figure 8.5) around the
focused tiles to show that they are chosen for offline storage. Moving around the map will
push more tiles into view to be marked. When the user has marked an appropriate amount

Figure 8.4: The Storage tool bar

of tiles they can be saved to the HTML5 offline storage by pressing the save button. The
saved tiles will then be loaded from the offline storage instead of downloaded from a server
and can thus be viewed even if there is no network connection. The remaining buttons are
for clearing all the marked tiles and clearing all saved map tiles.

Figure 8.5: Marking map tiles

40 Chapter 8. Results

Chapter 9

Conclusions

9.1 Goals and project management

The goal of this thesis was to examine if it was possible to create a web application with a
map that could be used while offline. If this was possible to do, then a prototype was to be
presented. If it was not possible, a prototype showing how far it was possible to go was to
be presented. A secondary purpose was to research frameworks, libraries and development
tools that would help the development and add functionality. Added to this were sub-goals
that appeared during development and research, such as some of the user stories in the
project backlog. Using SCRUM to manage the project worked well. The project backlog
was a great tool to use and the sprints and their backlogs made the work more focused.
The SCRUM setup should have included time for research from the beginning as the sprints
were more aimed directly towards development. This meant that the research had less focus
than actual development during the beginning of the project. The research, testing and
development showed that it is possible to create a web application that can both handle
maps, be used offline and show cached map tiles while offline. A full implementation of a
web application that uses maps that can be used offline will most likely need to prioritize
what can be used offline. This is because of offline mapping needing a lot of free space
available to work well.

9.2 Implementation

The current implementation is using an Open Street Maps server, which is a free to use map
server, but lacks locations. For a full implementation, searchable locations is most likely
needed. Searchable locations such as lakes have been added manually to the Natureit web
page by the Cybercom developers. Using that server and the information the Natureit web
page has available would be great for a full implementation as it would bring a lot of features
to the application with a chance of reusing code from the web page. A full implementation
should probably be done as a PHP HTML5 page. This is because PHP can make the web
page more dynamic. A PHP Offline Cache can be used instead of Web Storage but this
would make the page less dynamic as once a Cache is set for a page it is static until the
page is reset and reloaded. Since Offline Cache works with image links and not data-URL’s
this will make for a different type of map rendering but it should work.

41

42 Chapter 9. Conclusions

9.3 JavaScript

Concerning frameworks, the Dojo framework works well but in hindsight jQuery Mobile
would most likely have been a better choice. This is because it is leaner in size and easier
to start up. What makes Dojo harder to start working with is that their documentation
and examples are outdated and that their renderer and custom data-tags takes a while to
get used to. One thing with the Dojo framework that is not so good for user interactivity is
that all the elements are basically differently styled <div>elements, which makes buttons
feel static as they do not have a built in on-click animation. This can make it seem like the
button was not clicked when it was. JavaScript libraries for mapping were interesting to
research and test due to the difference in features and functionality that the developers have
managed to fit in libraries of small sizes. The Tile5 library would have been very interesting
to work with if there were documentation to follow but as of now the Leaflet.js library is
easily the best. It is small, well documented, easy to work with, fast and rich in features.

9.4 Limitations

Using the Natureit server did not work due to limitations in cross-server accessibility and
what could be installed on the server. If that server could be used, then the web application
could use the map licensed by Cybercom and show the information, marked areas and points
of interest that Natureit uses. A huge limit of web applications vs. native applications is
the lack of support for HTML5 features in browsers made for mobile devices. Web Workers
is the HTML5 way of using multi-threading and it is currently only supported by Apple
mobile browsers. Multi-threading can be used to make web applications run smoother and
more optimized on mobile devices. The HTML5 local file limit is an obstacle that would
be neat to work around. More memory would allow for more offline capability both in the
amount of tiles that can be cached and other functionality available while offline. The most
severe limitation of the work was that due to time restraints and how tasks were prioritized,
some tasks did not get implemented. These were tasks such as the chat client which were
less prioritized due to the connectivity possibilities already available on mobile devices and
that chat clients need consistent connections to work.

9.5 Future work

There is a lot that can be done with the application in the future. The first thing is to
adapt the application to work with the Cybercom web solution Natureit. This means adding
functionality to the application and optimizing its loading times and offline caching abilities
so it acts more like a native application. Making it use the Natureit map server would be
ideal. This would let users connect to the data and information, such as marked areas and
points of interest, used by the Natureit web page in their mobile device. Letting users access
their Natureit accounts through the web application would mean that they could set up a
trip on the desktop and access it on their mobile device. Additional functionality could
primarily mean implementing the other views as for example a view with settings for the
application or views with ways to manipulate the map data. A search engine for points on
the map and tools for adding custom markers and areas to the map that can be saved locally
would be a great addition. When mobile browsers are updated to support more HTML5
features and the HTML5 API will be more complete, mobile web applications can get
closer to native applications. HTML5 can not handle multitasking and threading currently,

9.5. Future work 43

for all mobile browsers, and this makes web applications less optimized than than native
applications. Optimizing the application can currently only be done through minimizing
the JavaScript code and files or mimimizing the amount of objects stored in the memory.
This will put less stress on the file limit and let the page load faster as well as making the
page work better when loaded. If a way to accurately see what amount space there is left on
the file limit can be implemented that would be great. Outside of developing, letting users
test the application should be prioritized to see if the implementation and functionality is
wanted. This could also bring new ideas into development.

44 Chapter 9. Conclusions

Chapter 10

Acknowledgements

I thank my supervisor at Cybercom, Tobias Björnudd, for guiding me through the project
and Kalle Prorok at Ume̊aUniversity for support and help with my report writing. I also
thank the people at the Cybercom offices in Östersund and Linköping for the inspiration
and wonderful work environment.

45

46 Chapter 10. Acknowledgements

References

[1] Android. Platform versions, 2012. http://developer.android.com/about/

dashboards/index.html, accessed 2012-10-31.

[2] Inc Appcelerator. Aptana, 2012. http://www.aptana.com/, accessed 2012-11-07.

[3] Inc Appcelerator. Titanium studio mobile application development environment, 2012.
http://www.appcelerator.com/platform/titanium-studio/, accessed 2012-11-07.

[4] Vladimir Agafonkin CloudMade. Documentation - leaflet - a javascript library for
mobile-friendly maps, 2012. http://leafletjs.com/reference.html, accessed 2012-
11-07.

[5] Vladimir Agafonkin CloudMade. Leaflet - a javascript library for mobile-friendly maps,
2012. http://leafletjs.com/, accessed 2012-11-07.

[6] Vladimir Agafonkin CloudMade. L.tilelayer.canvas, 2012. http://leafletjs.com/

reference.html#tilelayer-canvas, accessed 2012-11-07.

[7] W3 Consortium. Web sql database, 2010. http://www.w3.org/TR/webdatabase/,
accessed 2012-11-06.

[8] W3 Consortium. Cascading style sheets (css) snapshot 2010, 2011. http://www.w3.

org/TR/CSS/, accessed 2012-11-06.

[9] W3 Consortium. A vocabulary and associated apis for html and xhtml, 2011. http:

//www.w3.org/TR/html5/the-canvas-element.html, accessed 2012-11-06.

[10] W3 Consortium. Web storage, 2011. http://www.w3.org/TR/webstorage/, accessed
2012-11-06.

[11] W3 Consortium. The cache manifest syntax, 2012. http://www.w3.org/TR/html5/

offline.html#manifests, accessed 2012-11-06.

[12] W3 Consortium. Css animations, 2012. http://www.w3.org/TR/css3-animations/,
accessed 2012-11-06.

[13] W3 Consortium. Geolocation api specification, 2012. http://www.w3.org/TR/

geolocation-API/, accessed 2012-11-06.

[14] W3 Consortium. Indexed database api, 2012. http://www.w3.org/TR/IndexedDB/,
accessed 2012-11-06.

[15] W3 Consortium. Media queries, 2012. http://www.w3.org/TR/css3-mediaqueries/,
accessed 2012-11-06.

47

48 REFERENCES

[16] W3 Consortium. A short history of javascript, 2012. http://www.w3.org/community/
webed/wiki/A_Short_History_of_JavaScript, accessed 2012-11-06.

[17] Sam Costello. iphone firmware & ios history, 2012. http://ipod.about.com/od/

iphonesoftwareterms/a/firmw_history.htm, accessed 2012-10-31.

[18] Vladimir Agafonkin Darafei Praliaskouski and Maksim Gurtovenko. kothic/kothic-js -
github, 2012. https://github.com/kothic/kothic-js, accessed 2012-11-07.

[19] Ian Alexander Dave Raggett, Jenny Lam and Michael Kmiec. A history of html, 1998.
http://www.w3.org/People/Raggett/book4/ch02.html, accessed 2012-11-06.

[20] Jonathan Stark David Kaneda. jqtouch, 2012. http://jqtouch.com/, accessed 2012-
11-07.

[21] Goole Developers. Managing html5 offline storage, 2012. https://developers.

google.com/chrome/whitepapers/storage, accessed 2012-11-06.

[22] Alexis Deveria. Can i use, 2012. http://caniuse.com/, accessed 2012-11-05.

[23] The Dojo Foundation. Dijit overview, 2012. http://dojotoolkit.org/

reference-guide/1.8/dijit/index.html, accessed 2012-11-07.

[24] The Dojo Foundation. Dojo base documentation, 2012. http://dojotoolkit.org/

reference-guide/1.8/dojo/index.html#dojo-index, accessed 2012-11-07.

[25] The Dojo Foundation. Dojo html5 data-attribute support, 2012. http://dojotoolkit.
org/features/1.6/html5data-attributes, accessed 2012-11-07.

[26] The Dojo Foundation. Dojo toolkit, 2012. http://dojotoolkit.org/, accessed 2012-
11-07.

[27] The Dojo Foundation. Dojox documentation, 2012. https://dojotoolkit.org/

reference-guide/1.8/dojox/index.html, accessed 2012-11-07.

[28] Thomas Fuchs. zepto.js, 2012. http://zeptojs.com/, accessed 2012-11-07.

[29] Ken Hess. No ios 6 for my original ipad? now,
i’m an angry bird., 2012. http://www.zdnet.com/

no-ios-6-for-my-original-ipad-now-im-an-angry-bird-7000004740/, accessed
2012-10-31.

[30] Don Ho. Notepad++ home, 2012. http://notepad-plus-plus.org/, accessed 2012-
11-07.

[31] jQuery. jquery mobile gallery, 2012. http://www.jqmgallery.com/, accessed 2012-10-
31.

[32] The jQuery Foundation. Getting started with jquery mobile, 2012. http:

//jquerymobile.com/demos/1.2.0/docs/about/getting-started.html, accessed
2012-11-07.

[33] The jQuery Foundation. jquery, 2012. http://zeptojs.com/, accessed 2012-11-07.

[34] The jQuery Foundation. jquery mobile, 2012. http://jquerymobile.com/, accessed
2012-11-07.

REFERENCES 49

[35] Tab Atkins Jr. A word about css4, 2012. http://www.xanthir.com/b4Ko0, accessed
2012-11-06.

[36] Louis Lazaris. There is no such thing as a standards-compliant browser, 2010. http:

//www.impressivewebs.com/no-standards-compliant-browser/, accessed 2012-11-
05.

[37] Høakon Wium Lie and Bert Bos. The css saga, 1999. http://www.w3.org/Style/

LieBos2e/history/, accessed 2012-11-06.

[38] Stephen Lime. Mapscript, 2012. http://mapserver.org/mapscript/index.html, ac-
cessed 2012-11-07.

[39] Michael Mahemoff. Html5 vs native: The mobile app debate, 2011. http://www.

html5rocks.com/en/mobile/nativedebate/, accessed 2012-11-05.

[40] Bernard Morris. What is the purpose of html5 in today’s web design?, 2012. http:

//lmhawaii.com/blog/?p=936, accessed 2012-11-06.

[41] Damon Oehlman. Getting started with tile5, 2012. http://www.tile5.org/docs/

tutorials/getting-started.html, accessed 2012-11-07.

[42] Damon Oehlman. Html5 mobile mapping, 2012. http://www.tile5.org/, accessed
2012-11-07.

[43] Damon Oehlman. Tile5 code playground, 2012. http://www.tile5.org/demos/

playground/#basic/simple-map, accessed 2012-11-07.

[44] OSGeo. Documentation - openlayers, 2012. http://trac.osgeo.org/openlayers/

wiki/Documentation, accessed 2012-11-07.

[45] OSGeo. Openlayers examples, 2012. http://openlayers.org/dev/examples/, ac-
cessed 2012-11-07.

[46] OSGeo. Openlayers: Free maps for the web, 2012. http://openlayers.org/, accessed
2012-11-07.

[47] PhoneGap. Apps created with phonegap, 2012. http://phonegap.com/app, accessed
2012-10-31.

[48] Ken Schwaber and Jeff Sutherland. The scrum guide - the definitive guide to scrum:
The rules of the game. White Paper, 2011.

[49] Sencha. Sencha architect build for mobile and desktop, 2012. http://

notepad-plus-plus.org/, accessed 2012-11-07.

[50] Sencha. Sencha touch build mobile web apps with html5, 2012. http://www.sencha.

com/products/architect, accessed 2012-11-07.

[51] Sencha. Using components in sencha touch 2, 2012. http://www.sencha.com/learn/
using-components-in-sencha-touch-2, accessed 2012-11-07.

[52] Ross Shannon. The history of html, 2012. http://www.yourhtmlsource.com/

starthere/historyofhtml.html, accessed 2012-11-06.

50 REFERENCES

[53] Arun Singh. What purpose does html5 serve?, 2011. http://www.mindstick.com/

Interview/1177/What%20purpose%20does%20HTML5%20serve, accessed 2012-11-06.

[54] The WebKit Source Project. The webkit open source project, 2012. http://www.

webkit.org/, accessed 2012-11-07.

[55] Joe Stangarone. 6 native features you can use with mobile web apps,
2012. http://www.mrc-productivity.com/blog/2012/01/6-\%E2\%80\%9Cnative\

%E2\%80\%9D-features-you-can-use-with-mobile-web-apps/, accessed 2012-11-
05.

[56] Hirotaka Takeuchi and Ikujiro Nonaka. The new new product development game.
Harvard Business Review, 1, 1986.

[57] W3C. Plan 2014, 2012. http://dev.w3.org/html5/decision-policy/

html5-2014-plan.html, accessed 2012-11-05.

[58] Richard Wong. In mobile, fragmentation is forever. deal with it., 2010. http://

techcrunch.com/2010/03/04/mobile-fragmentation-forever/, accessed 2012-10-
31.

