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Stress constrained topology optimization

Erik Holmberg · Bo Torstenfelt · Anders Klarbring

Abstract This paper develops and evaluates a method

for handling stress constraints in topology optimiza-

tion. The stress constraints are used together with an
objective function that minimizes mass or maximizes

stiffness, and in addition, the traditional stiffness based

formulation is discussed for comparison. We use a clus-

tering technique, where stresses for several stress evalu-
ation points are clustered into groups using a modified

P-norm to decrease the number of stress constraints

and thus the computational cost. We give a detailed

description of the formulations and the sensitivity anal-

ysis. This is done in a general manner, so that different
element types and 2D as well as 3D structures can be

treated. However, we restrict the numerical examples

to 2D structures with bilinear quadrilateral elements.

The three formulations and different approaches to

stress constraints are compared using two well known

test examples in topology optimization: the L-shaped
beam and the MBB-beam. In contrast to some other
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papers on stress constrained topology optimization, we

find that our formulation gives topologies that are sig-

nificantly different from traditionally optimized designs,
in that it actually manage to avoid stress concentra-

tions. It can therefore be used to generate conceptual

designs for industrial applications.

Keywords Topology optimization · Stress con-

straints · Clusters · SIMP · MMA

1 Introduction

Lighter designs are desirable in many industrial appli-

cations and structural optimization is an effective way
to generate light weight structures. Topology optimiza-

tion [6] is the first structural optimization stage, it is

used for conceptual design, and thus the stage where

the greatest mass reduction can be achieved. In topol-

ogy optimization no initial design is required; instead
the design variables, which are scale factors of elemen-

tal properties, determine whether an element should be

part of a structural member or a hole.

In the traditional topology optimization formula-

tion, stiffness is maximized for a prescribed amount of
material. Traditionally optimized designs often contain

high stress concentrations and as will be shown, some-

times even geometrical shapes causing stress singulari-

ties. Major manual adjustments or shape optimization

is therefore needed in order to fulfill engineering re-
quirements such as stress constraints. The changes re-

quired to the topology are often severe, and topology

optimization is thus used more as a help to find op-

timal load paths rather than to achieve a conceptual
design. In this paper, stress constraints are introduced

already in the topology optimization stage, this allows

for more sophisticated designs that appear more like
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final designs than those obtained from the traditional

formulation. Stress constraints in topology optimization

therefore allow for a greater weight saving and simplify

the subsequent design work.

We consider linear elastic isotropic materials and
are only interested in so-called black-and-white designs,

i.e. only solid material and holes are allowed in the final

design. This simplifies the interpretation and allows 3D

structures to be evaluated in future work. Even though
the final design strives for the integer values 1 (black)

and 0 (white), we use continuous design variables and

Solid Isotropic Material with Penalization (SIMP) to

achieve a black-and-white design by penalizing inter-

mediate design variable values. SIMP was initially in-
troduced by Bendsøe [3] and the name was later sug-

gested by Rozvany [24]. A similar formulation is also

used to penalize stresses, as described in Le et al. [20]

and shown in Section 4 in this paper.

A design variable filter [8] is used to remove mesh de-

pendency and the checkerboard phenomenon. The filter

also forces a minimum width of the structural members,

thus avoiding artificial stiffness that occurs for members

that are only one or two elements wide.

Our aim in using stress constraints in topology op-

timization is not to perfectly control the stress level but

to avoid high stress concentrations, and thus generate

a design that does not have to undergo severe modifi-

cations in order to be developed into a final design that
fulfills the stress requirements. Topology optimization is

a conceptual design tool that requires post-processing

and further analysis, but the goal is that the subse-

quent design work should be more straightforward, as
it is done from a better starting point.

Criteria based on stress are among the most impor-

tant ones for engineering purposes and have thus been

discussed since the very beginning of topology optimiza-

tion. The paper by Bendsøe and Kikuchi [5], which is
considered to be the origin of topology optimization,

mentions stress constraints even though these are not

used in the formulation. In addition, stress constraints

were earlier used in optimization of trusses by Dorn et
al. [12]. In recent years, stress constraints have received

attention from Svanberg and Werme [27], Le et al. [20]

and Paris et al. [21] among others. It is noted that, com-

pared to the traditional stiffness maximization problem,

additional difficulties occur: Sved and Ginos [28] found
that stress constraints are violated as the bar area goes

to zero in a truss optimization problem and the bar can

thus not be removed (known as singularity). The sin-

gularity problem is also present in 2D and 3D problems
where non-disappearing stresses remain as the design

variables go towards zero. A region with low design

variable values can still have a strain which give rise

Fig. 1 Simple example used in [13]

to a stress with a nonzero and sometimes remarkably
high value, when it actually should be zero as it rep-

resents a hole. The singularity problem is discussed in

many papers, such as [15], [18], [23] among others, and

one way to avoid it is to use an ǫ-relaxation approach as
suggested by Cheng and Guo [9] and as is used in stress

constrained problems by Duysinx and Bendsøe [13] and

Duysinx and Sigmund [14]. We use a stress penalization

introduced by Bruggi [7], that besides giving further pe-

nalization of intermediate design variables also avoids
the singularity problem. A simple example showing the

singularity problem is considered in [13]. Figure 1 shows

this example treated using our method, no singularity

problem is encountered and a hole is created between
the two bars, a result which was not possible without

ǫ-relaxation in the stress formulation used in [13].

Duysinx and Bendsøe [13] also discuss a problem

caused by the high number of local stress constraints

that are needed due to the fact that stress is a local
measure: the problem becomes computationally expen-

sive and requires efficient methods to handle the com-

putational effort. Duysinx and Sigmund [14] introduced

a global stress measure using a similar formulation, but
where all stresses are grouped into one stress constraint.

The global stress measure reduces the computational

time considerably. However, the local stress control is

low and in some cases not acceptable. Due to these

drawbacks, we are not particulary interested in either
the local or the global approach to stress constraints.

Instead, we use a clustered approach where a moderate

number of stress constraints are used and several stress

evaluation points are clustered into each constraint, in
a way somewhat similar to the block aggregation in [22]

or the regional stress measure in [20].

We also note that stress constrained topology prob-

lems have been solved using the level set approach by

e.g. Allaire and Jouve [1], Amstutz and Novoty [2] and
Guo et al. [16]. In the level set approach two phases,

typically representing solid material or voids, are used

and as the stress constraints only are applied to the

solid phase, no singularity problems occur. The final
designs are also free from the transition layer of inter-

mediate design variable values between solid and voids

that remain for filtered SIMP-based formulations. How-
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ever, the large number of design variables remain and a

global stress measure that approximates local stresses

[1], [2], or an active set strategy [16] is used in order to

reduce the computational cost.

We use bilinear quadrilateral elements which, de-
spite their drawbacks, see e.g. [11], are very common

in topology optimization problems. The element is not

particulary well suited for stress analysis, but we use it

in this paper due to its simplicity, low computational

cost and as it has been used earlier in stress based prob-
lems in e.g. [20], with promising results. The stress is

evaluated in the centroid of the element, which corre-

sponds to the superconvergent stress point. The prob-

lem and the sensitivity analysis are formulated gener-
ally, so that different element types can be considered

in future work.

We also mention that the final optimization problem

is solved by the Method of Moving Asymptotes (MMA)

[25].

The paper is organized as follows: Section 2 de-
scribes the problem formulations. The design variable

filter and penalization techniques are discussed in Sec-

tions 3 and 4 respectively. Section 5 presents the stress

measure used for the clustered approach and different
clustering techniques are discussed in Section 6. Calcu-

lation of the gradients involved is done in Section 7 and

a review of modeling aspects is found in Section 8. In

Section 9 we show the numerical results and conclusions

are drawn in Section 10.

2 Problem formulations

We optimize structures that are discretized by the Fi-

nite Element Method (FEM) [17]. The design variables

are collected in a vector x and are scale factors of the
elemental properties, i.e. there is one design variable

connected to each finite element that is included in

the optimization. Different interpretations of the de-

sign variables: such as thickness, porosity or as describ-
ing a composite material, are common in the literature,

but we prefer to see them as mathematical scale fac-

tors without physical interpretation. The optimization

strives for a final design where the scale factor is zero

or one, so there is no need for a physical interpretation
of the intermediate design variable values. Section 4 de-

scribes how such final designs are achieved. The design

variables x are filtered, see Section 3, which relates x to

the variables ρ, i.e. ρ = ρ(x). The latter variables will
be called the filtered variables and they are considered

to be physical variables, as they define the stiffness and

enter the mass calculation. The equilibrium equation

for a design ρ (x) becomes

K (ρ (x)) u = F , (1)

where K (ρ (x)) is the global stiffness matrix of the

structure, u is the vector of global nodal displacements

and F is a vector of known external loads.

We use a nested formulation, i.e. the equilibrium
equation (1) is not used as a constraint as in the si-

multaneous formulation described by e.g. Bendsøe [4].

Instead, the displacement vector is seen as a given func-

tion of the design variables and it is solved for in the
finite element analysis. For a given design ρ (x) and for

an invertible stiffness matrix, the displacement vector

as a function of x reads,

u = u (x) = K−1 (ρ (x)) F .

Three different formulations are discussed and com-
pared in this paper. The first formulation, in which the

mass is minimized subjected to stress constraints, is our

main concern. It reads,

(P1)







min
x

ne∑

e=1

meρe (x)

s.t.

{
σP N

i (x) ≤ σ, i = 1, .., nc

xe ≤ xe ≤ xe, e = 1, .., ne,

where ne is the number of design variables and me is

the solid element mass for the element related to de-

sign variable e. The e:th filtered variable is denoted

ρe (x) and xe is the e:th design variable, limited by
the box constraint limits xe = 1 and xe = ǫ, where ǫ

is a small positive number used to avoid the stiffness

matrix becoming singular. The stress measure used in

this paper is a modified P-norm based on von Mises
stresses, which for cluster number i is denoted σP N

i (x)

and which is discussed in Section 5. The number of

clusters, or equally, the number of stress constraints, is

denoted nc and σ is the stress limit. We note that stress

measures other than von Mises could be used and that
formulations similar to (P1) have been used in [13], [20]

and [21] among others, where, however, the stress mea-

sure is formulated differently.

In the second formulation we replace the mass ob-

jective function with a compliance objective, i.e. the
optimization strives for the stiffest design. This objec-

tive requires a limit on the available volume or mass

that can be distributed inside the design domain. We

here choose to constrain the available mass so that the
comparison with formulation (P1) is straightforward.

To the authors’ knowledge, this formulation has previ-

ously only been used by Werme [30], who used it with
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a discrete approach developed by Svanberg and Werme

[27]. This second formulation reads

(P2)







min
x

1

2
F T u (x)

s.t.







σP N
i (x) ≤ σ, i = 1, .., nc

ne∑

e=1

meρe (x) ≤ M

xe ≤ xe ≤ xe, e = 1, .., ne,

where M is the allowable total mass.

The third problem is the traditional stiffness based

formulation that in this paper is used only for compar-

ison. In this formulation, the compliance is minimized
subjected to a mass constraint, see [6] and the references

therein for an overview of important papers based on

this formulation, that reads

(P3)







min
x

1

2
F T u (x)

s.t.







ne∑

e=1

meρe (x) ≤ M

xe ≤ xe ≤ xe, e = 1, .., ne.

3 Filtering of design variables

A design variable filter [8] is used, i.e. filtered variables ρ

are created by taking a weighted average of neighboring

design variables xj . The filtered variables ρ are consid-

ered as physical variables in the sense that they enter

the calculation of the stiffness matrix and the mass,
whereas x have no physical interpretation. The design

variable filter reads

ρe (x) =

∑

j∈Ωe

wjxj

∑

j∈Ωe

wj
,

where Ωe is the set of design variable indices related
to elemental centroids within the filter radius r0, mea-

sured from the centroid of the element related to design

variable e, as visualized in Figure 2. The weight factor

wj is here defined by a cone, i.e. the weight is decreased
linearly with rj , which is the distance between the cen-

troids of the elements related to design variable j and

e, i.e.

wj =
r0 − rj

r0
.

Note that the weight is zero for all design variables that

are excluded from the set Ωe. From an implementation

b

b

Finite element mesh

Design variable e

Design variable j

r0

rj

Fig. 2 Visualization of the design variable filter

point of view, a matrix W that includes the weights is
created such that

ρe (x) =

ne∑

j=1

Wejxj . (2)

4 Penalization

In order to create black-and-white structures, a penal-

ization function is introduced that makes intermediate
design variable values disproportionately expensive. In

this paper, we strive for black-and-white designs and

SIMP is used to penalize the stiffness for intermediate

design variable values and a similar penalization is used

to penalize stresses.

4.1 Stiffness penalization

The SIMP penalization function, ηK (ρe (x)) is inserted

when the global stiffness matrix K (ρ (x)) is assembled

from the solid material element stiffness matrices K̂e

as

K (ρ (x)) =

ne∑

e=1

ηK (ρe (x)) K̂e.

The SIMP penalization function is given by

ηK (ρe (x)) = (ρe (x))q ,

where q > 1 is a penalization factor that, in this paper,

is set to q = 3, which several authors have proven to

work well.
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4.2 Stress penalization

The solid material stress vector at stress evaluation
point a is written in Voigt notation as

σ̂a (x) =
(

σ̂ax σ̂ay σ̂az τ̂axy τ̂ayz τ̂azx

)T
.

It is calculated in the finite element analysis as

σ̂a (x) = EBau (x) ,

where E is the constitutive matrix and Ba is the strain-

displacement matrix corresponding to stress evaluation

point a. The solid material stresses are also penalized

for intermediate design variable values, giving the pe-

nalized stress measure σa (x), as

σa (x) = ηS (ρe (x)) σ̂a (x) , (3)

where ρe (x) is the filtered variable corresponding to

the element to which stress evaluation point a belongs.

The stress penalization ηS (ρe (x)) is constructed such

that σa (x) is increased for intermediate design variable

values, thus making the intermediate values unpropor-
tionately expensive. Our experience points towards that

the stress penalization

ηS (ρe (x)) = (ρe (x))
1
2 , (4)

works well. This penalization (4) represents the penal-

ization in [7], but with a specific choice of the exponent,
as suggested in [20].

Compared to the stress calculation by e.g. Duysinx

and Bendsøe [13], this stress penalization (4) gives a

stress that is non-physical for intermediate design vari-
able values. However, we strive for black-and-white de-

signs and the stress penalization is such that σa and

σ̂a coincide for ρe = 1 and

lim
ρe→0

σa (x) = 0,

where the latter is the reason why we do not experi-

ence singularity problems. The same observation was

recently made by Kočvara and Stingl [19], who use a

stress formulation with the same properties.

5 Stress measure

The von Mises stress measure is often used for dimen-
sioning statically loaded structures such as those that

are considered in this paper. It is therefore used as stress

measure in the optimization. The penalized von Mises

stress in stress evaluation point a, σvM
a (x), is a func-

tion of the corresponding penalized stress vector (3),

given by

σvM
a (x) =

(
σ2

ax + σ2
ay + σ2

az − σaxσay − σayσaz

−σazσax + 3τ2
axy + 3τ2

ayz + 3τ2
azx

) 1
2 . (5)

Three different approaches to stress constraints are

discussed: local, global and clustered. The local and

global approaches [13], [14], mean that either one con-

straint is applied to each stress evaluation point in the
model (local) or that only one stress constraint is ap-

plied to the entire model (global). However, neither of

these two approaches are useful in practice; the local ap-

proach becomes too expensive and the global approach

is too rough. Therefore, we use a clustered approach,
[22], [20], where stress evaluation points are sorted into

clusters, and one stress constraint is applied to each

cluster. This allows for a trade-off between how well

the stress is controlled and the computational cost. Our
experience is that, even with a small number of stress

constraints, it is possible to avoid geometrical shapes

that cause stress singularities and, to some extent, also

stress concentrations. How the stress evaluation points

are sorted into clusters and how these are updated is
discussed in Section 6, where it also is noted that the

local and the global approach can be seen as special

cases of the clustered approach.

In order to create the clustered stress measure used
in formulation (P1) and (P2), stresses from several stress

evaluation points are clustered and used to calculate

a single stress measure using a modified P-norm. This

has been done in a somewhat similar way before in [31],

[20] and [14], but our modification is different as will be
discussed below. The P-norm stress measure for cluster

i, σP N
i (x), reads

σP N
i (x) =

(

1

Ni

∑

a∈Ωi

(
σvM

a (x)
)p

) 1
p

, (6)

where p is the P-norm factor and Ωi is the set of stress

evaluation points in cluster i. The sum is divided by Ni,
which is the number of stress evaluation points in Ωi.

Thus, if all stresses are the same, i.e. σvM
a (x) = σvM ,

then

σP N
i (x) =

(

1

Ni

∑

a∈Ωi

(
σvM

a (x)
)p

) 1
p

=

(
1

Ni

) 1
p (

Ni

(
σvM

)p
) 1

p

= σvM , (7)

i.e. the P-norm measure represents the local stresses

exactly. In all other cases σP N
i (x) in (6) will under-

estimate the maximum local stress, which is shown by
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Duysinx and Sigmund in [14] where the expression that

is used is similar to (6), except for the clustered ap-

proach and the ǫ-relaxation. In [14] it is also proved

that the choice Ni = 1 gives an expression that always

has a value above the maximum stress. These two re-
sults are summarized as follows:

(

1

Ni

∑

a∈Ωi

(
σvM

a (x)
)p

) 1
p

≤ max
a∈Ωi

σvM
a (x)

≤

(
∑

a∈Ωi

(
σvM

a (x)
)p

) 1
p

.

Since the stress constraint in (P1) and (P2) can be writ-

ten as
(
∑

a∈Ωi

(
σvM

a (x)
)p

) 1
p

≤ N
1
p

i σ,

we conclude that the maximum local stress in the struc-

ture is below N
1/p
i σ. However, if we create the clusters

such that the case shown in (7) is approached, then we

also approach σvM ≤ σ, as is desired. On the other

hand, the 1/Ni-term has the positive effect that it acts

like a built-in scaling of the limit value which proves to
be beneficial for convergence of the optimization prob-

lems. In particular, it avoids problems in the first itera-

tions where some points can have very high stresses due

to initial geometrical shapes causing stress singularities.

Stresses in the optimized structure will locally be-
come higher than the stress limit, but as mentioned

before, in this conceptual design phase we allow some

stress peaks as long as the geometrical shape is such

that stress singularities are avoided and the stress peaks
easily can be removed.

We also note that Le et al. [20] use an elemental

scale factor based on the volume of element a, instead

of the 1/Ni-term in (6). From the discussion above,

we see that the discretization thus influences the lo-
cal stresses as the stress can then be higher in a smaller

element than in a larger. In order to get the P-norm

value closer to the maximum local stress, Le et al. scale

the current values with respect to stress values from the
previous iteration. This approach could also be used in

our formulation, however, if the clusters are created as

described in Section 6, a good stress control can be

achieved in either case.

Increasing the value of the exponent p in (6) brings
the P-norm value closer to the maximum stress in each

cluster. Applying the limit value shown in [14] one finds

that

lim
p→∞

(

1

Ni

∑

a∈Ωi

(
σvM

a (x)
)p

) 1
p

= max
a∈Ωi

σvM
a (x) .

However, numerical problems are unfortunately experi-

enced for too high values of p. On the other extreme,

p = 1 gives the mean stress for each cluster. Different

p-values are evaluated in [20] and a discussion is also

found in [14]. On the basis of those papers and our own
tests we use p = 8 in the numerical examples.

Depending on the value of the stress constraint and

the p-value, problems with the numerical accuracy can

also occur because
(
σvM

a (x)
)p

in (6) becomes very large.

One solution is then to normalize σvM
a (x) with σ, which

gives a mathematically equivalent formulation. The stress

constraint σP N
i (x) ≤ σ in problem formulation (P1)

and (P2) is thus replaced by

(

1

Ni

∑

a∈Ωi

(
σvM

a (x)

σ

)p
) 1

p

≤ 1.

6 Distribution of points into clusters

The main reason for using clusters is to reduce the ne

number of constraints in the local approach to nc ≪ ne

clustered constraints and still maintain the possibility

to control the local stress. The number of clusters, nc,

greatly effects to which extent the local stresses are con-

strained. We may think of the two extremes nc = 1 and
nc = ne, which brings us back to the global and local

approaches, respectively.

The P-norm (6) that is used to cluster stresses from

multiple stress evaluation points to one constraint takes

the stress to the power of a factor p. Consequently, a lo-

cal high stress can raise the P-norm value, even though
there might have been low stresses in the other evalu-

ation points. On the other hand, due to the 1/Ni-term

the P-norm value will be lower than the maximum local

stress. Obviously, the problem is influenced by how the
clusters are created, i.e. which evaluation points that

belong to the set Ωi. Here we present two techniques

for how the evaluation points are sorted into clusters:

the Stress level approach and the Distributed stress ap-

proach, as described later in this section.

The distribution of the stress evaluation points in

the clusters might have to be updated during the iter-

ations in order for σP N
i (x) to be a good approxima-

tion to the local stresses. However, changing the distri-

bution of evaluation points within the clusters implies
that the problem is changed. Thus, different (but simi-

lar) problems are solved in successive iterations and we

are thus solving a series of related problems. We note

that MMA uses the design variables from the two previ-
ous iterations in order to determine the move limits, see

[25] for details. In the case when clusters are updated,

the design variables in the current iteration are found
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by solving a problem that is slightly different than the

problem for which the previous variables were found,

and this could cause the move limits to be either too

conservative or too aggressive. However, we still obtain

convergence to a feasible design and have not noticed
any problems as a result of this issue.

6.1 Stress level technique

In the stress level clustering technique, stress evalua-

tion points that have a similar stress level are clustered

together. This method gives a large variation of the dif-
ferent σP N

i (x)-values but the stresses in the evaluation

points within each cluster are as close to each other as

possible. The P-norm measure becomes a good approx-

imation of the cluster member stresses, because we are

approaching the case shown in (7). Another positive ef-
fect is that in many problems the stress constraint for

the low-level clusters eventually becomes inactive.

The clusters are organized according to the scheme
shown in (8). The stress evaluation points are sorted

in descending order based on their stress level, and the

ne/nc first points create cluster 1, the next ne/nc points

create cluster 2 etc. That is, we have the same number
of points within all clusters with the exception of the

last cluster which may contain fewer points. The clus-

tering scheme reads

σ1 ≥ σ2 ≥ σ3 ≥ ..... ≥ σ ne
nc

︸ ︷︷ ︸

cluster 1

≥ ..... ≥ σ 2ne
nc

︸ ︷︷ ︸

cluster 2

≥ .....

≥ σ (nc−1)ne
nc

≥ ..... ≥ σne
︸ ︷︷ ︸

cluster nc

. (8)

6.2 Distributed stress technique

In the distributed stress technique, each cluster con-

tains stress evaluation points with stresses that span

the whole stress range. Thus, each cluster obtains ap-

proximately the same stress value. The motivation for
this technique is that it is expected to allow for eas-

ier convergence, as high local stresses are damped by

a presumably large number of low local stresses. The

clustered stress measure in (6) will thus be lower than
if the stress level technique is used.

Again, the stress evaluation points are sorted in de-

scending order based on their stress. The first point
is then inserted into cluster 1, the second into clus-

ter 2 etc., until the ne

nc
:th point is reached. The cluster

counter is then reset and restarted from 1. This method

is the same as in [20] when the clusters are updated ev-

ery iteration. The formulation looks like

σ1
︸︷︷︸

cluster 1

≥ σ2
︸︷︷︸

cluster 2

≥ ..... ≥ σ ne
nc

−1
︸ ︷︷ ︸

cluster (nc−1)

≥ σ ne
nc
︸︷︷︸

cluster nc

≥ σ ne
nc

+1
︸ ︷︷ ︸

cluster 1

≥ ..... ≥ σne
︸ ︷︷ ︸

cluster nc

.

7 Sensitivity analysis

The Method of Moving Asymptotes [25] that is used to

solve the optimization problem requires first order sen-

sitivity information of the constraints and the objective

function. The gradient of the mass objective, f0, in (P1)

is

∂f0

∂xb
=

ne∑

e=1

me
∂ρe (x)

∂xb
=

ne∑

e=1

meWeb, (9)

where Web are the filter weights defined in (2). We note

that the gradient of the mass is affected by neighboring
design variables through the filter. However, for the nu-

merical examples in this paper, where every element has

the same size and material, all solid element masses are

equal, i.e., me = m, and we find that (9) can be written

∂f0

∂xb
=

ne∑

e=1

meWeb = m

ne∑

e=1

Web = m,

which holds true as

ne∑

e=1

Web = 1.

The compliance objective, C = 1
2 F T u (x), in (P2)

and (P3) has a well known self adjoint gradient:

∂C (x)

∂xb
= −

1

2
uT (x)

∂K (ρ (x))

∂xb
u (x) ,

see e.g. [10] for details.

The stress constraints are the P-norm stresses in
(6), and the gradients follow from the chain rule:

∂σP N
i (x)

∂xb
=
∑

a∈Ωi

∂σP N
i (x)

∂σvM
a

∂σvM
a (x)

∂xb

=
∑

a∈Ωi

∂σP N
i (x)

∂σvM
a

(
∂σvM

a (x)

∂σa

)T
∂σa (x)

∂xb
.

(10)

The derivatives in (10) are calculated in the following

subsections.
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7.1 Derivative of the P-norm w.r.t. the von Mises

stress

The ∂σP N
i (x) /∂σvM

a term in (10) is determined by tak-

ing the derivative of (6) as

∂σP N
i (x)

∂σvM
a

=
1

p

(

1

Ni

∑

a∈Ωi

(
σvM

a (x)
)p

)( 1
p

−1)
1

Ni
p
(
σvM

a (x)
)p−1

=

(

1

Ni

∑

a∈Ωi

(
σvM

a (x)
)p

)( 1
p

−1)
1

Ni

(
σvM

a (x)
)p−1

.

7.2 Derivative of the von Mises stress w.r.t. the stress

components

The derivatives of the von Mises stress (5) with respect

to its stress components are

∂σvM
a (x)

∂σax
=

1

2σvM
a (x)

(2σax (x) − σay (x) − σaz (x))

∂σvM
a (x)

∂σay
=

1

2σvM
a (x)

(2σay (x) − σax (x) − σaz (x))

∂σvM
a (x)

∂σaz
=

1

2σvM
a (x)

(2σaz (x) − σax (x) − σay (x))

∂σvM
a (x)

∂τaxy
=

3

σvM
a (x)

τaxy (x)

∂σvM
a (x)

∂τayz
=

3

σvM
a (x)

τayz (x)

∂σvM
a (x)

∂τazx
=

3

σvM
a (x)

τazx (x) .

7.3 Derivative of the stress components w.r.t. the

design variable

The derivative of the penalized stress vector (3) with

respect to design variable xb reads:

∂σa (x)

∂xb
=

na∑

r=1

∂σa

∂ρr

∂ρr (x)

∂xb

=

na∑

r=1

∂ηS (ρe (x))

∂ρr

∂ρr (x)

∂xb
EBau (x)

+ ηS (ρe (x)) EBa
∂u (x)

∂xb
, (11)

where na is the total number of stress evaluation points

and ∂ηS (ρe (x)) /∂ρr 6= 0 only for r = e, when the pe-

nalization in (4) is used. Thus, the sum can be removed

and (11) becomes

∂σa (x)

∂xb
=

∂ηS (ρe (x))

∂ρe

∂ρe (x)

∂xb
EBau (x)

+ ηS (ρe (x)) EBa
∂u (x)

∂xb
. (12)

7.4 Adjoint method

In this problem, the number of design variables x will be

large, but the number of constraints can be kept mod-
erate due to the clusters. Therefore, the adjoint method

is preferable for solving (10). The term ∂u (x) /∂xb in

(12) is calculated from the global state equation (1). By

the chain rule we get

ne∑

r=1

∂K (ρ (x))

∂ρr

∂ρr (x)

∂xb
u (x) + K (ρ (x))

∂u (x)

∂xb
= 0,

from which ∂u (x) /∂xb can be obtained:

∂u (x)

∂xb
= −K−1 (ρ (x))

[
ne∑

r=1

∂K (ρ (x))

∂ρr

∂ρr (x)

∂xb
u (x)

]

.

(13)

Substituting (13) into (12) and then (12) into (10) gives

∂σP N
i (x)

∂xb
=
∑

a∈Ωi

∂σP N
i (x)

∂σvM
a

(
∂σvM

a (x)

∂σa

)T

×

(

∂ηS (ρe (x))

∂ρe

∂ρe (x)

∂xb
EBau (x)

− ηS (ρe (x)) EBaK−1 (ρ (x))

×

[
ne∑

r=1

∂K (ρ (x))

∂ρr

∂ρr (x)

∂xb
u (x)

])

.

(14)

An adjoint variable λi is now defined by

λT
i =

∑

a∈Ωi

∂σP N
i (x)

∂σvM
a

(
∂σvM

a (x)

∂σa

)T

EBaK−1 (ρ (x)) ,

which means that it can be calculated from the adjoint

equation:

K (ρ (x)) λi =
∑

a∈Ωi

∂σP N
i (x)

∂σvM
a

BT
a ET ∂σvM

a (x)

∂σa
.
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Fig. 3 Excluded elements highlighted in gray color

The adjoint variable is now inserted into (14) which

finally gives the gradient as

∂σP N
i (x)

∂xb
=
∑

a∈Ωi

∂σP N
i (x)

∂σvM
a

(
∂σvM

a (x)

∂σa

)T

×
∂ηS (ρe (x))

∂ρe

∂ρe (x)

∂xb
EBau (x)

− ηS (ρe (x)) λT
i

×

[
ne∑

r=1

∂K (ρ (x))

∂ρr

∂ρr (x)

∂xb
u (x)

]

,

where ∂σP N
i (x) /∂σvM

a and ∂σvM
a (x) /∂σa were de-

rived in subsection 7.1 and 7.2 respectively.

8 Modelling aspects

8.1 Applying loads

When stress constraints are used in the optimization

problem, it is important that the loads are applied on

the structure in a way that is suitable for stress calcu-

lation. A point load that can be sufficient in the tradi-
tional formulation (P3) will generate a high local stress

that might not be reducible, even if the entire domain

becomes solid. This high stress will influence the clus-

ters and thus also the final design. Therefore, the load

has to be distributed over several nodes so that the
area where the load is applied is large enough to keep

the stress below the stress limit. Another approach is

to exclude the elements in the vicinity of the applied

load from the set of design variables: they are kept as
solid structural elements that are not part of the opti-

mization problem. Figure 3 shows a subset of a finite

element mesh with a load applied at the upper right

corner, the gray elements are excluded from the opti-

mization problem.

8.2 Meshing

Another consideration is the discretization, i.e. the el-

ement size. The design variable filter assures that the

structural members are thicker than approximately 2 × r0.
Thus, in order to achieve a black-and-white design when

stress constraints are used, the element size must be

chosen with regard to the stress limit and the filter ra-

dius. If the elements are too large, it is possible to end

up in a design where the stress in a structural member
with intermediate design variable values is lower than

the limit, but where the structural member cannot be

made thinner due to the filter. The solution might then

contain structural members with intermediate design
variable values, whereas a finer mesh would give thin-

ner but solid structural members.

9 Examples

In this section we give some examples of the described

method for stress constraints, applied to two dimen-

sional structures in plane stress. The method has been

implemented in the finite element program TRINITAS
[29]. All designs, except for the compliance based de-

signs, use an initial design where all ρe (x) = 0.5. The

final designs that are shown in this paper have then

been found by iterating well beyond convergence. Plots
are appended for the final solutions shown in Table 1

and 2. Compared to the suggested values in [26], the

move limits in MMA have been narrowed, in order to

make the solver more conservative. We note that dif-

ferent final solutions are obtained depending on the
MMA-parameters, which is the reason why a conserva-

tive setting of the solver was preferred. As mentioned

in Section 6, we do not reset MMA when a recluster-

ing is made. The move limits in MMA are determined
based on design variable values from previous itera-

tions; in the case of reclustering, these are calculated

for a somewhat different problem, but we still converge

to feasible designs. The figures show the filtered vari-

ables ρ and the penalized von Mises stresses σvM
a . No

post-processing of the pictures has been done; black

means that the filtered variable is one and gray means

that it is at its lowest value, ǫ. The stress contour plots

should be viewed in color, the range blue-green repre-
sents stresses that are below or at the stress limit and

the range yellow-red represents stresses that are above

the stress limit.
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9.1 The L-shaped beam

The L-shaped beam is a popular test example for stress

constrained topology optimization, see [13], [14], [20],

[21] among others and also [1], [2] and [16] for the L-
shaped beam optimized using the level set method. The

design domain of the L-shaped beam contains an inter-

nal corner with an initial geometric stress singularity,

see Figure 4. This type of design domain is convenient

to use in industrial applications, where for example the
L-beam can be an attachment for some piece of equip-

ment and the corner is due to clearance to other equip-

ment or due to the shape of the actual equipment itself.

As topology optimization is a conceptual design tool,
the design domain should be easy to create and simple

to mesh. Thus, no radius is created at the corner of the

design domain.

The dimensions of the L-beam are seen in Figure 4,

where L = 200 mm and the thickness of the structure

is 1 mm. The domain is meshed with 6400 equal sized

four node elements and one stress evaluation point is

used per element. The superconvergent point is used
for stress evaluation and for this element type it is po-

sitioned in the centroid of the element. The material is a

typical aircraft aluminum with material data; Young’s

modulus 71000 MPa, density 2.8×10−9 ton/mm
3
, Pois-

son’s ratio 0.33 and yield limit 350 MPa, which also is

used as stress limit in the optimization. Ten clusters,

i.e. ten stress constraints, are used in the numerical ex-

amples, but as shown in Figure 5, even a much lower

number of constraints gives a design that avoids high
stress concentrations.

A 1500 N point load is applied as shown in Figure 4

and 3×2 number of elements under the load are not part
of the design space, see Figure 3. The design variable

filter is applied with a filter radius, r0 = 1.5 times the

element size.

Solutions for the L-beam of problem formulation (P1)

are shown in Table 1 and Table 2, where the two dif-

ferent clustering techniques and different reclustering

frequencies are compared. As mentioned in Section 6,
the case shown in (7) is approached when the stress

level clustering technique is used and the clusters are

updated every iteration. This is also seen in Table 1, as

this combination gives the best local stress control, in

an average sense, and a more even stress distribution.
When the clusters are updated every 50th iteration, the

local stress control is slightly worse and when the clus-

ters are not updated at all, a large percentage of the

structure have too high stress. The stress constraints
are satisfied, but as the clusters were created in the

first iteration, the σP N
i is no longer a good approxima-

tion to the local stresses. This is also the reason why

2L

5

2L

5

3L

5

L

Fig. 4 Geometry of the L-beam problem

Fig. 5 Example with only three stress constraints for the
”Stress level” technique and reclustering every iteration

the mass can be lower and why the compliance becomes

higher. However, we achieve a design where the singu-

lar point is avoided more efficiently; the right vertical

component is moved away from the boundary, and thus
allowing for a larger radius.

We also note that a convergence plot, see Table 1,
tends to have small oscillations when the clusters are

updated every iteration, it makes a jump when clus-

ters are updated every 50th iteration and is relatively

smooth when no reclustering is done.

Table 2 shows the same reclustering frequencies but

for the distributed stress technique, where the clusters
are created from a mixture of the highest and lowest

stresses. As expected, the local stress control is not as

good as for the stress level technique, and the designs

for different reclustering frequencies are very similar.

9.2 The MBB-beam

The MBB-beam is another popular example in topol-
ogy optimization. Here symmetry is used and the right

half the beam is modelled. The material, load magni-

tude and stress limit are the same as for the L-beam.
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Table 1 The L-beam for problem (P1) using the ”Stress Level” clustering technique and different updating frequencies

Reclustering frequency Every iteration 50 iterations No reclustering

Topology

Stress plot

Convergence plot

Mass [kg×10−3] M=24.76 M=23.75 M=20.11
Compliance [Nmm] C=10330 C=10820 C=15105

The point load is applied at the center of the beam
and the boundary conditions and dimensions are seen

in Figure 6, where L = 100 mm and the thickness is

1 mm. The domain is meshed with 4800 elements, and

ten clusters are used for the stress constraints. The de-

sign variable filter radius was chosen slightly larger than
for the L-shaped beam, a filter radius that uses r0 = 2

times the element size proved to result in solutions with-

out too many thin structural parts. Again, the elements

in the vicinity of the applied load are not used as design
variables in order to avoid the stress concentration.

Like the L-beam, problem (P1) is solved with the
two different clustering techniques and with different

reclustering frequencies. The results are seen in Table 3

and Table 4. The differences between the clustering

techniques and the reclustering frequencies are similar
to the differences obtained for the L-beam. The best

design from a stress point of view is achieved with the

stress level technique and reclustering every iteration.

L

3L

F

Fig. 6 Geometry of the MBB problem

9.3 Comparison between the three formulations

The three problem formulations (P1), (P2) and (P3)
are now compared in order to show the differences be-

tween the results and the benefit of stress constraints.

In the figures in Table 5 the result for formulation (P1)

is reused from Table 2 and the mass that was found to
be optimal is used as limit value for the mass constraint

in formulations (P2) and (P3). There is an essential dif-

ference in the topology obtained for the L-beam for
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Table 2 The L-beam for problem (P1) using the ”Distributed Stress” clustering technique and different updating frequencies

Reclustering frequency Every iteration 50 iterations No reclustering

Topology

Stress plot

Convergence plot

Mass [kg×10−3] M=20.63 M=20.67 M=20.66
Compliance [Nmm] C=13277 C=12999 C=12828

Table 3 The MBB-beam for (P1) with the ”Stress Level” clustering technique and different updating frequencies

Reclustering frequency Every iteration 50 iterations No reclustering

Topology

Stress plot

Mass [kg×10−3] M=27.66 M=25.85 M=24.28
Compliance [Nmm] C=11535 C=11728 C=15000
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Table 4 The MBB-beam for (P1) with the ”Distributed Stress” clustering technique and different updating frequencies

Reclustering frequency Every iteration 50 iterations No reclustering

Topology

Stress plot

Mass [kg×10−3] M=23.03 M=25.42 M=24.76
Compliance [Nmm] C=16035 C=15885 C=15105

(P3), in that material is placed in the corner, causing a

geometrical stress singularity that would require major

modifications in order to be removed. As expected, the

maximum stress is lower for formulation (P1) and the

stress is much more evenly distributed in the structure,
however this comes with the price of a lower stiffness

compared to formulation (P3). Therefore, formulation

(P2) can be used if the allowable mass is known and

both stresses and stiffness are of importance. We note
that it might be difficult to find a feasible design with

formulation (P2) when such a low allowable mass is used

as in Table 5. This is the reason why the compliance

becomes higher than for formulation (P1). Therefore a

slightly higher mass is suggested, see Figure 7, which
shows a more fair usage of formulation (P2).

For the MBB-beam we again see that when formula-

tion (P1) is used, a different topology is achieved com-

pared to the compliance design for formulation (P3).
The height of the beam is decreasing towards the sup-

port in the right corner. This is because a bending mo-

ment arises due to the load F and it is taken as a force

couple in the beam. The bending moment has its max-

imum value at the symmetry line where the load is
applied and it decreases linearly towards zero at the

support; therefore the height of the beam can be re-

duced towards the support in order to reduce the mass.

If formulation (P2) is used, we achieve a design that is
closer to the design for formulation (P3), but with lower

stresses. With the low allowable mass used in this ex-

ample, we converge to a solution where the stress con-

Fig. 7 Formulation (P2) with about 5% higher allowable mass
than in Table 5, the compliance is C=12336

straint is not feasible. However, as for the L-beam, using

a slightly higher mass will result in a feasible solution

with lower compliance.

As a final remark, when solving problem (P1) we

have tested to start from the converged solution of the

L-shaped beam obtained for problem (P3), in order to
see if further optimization can resolve the problem of

high stresses in the internal corner. The optimization

algorithm did not manage to find a feasible solution

using this starting point and the final design was similar

to the final design shown for (P3) in Table 5.

9.4 Excluded elements

In Section 8 we discussed the possibility of excluding
some selected elements from the optimization problem

in order to avoid stress concentrations when point loads

are applied. The excluded elements still influence the
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Table 5 Comparison of the three formulations

Problem formulation (P1) (P2) (P3)

L-beam

Compliance C=13276 C=14347 C=10960

MBB-beam

Compliance C=16035 C=16530 C=13300

Table 6 Different designs when elements are excluded

Without excluded elements With excluded elements

design variable filter, this helps the neighboring ele-

ments to become solid and as the loads also are dis-

tributed in another way, it is possible to drive the so-

lution towards a desirable design. If we instead of ex-

cluding elements distribute the load over three nodes,
we achieve a design that is more optimal with respect

to the formulated problem, but which from a physical

point of view is quite useless, as a small perturbation

in load direction would cause the structure to collapse.
An example is shown in the left figure in Table 6, where

the figure to the right is from Table 1. Another alter-

native to avoid instable and weak structures is to add

e.g. stiffness, buckling or eigenfrequency constraints, or

to use formulation (P2).

10 Conclusions

We have developed and evaluated a method for stress

constrained topology optimization. The method has been

verified numerically and the results are appealing. We

have shown the theoretical background and the sensi-

tivity analysis, where we have kept the theoretical part

open for 3D structures and other element types. The

numerical examples show that at the cost of a more
complicated and expensive optimization problem, stress

constraints in topology optimization allow for designs

that are closer to a final engineering design. The subse-

quent design work to achieve a product ready for man-

ufacturing is thus simplified and can be done faster.
Compared to formulation (P2) and (P3), there is in for-

mulation (P1) no need to manually test several values

on the allowable mass: the minimum mass subjected

to the given constraints is achieved directly. As formu-
lation (P1) has no stiffness requirements, the resulting

design might have high compliance. Thus, additional

stiffness, buckling or eigenfrequency constraints could

be added, or alternatively, formulation (P2) provides a

compliant and stress constrained structure where the
mass is prescribed.

From the discussion in Section 5 and Section 6 and
from the results for both the L-beam and the MBB-

beam in Table 1-4, we find that the stress level tech-

nique and reclustering is the preferable method. This

combination generates simple designs that avoid stress

concentrations efficiently and it only leaves a small num-
ber of points with stresses above the stress limit.

As is seen in Table 5, different topologies are achieved
when stress constraints are used compared to the tradi-

tional stiffness based formulation, (P3). Therefore, we

claim that it is not sufficient to optimize the struc-

ture for maximum stiffness and then continue with lo-
cal shape optimization to remove stress concentrations;

we propose that stress constraints should be considered

from the very beginning.
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22. Paŕıs, J., Navarrina, F., Colominas, I., Casteleiro, M.: Block
aggregation of stress constraints in topology optimization
of structures. Advances in Engineering Software 41(3),
433–441 (2010)

23. Rozvany, G., Birker, T.: On singular topologies in exact
layout optimization. Structural and Multidisciplinary Op-
timization 8(4), 228–235 (1994)

24. Rozvany, G., Zhou, M., Birker, T.: Generalized shape op-
timization without homogenization. Structural and Multi-
disciplinary Optimization 4(3), 250–252 (1992)

25. Svanberg, K.: The method of moving asymptotes - a new
method for structural optimization. International journal
for numerical methods in engineering 24(2), 359–373 (1987)

26. Svanberg, K.: A class of globally convergent optimization
methods based on conservative convex separable approxi-
mations. SIAM Journal on Optimization 12(2), 555–573
(2002)

27. Svanberg, K., Werme, M.: Sequential integer program-
ming methods for stress constrained topology optimization.
Structural and Multidisciplinary Optimization 34(4), 277–
299 (2007)

28. Sved, G., Ginos, Z.: Structural optimization under multi-
ple loading. International Journal of Mechanical Sciences
10(10), 803–805 (1968)

29. Torstenfelt, B.: The TRINITAS project (2012). URL
http://www.solid.iei.liu.se/Offered services/Trinitas Ac-
cessed 4 Sept 2012

30. Werme, M.: Using the sequential linear integer program-
ming method as a post-processor for stress-constrained
topology optimization problems. International journal
for numerical methods in engineering 76(10), 1544–1567
(2008)

31. Yang, R., Chen, C.: Stress-based topology optimization.
Structural and Multidisciplinary Optimization 12(2), 98–
105 (1996)


	parallellpublicering_LiUEpress_Stress_constrained_topology_optimization-TitlePage
	parallellpublicering_LiUEpress_Stress_constrained_topology_optimization2

