
 Degree project in

Privacy preserving car-parking: a
distributed approach

ELISABETTA ALFONSETTI

Stockholm, Sweden, January 2013

XR-EE-RT 2013:002

Automatic Control
Master's Thesis

Abstract

There has been a substantial interest recently in privacy preserving prob-
lems in various application domains, including data publishing, data mining,
classi�cation, secret voting, private querying of database, playing mental
poker, and many others. The main constraint is that entities involved in
the system are unwilling to reveal the data they hold or make them public.
However, they may want to collaborate and �nd the solution of a bigger
computational problem without revealing the privately held data. There
are several approaches for addressing such issues, including cryptographic
methods, transformation methods, and parallel and distributed computation
techniques. In this thesis, these three methods are highlighted and a greater
emphasis is placed on the last one. In particular, we discuss the theoretical
backgrounds of optimization decomposition techniques. We further point out
key literature associated with the privacy preserving problems and provide
basic classi�cations of their treatments. We focus to a particular interest-
ing application, namely the car parking problem, or parking slot assignment
problem. To solve the problem in a privacy preserving manner, a new paral-
lel and distributed computation method is proposed. The goal is to allocate
the parking slots to the cars, but without revealing anyone else the intended
destinations. We apply decomposition techniques together with projected
subgradient method to address this problem and the result is a decentral-
ized privacy preserving car parking algorithm. We compare our algorithm
with three other methods and numerically evaluate the performance of the
proposed algorithm, in terms of optimality and as well as the computational
speed. Despite the reduced computational complexity of the proposed algo-
rithm, it provides close-to-optimal performance.

1

Acknowledgments

I would like to thank my supervisor, Dr. Chathuranga Weeraddana, for
having followed me step by step in the preparation of this thesis. He really
helped me and I have learned a lot from him. I would also like to thank
Professor Carlo Fischione for giving me the privilege to write my thesis at
the Automatic Control Laboratory of KTH. Another thanks to all the PhDs
in the department, in particular to Piergiuseppe Di Marco and Damiano
Varagnolo, for their advices and for their support.

2

Contents

1 Introduction 7

2 Optimization Theory 9
2.1 Mathematical optimization . 9
2.2 Convex optimization . 10

2.2.1 Linear optimization . 10
2.3 Convex optimization algorithms 11

2.3.1 Descent methods . 11
2.3.2 Gradient and subgradient methods 11
2.3.3 Interior point algorithms 13

2.4 Duality . 13
2.4.1 The Lagrangian and Dual Function 14
2.4.2 The Dual Problem . 14

3 Distributed Optimization 15
3.1 Decomposition Method . 15

3.1.1 Primal Decomposition 16
3.1.2 Dual Decomposition 17

3.2 Alternating Direction Method of Multipliers (ADMM) 18
3.3 Fast-Lispchitz optimization 21

4 Privacy preserving optimization 24
4.1 Privacy preserving solution methods 24
4.2 Comparison of privacy preserving solution methods 26
4.3 Privacy preserving classi�cation problems 27

4.3.1 Privacy preserving algorithms 28
4.3.2 Classi�cation based on the classical distributed opti-

mization methods . 30
4.3.3 Classi�cation based on the mathematical nature of the

optimization problem 31
4.3.4 Classi�cation based on the application 31

3

5 Car-parking problem 33
5.1 Notations . 36
5.2 Problem formulation . 37
5.3 Finding the dual problem . 39
5.4 Solving the dual problem . 42
5.5 Distributed implementation 43

5.5.1 Algorithm description 44
5.5.2 Recovering the primal feasible point 44

6 Numerical results 46
6.1 Feasibility of the proposed method 47
6.2 Comparison with other benchmarks 48
6.3 CPU time comparison . 53

7 Conclusions 58
7.1 Limitations and future work 58

4

List of Tables

4.1 Privacy preserving classi�cation based on the classical dis-
tributed optimization methods 27

4.2 Privacy preserving classi�cation based on the classical dis-
tributed optimization methods 30

4.3 Privacy preserving classi�cation based on the mathematical
nature of the optimization problem 31

4.4 Privacy preserving classi�cation based on the application . . . 32

5.1 Table of distances: for each shop (vehicle destination) is indi-
cated the distance to each slot of the parking. 35

5.2 Table of distances: for each shop (vehicle destination) is indi-
cated the distance to each slot of the parking. 35

5.3 Table of slots' availability: for eache slot is indicated if it's
assigned to some vehicles or not. 35

5.4 Incorrect assignment of parking 35

6.1 Achieved objective value and deviation Dopt; N = 3 andM = 20 52
6.2 Achieved objective value and deviation Dopt; N = 5 andM = 20 53
6.3 Achieved objective value and deviation Dnon−opt; N = 10 and

M = 20 . 54
6.4 CPU time of exhaustive and proposed method with N=3 . . . 55
6.5 CPU time of exhaustive and proposed method with N=5 . . . 57

5

List of Figures

5.1 Car-Parking model . 34
5.2 Slot's dimension . 38
5.3 Vehicle's dimension . 38

6.1 Feasibility versus vehicles or users; �xed number of parking
slots, i.e., M = 20 . 47

6.2 Feasibility versus parking slots; �xed number of vehicles or
users, i.e., N = 3 . 48

6.3 Average objective value p(k) versus subgradient iterations k;
N = 3 and M = 20. 49

6.4 Average objective value p(k) versus subgradient iterations k;
N = 3 and M = 15. 50

6.5 Average objective value p(k) versus subgradient iterations k;
N = 3 and M = 10. 51

6.6 Average objective p(k) versus subgradient iterations k; N = 3
and M = 5. 52

6.7 CPU time of exhaustive and proposed methods with N=3 . . . 56
6.8 CPU time of exhaustive and proposed methods with N=5 . . . 57

6

Chapter 1

Introduction

Optimization problems are very common in the business world and the
development of solution methods for these problems are of crucial importance
from a theoretical, as well as from a practical perspective. Much of the data
involved in the optimization problem is constrained by privacy and security
concern, preventing the sharing and centralization of data needed to apply
optimization techniques. Some potential applications in which the concept
of privacy preserving is very important are for example the electronic vot-
ing, the scienti�c and statistical computations, e-commerce, auctions, privacy
preserving data mining and many others. So, one of the complicating factors
of this area is that we have together two di�erent �elds: security and opti-
mization. It is not common for researchers to have expertise in both of these
areas. A potential approach for solving these types of problems is to make
sure that the parties involved can cooperate with each other to reduce waste
and improve e�ciency. In the �eld of business, for example, corporations
could have mutual gain with the sharing of some information, like reducing
logistic costs. But, generally, companies are unwilling to share their sensitive
information for fear of revealing company secrets, their �nancial strategies or
their �nancial health, breaching privacy or anti-trust legislation. As a result,
the collaborative optimization is very di�cult to implement. A compromise
solution could be to introduce a trusted third party.

A trusty third party is an external agent to whom you entrust all your
private data. From this type of approaches however there can be various
problems. In particular, they must ensure that the data storage system of
the third party is secure and they must trust the third party to behave fairly.
Also, this type of approach can be costly and there is not guarantee to opti-
mality. Therefore, the use of the third party is not a good idea when there are
private information between competitors. However there are some existing
solutions to handle such barriers, while exploiting the collaborative bene-

7

�ts of the cooperation between entities. The main classi�cation for privacy
preserving methods is as follows:

• cryptographic methods: hide the private data by using crypto-
graphic techniques. At each step in the algorithm the data is en-
crypted/decrypted and the concept of privacy is extrinsically acquired;

• transformation based methods: �disguise� the original problem us-
ing cryptographic sub-protocols and then solve the problem in the dis-
guised domain. Encryption data happens only once, at the beginning
and again privacy is extrinsically acquired.

• decomposition methods: the private data can be partitioned be-
tween the agents and they can collaborate to solve the problem in a
parallel and distributed fashion, without reveal their private variables.
Here the privacy is intrinsic.

We will deepen these approaches below, highlighting the advantages and
disadvantages for each of them. We will focus mainly on the decomposition
technique, which works better under di�erent points of view.

Contribution

We believe that the privacy preserving optimization based approaches
are still to be investigated and can be tuned to many application domains.
They possess many appealing aspects, which are desirable in practice, e.g.,
e�ciency, scalability, natural (geographical) distribution of problem data.
Therefore, in this thesis, we restrict ourselves to privacy preserving opti-
mization based solution methods and do not consider the treatments based
on well investigated cryptographic primitives. Of course, there are many
survey papers, e.g. [25], that describe in details such methodologies and are
extraneous to the main focus. In Section 2, we present main background
in optimization theory and in Section 3, we discuss in detail dual decompo-
sition in optimization. In Section 4, we point out key literature associated
with the privacy preserving problems and provide basic classi�cations of their
treatments. In Section 5, we consider a speci�c problem, car parking prob-
lem and provide a decentralized method to solve the problem in a privacy
preserving manner, where we attempt to minimize distance between cars'
destinations and the parking slots without revealing the destination informa-
tion. Section 6 provides numerical results to evaluate the performance of the
proposed solution method and Section 7 is the conclusions.

8

Chapter 2

Optimization Theory

In this chapter we present main background in optimization theory. The
origin of the material presented in this chapter is based on reference [1] and
we reproduce them for the completeness.

2.1 Mathematical optimization

A mathematical optimization problem has the form

minimize f0(x)
subject to fi(x) ≤ bi, i = 1, . . . ,m

(2.1)

Here the vector x = (x1, ..., xn) is the optimation variable of the prob-
lem, the function f0 : Rn → R is the objective function, the functions
fi : Rn → R, i = 1, ...,m, are the (inequality) constraint functions, and
the constants b1, ..., bm are the limits, or bounds, for the constraints. A vec-
tor x∗ is called optimal if for any z with fi(z) ≤ bi, we have f0 ≥ f0(x

∗). The
variable x represents the choice made; the constraints fi(x) ≤ bi represent
�rm requirements or speci�cations that limit the possible choices, and the
objective value f0(x) represents the cost of choosing x. A solution of the opti-
mization problem (2.1.1) corresponds to a choice that has minimum cost (or
maximum utility), among all choices that meet the �rm requirements. Vari-
ety of practical problems involving decision making can be cast in the form of
a mathematical optimization problem. Mathematical optimization is an im-
portant tool in many area such as engineering, electronic design, automation,
automatic control systems, civil, chemical, mechanical, and aerospace engi-
neering, network design and operation, �nance, supply chain management,
scheduling, and many others.

9

2.2 Convex optimization

The convex problem should satisfy the following requirements:

• the objective function must be convex;

• the inequality constraint functions must be convex;

• the equality constraint functions hi(x) = aTi x− bi must be a�ne.

Thus we have the problem of the form:

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

aTi = bi, i = 1, . . . , p ,
(2.2)

where the variable is x and f0, ..., fm are convex functions. Here we minimize
a convex objective function over a convex set. A fundamental property of
convex optimization problems is that any locally optimal point is also globally
optimal. Therefore, by using local information one can determine whether
a point is locally (and therefore globally) optimal or not. Moreover, there
is a rich theory for characterizing the optimality for convex optimization
problems, i.e., necessary and su�cient conditions for the optimality. For
example, in the case of an unconstrained convex problem x∗ = arg minx f(x),
if and only if ∇f(x∗) = 0, where ∇f denotes the gradient of the function f .
We refer the reader to [1, Chapter 4-5] for details.

2.2.1 Linear optimization

Linear programmin (LP) is the classical example for an convex problem.
When the objective and constraint functions are all a�ne, the problem is
called a linear program (LP) . A general linear program has the form

minimize cTx+ d
subject to Gx � h

Ax = b,
(2.3)

where the variable is x and the problem data G ∈ Rm×n and A ∈ Rp×n.
Linear programs are, of course, convex optimization problems. It is common
to omit the constant d in the objective function, since it does not a�ect the
optimal (or feasible) set. Since we can maximize an a�ne objective cTx+ d,
by minimizing −cTx− d, a maximization problem with a�ne objective and
constraint functions are again an LP. Note that the feasible set of the LP
(2.2.2) is a polyhedron. Therefore, the problem is to minimize the a�ne
function cTx+ d over the polyhedron.

10

2.3 Convex optimization algorithms

Convexity of the problem allows e�cient solution methods for convex
problems, which is not often the case for non-convex problems. There are
many cases where we can use the optimality conditions to achieve closed form
solution. Otherwise there are several well studied iterative algorithms to �nd
the solution within a speci�ed tolerances. The rest of this section presents
an overview of some important methods.

2.3.1 Descent methods

Recall that any local optimum is also globally optimal for convex prob-
lems. Therefore,one strategy is to rely on local information and generate a
sequence of points with decreasing cost function value. Such algorithms are
called descent methods. As long as the cost function is bounded from below,
any such sequence will converge to an optimal point. One natural local in-
formation is the descent direction, which is obtained from the gradient of the
cost function. The resulting algorithms are called gradient methods. One
special variant is the steepest descent method, where the descent direction is
found with respect to a given norm || · ||. These descent methods are usually
applied for unconstrained convex optimization problems.

2.3.2 Gradient and subgradient methods

The gradient methods are applied whenever the function f0 we want to
minimize is di�erentiable. Otherwise, the corresponding algorithm is called
the subgradient method. Let us �rst focus to the di�erentiable case.

Formally, we call a direction s is descent direction at x, if it ful�lls the
following

∇f0(x)T s < 0 . (2.4)

That is, it must make an acute angle with the negative gradient. It is possible
to �nd a step size t, which is su�ciently small and positive so that f0(x+ts) <
f0(x), which in turn yields a descent method.

Obviously, if s = −∇f0(x), then we have ∇f0(x)T s = −||∇f0(x)||22 < 0,
and therefore a natural choice for s is the negative gradient of function f0
evaluated at x. The decent algorithm with this choice is called the gradient
method. The (k + 1)th iteration of the gradient algorithm is given by

x(k + 1) = x(k)− t(k)∇f0(x(k)) , (2.5)

where t(k) is the step size that should be chosen appropriately. We refer the
reader to [1, Section 9.2] for details.

11

When the problem is constrained, e.g., x ∈ X, where X is a closed convex
set, the gradient algorithm (2.5) can easily be modi�ed as follows:

x(k + 1) = PX [x(k) + t(k)∇f0(x(k))] , (2.6)

where PX [x0] represents the projection of point x0 on to the set X. The
orthogonal projection of a point x0 on to X can be formally expressed as

PX [x0] = arg min
z∈X
|| z − x0 ||2 , (2.7)

where || · ||2 is the Euclidian norm. The resulting algorithm (2.6) is called
projected gradient method.

Now consider the case where the cost function f0 is not di�erentiable.
Then, the corresponding alternative is to use a subgradient instead of the
gradient ∇f0(x). A subgradient of a convex (possibly) non-di�erentiable
function f0 at x is formally de�ned as follows:

De�nition 1 (Subgradient) We say a vector s ∈ Rn is a subgradient of
convex function f0 : Rn → R at x ∈ domf0 if for all z ∈ domf0,

f0(z) ≥ f0(x) + sT (z − x). (2.8)

The set of subgradients of f0 at the point x is called the subdi�erential of f
at x, and is denoted ∂f(x) and can be de�ned formally as follows:

De�nition 2 (Subdi�erential)

∂f0(x) =
⋂

z∈domf0

{s | f0(z) ≥ f0(x) + sT (z − x)}. (2.9)

The subdi�erential ∂f0(x) is always a closed convex set, even if f0 is not
convex. This follows from the fact that it is the intersection of an in�nite set
of halfspaces. If f0 is di�erentiable, then subdi�erential is a singleton and we
have ∇f0(x) ∈ ∂f0.

The subgradient algorithm is identical to the gradient method (2.5)
and the projected subgradient is identical to the projected gradient method
(2.6), except that the gradient ∇f0(x) is replaced by a subgradient s. How-
ever, contrary to the gradient algorithm, the cost function will not necessarily
decrease for every iteration. Here, the arguments for convergence are instead
based on the decrease of the distance between the iterate and the optimal
solution.

12

2.3.3 Interior point algorithms

In the case of constrained convex optimization problems we have to rely on
algorithms based on interior point methods. Interior point methods solve con-
strained convex problems by considering a sequence of unconstrained prob-
lems, where infeasibility translates to a penalty in the objective function.
These subproblems are typically solved with Newton methods, and their op-
timal point is used as an initial point for the next iteration. For every step
an approximation of the optimal point is achieved, and the as approxima-
tion becomes better, the solutions will converge to the optimal point of the
original problem. For every iterate along the way, sub-optimality can be
bounded with duality techniques. For a comprehensive treatment, we refer
the reader to [1, Chapter 11]. Interior point methods are not as straight-
forward to implement, but their fast convergence makes them the method
of choice for centralized optimization, where ready-made solvers exist, e.g.,
CVX (http://cvxr.com/cvx/).

2.4 Duality

Duality is a powerful machinery in optimization theory. Duality plays a
major role in characterizing optimality of the solution, e.g., Karush Kuhn
Tucker (KKT) conditions. One can use duality theory for computing a lower
bound on the optimal value of the primal problem, even when it is nonconvex.
In the case of convex problem, often the bound on the primal optimal value
is tight, provided certain constraint quali�cations holds (this known as zero
duality gap). Moreover, duality sometimes leads to e�cient or distributed
method for solving the primal problem. In this chapter we brie�y present
some basic results of duality. The reader may refer to [1, Section 5] for
details.

Throughout this section we will consider the problem of the canonical
form

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p ,
(2.4.0.10)

where the variable is x.

13

2.4.1 The Lagrangian and Dual Function

The Lagrangian associated with problem (2.4.0.10) is de�ned as

L(x, λ, ν) = f0(x) +
m∑
i=1

λifi(x) +

p∑
i=1

νihi(x). (2.4.1.1)

where the new variables λ ≥ 0 ∈ Rm and ν ∈ Rp are called Lagrange multi-
pliers or dual variables.

Let f(x) = (f1(x), . . . , fm(x)), h(x) = (h1(x), . . . , hp(x)), λ = (λ1, . . . , λm),
and ν = (ν1, . . . , νp) to simplify the presentation. Thus, we can compactly
express (2.4.1.1) as

L(x, λ, ν) = f0(x) + λTf(x) + νTh(x). (2.4.1.2)

The dual function g(λ, ν) is obtained by minimizing the Lagrangian (2.4.1.2)
over all x , i.e.,

g(λ, ν) = inf
x
L(x, λ, ν) = inf

x
(f0(x) + λTf(x) + νTh(x)). (2.4.1.3)

The function g(λ, ν) is the in�mum of a family of a�ne functions (parame-
terized by x). Therefore, regardless of whether the original problem is convex
or not, the dual function is concave. Let us denote p∗ as the optimal value
of (2.4.0.10). Since x∗ is feasible and is a, (possibly non-unique) minimizer
of f0, f(x∗) ≥ 0, h(x∗) = 0 and for any (λ, ν) such that λ ≥ 0,

L(x∗, λ, ν) = f0(x
∗) + λTf(x∗) + νTh(x∗) ≤ f0(x

∗) = p∗ , (2.4.1.4)

and
g(λ, ν) = inf

x
L(x, λ, ν) ≤ L(x∗, λ, ν) ≤ f0(x

∗) = p∗. (2.4.1.5)

In other words, for any pair of feasible dual variables (λ ≥ 0), g(λ, ν) is a
lower bound on p∗, the optimal value of the original problem.

2.4.2 The Dual Problem

The goal of the dual problem is to �nd the largest lower bound (say d∗)
for p∗, i.e.,

d∗ = sup
λ≥0,ν

g(λ, ν). (2.4.2.1)

Any feasible pair (λ∗, ν∗) that maximizes g(λ, ν) is called optimal Lagrange
multipliers or dual optimal solution. Since g is concave regardless of the
original problem, the dual problem is always a convex optimization problem.

14

Chapter 3

Distributed Optimization

In this chapter we present some classical as well as state-of-the-art dis-
tributed optimization methods. In particular, we discuss classical decompo-
sition technique, including primal and dual decomposition. We also discuss
the state-of-the-art, alternating direction method of multipliers (ADMM)
and the recent F-Lipshitz framework for distributed optimization. In later
chapters, we summarize the inherent privacy preserving properties of those
methods. Moreover, our algorithm developments in this thesis for privacy
preserving car parking slot optimization is essentially based on dual decom-
position method. All of the material presented in this chapter are essentially
reproduced from [2], [3], [12], [13].

3.1 Decomposition Method

Decomposition is a general approach for solving a problem by breaking it
up into smaller ones and solving each of the smaller ones separately, either in
parallel or sequentially. Problems for which decomposition works in one step
are called (block) separable, or trivially parallelizable. For example, suppose
the variable x can be partitioned into subvectors x1, . . . , xk, the objective is
a sum of functions of xi, and each constraint involves only variables from
one of the subvectors xi. This means that we can solve each problem in-
volving xi separately, and then re-assemble the solution x. When there is
some coupling between the subvectors, the problems cannot be solved inde-
pendently. In such situations, we have to rely on decomposition methods
for distributed optimization. These techniques essentially solve a sequence
of smaller problems and coordinate those subproblems to achieve the solu-
tion of the original coupled problem. In other words, decentralized solution
methods can be interpreted as, simple protocols that allow a collection of

15

subsystems to coordinate their actions to achieve global optimality. We start
by describing the classical decomposition method, primal decomposition and
dual decomposition.

3.1.1 Primal Decomposition

Let us consider an unconstrained optimization problem that splits into
two subproblems with a shared variable,

minimize f(x) = f1(x1, y) + f2(x2, y)
subject to x1 ∈ X1, x2 ∈ X2 ,

(3.1.1.1)

where the variables are x1, x2, and y. Here, x1 and x2 can be considered as
the private variables or local variables associated with the �rst and the second
subproblems, respectively, and y can be considered as the public variable or
interface variable between the two subproblems. When y is �xed the problem
is separable. Let Φ1(x) represent the optimal value of the problem

minimize f1(x1, y)
subject to x1 ∈ X1

(3.1.1.2)

with the variable is x1 and Φ2(x) represent the optimal value of the problem

minimize f2(x2, y)
subject to x2 ∈ X2

(3.1.1.3)

with the variable is x2. Then the original problem is equivalent to the problem

minimize Φ1(y) + Φ2(y) , (3.1.1.4)

where the variable is y. This problem is called the master problem. When-
ever the functions f1 and f2 are convex, then the functions Φ1(y) and Φ2(y)
are convex as well. The master problem can be solved for example by using
the subgradient method.

repeat

Solve the subproblems (possibly in parallel).

Find x̄1 that minimizes f1(x1, y), and a subgradient g1 ∈ ∂Φ1(y).

Find x̄2 that minimizes f2(x2, y), and a subgradient g2 ∈ ∂Φ2(y).

Update complicating variable

y := y − αk(g1 + g2) ,

Here αx is a step length that can be chosen in any of the standard ways
[14]. Note that very iteration generates a xk = (xk1, x

k
2) that is feasible in the

original problem.

16

3.1.2 Dual Decomposition

Let us next consider the same problem (3.1.1.1), but an equivalent formu-
lation where we introduce new variables and enforce a consistency constrain,
i.e.,

minimize f(x) = f1(x1, y1) + f2(x2, y2)
subject to x1 ∈ X1, x2 ∈ X2

y1 = y2 ,
(3.1.2.1)

where the variables are x1, x2, y1, and y2. Note that we have introduced a lo-
cal version of the complicating variable y, along with a consistency constraint
that requires the two local versions to be equal. Note that the objective is
now separable, with the variable partition (x1, y1) and (x2, y2). Let us now
form the dual problem. The Lagrangian is given by

L(x1, y1, x2, y2, λ) = f1(x1, y1) + f2(x2, y2) + λTy1 − λTy2, (3.1.2.2)

and is separable. Let g1(λ) represent the optimal value of the problem

minimize f1(x1, y1) + λTy1
subject to x1 ∈ X1

(3.1.2.3)

with the variable is (x1, y1) and g2(λ) represent the optimal value of the
problem

minimize f2(x2, y2) + λTy2
subject to x2 ∈ X2

(3.1.2.4)

with the variable is (x2, y2). Then the dual function is given by

g(λ) = g1(λ) + g2(λ), (3.1.2.5)

where λ is the variable. Thus, the dual problem is expressed as

minimize g(λ) = g1(λ) + g2(λ) , (3.1.2.6)

with the variable is λ. This is indeed the master problem in dual decom-
position. Again, we can use the subgradient method to solve the master
problem (3.1.2.6) as follows:

17

repeat

Solve the subproblems (possibly in parallel).

Find x1 and y1 that minimizes f1(x1, y1) + λTy1.

Find x2 and y2 that minimizes f2(x2, y2) + λTy2.

Update dual variables

λ := λ− αk(y2 + y1).

Here αx is a step length that can be chosen in any of the standard ways [14].
It is worth of noting that at each step of the dual decomposition algorithm, we
have a lower bound on p∗, the optimal value of problem (3.1.2.1). Speci�cally,
we have

p∗ ≥ g(λ) = f1(x1, y1) + λTy1 + f2(x2, y2)− λTy2 , (3.1.2.7)

where x1, y1, x2, y2 are the subproblem (3.1.2.3)-(3.1.2.4) solutions during any
iteration of the subgradient method. The consistency constraint y1 = y2 is
not feasible in general, i.e., y2 − y1 6= 0. However, a feasible point can be
constructed from the iterate as

(x1, ȳ), (x2, ȳ) , (3.1.2.8)

where ȳ = (y1 + y2)/2. As a result, an upper bound on p∗ is simply given by

p∗ ≤ f1(x1, ȳ) + f1(x2, ȳ). (3.1.2.9)

3.2 Alternating Direction Method of Multipli-

ers (ADMM)

The material presented in this section is based on [3], so we refer the
reader to [3], for details. The main motivation for using ADMM is that
it combines the bene�ts of dual decomposition and augmented Lagrangian
methods for constrained optimizations. The result is a distributed algorithm
with fast (compared to the subgradient method) convergence properties. We
start with a simple convex constrained optimization problem. Then, we
describe the dual ascent algorithm and augmented Lagrangian method for
solving this problem, which are the key ingredients for ADMM. Consider the
following convex constrained optimization problem

minimize f(x)
subject to Ax = b ,

(3.2.0.10)

18

where the variable is x. The associated lagrangian is

L(x, y) = f(x) + yT (Ax− b) , (3.2.0.11)

where y is the dual variable or Lagrange multiplier associated with the equal-
ity constraint. The dual problem is given by

maximize g(y) , (3.2.0.12)

where g(y) = infx L(x, y).
In the dual ascent method, we solve the dual problem using gradient

ascent. Assuming that g is di�erentiable, the gradient ∇g of g at y is given
by

∇g(y) = Ax+ − b , (3.2.0.13)

where
x+ = arg min

x
L(x, y) . (3.2.0.14)

Thus, the dual ascent algorithm is given by

xk+1 = arg min
x
L(x, yk) (3.2.0.15)

yk+1 = yk + αk(Axk+1 − b) , (3.2.0.16)

where αk is the step size. Note that (Axk+1−b) corresponds to the gradient of
g at yk, i.e., ∇g(yk). The �rst step is an x-minimization step, and the second
step is a dual variable update. The dual variable y can be interpreted as a
vector of prices. This algorithm is called dual ascent since, with appropriate
choice of α, the dual function increases in each step.

However, in the case of convergence, the dual ascent algorithm discussed
above heavily relies on assumptions like strict convexity or �niteness of f
[3]. Let us now describe the augmented lagrangian method, which gracefully
achieves convergence without such assumptions, and there more robust. Here
we consider the following equivalent problem formulation, instead of original
problem (3.2.0.10)

minimize f(x) + (ρ/2)||Ax− b||22
subject to Ax = b ,

(3.2.0.17)

where the variable is x and ρ is a positive scalar. We denote by Lρ(x, y) the
Lagrangian associated with problem (3.2.0.17), and is given by

Lρ(x, y) = f(x) + yT (Ax− b) + (ρ/2)||Ax− b||22 , (3.2.0.18)

19

where y represents the dual variables associated with the equality constraint.
Applying dual ascent to the modi�ed problem (3.2.0.17) yields the algorithm:

xk+1 = arg min
x
Lρ(x, y

k) (3.2.0.19)

yk+1 = yk + ρ(Axk+1 − b) , (3.2.0.20)

which is known as the method of multipliers. Note that the x-minimization
step uses the augmented Lagrangian Lρ(x, y), instead of L(x, y) in (3.2.0.11).
Moreover, the penalty parameter ρ is used in the place of αk in (3.2.0.16). The
conditions for convergence of the method of multipliers (3.2.0.19)-(3.2.0.20) is
far more general compared to the dual ascent method (3.2.0.15)-(3.2.0.16) [3].
However, when f is separable, the augmented Lagrangian Lρ is not separable,
because of the quadratic term ||Ax − b||22. As a result, the x-minimization
step (3.2.0.19) cannot be performed in parallel for each subsystems.

We next describe the ADMM method, which can be considered as a
blend between the dual ascent algorithm and the method of multipliers. Let
us consider the problem of the form

minimize f(x) + g(z)
subject to Ax+Bz = c ,

(3.2.0.21)

with variables x ∈ Rn and z ∈ Rm. The augmented Lagrangian for prob-
lem (3.2.0.21) is given by

Lρ(x, z, y) = f(x)+g(z)+yT (Ax+Bz−c)+(ρ/2)||Ax+Bz−c||22 , (3.2.0.22)

where y denotes the dual variables as usual. Note that the direct application
of method of multiplier method (3.2.0.19)-(3.2.0.20) for problem (3.2.0.21)
results

(xk+1, zk+1) = arg min
x,z

Lρ(x, z, y
k) (3.2.0.23)

yk+1 = yk + ρk(Axk+1 +Bzk+1 − c) . (3.2.0.24)

In contrast, ADMM split the (x, z)-minimization step (3.2.0.23) into two
sequential updates, namely x-minimization and z-minimization. Speci�cally,
ADMM consist of the iteration

xk+1 = arg min
x
Lρ(x, z

k, yk) (3.2.0.25)

zk+1 = arg min
z
Lρ(x

k+1, z, yk) (3.2.0.26)

yk+1 = yk + ρ(Axk+1 +Bzk+1 − c) . (3.2.0.27)

20

where ρ is a positive scalar.
There are many convergence results for ADMM in the literature. Here,

we do not go into explicit details and refer the reader for [3]. However, under
the assumptions 1) f and g are closed, proper, and convex, 2) the augmented
Lagrangian has a saddle point, we list 3 interesting convergence properties
of ADMM algorithm:

L0(x
∗, z∗, y) < L0(x

∗, z∗, y∗) < L0(x, z, y
∗) (3.2.0.28)

1. Iterates approach feasibility: Axk +Bzk − c→ 0 as k →∞ .

2. Objective function of the iterates approaches optimal value
f(xk) + g(zk)→ p∗ as k →∞, where p∗ is the optimal value .

3. Dual variable convergence. yk → y∗ as k → ∞, where y∗ is the
dual optimal point .

rk+1 = Ak+1 +Bk+1 − c (3.2.0.29)

Compared to interior point algorithms, which are based on the Newton's
method, the convergence of ADMM algorithm is noticeably slow. However,
the convergence is faster compared to the dual ascent method or classical
dual decomposition techniques that rely on subgradient methods for solving
the master problem.

3.3 Fast-Lispchitz optimization

An F-Lipschitz optimization problem is de�ned as:

maximize f0(x)
subject to xi ≤ fi(x). i = i, ..., l

xi = hi(x), i = l + 1, . . . , n ,
x ∈ D,

(3.3.0.30)

where D ∈ Rn is a non empty, convex and compact set, l ≤ n, with objective
and constraints being continuous di�erentiable functions such that:

f0(x) : D → Rm, m ≥ 1

fi(x) : D → R, i = 1, ..., l

hi(x) : D → R, i = l + 1, ..., n

(3.3.0.31)

21

And the following three properties are satis�ed:

∇f0(x) ≥ 0 (f0(x)is strictly increasing,)

and

∇jfi(x) ≤ 0 ∀i 6= j, ∀x ∈ D
∇jhi(x) ≤ 0 ∀i 6= j, ∀x ∈ D

or

∇if0(x) = ∇jf0(x) ∀i 6= j, ∀x ∈ D
∇fi(x) ≥ 0 ∀i 6= j, ∀x ∈ D
∇hi(x) ≥ 0 ∀i 6= j, ∀x ∈ D

and

|fi(x)− fi(y)| ≤ αi||x− y||, i = 1, ..., l ∀x, y ∈ D
|hi(x)− hi(y)| ≤ αi||x− y||, i = l + 1, ..., n ∀x, y ∈ D
with αi ∈ [0, 1), ∀i

(3.3.0.32)

All these properties are called, qualifying properties of an F-Lipschitz
optimization problem. The objective function and the constraints are allowed
to be linear or non linear functions, as for instance concave, convex, mono-
mial, polynomial, etc. and also decomposable or not. For an F-Lipschitz
problem is true the following theorem.

Theorem: Let an F-Lipschitz optimization problem be feasible. Then, the
problem admits a unique Pareto optimum x∗ ∈ D given by the solutions of
the following set of equations:

x∗i = [fi(x
∗)]D i = 1, ...l

x∗i = hi(x
∗) i = l + 1, ..n

There is a unique optimal solution to F-Lipschitz optimization problems,
which is achieved by solving the system of equations given by the projected
constraints at the equality. If such a system of equations can be solved in a
closed form, then we have the optimal solution in a closed form, otherwise we
need numerical algorithms. The solution is obtained quickly by asynchronous
algorithms of certi�ed convergence. F-Lipschitz optimization can be applied
to both centralized and distributed optimization. Compared to traditional
Lagrangian methods, which often converge linearly, the convergence time of
centralized F-Lipschitz algorithms is superlinear. It is proved that a class
of convex problems, including geometric programming problems, can be cast

22

as F-Lipschitz problems, and thus they can be solved much more e�ciently
than interior point methods. Some typical optimization problems that occur
on wireless sensor networks are shown to be F-Lipschitz.

Distributed computation
Let x(0) ∈ D be the initial value of the optimal solution to a feasible F-
Lipschitz problem. Let xi(k) = [xi1(τ

i
1(k)), xi2(τ

i
2(k)), ..., xin(τ in(k))] the vector

of decision variables available at node i at time k ∈ N , where τ ij(k) is the
delay with which the decision variable of node j is communicated to nodei.
Then, the following iterative algorithm converges to the optimal solution:

xi(k + 1) = [fi(x
i(k))]D i = 1, ..., l (3.3.33)

xi(k + 1) = hi(x
i(k)) i = l + 1, ..., n.

Every node i of the network collects asynchronously the decision variables
at timek and update its decision variable by the iteration (3.5.4). Notice
that when fi(x) depends only on the decision variables of the neighboring
nodes, the communications of these variables to node i can be very fast. In
other situations, fi(x) can be given by an oracle locally at node i without
any communication of decision variables from the other nodes. We refer the
reader to [12] for details.

23

Chapter 4

Privacy preserving optimization

Privacy preserving problems are very common nowadays and the study
of more e�cient solutions is a topic more interesting. They occur in many
areas, such as data publishing, data mining, secret voting, auctions, scienti�c
and statistical computations. The main requirements are that the entities
involved in the system are unwilling to reveal the date they hold or make
them public and they may want to collaborate and �nd the solution of a
bigger problem without revealing the private data. A possible solution is for
the parties to agree on a commonly trusted entity T: then T could gather
the private problem data, solve the optimization problem on behalf of the
parties, and announce the result. Also, the parties can replace the trusted
entity T with a cryptographic protocol while still preserving the same level of
security that the trusted entity intuitively provides. These early protocols are
however very far from being practical. There are some existing approaches
to handle this kind of problem and a classi�cation of them is as follows:

• cryptographic methods;

• transformation-based methods;

• decomposition-based methods.

4.1 Privacy preserving solution methods

In this section we describe with more details the aforementioned ap-
proaches.

Cryptographic methods use existing cryptographic techniques in order
to implement a privacy-preserving version of the Simplex or Interior Point

24

methods. The cryptography techniques are vary, like the secret sharing (eg.
Shamir sharing) or thereshold homomorphic public key cryptography (eg.
Pailler encryption). Also the homomorphic encryption and blind-and per-
mute procedures to permute the tableau at each iteration, like in [15]. In [16]
the authors used a solution approach based on secret sharing and the proto-
cols use a variant of the simplex algorithm with �xed-point rational number,
while in [17] the authors used a secret-sharing with shared matrix indexes.
These techniques o�er better computational complexity give better perfor-
mance over Simplex for very large problems [18], [19]. A privacy-preserving
interior point method has been presented in [26, chapter 8].

The transformation-based methods use some cryptography sub-protocols
in order to transform the original linear problem. The transformation of the
problem is made using random matrices and then the resulting problem is
solved in the transformed domain. The cryptography sub-protocols are often
used only at the beginning of the algorithm. Then, one party solved the trans-
formed problem and the solution is converted back to the original problem.
The �rst approach that used such transformation techniques was prosposed
by Du [23] and now there are several improvements, expecially in terms of
the level of the knowledge of the data of the interested parties. Bednarz [22],
proposed a method, a modi�ed variants of the Du methods, where some of
the complications of the original approach were removed. Bednarz consid-
ers a case where the ownership of the objective function and the constraints
are distributed among two entities. Recently Mangasarian [4],[24] proposed
the �rst transformation method for the multi-party environments, where the
data are assumed to be vertically or horizontally partitioned. Here no cryp-
tographic operations are required to apply the transformation, making these
methods very e�cient compared to the methods relying on cryptography.

In decomposition-based methods the private data can be partitioned
between the agents and they can collaborate to solve the problem in a par-
allel and distributed fashion, without revealing their private variables. The
concept of privacy is intrinsic. So each agent achieves its optimum using
only local information. In this way the private data is not required to be
exchanged among the agents to solve the problem and for that reason they
are privacy preserved. This falls in the general area of distributed decision
making with incomplete information.

The �rst two categories of methods are described in detail in [25]. Let us
next compare the three main approaches mentioned above.

25

4.2 Comparison of privacy preserving solution

methods

The �rst noticeable di�erence between cryptography and transformed-
based methods is in their e�ciency of the computations. In cryptographic
approaches at each step of the algorithm the encryption/decryption of the
data is applied. In transformed-based methods, instead, these operations
of the private data are done only once. Therefore, transformed based ap-
proaches can outperform cryptographic approaches, in terms of the computa-
tional e�ciency. The decomposition techniques, however, do not require any
kind of transformation domain because the data are inherently encrypted.
This method is therefore much more e�cient than the others two. The sec-
ond advantage is the freedom to use any LP solver, unlike the cryptographic
method is tied to a particular LP solver. Another advantage of decomposi-
tion techniques compared to the others two is that the methods are scalable.
Therefore, very large problems can be handled gracefully by using decom-
position techniques. Moreover, the decomposition techniques are fairly gen-
eral and can address many places where the transformation based methods
fails. Most cryptographic methods, infact, is carried out over a �nite �eld
and thus, is constrained to integer data values. For example, some of the
Simplex-based methods impose integer restrictions on the objective function
coe�cient and constraint coe�cients. This means that only integer vari-
ants of Simplex can be used. Solving non trivial LP using these algorithms
leads to computations with integers potentially involving thousands of bits.
Therefore, cryptographic approaches are not good in the case of large prob-
lems. Transformation-based methods and decomposition based approaches,
instead, are free to use �oating-point arithmetics. Finally, the algorithms are
conceptually simpler, good for large problems and don't require specialized
optimization software.

Transformed-based methods and decomposition based approaches have,
however, several disadvantages compared to the cryptographic methods. The
most important one is that these methods only provide heuristic security
guarantees, Indeed, without the cryptographic protocols at each step, se-
curity is more challenging to prove. Cryptographic approaches guarantee a
robust security. Another limit of transformation-based methods and the de-
composition based approaches is the dependence to the problem structure, in
particular on the way the data is partitioned between agents. There is also
no standard way to de�ne the subset of LPs to which a transformation ap-
plies. The cryptographic methods, instead, are more generics and robust to
problem structure and the types of contraints and variables. In the table 4.1

26

Cryptographic
methods

Transformation-
based methods

Decomposition-
based methods

ine�cient e�cient e�cient
restricted to LP prob-
lem

not restricted to LP
problem

not restricted to LP
problem

protocols often tied to
a particular solver

free to use any solver free to use any solver

operations are re-
stricted to �nite �eld

handle real/complex
vecor spaces

handle real/complex
vecor spaces

small scale problems large scale problems very large scale prob-
lems

not scalable scalable scalable
privacy via encrypted
domain

privacy via trans-
formed domain

privacy is intrinsic

robust to problem
structure

very sensitive to prob-
lem structure

data partitioning de-
pendence

robust security guaran-
tees

heuristic security guar-
antees

heuristic security guar-
antees

Table 4.1: Privacy preserving classi�cation based on the classical distributed
optimization methods

we summarize main advantages and disadvantages that we discussed above.

4.3 Privacy preserving classi�cation problems

In this section we categorize some existing methods to solve decentral-
ized optimization problem in terms of privacy preserving. In particular we
categorize these methods based on the di�erent level of privacy preserving
request in the problem. Also, there are several kind of optimization prob-
lems, such linear, convex, non conex and Fast-Lipschitz. So, depending on
the mathematical nature of the problem, we try to �nd a speci�c algorithm
that solve it in the better way. Distributed optimization is used in a wide
area of problems, such as Cloud Computing, Data Mining, Vehicular Rount-
ing, Online Learning, Belief Propagation, Destributed Estimation and so on.
So, another classi�cation is based just on the kind of the application.

27

4.3.1 Privacy preserving algorithms

A particular privacy preserving method applied to a linear optimiza-
tion problem are described in [4]. This approach will allow us to solve
a distributed optimization problem by a random linear transformation that
will not reveal any of the privately held data but will give a publicly available
exact minimum value to the origianl problem. Thus, we are able to solve a
privacy preserving transformed linear program that generates an exact so-
lution to the original linear program without revealing any of the privately
data of which node. The m-by-n constraits matrix A of the bacis linear prob-
lem is divided into p blocks of columns, each block of which toghether with
the corresponding block of cost vector, is owned by a distinct entity. Each
entity not willing to share or make public its column group or cost coe�cient
vector. Component groups of the solution vector of the privacy preserving
transformed linear program can be decoded only by the group owners and
can be made public by these entities to give the exact solution vector of the
original linear problem.

Considering the problem of optimizing a convex function subject to
a collection of convex inequality constraints and set constraints, we could re-
fer to the paper [5]. In which is assumed that each node has a set of a private
optimization variables that partecipate in the global optimization problem
but are unknown to other nodes of the graph. This distributed algorithm
operates over any connected graph of processors and yields a solution that is
arbitrarily close to a global optimal solution, where proximity to optimality
is controlled by a parameter that a�ects a tradeo� in the required computa-
tion time. This new algorithm is inspired of Lyapunov drift theory.

In [11] is proposed a new distributed algorithm, namedD-ADMM, based
on the alternating direction method of multipliers (ADMM) for solving. In
a separale optimization problem, the cost function, and the constraint set
is the intersection of all the agents' private constraint sets. In this paper
is required the private cost function and the constraint set of a node to be
known by that node only, during and before the execution of the algorithm.

If we have an optimization problem with a concave objective func-
tion we could refer to [6]. The paper proposes an adaptation of Lagrangian
method to solve distributed weighting method for both strictly concave and
not strictly concave (e.g. linear) value functions for a maximization problem,
maintaining the privacy of the participating parties.

28

In Cloud Computing the concept of privacy preserving has an impor-
tant role. Indeed, costumer con�dential data processed and generated dur-
ing the computation need to be secret. The problem of securely outsourcing
computation in cloud computing is formalized in [7]. It is based on on a
problem transformation techniques that enable customers to secretly trans-
form the original problem into some random one while protecting sensitive
input/output information.

Another �eld in which privacy preserving plays an important role is On-
line Learning. In [8] is considered a general distributed outonomous online
learning algorithm to learn from fully decentralized data sources. Learners
need to exchange information between them, so a local learner updates its
local parameter basing on the local subgradient and then propagates the pa-
rameter to other learners. The paper examines under which conditions a
malicious node cannot recostruct all subgradients of other nodes based on
the parameter vectors of its adjacent nodes. So, the algorithm has intrinsic
privacy preserving properties if the network topologies respect some condi-
tions.

Belief propagation, also known as Sum-product message passing, is a
message passing algorithm for performing inference on graphical models, such
as Bayesian networks and Markov random �elds. It calculates the marginal
distribution for each unobserved node, conditional on any observed nodes.
Belief propagation is commonly used in arti�cial intelligence and information
theory and has demonstrated empirical success in numerous applications in-
cluding low-density parity-check codes, turbo codes, free energy approxima-
tion, and satis�ability. The paper [9] provides provably privacy preserving
versions of belief propagation and other local message passing algorithms on
large distributed networks. Each party learns their conditional probability of
exposure to the didease and absolutely nothing else. A party can e�ciently
compute after having partecipated in the protocol, they could have e�ciently
computed alone given only the value of their conditional propability. Thus,
the protocol leaked no additional information beyond its desired outputs.
The paper shows how to blend tools from cryptography with local message
passing algorithms in a way that preserves the original computations, but in
which all messages appear to be randomly distributed from the viewpoint of
any individual.

TheVehicle Routing Problem (VRP) is a combinatorial optimization
and integer programming problem seeking to service a number of customers
with a �eet of vehicles. In its multiple depot variant, the routes of vehicles

29

Distributed
solver method

Privacy pre-
serving deci-
sion variables

Privacy pre-
serving utility
function

Privacy pre-
serving con-
straints

Primal Decom-
position

√
| |

Dual Decompo-
sition

√
| |

ADMM
|

√
|

Fast-Lipschitz
|

√ √

Table 4.2: Privacy preserving classi�cation based on the classical distributed
optimization methods

located at various depots must be optimized to serve a number of costomers.
The paper [10] investigates how to protect the privacy of delivery companies,
when each depot is owned by a di�erent company with a limited view of the
overall problem.

4.3.2 Classi�cation based on the classical distributed

optimization methods

In the �rst chapter we discussed the most important methods to solve a
distributed optimization problem. Now, we categorize these methods by the
viewpoint of privacy preserving. So, in the table 4.2 we explain, for each of
them, if it is privacy preserving in terms of utility function, decision variables
or contraints.

30

Mathematical
nature

Privacy preserv-
ing decision vari-
ables

Privacy preserv-
ing utility func-
tion

Privacy preserv-
ing constraints

Linear [4] [4] [4]
Convex

|
[5],[11] [5],[11]

Non Convex
|

[6]
|

Fast-Lipschitz
|

[12] [12]

Table 4.3: Privacy preserving classi�cation based on the mathematical nature
of the optimization problem

4.3.3 Classi�cation based on the mathematical nature

of the optimization problem

Another kind of classi�cation is based on the mathematical nature of the
optimization problem. As view in the previous chapter, there are some pa-
pers which propose a method to solve each of them. In particular we can
make a classi�cation to linear, convex, non convex and F-Lipshitz problem.
For each entry of the table we indicate which paper solve the problem, always
making a distinction about the level of privacy preserving they approach (see
table 4.3).

4.3.4 Classi�cation based on the application

In the previous chapter we talked about various application based on dis-
tributed optimization that require privacy preserving. So, in the table (4.4)
we make a classi�cation of them.

31

Application Privacy preserv-
ing decision vari-
ables

Privacy preserv-
ing utility func-
tion

Privacy preserv-
ing constraints

Online Learning [8] [8]
|

Cloud Comput-
ing

[7] [7] [7]

Belief Propaga-
tion

[9] [9] [9]

Vehicle Routing [10]
| |

Table 4.4: Privacy preserving classi�cation based on the application

32

Chapter 5

Car-parking problem

One of the most relevant problem in urban transportation is the tra�c
congestion and parking di�culties, which are also a major cause for losing
time. These two problems are interrelated since looking for a parking space
creates additional delays and impairs local circulations. Given the impor-
tance of e�cient car parking strategies, in this chapter, we place a greater
emphasis on car parking problem, together with privacy preserving proper-
ties. Our goal is to reduce the distance from the parking slot to the intended
destination of the car, thus helping the driver to easily �nd a parking closer
to their places of interest.

Our proposed solution method is privacy preserving, in the following
sense: vehicles do not want to reveal their destinations during the algorithm
iterations. In addition, the proposed solution method is distributed among
users (vehicles) with a little central coordination. Moreover, the method is
fair, roughly speaking, it �nds a allocation such that the maximum distance
to from the parking slot to the destination of cars is minimized. Thus, our
solution method is privacy preserving distributed, and fair.

In particular, we consider the car park illustrated in the �gure 5.1 to
mathematically model the problem. Parking slot assignment is time slotted,
with slot period T . At the beginning of any time slot t, the number of free
slots in the park should be known. Moreover, their details (e.g., location
information) should be informed to the selected set of cars which are sched-
uled for parking at the beginning of the time slot t. Each car then knows
the distances from free slots to their intended destination. In particular, this
information is simply extracted from a table (see table 5.2), which contains
all the distances from every free slot to every shop. At the beginning of time
slot t, it is required to decide the slot-vehicle assignment, which is indeed the
binary decision variables. This is shown in table 5.3. For example, if the j-th
slot is occupied by the i-th vehicle, we indicate this assignment by using 1 in

33

aij di

Sj

Figure 5.1: Car-Parking model

the (ij)th position, otherwise 0. The formulation can model parking assign-
ments for di�erent kind of vehicles, with di�erent sizes and dimensions, e.g.,
cars, vans, motorbikes, and scooters.

In such a formulation, vehicles should maintain data such as the dimen-
sion of the slots. Roughly speaking, the following should be considered in
the problem formulation.

• The distances from free slots to the destinations or shops. This informa-
tion is required for constructing the objective function of the problem.

• The availability of the slots and their assignment: this is required for
expressing constraints to enforce a correct assignment. For example,
the assignment shown in table 5.3 is correct. But the assignment shown
in table 5.4 is incorrect.

• The dimensions of the vehicles over the slots: this information is again
required for expressing constraints.

34

Shops Slots

S1 S2 S3 S4 S5

shop1 a11 a12 a13 a14 a15
shop2 a21 a22 a23 a24 a25
shop3 a31 a32 a33 a34 a35
shop4 a41 a42 a43 a44 a45

Table 5.1: Table of distances: for each shop (vehicle destination) is indicated
the distance to each slot of the parking.

Shops Slots

S1 S2 S3 S4 S5

shop1 a11 a12 a13 a14 a15
shop2 a21 a22 a23 a24 a25
shop3 a31 a32 a33 a34 a35
shop4 a41 a42 a43 a44 a45

Table 5.2: Table of distances: for each shop (vehicle destination) is indicated
the distance to each slot of the parking.

Vehicles Slots

S1 S2 S3 S4 S5

vehicle1 0 0 1 0 0
vehicle2 0 0 0 0 1
vehicle3 1 0 0 0 0
vehicle4 0 0 0 1 0

Table 5.3: Table of slots' availability: for eache slot is indicated if it's assigned
to some vehicles or not.

Vehicles Slots

S1 S2 S3 S4 S5

vehicle1 0 0 1 0 0
vehicle2 0 0 0 0 1
vehicle3 1 0 0 0 0
vehicle4 1 0 0 1 0

Table 5.4: Incorrect assignment of parking

35

5.1 Notations

Now we introduce essential notations to formulate the problem:

• j = 1, ...,M : the indexes of the parking slots

• Wj: the width of jth slot

• Lj: the length of jth slot

• i = 1, ..., N : the indexes of the scheduled vehicles for parking at the
beginning of the time slot

• wi: the width of ith vehicle

• li: the length of ith vehicle

• di = (dxi , d
y
i): the destination coordinates of the ith vehicle

• aij(di): the distance from the jth slot to the destination of ith vehicle.
In particular, let (sxj , s

y
j) denote the coordinates of the jth slot. Then,

aij(di) is given by

aij(di) = α
√

(dyi − s
y
j)

2 + (dxi − sxj)2 ,

where α is a parameter known to all the scheduled vehicles only and
is used to perform a scalar transformation to the distance. This scalar
transformation further increases the privacy of the destinations of the
vehicles to a third party.

• xij: the variable to indicate the vehicle-slot assignment. In particular,

xij =

{
1 if the jth slot is assigned to the ith vehicle
0 otherwise

(5.1.1)

36

5.2 Problem formulation

The car-parking problem explained in the previous chapter can be written
in a mathematical form as follow:

minimize max
i∈N

M∑
j=1

xijaij(di)

subject to
N∑
i=1

xij ≤ 1, ∀j (5.2.0.1)

M∑
j=1

xij = 1, ∀i (5.2.0.2)

xij ∈ {0, 1} (5.2.0.3)

Wj ≥ wixij, ∀i, j (5.2.0.4)

Lj ≥ lixij, ∀i, j (5.2.0.5)

where the variables are xij, i = 1, . . . , N , j = 1, . . . ,M . The constraint
(5.2.0.1) requires that each slot is assigned at most to one vehicle. Such an
assignment is shown in table 5.3, where parking slots S2 has been assigned
no vehicles and all others have been assign one vehicle each. Table 5.4 shows
a constraint violation, where two vehicles (vehicle3 and vehicle4) have been
assigned the same slot (i.e., the parking slot S1). Constraint (5.2.0.2) im-
poses the condition that each vehicle must be assigned to a slot. In this
thesis we assume that the number of scheduled vehicles is smaller than the
free parking slots, i.e., N ≤ M . Otherwise the problem is clearly infeasible.
Thus, a schedular should take into account these issues, which are extraneous
to the main focus of the thesis. See table 5.3 and table 5.4 for examples of
correct and incorrect assignments, respectively. Constraint (5.2.0.3) requires
that the values of xij to be 0 or 1.

Constraints (5.2.0.4-5.2.0.5) are clearly associated with dimensions of slots
and vehicles (see �gure 5.2 and 5.3). For notational simplicity, let

βij =
Wj

wi

and

γij =
Lj
li
.

37

Wj

Lj

Sj

Figure 5.2: Slot's dimension

wi

li

Figure 5.3: Vehicle's dimension

Then, the optimization problem becomes:

minimize max
i∈N

M∑
j=1

xijaij(di)

subject to
N∑
i=1

xij ≤ 1, ∀j (5.2.0.6)

M∑
j=1

xij = 1, ∀i (5.2.0.7)

xij ∈ {0, 1} (5.2.0.8)

βijxij ≤ 1, ∀i, j (5.2.0.9)

γijxij ≤ 1, ∀i, j (5.2.0.10)

where the variables are xij, i = 1, . . . , N , j = 1, . . . ,M . Note that the prob-
lem above is combinatorial and we have to rely on global optimal methods

38

such as exhaustive search and branch and bound methods to solve it. The
main disadvantage of global methods is the prohibitively expensive compu-
tational complexity, even in the case of very small problems. Such methods
are not scalable and impractical. In the sequel, we provide a method based
on duality. Even though the optimality cannot be guaranteed, the proposed
method is e�cient, fast, and allows distributed implementation with a little
coordination from a central controller. Therefore, the method is favorable
for practical implementations.

5.3 Finding the dual problem

We start by equivalently formulating problem (5.2.0.6-5.2.0.10) in its epi-
graph form. The equivalent problem is given by

minimize t

subject to
M∑
j=1

xijaij(di) ≤ t, ∀i (5.3.0.1)

N∑
i=1

xij ≤ 1, ∀j (5.3.0.2)

M∑
j=1

xij = 1, ∀i (5.3.0.3)

xij ∈ {0, 1} (5.3.0.4)

where the variables are t and x = (xij)i=1,...,N,j=1,...,M . Note that we have re-
moved the constraints (5.2.0.9-5.2.0.10) of the original problem for simplicity.
But the solution method to be given fully extends to include the constraints
(5.2.0.9-5.2.0.10) as well. Now we want to apply duality theory to the epi-
graph form. It is important to note that we want also to decouple the problem
among the vehicles. We can clearly see that constraints (5.3.0.1-5.3.0.2) are
the coupling constraints of the problem. The constraints (5.3.0.3-5.3.0.4)
are already decoupled among the vehicles and we can treat them as implicit
constraints. Next, we introduce Lagrange multiplies and form the partial
Lagrangian by dualizing the coupling constraints (5.3.0.1-5.3.0.2). So, we
have to introduce the Lagrangian multipliers, in particular λ = (λi)i∈{1,...,N}
for the �rst set of inequality constraints and multipliers µ = (µj)j∈{1,...,M}

39

for the second set of inequality constraints. The Lagrangian associated with
problem (5.3.0.1-5.3.0.4) is:

L(t, x, λ, µ) = t+
N∑
i=1

λi(
M∑
j=1

xijaij(di)− t) +
M∑
j=1

µj(
N∑
i=1

xij − 1)

= t+
N∑
i=1

M∑
j=1

λixijaij(di)−
N∑
i=1

λit+
M∑
j=1

N∑
i=1

µjxij −
M∑
j=1

µj

= t(1−
N∑
i=1

λi) +
N∑
i=1

M∑
j=1

(λiaij(di) + µj)xij −
M∑
j=1

µj

(5.3.0.5)

Now we need to �nd the dual function g(λ, µ). To do this, we minimize
the Lagrangian with respect to primal variables t and x, i.e.,

g(λ, µ) = inf
t∈R,∑M

j=1 xij=1,∀i,
xij∈{0,1},∀i,j

L(t, x, λ, µ)
(5.3.0.6)

=


inf∑M

j=1 xij=1,∀i,
xij∈{0,1},∀i,j

∑N
i=1

∑M
j=1(λiaij(di) + µj)xij −

∑M
j=1 µj

∑N
i=1 λi = 1

−∞ otherwise
(5.3.0.7)

=


∑N

i=1(inf∑M
j=1 xij=1,∀i,

xij∈{0,1},∀i,j

∑M
j=1(λiaij(di) + µj)xij)−

∑M
j=1 µj

∑N
i=1 λi = 1

−∞ otherwise
(5.3.0.8)

=


∑N

i=1 gi(λ, µ)−
∑M

j=1 µj
∑N

i=1 λi = 1

−∞ otherwise

(5.3.0.9)

40

In 5.3.0.7, we have removed the linear term

t(1−
N∑
i=1

λi) ,

because it is bounded below only when
∑N

i=1 λi = 1. The constraints of inf
operator in 5.3.0.7 are separable among the vehicles i ∈ {1, . . . , N}. There-
fore, we can move the inf operator inside the summation

∑N
i=1, see (5.3.0.8).

The function gi(λ, µ) denotes the optimal value of the following problem:

minimize
M∑
j=1

(λiaij(di) + µj)xij

subject to
M∑
j=1

xij = 1,

xij ∈ {0, 1} ,∀j,

(5.3.10)

with the variable (xij)j∈{1,...,M}. Each vehicle has to solve the problem (5.3.10).
Note that the problem (5.3.10) is combinatorial, but it has a closed form so-
lution given by:

x∗ij =


1 j = arg minn∈{1,...,M}(λiain(di) + µn)

0 otherwise
(5.3.11)

The dual problem is given by:

maximize g(λ, µ) =
N∑
i=1

gi(λ, µ)−
M∑
j=1

µj

subject to
N∑
i=1

λi = 1,

λi ≥ 0, ∀i,

µj ≥ 0,∀j .

(5.3.12)

where variables are (λi)i∈{1,...,N} and (µj)j∈{1,...,M}.

41

5.4 Solving the dual problem

To solve the dual problem 5.3.12 we use the projected subgradient method,
which is often applied to large-scale problems with decomposition structures.
Note that g(λ, µ) is a concave function, therefore, we need to �nd the sub-
gradient of −g at a feasible (λ, µ). We denote by s the subgradient and for
clarity we separate s into two vectors as follows:

s = (u, v), (5.4.0.1)

where u = (ui)i∈{1,...,N} is the part that corresponds to λ and v = (vj)j∈{1,...,M}
the part that corresponds to µ. The (negative of) dual function −g(λ, µ) is
given by

− g(λ, µ) =
M∑
j=1

µj −
N∑
i=1

gi(λ, µ)

=
M∑
j=1

µj −
N∑
i=1

M∑
j=1

(λiaij(di) + µj)x
∗
ij

=
M∑
j=1

µj −
M∑
j=1

µj

N∑
i=1

x∗ij −
N∑
i=1

λi

M∑
j=1

aij(di)x
∗
ij.

So we obtain, for all i ∈ N :

ui = −
M∑
j=1

aij(di)x
∗
ij and vj = 1−

N∑
i=1

x∗ij, (5.4.0.2)

where x∗ij given in (5.3.11). The projected subgradient method is given by

(λ, µ)(k+1) = P ((λ, µ)(k) − αk(u, v)(k)), (5.4.0.3)

where k is the current iteration index of the subgradient method, P (z) de-
notes the Euclidean projection of z onto the feasible set of the dual problem
(5.3.12), and αk > 0 is the kth step size, chosen to guarantee the asymptotic
convergence of the subgradient method, e.g., αk = 1/k. Since the feasible set
of dual problem is separable in λ and µ, the projection P (·) can be performed
independently. Therefore, the iteration (5.4.0.3) is equivalently performed as
follows:

λ(k+1) = Ps(λ
(k) − αku(k)) (5.4.0.4)

µ(k+1) = [µ(k) − αkv(k)]+, (5.4.0.5)

42

where Ps(·) is the Euclidean projection onto the probability simplex{
λ
∣∣∣∑N

i=1 λi = 1, λi ≥ 0
}

and [·]+ is the Euclidean projection onto the nonnegative orthant.

5.5 Distributed implementation

Let us now present the distributed solution methods for the car park-
ing problem. Here, we capitalize on the ability to construct the subgradient
(u, v) in a distributed fashion via the coordination of scheduled vehicles. As
we have already mentioned, there should be a little involvement of a central
controller (e.g., owner of the car park) for realizing the overall algorithm.
This involvement is mainly for dual variable updating and broadcasting new
dual variables to the scheduled vehicles until the algorithm stops.

Algorithm : Distributed algorithm for car-parking

1. Central controller sets k = 1 and broadcasts the initial (feasible) λ
(k)
i

and (µ
(k)
j)j=∈{1,...,M} to vehicle i, i ∈ {1, . . . , N}.

2. Vehicle i sets λi = λ
(k)
i and µ = µ(k) and locally solves the problem

(5.3.10), to yield the solution (x∗ij)j=1,...,M , which is given by (5.3.11).

3. Vehicle i computes scalar ui from (5.4.0.2) and transmits this to the
central controller. For each j, scheduled vehicles communicate (binary
variables x∗ij) and construct the scalar vj and transmits this to the
central controller.

4. Subgradient iteration:

• Central controller forms u(k) and performs (5.4.0.4)

• Central controller forms v(k) and performs (5.4.0.5).

5. Stopping criterion: if the stopping criterion is satis�ed, then STOP.
Otherwise, set k = k + 1, and central controller broadcasts the new
λ
(k)
i , (µ

(k)
j)j∈{1,...,M} to vehicle i, i = 1, . . . , N , and go to step 2.

43

5.5.1 Algorithm description

In step 1, the algorithm starts by choosing initial feasible values for
λ
(k)
i , i = 1, . . . , N and µ

(k)
j , j = 1, . . . ,M . After receiving these values from

the central controller, each vehicle computes both {xij}j∈{1,...,M} in step 2 in
a decentralized fashion. Step 3 is used for communication and coordination.
In particular, each vehicle i constructs scalar parameter ui and sends this to
the central controller. Moreover, scheduled vehicles communicate binary pa-
rameters to construct vj and transmits this to the central controller. We see
that the solution method is privacy preserving, because no one (vehicles and
the central controller) can guess vehicle i's destination data (dxi , d

y
i). Note

that, step 3 does not reveal the private destinations of vehicle i, i.e., (dxi , d
y
i)

to the the central controller. This is mainly because, (dxi , d
y
i) is hidden inside

ui. However, for larger iteration index k, the central controller can guess that
the algorithm has a feasible solution and as a result, −ui = aij(di) for some
parking slot j. But, still aij(di) is a α-scaled version of the true distance
from vehicle i's parking slot to its intended destination. Therefore, with-
out knowing α, the central controller �nds it di�cult to compute vehicle i's
true destination coordinates (dxi , d

y
i). Moreover, in step 3, the scheduled

vehicles coordinate their solutions (xij)j∈{1,...,M} with each other. This com-
munication also privacy preserving, because, no scheduled vehicle can know
the vehicle i's problem data (aij(di))j∈{1,...,M}. Then, the algorithm perform
step 4, the subgradient iterations (5.4.0.4-5.4.0.5). In this way it generates a

sequence of λ
(k)
i and µ

(k)
j , k = 1, The price update or the Lagrange mul-

tiplier update mechanism attempt to achieve primal feasibility of the original
problem (5.3.0.1-5.3.0.4). However, because the problem is nonconvex, pri-
mal feasibility is often not guaranteed. Therefore, it usually required to call
a subroutine to construct a feasible solution at the end of the algorithm.

Finally, step 5 is the stopping criteria. If it is satis�ed, then the algorithm
stops, otherwise central controller broadcasts λ

(k)
i and µ(k) to all vehicles

i ∈ {1, ..., N} and the algorithm is repeated.

5.5.2 Recovering the primal feasible point

By using the algorithm above, we �nd the optimal dual variables. But
the main requirement is to �nd an optimal solution for the primal problem.
However, this is often impossible. First, note that the problem is nonconvex
and as a result there is no guarantee that dual approach that we followed
gives a mechanism for �nding the optimal primal solution or even a primal
feasible point. Therefore, as pointed in the description of step 4, we have to
rely on a (heuristic) subroutine to construct a primal feasible point after the

44

algorithm terminates. In this thesis, we do not discuss such issues.

45

Chapter 6

Numerical results

In this chapter, we show simulation results to see the behavior of our
proposed algorithm. Simulations were run with the MATLAB environment
and carried out on a 3,4 GHz, Intel Core i7-2600 personal computer.

At the beginning of every time slot t ∈ {1, . . . , T}, the total number of
scheduled vehicles is assumed to be �xed, which is denoted by N and the
total number of free parking slots is assumed to be �xed, which is denoted
byM . Of course, the algorithm is not restricted to �xed scenarios. Fixing N
and M as mentioned above is useful to see the key behaviors of the proposed
method. At the beginning of every time slot t, the α-scaled distances aij(di),
i = 1, . . . , N , j = 1, . . . ,M were randomly generated. Note that α here
is an arbitrary scalar known to the scheduled vehicles only. Without loss of
generality, we let α = 1 in all the simulations. In each time slot, the proposed
algorithm is carried out for K = 300 subgradient iterations. Moreover, we
average over T = 1000 time slots to obtain average performances of the
algorithm. Finally and most importantly, for every t ∈ {1, . . . , T}, we keep
track of the best point found so far by the algorithm during its subgradient
iterations k = 1, . . . , K. We denote by x(t, k) the best point and by p(t, k)
the corresponding overall objective value (i.e., the primal objective value of
problem (5.3.0.1-5.3.0.4)) in time slot t and in subgradient iteration k. Recall
from section 5.5.2 that, we do not use any subroutines to construct a primal
feasible point at the end of the proposed algorithm. As a result, of course,
the best point x(t, k) found so far can be infeasible to the original primal
problem (5.3.0.1-5.3.0.4). Therefore, if a primal feasible point is not attained
by the algorithm in time slot t and in subgradient iteration k, then we set
the corresponding p(t, k) =∞.

46

0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

Users

F
ea

si
bi

lit
y

Figure 6.1: Feasibility versus vehicles or users; �xed number of parking slots,
i.e., M = 20

6.1 Feasibility of the proposed method

First we show results relating to the solution's feasibility. In particular,
we de�ne a percentage measure of feasibility as follows:

Feasibility =

∑T
t=1 I(p(t,K) <∞)

T
× 100 % , (6.1.0.1)

where I(E) is the indicator function of event E and recall thatK = 300 is the
total subgradient iterations and T = 1000 is the total time slots considered.

Figure 6.1 illustrates the change in the feasibility for �xed number of
parking slots (i.e., M = 20) as the number of users N is increased from 3 to
20. The behavior is intuitively expected, because we have not implemented
any subroutine to construct a feasible point at the end of the algorithm.
However, results show that for all N ≤ 10, the algorithm often �nds a feasible
point, even without such subroutines.

Figure 6.2 shows the change in feasibility for �xed number of users (i.e.,
N = 3) as the number of parking slots M is increased from 3 to 20. Results
agree with out intuition: as the number of free slots increases, the feasibility
increases.

47

0 5 10 15 20
94

95

96

97

98

99

100

Slots

F
ea

si
bi

lit
y

Figure 6.2: Feasibility versus parking slots; �xed number of vehicles or users,
i.e., N = 3

Roughly speaking, the results in �gure 6.1 and �gure 6.2 indicate that
as long as N ≤ (M/2), our proposed algorithm very likely returns a feasible
point. Therefore, to further investigate the behavior of the proposed algo-
rithm, in the following experiments, we stick toN andM values as mentioned
above. As we already mentioned, when the resulting point is infeasible, we
must rely on a subroutine to construct a primal feasible point. During this
thesis those issues are not considered and are left for future research.

6.2 Comparison with other benchmarks

For evaluating the performance of our algorithm we compare it with the
following benchmarks:

• Random method: This method employs a random parking slot as-
signment to each vehicle.

• Greedy method: This method employs a greedy parking slot assign-
ment as follows. First, the vehicles are ordered. The �rst vehicle in
the top of the order chooses its optimal parking, i.e., the parking slot

48

50 100 150 200 250 300
85

86

87

88

89

90

91

92

93

Subgradient iterations

O
bj

ec
tiv

e
va

lu
e

greedy
proposed method
exhaustive

Figure 6.3: Average objective value p(k) versus subgradient iterations k;
N = 3 and M = 20.

closest to its destination. Then the next vehicle in the order looks in to
the remaining free parking slots and selects the best one for him. The
method continues until all scheduled vehicles have there own parking
slots.

• Exhaustive method: This method computes all the combinations
and �nds the optimal parking slot assignment.

For comparison, we �rst consider the following performance metric:

p(k) =
∑T

t=1 p(t, k), k = 1, . . . , K = 300 . (6.2.0.1)

The metric p(k) is a measure of the average objective value at subgradient
iteration k.

Figure 6.3 shows the average objective value p(k) of our proposed method
versus the subgradient iteration k. Results are plotted for N = 3 and
M = 20. For comparison, we have also plotted the average objective val-
ues obtained by benchmark algorithms. Note that the benchmark plots are
straight lines, because they do not have subgradient iterations as our pro-
posed method. Results show that the performance gap between our proposed
method and the optimal exhaustive method become almost zero for larger

49

50 100 150 200 250 300
112

114

116

118

120

122

124

126

Subgradient iterations

O
bj

ec
tiv

e
va

lu
e

greedy
proposed method
exhaustive

Figure 6.4: Average objective value p(k) versus subgradient iterations k;
N = 3 and M = 15.

subgradient iterations k. For example, see p(k) for k ≥ 200. Results fur-
ther show that our method outperforms both the greedy and the random
method 1

Figure 6.4, 6.5, and 6.6 show again the average objective value p(k) of
our proposed method versus the subgradient iteration k for cases 1) N = 3
and M = 15, 2) N = 3 and M = 10, and 3) N = 3 and M = 5, respectively.
Benchmark curves are plotted for comparisons. Note that there are some
missing parts of the curves corresponds to our algorithm, see �gure 6.5 and
6.6. For example, in the case of �gure 6.5, curve that corresponds to our
method starts at k = 50. This behavior is due to the primal infeasibility:
i.e., for all k ≤ 50, the point x(t, k) is infeasible for some time slot t ∈
{1, . . . , T = 1000}. As a result, p(k) = ∞ for all k ≤ 50 and not plotted in
the �gure. The performances in all considered cases are very similar to those
discussed in the case of Figure 6.3. Our algorithm achieves almost optimal
value for large values of k. Moreover, after some subgradient iterations, our
proposed method outperforms both the greedy and the random methods.

1Curve that corresponds to the random method is excluded from the �gure for clarity

beacause the average objective value given by the random method is too high.

50

50 100 150 200 250 300
162

164

166

168

170

172

174

176

178

Subgradient iterations

O
bj

ec
tiv

e
va

lu
e

greedy
proposed method
exhaustive

Figure 6.5: Average objective value p(k) versus subgradient iterations k;
N = 3 and M = 10.

Next, we de�ne the following performance metric:

Deviation with respect to optimal method (Dopt) =
X − p∗

p∗
× 100 % ,

(6.2.0.2)
where p∗ is the optimal objective value obtained from the exhaustive method
and X can be either the average objective value obtained from the random
method, the greedy method, or our proposed method. In particular, we let
X = p(K) for our method.

In tables 6.1, 6.2 and 6.3 we illustrate the exact values of the objective
function in random, greedy and proposed methods and also the deviation
value from the Dopt.

In particular, table 6.1 shows the performance comparisons of di�erent
algorithms for the case N = 3 and M = 20. We have tabulated the the
metric Dopt de�ned above together with the associated suboptimal objec-
tive values of random, greedy, and proposed methods. We can see that the
objective value of the random method is too high, with a deviation Dopt of
777, 14%. The greedy method, instead, has an acceptable objective value,
with a deviation Dopt of 3, 14%. But proposed method outperforms both
methods above, infact its deviation from the optimal is zero.

51

50 100 150 200 250 300
320

322

324

326

328

330

332

Subgradient iterations

O
bj

ec
tiv

e
va

lu
e

greedy
proposed method
exhaustive

Figure 6.6: Average objective p(k) versus subgradient iterations k; N = 3
and M = 5.

Method AVG of Objective
function

Deviation from op-
timal (%)

Random 750, 5491 777, 14%

Greedy 88, 2119 3, 14%

Proposed 85, 5397 ∼= 0%

Table 6.1: Achieved objective value and deviation Dopt; N = 3 and M = 20

52

Method AVG of Objective
function

Deviation from op-
timal (%)

Random 838, 2 682, 6%

Greedy 117, 2 9, 5%

Proposed 108, 1 0, 9%

Table 6.2: Achieved objective value and deviation Dopt; N = 5 and M = 20

Table 6.2 shows again the objective value and performance metric Dopt

comparisons for the case N = 5 and M = 20. The results are very similar to
those observed in table 6.1. We can note that the deviation of the random
method is still unacceptable. The deviation of the greedy method has also
been increased substantially from 3.14% to 9.5%. However, interestingly, the
change in deviation of our proposed method is very small.

Now we consider a larger dimensional problems in which the exhaustive
method is not applicable. So we consider a new deviation metric, Dnon−opt,
de�ned as:

Deviation with respect to proposed method (Dnon−opt) =
X − p(k)

p(k)
×100 % ,

(6.2.0.3)
where p(K) is the average objective value from our proposed method after
K=300 subgradient iterations andX can be either the average objective value
obtained from the random method or the greedy method.

Table 6.3 shows the objective value and performance metric Dnon−opt
comparisons for a larger dimensional problem. In particular, we consider a
case with N = 10 and M = 20. The objective value of the random method
is again unacceptable, with a deviation of 539, 3%. Also, we can see that the
deviation of the greedy method increases substantially, 26, 32%.

6.3 CPU time comparison

Now we compare the CPU time performances of proposed method com-
pared to the exhaustive method. Note that proposed method uses K = 300

53

Method AVG of Objective
function

Deviation from pro-
posed method's op-
timum (%)

Random 908, 5 539, 3%

Greedy 179, 5 26, 32%

Table 6.3: Achieved objective value and deviation Dnon−opt; N = 10 and
M = 20

subgradient iterations before the algorithm terminates. First we consider a
smaller scale problem, where N=3 users and M=5,10,15, and 20 free park-
ing slots. Table 6.4 shows the exact value of the CPU time and also the
feasibility of our method. When the number of available parking slots are
increased, the CPU time of the exhaustive method also increases. However,
the CPU time of the proposed method almost remains constant. We can see
the behaviour of the CPU time also in �gure 6.7.

54

Number of avail-
able slots

CPU time of ex-
haustive method

CPU time of our
method

Feasibility of our
method

5
7.9561e−0.04 2.9432e−0.04

99.9%

10 0.0042
2.7619e−0.04

100%

15 0.0121
2.9340e−0.04

100%

20 0.0263
3.1651e−0.04

100%

Table 6.4: CPU time of exhaustive and proposed method with N=3

55

2 4 6 8 10 12 14 16 18 20
0

0.005

0.01

0.015

0.02

0.025

0.03

Slots

C
P

U
 ti

m
e

Proposed method
Exhaustive method

Figure 6.7: CPU time of exhaustive and proposed methods with N=3

Finally to highlight the computational complexity of exhaustive method
with a large number of users, we consider a problem with N=5 users and
M=5,10,15, and 20 available parking slots. In table 6.5 we can see that the
required CPU time of the exhaustive method becames very high when the
number of available slots increases. It is 0,281 seconds when M=5 and it
becomes 40,4354 seconds when M=20. In particular there is an exponential
growth in the CPU time required by the exhaustive method. However there
is no such growth in the case of our proposed algorithm. Moreover, the time
required by our proposed method is very small and shows a linear growth
instead of an exponential growth. Thus the proposed method is scalable.
The proposed method has a CPU time always less than 0 seconds and also,
the feasibility increases when the number of slots increases. Figure 6.8 shows
the above considerations more clearly.

56

Number of avail-
able slots

CPU time of ex-
haustive method

CPU time of our
method

Feasibility of our
method

5 0, 0281 0, 1010 66, 1%

10 1, 2469 0, 1436 99, 6%

15 9, 9211 0, 1889 100%

20 40, 4354 0, 2428 100%

Table 6.5: CPU time of exhaustive and proposed method with N=5

2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

35

40

45

Slots

C
P

U
 ti

m
e

Proposed method
Exhaustive method

Figure 6.8: CPU time of exhaustive and proposed methods with N=5

57

Chapter 7

Conclusions

In this thesis we �rst discussed di�erent approaches that are used in
the privacy preserving optimization. In particular, we categorized these
approaches into three main areas, cryptographic methods, transformation-
based methods, and decomposition methods. The advantages and disadvan-
tages of these approaches are identi�ed. The solution approaches based on
transformation based methods and decomposition based methods are very ef-
�cient compared to cryptographic variants. However the degrees of security
and privacy guarantees o�ered by cryptographic solution methods are very
high. Moreover, decomposition based approaches provide superior scalability
properties compared to the other two categories. We also provided several
other classi�cations based on the mathematical nature of the problem, the
type of application, etc. Then we focused to a particular interesting problem:
car parking slot assignment problem, where the objective was to minimize
the maximum distance from the parking slots to the intended destinations
of the cars, but without revealing anyone the destinations of the cars. We
addressed this nonconvex problem by using an approach based on decompo-
sition methods. We compared our algorithm with the optimal, random, and
a greedy method and numerically evaluated the performance of the proposed
algorithm, in terms of optimality and as well as the computational speed.
Despite the reduced computational complexity of our proposed method, it
provided close-to-optimal performance.

7.1 Limitations and future work

A limitation of our work is that the solution can be infeasible. With the
proposed algorithm infact we �nd the optimal dual variable. The optimal
solution for the dual problem is achieved, but we need to �nd the optimal for

58

the primal problem. Since we have a non convex problem, the duality gap
between dual and primal solutions is not zero. So, is not guaranteed to obtain
the primal optimal We need to construct the primal solution heuristically.

Therefore, unlike convex problems, there is no guarantee that from the
dual optimal value and solution, we can construct the primal optimal value,
primal optimal solution, or at least a primal feasible point. Thus, a poten-
tial future direction is to explore good heuristics to construct primal feasible
points. Moreover, it would be interesting to explore the conditions under
which zero duality holds for the original assignment problem or any other an-
alytical performance guarantee which can describe the proposed algorithm's
performance. It is also interesting to investigate the methods that we can
use to quantify the security and privacy levels of decomposition based ap-
proaches.

59

Bibliography

[1] Stephen Boyd and Lieven Vandenberghe, Convex Optimization, Cam-
bridge, 2004.

[2] Angelia Nedic and Asuman Ozdaglar, Convex Optimization in Signal
Processing and Communications, Cambridge, 2009.

[3] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato and Jonathan Eck-
stein, Distributed Optimization and Statistical Learning via the Alternat-
ing Direction Method of Multipliers, Foundations and Trends in Machine
Learning Vol. 3, No. 1 (2010) 1�122.

[4] O.L. Mangasarian, Privacy Preserving linear programming, Optimiza-
tion Letters 5(1):165�172, 2011.

[5] Michael J. Neely, Distributed and Secure Computation of Convex Pro-
grams over a Network of Connected Processors, University of Southern
California, Conference Guelph, Ontario, Canada, July 2005.

[6] Satish K. Sehgal and Asim K. Pal, Privacy Preserving Decentralized
Method for Computing a Pareto-Optimal Solution, 7th International
Workshop, Kharagpur, India, December 27-30, 2005.

[7] Cong Wang, Kui Ren and Jia Wang, Secure Optimization Computa-
tion Outsourcing in Cloud Computing: A Case Study of Linear Pro-
gramming, Department of Electrical and Computer Engineering, Illinois
Institute of Technology, Chicago, 2011.

[8] Feng Yan, Shreyas Sundaram, S.V. N. Vishwanathan and Yuan Qi, Dis-
tributed Autonomous Online Learning: Regrets and Intrinsic Privacy-
Preserving Properties, arXiv:1006.4039v3 [cs.LG], 4 Feb 2011.

[9] Michael Kearns, Jinsong Tan and Jennifer Wortmani, Privacy-
Preserving Belief Propagation and Sampling, Department of Computer
and Information Science University of Pennsylvania, Philadelphia, PA
19104.

60

[10] Thomas Leaute, Brammert Ottens and Boi Faltings, Ensuring Pri-
vacy through Distributed Computation in Multiple-Depot Vehicle Routing
Problems, Arti�cial Intelligence Laboratory (LIA), Ecole Polytechnique
Federale de Lausanne (EPFL), Switzerland.

[11] João F. C. Mota, João M. F. Xavier, Pedro M. Q. Aguiar and
Markus Püschel, D-ADMM: A Communication-E�cient Distributed Al-
gorithm For Separable Optimization, Fundação para a Ciência e Tecnolo-
gia (FCT): CMU-PT/SIA/0026/2009, PTDC/EEAACR/ 73749/2006,
PEst-OE/EEI/LA0009/2011, and SFRH/BD/33520/2008.

[12] Carlo Fischione, F-Lipschitz Optimization, IEEE Transactions on Auto-
matic Control, 2011.

[13] Stephen Boyd, Lin Xiao, Almir Mutapcic, and Jacob Mattingley Notes
on Decomposition Methods, Stanford University, Notes for EE364B.

[14] Stephen Boyd, Lin Xiao, Almir Mutapcic, and Jacob Mattingley Sub-
gradient Methods, Notes for EE392o, Stanford University, Autumn 2003.

[15] J. Li and M.J. Atallah Secure and private collaborative linear program-
ming, In Proceedings of the International Conference on Collaborative
Computing: Netowrking, Applications and Worksharing, pages 1�8,
2006.

[16] O. Catrina and S. de Hoogh Secure multiparty linear programming using
�xedpoint arithmetic, In D. Gritzalis, B. Preneel, and M. Theoharidou,
editors, Computer Security � ESORICS 2010. LNCS, volume 6345, pages
134�150, Heidelberg, 2010. Springer-Verlag.

[17] T. Toft Solving linear programs using multiparty computation, In Roger
Dingledine and Philippe Golle, editors, Financial Cryptography and
Data Security. LNCS, volume 5628, pages 90�107. Springer, 2009.

[18] A. Arbel Exploring interior-point linear programming: Algorithms and
software, MIT Press, 1993.

[19] R. J. Vanderbei Linear programming: Foundations and extensions,
Third Edition. Springer, 2008.

[20] N. Karmarkar A new polynomial-time algorithm for linear programming,
Combinatorica, 4(4):373�395, 1984.

[21] M. Asghar Bhatti Practical optimization methods: with mathematica
applications, Springer-Verlag, 2000.

61

[22] A. Bednarz, N. Bean, and M. Roughan Hiccups on the road to privacy-
preserving linear programming, In Proceedings of the 8th ACM Work-
shop on Privacy in the Electronic Society, pages 117-120, 2009.

[23] W. Du A study of several speci�c secure two party computation problems,
PhD thesis, Purdue University, West Lafayette, Indiana, 2001. 011.

[24] O.L. Mangasarian Privacy-preserving horizontally-partitioned linear
programs, Technical report, Data Mining Institute Technical Report 10-
02, April 2010.

[25] Alice Bednarz Methods for Two-Party Privacy-Preserving Linear Pro-
gramming, PhD thesis in Applied Mathematics at The University of
Adelaide, January 22, 2012.

62

	elisabetta
	thesis

