
Linköping Studies in Science and Technology.
Licentiate Thesis No. 1571

Stress and fatigue constrained
topology optimization

Erik Holmberg

LIU–TEK–LIC–2013:5

Department of Management and Engineering, Division of Mechanics
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Abstract

This thesis concerns structural optimization in conceptual design stages, for which
constraints that are adapted to industrial requirements have been developed for
topology optimization problems. The objective of the project has been to identify
and solve problems that today prevent structural optimization from being used in
a broader sense in the avionic industry; the main focus has been on stress and
fatigue constraints in topology optimization.

The thesis consists of two parts. The first part gives an introduction to topology op-
timization and describes the developed methods for stress and fatigue constraints.
In the second part, two papers are included, where the stress and fatigue constraints
are evaluated, respectively.

In the first paper, a clustered approach is presented, where stress constraints are
applied to stress clusters, rather than points on the structure. This allows for a
trade-off between computational time and accuracy, as the number of clusters and
thus constraints can be varied. Different approaches for how to sort stress eval-
uation points into clusters and how to update the clusters, such that the results
are sufficiently accurate for conceptual designs, are developed and evaluated. The
two-dimensional examples confirm the theoretical discussions and the designs that
are obtained have managed to avoid large stress concentrations, even for problems
with an initial stress singularity. Compared to the traditional stiffness based de-
signs, the stress constrained designs are considered to be closer to a final design,
which will decrease the total product development time.

The second paper uses the methodology developed in the first paper and applies it
to high-cycle fatigue constraints. Using loads described by a variable load spectrum
and material data from fatigue tests, the tensile principal stresses are constrained by
a limit that is determined such that fatigue failure will not occur. In the examples,
where the mass is minimized subjected to fatigue and static stress constraints,
simple topologies are obtained and the structural parts are sized with respect to the
critical fatigue stress and the yield limit. Stress concentrations are again avoided,
for example by the creation of a radius around an internal corner. A comparison
between static stress constraints based on the von Mises criterion and the highest
tensile principal stresses is given and the examples clearly show the characteristics
of the two formulations.
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Part I

Theory and background





Introduction
1

1.1 Structural optimization in the product development pro-

cess

Light weight designs are desirable in many industrial applications; it is of particu-
lar interest in the avionic industry, but also in the development of cars, trucks and
sports equipment among other applications. By introducing structural optimiza-
tion in the product development process, a lighter design can be achieved without
necessarily increasing the amount of required work. Actually, if the structural op-
timization is well incorporated with the methods used for product development,
the process can be made much faster than conventional product development, as
manual iterations between designers and stress engineers are removed or at least
reduced. A simplified flowchart of the product development process is shown in
Figure 1 and it can be compared to the flowchart for manual design in Figure 2;
at least one step is added, but the need for time consuming manual adjustments is
reduced.

Conceptual design

Detailed design

Topology
opt. CAD

Stress
analysis

Possibly Shape & Size opt.

Final
design

Figure 1: Simplified product development process, using topology optimization
with stress and fatigue constraints.

The work presented in this thesis strives for generating lighter designs in a con-
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CHAPTER 1. INTRODUCTION

CAD
Stress

analysis

Manual adjustments

Final
design

Figure 2: Simplified manual product development process, without any optimiza-
tion.

ceptual design phase. This is achieved by the use of topology optimization with
constraints that correspond to the requirements that the industry apply to a struc-
ture. We minimize the mass while creating load carrying structures and the focus
is on the avionic industry, even though the developed methods apply to a large
variety of industrial applications. In the avionic industry (both military and civil),
lighter designs have many positive effects on performance and concerning environ-
mental aspects. The immediate results of using structural optimization to generate
lighter designs are:

• Better performance,

• Increased pay-load,

• Longer range,

• Reduced emission of CO2.

Further positive effects are reduction of working time and thus development costs.

1.2 Topology optimization

Topology optimization is the most general structural optimization technique and it
is mainly considered in a conceptual design stage. The Greek word topos, meaning
landscape or place, is the origin of the word topology optimization, [45]. Compared
to size and shape optimization, topology optimization allows more freedom as no
initial structure is required. Only the design space, the loads and the boundary
conditions are required in order to find an optimized structure which satisfies the
given constraints.

In topology optimization a fixed finite element mesh is used and one design variable
is connected to each element. The design variable determines if the corresponding
element will represent structural material or a hole. The connectivity of the struc-
ture, while connecting the applied loads to the given boundary conditions, is thus
changed such that the objective function is minimized subjected to the specified
constraints.
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1.3. HISTORICAL BACKGROUND AND MILESTONES

1.3 Historical background and milestones

The first steps towards what today is called topology optimization were made in
the mid 1960s, when a number of papers on optimization of truss structures were
published, e.g. by Dorn et al. [20]. Optimization in the form of pointwise material
or voids in two dimensional applications was introduced by Kohn and Strang in
1986 [51], [31].

The concept of topology optimization that is used today, i.e. penalization of inter-
mediate design variable values, in order to achieve a design with only solid material
and voids, was introduced by Bendsøe in 1989 [3]. The approach in [3] was made
possible due to the work by Bendsøe and Kikuchi from 1988 [5].

The introduction of filters is another major step in the history of topology opti-
mization. Filters made the results better, in the sense that final structures became
easier to interpret and bad FE-modelling was avoided, details will be discussed
in Section 2.2. There are mainly two types of filters, the first was introduced by
Sigmund in the mid 1990s [44] and the second by Bruns and Tortorelli 2001 [11].
The filter developed by Sigmund uses a heuristic approach, where the sensitivity
with respect to a design variable is changed based on the sensitivity with respect
to neighbouring design variables. The filter by Bruns and Tortorelli changes the
design variables x into filtered variables ρ (x) by weighting each design variable
value with the values of neighbouring design variables.
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Discretization of the continuum problem
2

In structural topology optimization, the Finite Element Method, see e.g. [26] or
[16], is used to discretize the continuum problem and to solve the static equilibrium
problem. The finite element mesh is also used to define the design variables. The
continuum problem is defined on the design domain Ω, which in topology optimiza-
tion often has a box shape, as in Figure 3, within which the structure should be
contained. We restrict this work to isotropic materials and four-node quadrilateral
elements are used in the examples, even though the method is not restricted to
this element type, as discussed in Section 6.1.

2.1 Design variables

One design variable, xe, is used for each finite element that discretizes the design
domain Ω. The design variables are bounded by box constraints 0 < ε ≤ xe ≤ 1,
where ε is a small value which prevents that the local stiffness goes to zero when
the design variable approaches its lower bound. A vanishing stiffness would cause
numerical instabilities, which will be discussed more in Section 2.3.

The design variable is a scale factor of element properties, where ε implies that
the element represents a hole and one implies that the element represents solid
material. Thus, the design variables determine the connectivity of the structure
within the given design domain. Usually, a final design which contains only solid
material and holes is required, as this represents a structure with homogenous
material properties. The design variables are continuous and intermediate design
variable values are therefore penalized in order to make these unproportionately
expensive in terms of structural responses. The intermediate values will therefore
be unfavoured by the optimization and thus avoided in the final design.

How to interpret the design variables physically has been an object of many dis-
cussions. Among the most popular interpretations are element thickness in 2D-
problems [40], material density [7], [8], [44], [9] or as composite material [6] in the
form of porosity or layered materials. Due to the lack of a clear physical inter-
pretation, the method was called artificial or fictious material optimization, until
Bendsøe and Sigmund [6] showed that composite materials can be used to physi-
cally interpret the intermediate values. However, such a material, with pointwise
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CHAPTER 2. DISCRETIZATION OF THE CONTINUUM PROBLEM

Ω

Figure 3: A typical design domain Ω and boundary conditions for a topology
optimization problem.

different properties, does not correspond to the usual materials used for load carry-
ing structures. In this work we do not give a physical interpretation of the design
variables, but see them as mathematical scale factors of element properties. Actu-
ally, no physical interpretation of intermediate design variable values is required,
as we expect to obtain a final design representing only solid material and voids.

Using a lower bound, ε > 0, on the design variables is an accepted method in the
literature and it is used by most authors. However, methods for using a zero-valued
lower bound are discussed by some authors: Kočvara [30] optimized trusses and al-
lowed the volume of the bars to be zero, i.e. allowed the stiffness matrix to become
singular and solved the singularity problem by using generalized inverses. A draw-
back was that the computation of a generalized inverse was much more costly than
the computation of the inverse of a non-singular matrix. Washizawa et al. [59] used
the conjugate gradient method and the conjugate residual method to iteratively
achieve values even though the stiffness matrix was singular. Zero bounds have also
been discussed by Bendsøe et al. [4] where the simultaneous approach was used,
i.e. the global state equation was considered as an equilibrium constraint and both
the displacements and the design variables were solved for in the optimization.
Therefore, the global stiffness matrix did not have to be assembled. Bruns [10]
suggested a heuristic method and generated smooth solutions to the state problem
in a node surrounded by void elements by numerically suppressing its degrees of
freedom. Using this technique, the element stiffness matrix did not have to be
assembled for zero-valued design variables. Instead, the corresponding position of
the global stiffness matrix was put to one on the diagonal and the corresponding
position of the load vector was set to zero, in order to ensure that the displace-
ment would become zero. Thus, the problem with infinite number of solutions that
occurs when the stiffness matrix becomes singular was avoided. The method was
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2.2. FILTERING TECHNIQUES

Figure 4: Left: No filter and thus checkerboards. Right: A design variable filter
with radius 1.5 times element size; no checkerboards appear but a transition layer
(grey) between solid and void remains in the final design.

shown for truss designs and for a 2D compliance optimization problem.

2.2 Filtering techniques

Filters are introduced in topology optimization in order to remove checkerboard
patterns and mesh dependency, [48]. Checkerboard pattern refers to a solution
where the material is distributed in a pattern that varies between solid and void
in consecutive elements. Thus, if solid material is displayed in black and voids
are displayed in white, the material distribution looks like a checkerboard, as seen
in the left example in Figure 4. When four-node quadrilateral elements are used
(which is very common in topology optimization and also used in this work), the
stiffness for a checkerboard becomes very high and is therefore favoured by the
optimization. Dı́az and Sigmund [19] proved that the high stiffness is artificial and
due to bad modelling, thus not a representation of an optimal material distribu-
tion. Mesh dependency implies that different solutions are obtained for different
discretizations; typically, smaller elements lead to an increasing number of thinner
structural parts.

Mainly two types of filters are used in topology optimization: the sensitivity filter
developed by Sigmund [44] and the design variable filter (often called density filter)
developed by Bruns and Tortorelli [11]. The sensitivity filter modifies the deriva-
tives in a heuristic way, that is, there is no mathematical proof of the theory. Thus,
it cannot be established what the optimization problem to be solved looks like, as
the derivatives are not consistent with the problem formulation. However, several

9
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b

b

Finite element mesh

Design variable e

Design variable k

r0

rk

Figure 5: Visualization of a filter for design variable xe.

tests in different applications have shown that the filter gives good solutions. The
sensitivity filter in [44] reads

∂̂f

∂xe
=

ne∑
k=1

wkxk
∂f
∂xk

xe
ne∑
k=1

wk

, (1)

where f is the objective or a constraint function, ne is the number of design vari-
ables and wk is the mesh-independent convolution operator, or simply, the weight
factor. The weight factor is in this work defined by a cone, i.e. the weight decreases
linearly with the distance and the weight factor reads

wk =
r0 − rk
r0

, (2)

where r0 is the filter radius and rk is the distance from the centroid of element e
to the centroid of element k, see Figure 5. The weight factor is zero if the distance
is greater than the filter radius r0.

The density filter is more straight forward mathematically. Filtered variables,
ρe (x), are created by taking a weighted average of neighbouring design variables
xk. The sensitivities are calculated based on the filtered variables and when the
design variables have been updated, new filtered variable values are calculated
again. The density filter formulation in [11] looks like

ρe (x) =

∑
k∈Ωe

wkxk
∑
k∈Ωe

wk
, (3)

where the domain Ωe includes all the design variables within the filter radius r0

and wk is given by (2). Common for both filter techniques is the drawback that
a grey area is created between black and white, i.e. the final solution will always
contain a transition region of intermediate design variable values on the boundaries
of the structure, see the right example in Figure 4. This problem is not addressed
in this work. Several ways to remove this transition region has been suggested in
the literature and a comprehensive review and comparison is presented by Sigmund
[46]. The design variable filter (3) is used in this work.
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2.3. PENALIZATION TECHNIQUES

2.3 Penalization techniques

In order to create black-and-white structures, i.e. having design variable values 1
(black) and ε (white) and no intermediate (grey) design variable values, interme-
diate densities are penalized, i.e. made more expensive. The penalization can be
added to influence for example the stiffness, the stresses or the volume and the
two first are used in this work. Due to the penalization, the element properties
for intermediate design variable values are non-physical. However, as discussed in
Section 2.1, the purpose of using penalization is to find a black-and-white solution,
for which the penalization functions have no influence. Examples of penalization
functions are shown in Figure 6 and described below.

2.3.1 Stiffness penalization

The penalization of stiffness was initially introduced by Bendsøe [3] and it was
later named SIMP by Rozvany [43]. SIMP, meaning Solid Isotropic Material with
Penalization, is the most well known penalization method and it is still used by
most authors. An extensive historical discussion of the SIMP method is given by
Rozvany in [40] and [41], to which the interested reader is referred.

The SIMP penalization function, ηK (ρe (x)), is inserted when the global stiffness
matrix K (ρ (x)) is assembled from the solid material element stiffness matrices
Ke as

K (ρ (x)) =
ne∑

e=1

ηK (ρe (x))Ke, (4)

and it is given by

ηK (ρe (x)) = (ρe (x))q , (5)

where q > 1 is a penalization factor that is usually set to q = 3, which by several
authors has been proven to work well. In (4) it is understood why the lower bound
ε on the design variables was introduced in Section 2.1; if ρe (x) = 0 the stiffness
matrix may become singular. The lower bound ε has to be such that inserted into
(5) the penalization function ηK (ρe (x)) = εq is small enough so that the structural
analysis is not affected and large enough to avoid singularity of the stiffness matrix.
Bendsøe and Sigmund [2] recommend a typical value about ε = 10−3; we have used
ε = 0.5× 10−2 throughout all calculations.

Other similar penalization methods exist. Stolpe and Svanberg [50] developed
another stiffness penalization called RAMP, Rational Approximation of Material
Properties, where the penalization instead reads

ηRAMP
K (ρe (x)) =

ρe (x)

1 + q (1− ρe (x))
,

11



CHAPTER 2. DISCRETIZATION OF THE CONTINUUM PROBLEM

which has a nonzero gradient when ρe (x) = 0. In combination with the introduc-
tion of a minimum element stiffness, RAMP allows for a zero-valued lower bound
on the design variables. Another penalization method that also shares the non
disappearing gradients is the SINH method developed by Bruns [9]. In the SINH
method, the actual design variable value is used to calculate the stiffness and in-
stead the volume is penalized by a function ηV (ρe (x)), defined as

ηV (ρe (x)) = 1− sinh (q (1− ρe (x)))

sinh(q)
.

The intermediate design variable values are thus less effective from a volumetric
point of view. A combination of SIMP and SINH, called hybrid SINH is also
discussed in [9], where the structural analysis is based on the SIMP penalization
and the volume calculation is based on the SINH penalization.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρe

η

 

 

ηV (ρe) = 1− sinh(3(1−ρe))
sinh(3)

ηK(ρe) =
ρe

(1+3(1−ρe))

ηS(ρe) = ρ
1
2
e

ηK(ρe) = ρ3e
η(ρe) = ρe

Figure 6: Different penalization functions.

2.3.2 Stress penalization

The SIMP method for penalization of the structural stiffness has become an ac-
cepted method for compliance based problems. In addition to the stiffness penal-

12



2.3. PENALIZATION TECHNIQUES

ization we also penalize the stress for intermediate design variable values. Duysinx
and Bendsøe [21] scaled the stresses such that the local stress was consistent with
the local stiffness, which generated singularity problems (stress singularity is dis-
cussed in Section 4.1) which were avoided by the use of the ε-relaxation approach,
developed by Cheng and Guo [14]. However, as the goal with the penalization is
to achieve a final design without intermediate design variables, there is no need for
the stresses to be consistent with the stiffness, which anyhow, does not represent
a physical stiffness due to the penalization. This was used by Bruggi [8] in the
so-called qp-approach where a stress penalization was used with another exponent
than in the stiffness penalization. This gave the desired property that the stress
σ (x) → 0 when x → 0 and thus, no singularity problem. A similar penalization
technique but with a fixed exponent was used by Le et al. [32] and the same stress
penalization technique is used in Paper 1 and Paper 2. The stress penalization for
design variable xe, ηS (ρe (x)), reads

ηS (ρe (x)) = (ρe (x))
1
2 . (6)

The solid material stress tensor for stress evaluation point a, where a belongs to
the element connected to the e:th design variable, is expressed in Voigt notation,

σ̂a (x) =
(
σ̂ax σ̂ay σ̂az τ̂axy τ̂ayz τ̂azx

)T

and it is calculated by the finite element analysis (FE-analysis), as

σ̂a (x) = EBau (x) ,

where E is the constitutive matrix, Ba is the strain-displacement matrix cor-
responding to stress evaluation point a and u (x) is the global vector of nodal
displacements.

The penalized stress tensor for stress evaluation point a then reads

σa (x) = ηS (ρe (x)) σ̂a (x) . (7)

13





Problem formulations
3

The design variables influence the material properties of the elements and thus the
behaviour of the structure, as was discussed in Section 2. They are changed such
that the objective function f (x) is optimized while the nc number of functions
gc (x) are constrained by the limits gc. A general problem formulation reads

(P)





min
x
f (x)

s.t.





gc (x) ≤ gc, c = 1, .., nc

ε ≤ xe ≤ 1, e = 1, .., ne.

We use a nested formulation where the displacements are uniquely defined by
the design variables and calculated by a standard FE-analysis. An alternative to
the nested approach is the simultaneous approach, as described in [25]. In the
simultaneous approach, both the displacements u and the design variables x are
treated as variables, which are solved for simultaneously and equilibrium is stated
as a constraint.

The global stiffness matrix of the structure, K (ρ (x)) in (4), is positive definite
and thus invertible. Therefore, u can be calculated from the global state equation:

K (ρ (x))u = F , (8)

where F is a vector of external loads. The displacement vector is then a known
function of the design variables, given by

u = u (x) = K−1 (ρ (x))F .

Traditionally, the objective function in topology optimization has been to minimize
the compliance subjected to a constraint on the allowable mass. This formulation
reads

(Ptraditional)





min
x

1

2
F Tu (x)

s.t.





ne∑

e=1

meρe (x) ≤M

ε ≤ xe ≤ 1, e = 1, .., ne,

15



CHAPTER 3. PROBLEM FORMULATIONS

where me is the solid element mass of the element related to the e:th design variable
and M is the total available mass.

The traditional formulation is very popular, much due to its computational effi-
ciency. However, from an engineering point of view it is often more interesting to
find the lightest design that has stresses below some stress limit, such as the yield
limit, and that is designed so that fatigue failure will not occur. With (Ptraditional),
several manual test have to be made for different allowable masses and each op-
timized structure has to be evaluated with respect to e.g. stresses. This manual
design iteration can be very time consuming and thus expensive, especially if the
optimization and the stress analysis are made by different engineers. Therefore,
the stiffness based optimization (Ptraditional) is often used to find the optimal load
paths rather than to achieve a conceptual design, and it is used only for comparison
purpose in this work.

By introducing stress and fatigue constraints in topology optimization, a conceptual
design that satisfies, or at least almost satisfies, the stress and fatigue requirements
is achieved and the conceptual design is thus closer to a final design. The steps
between conceptual design, preliminary design and detailed design are therefore
smaller, which will make the product development process faster. Further, the
objective function can be to minimize the mass, which means that the lightest
design that also satisfies the constraints is achieved without any manual design
iterations.

In Paper 1, stress constraints are introduced for different objective functions; the
first problem formulation reads

(P1a)





min
x

ne∑

e=1

meρe (x)

s.t.





σsi (x)

σs
≤ 1, i = 1, .., ni

ε ≤ xe ≤ 1, e = 1, .., ne,

where σsi (x) is the stress measure for stress constraint number i and σs is the static
stress limit. As will be discussed in Section 4, we use a clustered approach, where
the number of stress constraints ni will be much lower that the number of design
variables ne.

The stiffness of a structure found by (P1a) might become adequate due to the
stress constraints, but there is no guarantee, as was also noticed by Rozvany [39].
If the stiffness is also of importance, a compliance, displacement or eigenfrequency
constraint can be added to (P1a). Alternatively, the stress constraints in (P1a)
can be added to (Ptraditional) in order to achieve the stiffest possible design for
a prescribed amount of material, but where also stresses are considered. This
formulation will again require manual design iterations in order to find the lowest
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Figure 7: The L-beam problem.

possible mass for which a feasible design is found; the formulation reads

(P1b)





min
x

1

2
F Tu (x)

s.t.





σsi (x)

σs
≤ 1, i = 1, .., ni

ne∑

e=1

meρe (x) ≤M

ε ≤ xe ≤ 1, e = 1, .., ne.

Paper 1 reviews (P1a) and (P1b) and comparisons are also made with (Ptraditional).
It is found that, compared to the traditional formulation, a different topology is
obtained when stress constraints are used and that it is not sufficient to start with
a stiffness optimization and then add stress requirements in later design stages.

In order to visualize the differences between the formulations, the L-beam problem,
as shown in Figure 7, is solved for the three formulations: (Ptraditional), (P1a) and
(P1b). The mass obtained for (P1a) is used as mass limit in the two other formula-
tions, so that all designs have the same mass. Particular focus is on removing the
internal corner, in order to avoid a stress concentration. The results are shown in
Figure 8 and clearly show the differences in design. For (P1a) and (P1b) a radius is
created in the internal corner, whereas (Ptraditional) creates a singular stress point.
More comparisons are made in Paper 1.

Paper 2 introduces fatigue constraints to (P1a), i.e. both static stresses and stresses
related to a fatigue analysis are used as constraints. The problem formulation in
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(a) Solution for (Ptraditional) (b) Solution for (P1a) (c) Solution for (P1b)

Figure 8: Example of solutions for different problem formulations. The pictures
are taken from Paper 1.

Paper 2 reads

(P2)





min
x

ne∑

e=1

meρe (x)

s.t.





σsi (x)

σs
≤ 1, i = 1, .., ni

σfj (x)

σf
≤ 1, j = 1, .., nj

ε ≤ xe ≤ 1, e = 1, .., ne,

where the stress measure used for fatigue constraint number j is denoted σfj (x) and

the fatigue stress limit σf is chosen such that the cumulative damage D is below
the allowable cumulative damage D, for prescribed loading conditions during the
entire design life. A clustered approach is used also for the fatigue constraints; the
number of fatigue constraints nj is therefore much lower than ne. Paper 2 also
discuss an alternative, more general, formulation of the fatigue constraints, where
D ≤ D is used as constraint directly; further details are discussed in Section 4.2.
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4

4.1 Stress constraints

Stress constraints have been discussed since the very beginning of structural op-
timization: Dorn et al. [20] used stress constraints in truss optimization in 1964
and in pioneering works on topology optimization by Bendsøe and Kicuchi from
1988 [5] and by Bendsøe from 1989 [3], stress constraints were mentioned, even
though it was not used in the optimization. The interest in stress constraints is
not surprising as stress is among the most used criterion for engineering purpose.

Since the pioneering works, the compliance based formulation has been synonymous
with topology optimization, much due to the added complexity involved with stress
constraints. However, stress constraints in topology optimization have been given
attention by several authors and the main difficulties that have been associated
with stress constraints are:

• Singularity,

• Computational cost due to the large number of constraints.

The singularity problem was first discovered on a truss design by Sved and Ginos
[57], where it was found that the stress constraint in a bar is violated when the area
of the bar approaches zero, which restraints the bar from being removed. The same
applies to 2D and 3D structures. Singularity in optimization problems is discussed
by Kirsch [28], Cheng and Jiang [13], Rozvany and Birker [42], Guo and Cheng
[24] among others and one way to avoid the singularity problem is the ε-approach
suggested by Cheng and Guo [14].

The stress penalization method that we use, equation (6), which was also used in
[32], originates from Bruggi [8], where it was noted that the stress actually do not
need to be proportional to the penalized stiffness. The penalization functions we
use, (5) and (6), do not affect the stiffness or stress when the design variable is at
its upper bound and they approach zero when the design variable do so. As the
reason for introducing the penalization is to end up in a black-and-white design,
the stiffness and stress of the optimized design will not be severely influenced by
the penalization.

The ε-approach was successfully used by Duysinx and Bendsøe [21] and Duysinx
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and Sigmund [22], where global and local stress constraints were used, respectively.
Local stress constraints imply that one stress constraint is used in each stress
evaluation point of each element and global means that one stress constraint is
used for the entire model. Local and global stress constraints were also evaluated
by Paris et al. [37] and the same authors evaluated a block aggregated approach
in [38], where elements were grouped and one stress constraint was applied for
each group. A similar approach was made by Le et al. in [32] where a regional
stress measure was defined. Our approach relies on the ideas in [38] and [32]; in
Paper 1 we develop and evaluate different clustering techniques which, together
with a suitable clustered stress measure, are intended to give good representations
of the local stresses, despite using a low number of constraints. The clustered
stress measure and the clustering techniques are discussed in Section 4.1.1 and
Section 4.1.2, respectively.

Another approach to control local stresses with a low number of constraints is sug-
gested by Werme in [60], where stress constraints are used in a maximum stiffness
problem. Werme uses an approach with active constraints, i.e. only the design
variables related to stresses that in the current iteration are considered to be close
enough to their bound are used as constraints. Compared to the local approach,
fewer constraints are therefore required, but the method still gives a high number
of constraints and rather coarse meshes are used in the examples. Werme defines
the active set of constraints as A(xl) = {i ∈ {1, ..., n}|σ2

i (x
l) > κσmax}, where A is

the active set, l is the iteration number, σi (x) is the current local von Mises stress,
σmax is the constraint bound and κ > 0 is the threshold value, e.g. κ = 0.5. In the
paper, a design is generated with topology optimization and the design variable
values are then rounded to zero or one. The design is then post-processed using
SLIP, as described in [56], which removes unwanted designs such as too thin bars.

Some commercial software, such as Optistruct [36], can handle stress constraints
based on a single von Mises measure. However, as mentioned earlier, the global
approach is too rough and Optistruct finds a solution for the L-shaped beam in
Figure 7 that does not avoid the singularity in the internal corner. For comparison
purpose, a topology optimization using (P1a) is made in Optistruct and it is com-
pared to the formulation in this work, which is implemented in TRINITAS [58].
The results are seen in Figure 9 and Table 1. As is seen in the figure, the solution
in Optistruct is comparable to a compliance based design, as no radius is created
in the internal corner; compare with Figure 8(a). Optistruct was used with default
settings, except that a “minimum member size control”, i.e. a filter, as described
in [62], was added with the same radius as used in TRINITAS. On the one hand,
Optistruct finds a solution in a much lower number of iterations and much shorter
computational time1, see the summary in Table 1. On the other hand, the for-
mulation in this work finds a lighter design that also creates a radius in order to
avoid the stress concentration in the internal corner. The suggested approach to

1The optimizations were performed on different computers, but the two times presented in
Table 1 give an estimate of the differences in computational time.
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(a) Solution for (P1a) using Optistruct. (b) Solution for (P1a) using this work,
implemented in TRINITAS.

Figure 9: Comparison between commercial software and this work, using three
clusters, see also Table 1.

Table 1: Comparison between commercial software and this work, using three
clusters, see also Figure 9.

Software Mass [kg×10−3] Number of iterations Time [minutes]

Optistruct 35.5 34 2
TRINITAS 23.2 500 59

remove the stress concentrations in Optistruct [36] is to continue with local shape
optimization. However, in this case, local changes will not be sufficient to reduce
the stress concentration and we claim that the total product development time to
create a final design will be shorter using the formulation in this work.

4.1.1 Clustered stress measure

Based on the work with global stress constraints in e.g. [21] and from commercial
software [36], it is found that the global approach is too rough and generates designs
that are very similar to traditional compliance minimization results, see Figure 9(a)
and Figure 8(a). This conclusion was also found in the examples in [32]. Topologies
that avoid stress concentrations may be obtained with the local approach, but it
becomes too expensive for anything else than small test examples.

The clustered approach allows for a trade-off between accuracy and computational
cost. The main reason for using clusters is to reduce the na number of local
constraints (one for each stress evaluation point) to ni � na number of clustered
constraints (one for each stress cluster) and still maintain the possibility to control
the local stresses. We may think of the two extremes: ni = 1 and ni = na, which
bring us back to the global and local approaches, respectively.
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The clustered stress measure we use is a modified P-norm of the local von Mises
stresses, even though the method is not restricted to the von Mises criterion. A
P-norm has been used in earlier work to group local stresses, [61], [22] and [32],
but our modification is different. The local stresses σvMa (x), where a is the stress
evaluation point, are raised with the P-norm factor p and summed together with
all other points that belong to the current cluster, i. We then divide by the number
of stress evaluation point indices Ni that belong to the current set Ωi ⊂ Ω. The
clustered stress measure reads

σsi (x) =

(
1

Ni

∑

a∈Ωi

(
σvMa (x)

)p
) 1

p

. (9)

The modification is such that if all the local stresses in a cluster are the same, i.e.
σvMa (x) = σvM , we get the desired clustered stress measure

σsi (x) =

(
1

Ni

∑

a∈Ωi

(
σvMa (x)

)p
) 1

p

=

(
1

Ni

) 1
p (
Ni

(
σvM

)p) 1
p = σvM . (10)

For all other cases, σsi (x) will underestimate the local stresses, which means that
we are not guaranteed (and it is not probable) to have a solution with local stresses
below the stress limit. However, higher local stresses can be allowed because the
topology optimization is made in a conceptual design phase, where the aim is to
find a good structural shape, not to do the final sizing.

The exponent p in (9) has a large influence on what the clustered stress measure
represents: p = 1 gives the mean stress for each cluster whereas an increasing
p brings the clustered stress measure closer to the maximum local stress of each
cluster. As shown in [22], the limit value of (9) when p approaches infinity reads

lim
p→∞

(
1

Ni

∑

a∈Ωi

(
σvMa (x)

)p
) 1

p

= max
a∈Ωi

σvMa (x) .

Due to numerical problems, p should not be too high. Based on numerous test on
different test examples and the evaluations in [32] and [22], we use p = 8 in Paper
1 and p = 12 in Paper 2.

4.1.2 Distribution of points into clusters

The clustered stress measure (9) is greatly influenced by how the clusters are cre-
ated, i.e. which stress evaluation points that belong to the sets Ωi, i = 1, .., ni. Two
different methods for how the clusters in (9) are created are discussed in Paper 1:
the Stress level approach and the Distributed stress approach.

If the set Ωi contains stress evaluation points that have similar stress levels, then
σsi (x) will be a good approximation of the local stresses at these stress evaluation
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points, as the case shown in (10) is approached. This is exactly what we strive for
in the Stress level approach, where the clusters are created as follows: all stress
evaluation points are sorted in descending order based on the stress level and the
first na/ni number of points create the first cluster, the next na/ni points create
the second cluster etc. until all ni number of clusters are filled. We use the same
number of points in all clusters, except for the last cluster that might contain
fewer points. A variable number of clusters might however be used in future work,
where the first cluster, with the highest stresses, could contain a smaller number of
points, in order to get an even better control of the highest local stresses. The last
clusters, containing low stressed points, will typically have a very low clustered
stress measure and will thus not be active in the optimization. The clustering
scheme for the Stress level approach reads

σ1 ≥ σ2 ≥ σ3 ≥ ..... ≥ σna
ni︸ ︷︷ ︸

cluster 1

≥ ..... ≥ σ 2na
ni︸ ︷︷ ︸

cluster 2

≥ ..... ≥ σ (ni−1)na
ni

≥ ..... ≥ σna︸ ︷︷ ︸
clusterni

.

In the Distributed stress approach, the stress evaluation points are instead dis-
tributed so that each cluster gets approximately the same clustered stress measure,
i.e. each cluster is created by high and low stressed points. The motivation for this
approach is that a high stress value might be damped by a presumable large num-
ber of low stressed points that it is clustered with. Therefore, convergence may be
simplified. The clustering scheme for the Distributed stress approach reads

σ1︸︷︷︸
cluster 1

≥ σ2︸︷︷︸
cluster 2

≥ ..... ≥ σna
ni
−1

︸ ︷︷ ︸
cluster (ni−1)

≥ σna
ni︸︷︷︸

clusterni

≥ σna
ni

+1
︸ ︷︷ ︸

cluster 1

≥ ..... ≥ σna︸ ︷︷ ︸
clusterni

.

4.1.3 Periodic reclustering

Another important issue regarding the clustering is that the clusters may have
to be updated periodically. For example, if the clusters are created based on the
stresses of the initial design, then, after a few iterations, the points are no longer
sorted into the clusters in the way they were intended to. When this reclustering is
made, the problem is slightly changed as the clustered stress measure is calculated
based on another set of points than in the previous iteration. The two clustering
techniques as well as the influence of the reclustering frequency are evaluated in
Paper 1.

4.2 Fatigue constraints

Fatigue constrained topology optimization is a research area that previously has
been almost unexplored, much due to the problems that occur for stress constraints.
Structural optimization in general has however been used to find designs that fulfil
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fatigue life aspects in a number of works. For example, Kaya et al. [27] investigated
a failed clutch fork and used compliance based topology optimization, followed by
response surface based shape optimization, in order to achieve a design with a
lower von Mises stress. The fatigue analysis was made with a constant amplitude
load curve and the software MSC Fatigue [49]. Mrzyglod and Zielinski [34] used
Dang Van’s criterion to formulate a multiaxial high-cycle fatigue constraint in a
shape optimization of a suspension arm. The authors evaluated different criteria
in [35] and discussed the implementation in [33]. The fatigue analysis software
FEMFAT was integrated into the optimization software TOSCA from FE-design
[23] in [29], where shape and topology optimization was made with fatigue con-
siderations. In [18], the fatigue life was maximized in a 3D topology optimization
problem, considering elasto-plastic low-cycle fatigue. Optistruct [36] also has an
integrated fatigue analysis software and can have fatigue constraints in topology
optimization. However, based to the performance of the stress constraint shown in
Figure 9, the method is expected to be too rough.

Paper 2 introduces high-cycle fatigue constraints that are based on the highest
tensile principal stresses. The material data used in the fatigue analysis is based
on uniaxial fatigue tests; therefore, the highest principal stresses correspond better
to the material data than what e.g. stresses according to the von Mises criterion
do. The tensile stresses have a much higher influence on the fatigue life than
compressive stresses, which is the reason why only tensile stresses are considered.
The fatigue analysis is made with an in-house code from Saab AB [1] and it is
used as a tool to find a structure that can endure repeated loading conditions
without failure. No attention is therefore given to mechanisms behind the fatigue
phenomenon, such as material aspects, the influence of different load ratios etc.

We focus on structural parts on a military aircraft, for which fatigue life is often
expressed in terms of flight hours. The aircraft is designed for a specific number of
flight hours; therefore, structural optimization can be used to design the part such
that fatigue will not occur during the specific finite life, or before predetermined
service intervals. That is, a so-called Safe-Life approach is used.

The aim of the fatigue constraints is not to replace a final fatigue analysis, but
to find a conceptual design that with the least possible changes can be changed
into a final design, for which fatigue failure will not occur. In order to decrease the
number of fatigue constraints, the same approach as for the static stress constraints
is used: stress evaluation points are clustered using the Stress level approach and
the clusters are updated every iteration. Clustered stress measures σfj (x) are
calculated by (9), but where the local stresses are the highest tensile principal
stresses, instead of the von Mises stresses. One fatigue constraint is then applied
to each cluster, rather than to every stress evaluation point. The fatigue analysis
is very sensitive to the stress; it is thus contradictory to use the clustered approach
as we know that local stresses will be higher. Further, the finite element mesh and
the element type that is used in the topology optimization may not be adequate
for fatigue analysis. However, the clustered approach is a necessity to be able
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to solve anything but very small problems and the mesh is sufficient in terms of
obtaining optimized designs that are free from large stress concentrations and that
are dimensioned with respect to the critical fatigue stress.

4.2.1 Load spectrum and material data

A local load spectrum, that describes the variation of the applied load, has to be
available for the fatigue analysis. The local load spectrum can be determined from
a global spectrum, e.g. by the use of a global FE-model, where the global spectrum
describes all the missions the aircraft is intended to fulfil during its entire life. Each
mission, which for a fighter aircraft can be for example training, combat or show,
is usually flown a large number of times and the loads for the manoeuvres in the
missions are estimated. The loads are measured during flight using accelerometers
and strain gauges, which increase the confidence in the load spectrum, but in an
early design phase of an aircraft project, when mass and stiffness of the aircraft
are not completely known, the load spectrum will contain uncertainties.

In this work we do not consider how the loads are determined, we assume that the
loads are known and that load pairs have been identified from peak and trough
values, using some cycle counting method, such as Rainflow count [52], [17]. Fig-
ure 10 shows an example of a load spectrum, where load pairs have been identified.
It specifies a load factor f of the mass m and gives the number of cycles n of each
load pair. The corresponding load at each load level is F = mgf .

The allowable number of cycles are determined from Wöhler- or Haigh diagrams,
which are based on numerous fatigue tests made on polished test specimens. A
Wöhler diagram describes the number of cycles to fatigue failure as a function of
the stress amplitude, for a constant load ratio R = Fmin/Fmax. If the load ratio
is altered, a Haigh diagram is achieved; it describes the relationship between the
mean stress and the stress amplitude for a specific number of cycles. Thus, it
represents a series of Wöhler diagrams, as shown in Figure 11. Reduction of the
diagrams is discussed in Section 4.2.3.

4.2.2 Fatigue analysis

The fatigue methodology in Paper 2 is a traditional high-cycle fatigue methodology,
where the damage for each load pair in a given load spectrum is accumulated by
Palmgren-Miner’s rule. No distinction is made between crack initiation, crack
propagation and fatigue failure; detailed descriptions of the methodology are given
by Suresh [52] or Dahlberg and Ekberg [17].

We only consider materials that are in a linear elastic region. A unit load Funit is
therefore used in the FE-analysis and the corresponding stress σunit (x) is scaled
according to the load levels in the load spectrum. We express the FE-analysis as
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Figure 10: Load spectrum representing the load factor n on the ordinate and the
logarithm of the number of cycles n on the abscissa.

an operator FE that maps a design x and the unit load to a corresponding stress,
that is

σunit (x) = FE (Funit,x) . (11)

For each load pair l, the corresponding mean stress σmean
l (x) and amplitude stress

σamp
l (x) are determined by operators Sl, such that

(σmean
l (x) , σamp

l (x)) = Sl (σunit (x)) . (12)

The allowable number of cycles for each load pair Nl is then determined from the
Haigh diagram by operators Hl, as

Nl = Hl (σ
mean
l (x) , σamp

l (x)) = Hl (Sl (σunit (x))) . (13)

The cumulative damage D (σunit (x)) is determined according to Palmgren-Miner’s
rule, by comparing the actual number of cycles nl, given by the load spectrum,
with the allowable number of cycles for all L load pairs in the spectrum. Palmgren-
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Figure 11: Haigh diagram, the curves represents constant life, i.e. different N .

Miner’s rule reads

D (σunit (x)) =
L∑

l=1

nl
Nl

=
L∑

l=1

nl
Hl (Sl (σunit (x)))

. (14)

and fatigue failure is expected to occur if D ≤ D ≤ 1.

Usually, when a given structure is analysed, there are a relatively low number of
critical spots that need to be analysed with respect to fatigue. This is not the
case in topology optimization where the design is achieved iteratively. Therefore,
all points need to be constrained and in this work the stress response in (11) is
replaced by the clustered stress measures σfj (x).

4.2.3 Fatigue data

Several factors influence the local resistance to crack initiation for a structural
part. The loading conditions, the local stresses and material properties are perhaps
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the most obvious and these are also the factors that have the highest influence.
However, the local stresses might be affected by stress concentrations, which also
have a prominent effect on the fatigue life. If a certain stress occurs in a point
with a stress concentration, the damage for that stress is smaller than if the same
stress would occur in a point without a stress concentration. This is because the
volume affected by the high stress is smaller if it occurred at a stress concentration,
and the probability that a material defect exists in that volume is thus smaller.
With the same argument, the volume affected by a certain stress compared to the
volume of the test specimen has an influence on the expected life.

Fatigue crack initiation is a surface phenomenon. The highest stresses often occur
at the surface, which in combination with a surface roughness due to machining
operations, surface treatments and environmental ware makes the surface more
prone to crack initiation. These factors also have to be considered in the fatigue
analysis and are so by reduction factors that reduce the allowable number of cycles
in the Wöhler and Haigh diagrams. The diagrams are constructed such that the
probability of failure, based on data from the test specimens, should be below a
certain percentage. The reductions are then made in order to make the diagrams
valid for the specific point of interest, rather than for the test specimen. The
diagram is also reduced with respect to the risk of scatter in the material.

In the topology optimization, the fatigue analysis has to be simplified and the
factors are consequently not considered as variables, but are specified prior to the
optimization and then considered as constant, so that the fatigue constraints are
only dependent on the stress. The surface roughness and the surface treatment
are likely to be the same for the entire structure, as well as the environment it
will operate in. The factor that is the hardest to estimate, which unfortunately
also has a high influence on the fatigue life, is the stress concentration. Notched
test specimens are used to create Haigh diagrams for different Kt-factors. The
stress from the FE-analysis should then be divided by the Kt-factor, to get a
theoretical nominal stress, which is then used with the correct Haigh diagram.
This implies that different diagrams should be used for different points on the
structure. However, in topology optimization, where all points contribute to a
fatigue constraint, it is desirable to use the same diagram for the entire structure.
A simplified approach is therefore used; it is assumed that the stresses from the
FE-analysis belong to points where there is a small stress concentration. The
material data for this assumed Kt-factor is then used for the entire structure.
Fatigue failure most often occurs in a high stress concentration; therefore, fatigue
failure is assumed to be less likely to occur than what we calculate. In Paper 2 we
use Kt = 1.5, experience in future work is required to find out just how rough this
estimation is. If it is too conservative, the fatigue life will be underestimated, which
will result in heavy structures. If it is not conservative enough, the optimization
will find structures with low mass that will not satisfy the fatigue life in later design
phases.
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(a) Flow scheme for fatigue constraints in (P2).
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Figure 12: Flow schemes corresponding to the two presented approaches to fatigue
constraints.

4.2.4 Formulation of the fatigue constraints

In paper 2 we introduce two approaches towards fatigue constraints; both ap-
proaches are based on that the part is designed for a specific life time, which is
used to determine a fatigue criterion.

In the first approach, the cumulative damage, (14), is used as constraint. Thus,
in every iteration, the fatigue calculation is made once for each fatigue constraint,

in order to determine the cumulative damages Dj

(
σfj (x)

)
. The flow scheme is

visualized in Figure 12(b). This approach can be used if some factor is updated in
the optimization, for example if some estimate of local Kt-factors should be used
in future work.

In the second approach, all factors discussed in Section 4.2.3 are fixed, so the design
dependence is removed from the fatigue analysis, i.e. from (12)-(14). Therefore, the
fatigue analysis can be separated from the optimization problem. Thus, the critical
fatigue stress σf , which is the highest stress that gives an allowable cumulative
damage, can be determined in advance and then used as constraint limit in the
topology optimization problem (P2). The flow scheme is shown in Figure 12(a) and
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the critical fatigue stress is found by solving the following problem:

(Pcrit)





max
σf

σf

s.t.

{
L∑

l=1

nl

Hl

(
Sl
(
σf
)) ≤ D.

Note that the two approaches solve the exact same problem as long as no factors
are updated. However, the second approach is used in Paper 2 because no factors
are updated and as the fatigue software does not need to be implemented into the
FE and optimization code for this approach.
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Solving the optimization problem
5

5.1 Sensitivity analysis

Sensitivity analysis is a central part in topology optimization as the mathematical
programming algorithms are based on sensitivity information. As a note, there
exist non-gradient based topology optimization methods; however, motivated by
the critical review by Sigmund [47], these methods are not discussed in this work.

Depending on the type of problem to be solved, two different approaches are used
for the sensitivity analysis: the direct and the adjoint method, [2], [15]. The latter
is preferable when there are more design variables than constraints, which is usually
the case in topology optimization.

In structural optimization the objective function and the constraint functions are
often dependent on the displacements, i.e. f (x,u (x)) and gc (x,u (x)). Using
the chain rule, we get the sensitivity of the constraints in the general problem
formulation (P), as

∂gc (x,u (x))

∂xb
=
∂gc (x,u (x))

∂xb
+
∂gc (x,u (x))

∂u (x)

∂u (x)

∂xb
, (15)

where the sensitivity of the displacements is required. This is calculated from the
equilibrium equation (8), here expressed as

K (x)u (x) = F (x) ,

with the derivative

∂K (x)

∂xb
u (x) +K (x)

∂u (x)

∂xb
=
∂F (x)

∂xb
.

By rearranging we find that the displacement sensitivity reads

∂u (x)

∂xb
= K−1 (x)

[
∂F (x)

∂xb
− ∂K (x)

∂xb
u (x)

]
, (16)

which is now inserted into (15):

∂gc (x,u (x))

∂xb
=

∂gc (x,u (x))

∂xb
+
∂gc (x,u (x))

∂u (x)
K−1 (x)

[
∂F (x)

∂xb
− ∂K (x)

∂xb
u (x)

]
. (17)
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CHAPTER 5. SOLVING THE OPTIMIZATION PROBLEM

From here on the two methods differ: in the direct method, (16) is solved once
for each design variable and the result is inserted into (15) once for each b. In the
adjoint method, an adjoint variable vector λc is defined as

λc =

(
∂gc (x,u (x))

∂u (x)
K−1 (x)

)T
= K−T (x)

(
∂gc (x,u (x))

∂u (x)

)T
. (18)

Inserting λc into (17) yields

∂gc (x,u (x))

∂xb
=
∂gc (x,u (x))

∂xb
+ λTc

[
∂F (x)

∂xb
− ∂K (x)

∂xb
u (x)

]
. (19)

In the adjoint method (18) has to be solved for each constraint and each λc is then
inserted into (19).

The sensitivity analysis of the stress and fatigue constraints in Section 4.1 and
Section 4.2 are derived in Paper 1 and Paper 2, respectively.

5.2 The method of moving asymptotes, MMA

The Method of Moving Asymptotes, MMA, developed by Svanberg 1987 [53] is
among the most used algorithms for solving topology optimization problems. MMA
creates subproblems that approximate the original problem at the current design.
The subproblems are chosen such that they are separable and convex, i.e. there is
always an optimal point for the subproblems and they are easily solved.

MMA uses the current and previous design variable values in order to determine if
the convergence is smooth or oscillating, upon which the solver modifies the allow-
able design variable changes, so that the solver is more conservative or allows for
faster convergence. The allowable changes are determined by vertical asymptotes
which are updated in each iteration and chosen, for each e = 1, .., ne, such that
Lke < xke < Uk

e , where k denotes the current iteration and Le and Ue are the lower
and the upper asymptotes, respectively. MMA has its roots in CONLIN, which is
obtained as a special case if the asymptotes are chosen as Le = 0 and Ue → ∞.
For k ≥ 2, the asymptotes are updated as

Lke = xke − γke
(
xk−1
e − Lk−1

e

)

Uk
e = xke − γke

(
Uk−1
e − xk−1

e

)
,

where γke is specified in [54] and [55] as

γke =





0.7 if
(
xke − xk−1

e

) (
xk−1
e − xk−2

e

)
< 0,

1.2 if
(
xke − xk−1

e

) (
xk−1
e − xk−2

e

)
> 0,

1 if
(
xke − xk−1

e

) (
xk−1
e − xk−2

e

)
= 0.

In this work, the suggested value on the widening of γkj has been narrowed in order
to achieve a more conservative setting of the solver. Instead of 1.2, values between
0.05− 1.1 are used in Paper 1 and 1.08 is used in Paper 2.
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5.2. THE METHOD OF MOVING ASYMPTOTES, MMA

Another popular algorithm is the optimality criteria (OC) method, which is used
extensively in the literature for solving (Ptraditional). The development of the method
can be traced back to the 1960s and it has been used since the 1970s, see [2] for
historical details. The OC method is simpler than MMA and uses a fixed move
limit, but the method gives fast convergence for (Ptraditional).

33





Future work
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6.1 Higher order elements and three dimensional problems

Four-node bilinear elements are usually used in topology optimization problems,
much due to their simplicity and low computational cost. However, the bilinear
elements have a number of drawbacks, [16], e.g. parasitic shear, i.e. when exposed
to pure bending they display not only bending strain, but also shear strain, which
gives the elements a stiffer behaviour. This behaviour is avoided for 2D problems
if eight-node Serendipity or nine-node Lagrangian elements are used instead.

The extension into three dimensional problems is necessary in order to use topology
optimization for industrial applications. Only a very limited number of problems
can be simplified to the 2D plane stress assumption that we have discussed so far.
Therefore, both papers in this thesis are formulated in a general manner, so that
they apply to elements with several stress evaluation points as well as 3D problems.
However, the current implementation does not yet fully support this and only 2D
problems with bilinear elements have been solved in the current work.

6.2 Fatigue constraints only on the boundaries

Fatigue failure is due to an initiated crack that has propagated until the remaining
structure becomes too weak and a fracture occurs. Crack initiation is a phe-
nomenon that usually occurs at the surface, as the surface is subjected to environ-
mental ware, might have a rough finish and as the highest stresses often occur at
the surface. There are some exceptions, e.g. welds and casts, but those are usually
avoided in the avionic industry and are consequently not considered in this work.
It is thus sufficient to consider the boundaries of a structure while evaluating fa-
tigue critical points. A stress state considered for fatigue in a 3D structure is thus
biaxial and in a 2D structure it can be considered as uniaxial.

When formulating the fatigue constraints, the fact that fatigue is a surface phe-
nomenon can be used; only the elements that in the current iteration are close to
a boundary may therefore be subjected to fatigue constraints. A visualization is
shown in Figure 13, where the circles represent the filter radius. This will allow
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b A

b B

b C

b D

Figure 13: Subset of the FE-mesh. Dark grey=structural member, white=void,
bright grey=intermediate value. Elements A and B will not be subjected to fatigue
constraints. Elements C and D are close to a boundary and will have fatigue
constraints.

for fewer fatigue constraints and thus shorter computational time, or alternatively,
fewer members may be related to a fixed number of fatigue constraints, meaning
that the clustered stress measures will be better approximations of the considered
local stresses. However, the boundaries in the topology optimization are not well
defined, as they are blurred due to the filter and as they might move and change
shape between iterations.

Using the filter we suggest a simple, but efficient, way to identify elements that
in the current iteration are surrounded by solid or void elements, i.e. that do not
belong to a boundary and thus will not be subjected to fatigue constraints. The
basic idea is that an element is not located at a boundary if it is totally surrounded
by elements with the same design variable value as its own. If we look at the design
variable filter in (3), we realize that this information already exists and it is simply
when ρe (x) = xe.

When all design variables inside design variable xe’s filter radius are equal to xe,
we have

ρe (x) =

∑
k∈Ωe

wkxk
∑
k∈Ωe

wk
= xe

∑
k∈Ωe

wk
∑
k∈Ωe

wk
= xe. (20)

Thus, the fatigue constraint may be removed from elements where ρe (x) = 1 or
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Figure 14: Variation of the design variable values

ρe (x) = ε and |ρe (x) − xe| < ξ, where ξ is a small positive value that allows for
some numerical tolerance. If a boundary is changed in the next iteration, other
elements may be subjected to a fatigue constraint.

Figure 14 shows a subset of the finite element mesh in an optimized design, where
some design variable values are displayed. The filter uses a radius of 1.5×element
length, i.e. the two vertical and the two horizontal neighbouring design variables
contribute to ρe (x). Looking at a horizontal row of elements, we find that only
five of the displayed elements along the horizontal would be identified as close to
the boundary and fatigue constraints would therefore only be applied to the five
respective elements.

6.3 Removal and reintroduction of design variables

The idea presented in Section 6.2 can also be used to remove design variables from
the optimization problem, in order to decrease the computational cost. As the con-
nectivity change during iterations, design variables may be removed if ρe (x) = 1 or
ρe (x) = ε and |ρe (x)−xe| < ξ, and a removed design variable may be reintroduced
if |ρe (x)−xe| ≥ ξ. The gain in efficiency, i.e. reduction of computational cost, will
be achieved first when solid and void areas are created and the computational cost
will decrease as the solution converges towards a black-and-white solution.
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New structural members most often develop from areas with intermediate design
variable values or as branches from solid areas and not from voids since the struc-
tural response in such areas is weak. With this removal and reintroduction method,
new structural members can arise through a void between solid members, but it will
take several iterations more than regularly as the design variables have to become
active before they can change.

A somewhat similar approach, using the filter, was proposed by Bruns and Tor-
torelli in [12], where elements whose respective design variable approached their
lower bound were removed from the structural analysis and sensitivity analysis, if
the design variables within its filter radius also had reached the lower bound.

6.4 Actual risk of fatigue failure

As a last remark and opening for future work, a short discussion is made regarding
the actual risk of fatigue failure. The fatigue analysis is probability based, where
material data is created such that fatigue will not occur within a certain probability.
A structural optimization with fatigue constraints strives for a design where every
point on the structural part is at the fatigue limit. The probability of failure will
therefore be higher in an optimized part, compared to a manually designed part,
where there are often a very limited number of points that might be critical for
fatigue. Thus, for a complete aircraft, where many structural parts have been
optimized, the probability of failure is further increased and the total probability
for a complete fleet of aircrafts will need to be constrained. Therefore, suitable
safety factors have to be considered in order to keep the total probability of failure
at an allowable limit.
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Conclusions
7

This work presents a step towards more advanced topology optimizations in a
conceptual design stage. The main objective has been to generate light weight
structures that are well prepared for the requirements, in this case stress and
fatigue, that are used in industrial applications. The designs obtained in this
work are appealing in the sense that large stress concentrations are avoided and
as the structural shapes are simple. However, an extension to three dimensional
problems in future work is required in order to evaluate the methods for industrial
applications.

The clustered approach that has been developed gives a trade-off between com-
putational cost and accuracy and has during the work proven to work well. The
computational cost is considerably higher than for the traditional stiffness based
problem formulation, but as the designs obtained in this work are more mature,
the total product development time is expected to be shorter.
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Review of included papers
8

Paper I

Stress constrained topology optimization

In the first paper, static stress constraints based on von Mises stress criterion are
introduced in topology optimization problems, where the mass is minimized or the
stiffness is maximized. The main focus is on how to formulate the stress constraints
such that the computational cost is reasonable, while a good representation of the
local stresses is maintained. This is achieved by dividing the stress evaluation
points into clusters, where a clustered stress measure is calculated. One stress
constraint is then applied to each cluster instead of each stress evaluation point,
which greatly reduces the number of constraints. Two different methods for sorting
the stress evaluation points into the different clusters are evaluated as well as the
question whether the clusters should be fixed or updated during the iterations.
Two different examples are used to confirm the analytically discussed differences
between the methods and problem formulations.

Paper II

Fatigue constrained topology optimization

The second paper addresses topology optimization of structures subjected to re-
peated loading conditions, where a fatigue failure might occur even if the stresses
are below the yield limit of the material. Fatigue constraints are introduced in
order to find a light weight design that is dimensioned by the critical fatigue stress
and that avoids stress concentrations. A fatigue analysis software is used to deter-
mine the highest stress that gives an allowable cumulative damage for prescribed
loading conditions during a specific life time. The highest tensile principal stress
is used as fatigue stress measure in the optimization and the fatigue constraints
are used together with the von Mises based static stress constraints developed in
Paper 1. For comparison purposes, the difference between stress constraints based
on von Mises and the highest tensile principal stress are also evaluated.
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