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Abstract

A test statistic is considered for testing a hypothesis for the mean
vector for multivariate data, when the dimension of the vector, p, may
exceed the number of vectors, n, and the underlying distribution need
not necessarily be normal. With n, p → ∞, and under mild assumptions,
but without assuming any relationship between n and p, the statistic is
shown to asymptotically follow a chi-square distribution. A by product
of the paper is the approximate distribution of a quadratic form, based
on the reformulation of the well-known Box’s approximation, under high-
dimensional set up. Using a classical limit theorem, the approximation
is further extended to an asymptotic normal limit under the same high
dimensional set up. The simulation results, generated under different
parameter settings, are used to show the accuracy of the approximation
for moderate n and large p.

Keyword: Non-normality; High dimensionality; Box’s approximation

1 Introduction

Suppose Xk = (Xk1, . . . , Xkp)
′, k = 1, . . . , n, are independent, identically dis-

tributed random vectors. Assume

Xk ∼ F (1)

where F denotes a p-variate distribution with E(Xk) = µ and Cov(Xk) =
Σ,Σ > 0. We are interested to test the hypothesis H0 : µ = 0 when p > n and
F is not necessarily normal.

Recently, there have been some attempts to address the issue of high di-
mensionality, particularly for mean vector testing, with or without normality
assumption. Läuter (2004), for example, develops one sample tests based on
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spherical distributions using principal components of the design matrix; see also
Läuter et al. (1998). The test is constructed without subjecting the dimension
or sample size to any serious restrictions; see also Srivastava and Du (2008).
Under normality, a modified version of Hotelling’s T 2, using the Moore-Penrose
inverse, is considered by Srivastava (2007), whereas a test for non-normal ran-
dom vectors is given in Srivastava (2009).

Some attempts to extend the one sample case to two or more independent
groups have also been made. The earliest developments for two independent
samples can be traced back to Dempster (1958), which was then more elabo-
rated and discussed in detail in Bai and Saranadasa (1996). Bathke (2002)
deals with the classical ANOVA set up for large number of independent groups,
whereas a completely nonparametric approach is given in Bathke and Harrar
(2008). A comprehensive review of different multivariate approaches is given in
Bathke, Harrar and Ahmad (2009). For a comparison of high dimensional
mean testing statistics, under normality assumption, see Kropf et al. (2009).

Again under normality, a statistic is considered in Ahmad (2008, Ch. 2) to
test a hypothesis of the form H ′0 : Tµ = 0, where T is any matrix such that H ′0
is a general linear hypothesis, see also Ahmad et al. (2008). For T = I, where I
is the identity matrix, H ′0 reduces to H0, the hypothesis of our interest (see also
Section 5). The test statistic is based on quadratic and bilinear forms composed
of the random vectors Xk, and is shown to follow a scaled chi-square distribu-
tion when n→∞ and p is fixed where p may exceed n. The present manuscript
evaluates the same test statistic to test H0 under the standard high dimensional,
(n, p)-asymptotics, i.e., assuming both n and p to be large inclusive of the case
when p > n, or even p >> n. We, however, let n and p grow arbitrarily, and do
not assume any relationship between them like, for example, p

n → c ∈ (0,∞).
Under very mild and practical assumptions, we use the asymptotic theory of U -
statistics to show that the statistic still follows the same chi-square distribution
asymptotically. Indirectly, it helps us establish the distribution of a quadratic
form under high-dimensional set up, and hence re-state the well-known Box’s
approximation (Box, 1954), based on the representation of a quadratic form
as a weighted sum of single degree-of-freedom independent chi-square random
variables.

The test statistic and its asymptotic distribution under the new set up are
given in the next section. In Section 3, the performance of the modified approx-
imation is evaluated through simulation studies for both test size and power.
Section 4 is dedicated to a few important remarks regarding the proposed statis-
tic. The results are summarized in Section 5.

2



2 The test statistic

For the model given in (1), X = 1
n

∑n
k=1 Xk is an unbiased estimator of µ and,

under H0 : µ = 0,

S =
1

n

n∑
k=1

XkX
′
k (2)

is an unbiased estimators of Σ. To test H0, consider the statistic (Ahmad et
al., 2008)

T =
Q

E1
, (3)

where

Q = nX
′
X and E1 =

1

n

n∑
k=1

Ak = tr(S) (4)

with Ak = X′kXk. Obviously, Q is the quadratic form of means, and E1 is the
mean of n independent quadratic forms. Since, E(Ak) = tr(Σ), without normal-
ity assumption (Searle, 1971, p 55), where tr denotes the trace, therefore, E1

is an unbiased estimator of tr(Σ), and so is Q, by the same argument. Further
moments of Q and E1, without normality assumption, are summarized in the
following proposition for further reference.

Proposition 2.1. For Q and E1, as defined in (4), we have

E(Q) = tr(Σ) = E(E1) (5)

Var(Q) = Var(E1) +
2(n− 1)

n
tr(Σ2) (6)

Cov(Q,E1) = Var(E1). (7)

The proof is quite trivial and is therefore omitted. In fact, except computing
Var(E1) explicitly, the proof of Proposition 5 in Ahmad et al. (2008) holds with-
out normality assumption (see also Section 4.2). Two main results determine
the proof: E(A2

kl) = tr(Σ2) and Cov(Akl, Am) = 0, k 6= l, which can be trivially
proved to hold without normality assumption (see also Rao and Kleffe, 1988,
p 38).

The formulation of T is a modification of the Wald statistic, nX
′
Σ̂
−1

X,
for testing H0 : µ = 0 when p can exceed n, where Σ̂ is the maximum like-
lihood estimator of Σ, under normality (see, for example, Serfling, 1980, p
155). Note that, the Wald statistic (or Hotelling’s T 2 statistic) is constructed
by standardizing the norm of the mean, ||X||2, with an inverse of covariance
matrix as a scaling factor. Since, for p > n, the problem stems from singularity
of Σ̂, any statistic aimed at testing a hypothesis on the location parameter can
not be constructed with such a standardization since the estimated covariance
matrix is not invertible. The modification in (3) is, therefore, based on taking

Σ̂ out of the Wald statistic and reformulating the statistic by norming it with
the trace, instead of inverse, of the covariance matrix.
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How much is the off-set we have to offer for the modification? For large n,
and large but fixed p such that p may exceed n, a detailed study of T for a
one-sample high-dimensional test for the mean vector in a repeated measures
set up is given in Ahmad et al. (2008), where F is assumed multivariate normal.
It is shown, theoretically and also supplemented with simulation results, that

T
D−→

χ2
f

f
(8)

as n→∞, with f = E2/E3 as an estimator of [tr(Σ)]2/tr(Σ2), where

E2 =
1

n(n− 1)

n∑
k=1

n∑
l=1

k 6=l

AkAl, E3 =
1

n(n− 1)

n∑
k=1

n∑
l=1

k 6=l

A2
kl, (9)

with Ak and Al being quadratic forms, as defined above, and Akl = X′kXl is a
bilinear form. The estimators, E1, E2 and E3, are shown to be unbiased and
consistent for the respective traces. Further, the chi-square approximation of T
is based on the following representation theorem of a quadratic form, combined
with the Box’s approximation (Box, 1954).

Theorem 2.2. Let X ∼ Np(0,Σ) and let M be any symmetric, positive semi-
definite matrix with r non-zero eigenvalues, r ≤ p. Then

A = X′MX ∼
r∑
i=1

λiCi

where λi are the eigenvalues of MΣ and the Ci ∼ χ2
1 are independent.

As the Box’s approximation calls for (Box, 1954, Theorem 3.1), we equate
first two moments of A with those of a scaled, gχ2

f distribution, i.e.

gf =

r∑
i=1

λi

2g2f = 2

r∑
i=1

λ2i +

(
r∑
i=1

λi

)2

.

This gives

f =
[tr(MΣ)]2

tr(MΣ)2
and g =

tr(MΣ)2

tr(MΣ)
, (10)

where
∑r
i=1 λi = tr(MΣ) and

∑r
i=1 λ

2
i = tr(MΣ)2. For more details, and a

two-sample extension of T , see Ahmad (2008).
As the main objective of the present work, we evaluate T by relaxing the

normality assumption, and show that its convergence to chi-square distribution
still holds, and this approximation is valid even when p→∞, not just for fixed
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p. This approximation of T , under high-dimensional, or (n, p)-asymptotics (see
Fujikoshi et al., 2010, Chs. 5 & 8), is established using the theory of U -
statistics. Thereby, as a side objective, we show that Theorem 2.2 also holds
under high-dimensional set up. Theorem 2.6 gives the asymptotic distribution
of T . For the proof of this theorem, we need to set some assumptions.

Assumption 2.3. E(X4
ks) ≤ γ <∞, ∀ s = 1, . . . , p, for some finite constant

γ independent of p.

Assumption 2.4. For p→∞, let tr(Σ)
p = O(1).

Assumption 2.5. For p→∞, let tr(Σ2)
p2 = O(δ), where 0 < δ ≤ 1.

Assumption 2.3 states that the moments of the elements of random vector
Xk, up to order 4, exist and are finite. The finite fourth moment assumption is a
somewhat natural replacement of normality, particularly when dealing with the
computations which involve second moment of quadratic forms; see for example,
Atiqullah (1962), Rao and Kleffe (1988, Ch. 2), Wiens (1992), Knight
(1985), and Srivastava (2009), to mention a few. Moreover, as will be shown
in the proof of Theorem 2.6, Assumptions 2.3 and 2.4 help us establish the
convergence of 1

pE1, whereas Assumptions 2.4 and 2.5 are needed to ensure
that the asymptotic distribution of the U -statistic, used to prove Theorem 2.6,
remains non-degenerate, even when p grows large.

Assumption 2.5 deviates from its usually adopted form in the literature for
high dimensional set up where it is assumed that tr(Σ2)/p = O(1). In most
cases it is assumed with even higher powers of Σ, at least up to 4; see for
example Ledoit and Wolf (2002), Srivastava (2007), Fisher et al. (2010),
and Chen et al. (2010). But it can be easily verified that tr(Σ2)/p shows a
very bad behavior for many practical covariance structures when the dimension
grows large. The ratio tr(Σ2)/p actually diverges to infinity very quickly in
certain most important cases. For our purposes, i.e., to prove Theorem 2.6,
it suffices to assume tr(Σ2)/p2 > 0, but for most of practical cases, it can be
shown that tr(Σ2)/p2 = O(1), as p gets moderately large.

As a typical example, let Σ = (1 − ρ)I + ρJ be the compound symmetric
matrix, where I is the identity matrix, J is the matrix of 1s, and ρ is a constant.
Assume ρ = 0.5, so that Σ > 0. Then, tr(Σi) = O(pi), i = 1, 2, so that
tr(Σ2)/p2 = O(1), for p → ∞. Clearly, for ρ = 0, so that Σ = I, the ratio
tr(Σ2)/p2 will eventually vanish as p→∞. This is an extreme case which does
not allow any correlational structure of the variables. In fact, it can be shown
that Assumption 2.5 is conveniently satisfied for a variety of practically useful
covariance matrices, for example, compound symmetric, autoregressive of order
1, or unstructured matrix (see also Wolfinger, 1996), except for the cases
when the covariance matrix is singular or near singular.

We do admit here that there are practical cases where this ratio may converge
to 0 for very large p, but this is mostly the case when Σ is singular, and the
more intense the singularity of Σ is, the more rapid is its convergence to zero;
see also Ahn et al. (2007). Since we want to avoid zero convergence case for
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this ratio, we feel much safer to have Assumption 2.5 with divisor p2, instead of
p. For a detailed study on the rationale of the assumptions frequently adopted
in the current high-dimensional literature, see Ahmad et al. (2011).

Now, we prove the main theorem on the asymptotic distribution of T .

Theorem 2.6. Assume n, p→∞. Then, under Assumptions 2.3 - 2.5, the test
statistic, T , as given in Equation (3), is distributed as χ2

f/f with f estimated
as E2/E3, where E2 and E3 are given in (9). Further, under the same set up,
and using Hájek-Šidák Lemma (see Lemma 2.7 below), it can be shown that,

T − E(T )√
V̂ar(T )

D−→ N(0, 1),

where E(T ) = 1, and V̂ar(T ) = 2E3/E2 is the sample estimator of Var(T ) =
2tr(Σ2)/[tr(Σ)]2.

Proof Following the discussion around Theorem 2.2, we essentially need
to prove that T can still be represented as a weighted sum of independent chi-
square random variables, even when p→∞ and the distribution is not normal.
For this, we first note that

nX
′
X =

1

n

n∑
k=1

n∑
l=1

Akl =
1

n

n∑
k=1

Ak +
1

n

n∑
k=1

n∑
l=1

k 6=l

Akl

= E1 +
1

n

n∑
k=1

n∑
l=1

k 6=l

Akl,

where Ak = X′kXk and Akl = X′kXl. Then, we can write T in (3) as

T = 1 +
E0
1
pE1

, (11)

with

E0 =
1

n

n∑
k=1

n∑
l=1

k 6=l

1

p
Akl

= (n− 1)

 1

n(n− 1)

n∑
k=1

n∑
l=1

k 6=l

1

p
Akl

 = (n− 1)Un, (12)

where Un is a U -statistic with the symmetric kernel 1
pAkl, k 6= l; see for example

Shao (2003, Ch. 3), and Lehmann (1999, Ch. 6). The asymptotic theory of
U -statistics, introduced by Hoeffding (1948), is quite rich and provides some
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nice results, also for random processes with dependent random variables; see for
example Denker and Keller (1983). A comprehensive review of the asymp-
totic results of U -statistics is given in Dehling (2006); see also Koroljuk and
Borovskich (1994). A general form of multivariate U -statistics is dealt with
in Sugiura (1965). For recent examples on the use of U -statistics theory in
high-dimensional inference, see Ahmad et al. (2011), and Zhang and Chen
(2011), whereas a brief motivation for the use of (degenerate) U -statistics the-
ory to deal with high-dimensional asymptotics is given in Section 4 (Remark 1).

We shall exploit this theory and show that Un, being an average of bilinear
forms composed of independent random vectors, is approximately chi-square
distributed even if p → ∞. This result, apart from being helpful in proving
Theorem 2.6, is of great interest on its own. The steps of our proof closely
follow the assertions of Shao (2003, p 174ff.) and Serfling (1980, Ch. 5).

First, note the normalization of the kernel of Un by p which is essential to
fix the approximating distribution based on Assumptions 2.4 and 2.5. For con-
venience, we can consider Bkl = Y′kYl, where Yj = Xj/

√
p, j = k, l, so that

E(Yj) = 0, under H0, and Var(Yj) = 1
pΣ. Now, if we let λ1, . . . , λp to be the

eigenvalues of Σ, then Assumptions 2.4 and 2.5 clearly refer to the eigenval-
ues of 1

pΣ, since E(Y′jYj) = 1
p tr(Σ) and E(Y′kYl)

2 = 1
p2 tr(Σ2). For further

reference, let us denote the p-scaled eigenvalues of 1
pΣ as νj = λj/p, j = 1, . . . , p.

We begin by showing that the denominator of T , 1
pE1, converges, in prob-

ability, to
∑
j νj which, by Assumption 2.4, is uniformly bounded away from

0 and ∞. To see this, note that E(E1) = tr(Σ), also valid without normality
assumption. Further, by Assumption 2.3, Var(E1/p) ≤ γ/n → 0, as n → ∞
since, by Cauchy-Schwarz inequality

E(A2
k) =

p∑
s=1

E(X4
ks) +

∑∑
s6=t

E(X2
ksX

2
kt) ≤ γp2. (13)

The required convergence then follows immediately by Chebychev inequality.
Now, we deal with E0 in Equation (12).

Following Serfling (1980, Ch. 5), we define h(Y1, . . . ,Ym) = Y′kYl, so
that hc(Y1, . . . ,Yc) = E

(
h(Y1, . . . ,Ym)|Y1 = y1, . . . ,Yc = yc

)
, with 1 ≤

c ≤ m. Further, ξc = Var[hc(Y1, . . . ,Yc)], with ξ0 = 0. For the present case,
m = 2 and c = 1, 2, so that h2(·) = hm(·) = h(·). Now, since, under H0,
E(Yk) = 0, it implies that E(Bkl) = 0, and E(B2

kl) = 1
p2 Var(Bkl) = tr(Σ2) (see

also Proposition 2.1). Then, it is just trivial to verify that

E[h1(Y1)] = 0 = E[h2(Y1,Y2)], ξ1 = 0, and ξ2 =
tr(Σ2)

p2
, (14)

so that the variance of Un becomes (Lehmann, 1999, p 368)

Var(Un) =
1(
n
2

) 2∑
c=1

(
2

c

)(
n− 2

2− c

)
ξc =

2

n(n− 1)
ξ2, (15)
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same as can be directly computed (see Equation (6) of Proposition 2.1). Given
Equation (15), the three conditions on Var(Un), as given in Serfling (1980,
Lemma A, p 183), can be immediately verified using Assumption 2.5. For the
present case with m = 2 and ξ1 = 0, Equation (15) gives

(i) 0 ≤ Var(Un) ≤ 2

n
ξ2

(ii)
2

n
ξ2 ≤

2

n− 1
ξ2

(iii) Var(Un) = O(n−2).

Note that, since ξ1 = 0, Condition (iii) can also be verified through a corollary
as stated on page 185 in Serfling. Finally, using the projection method of U -
statistics, Condition (iii) and Equation (15) imply that

Var(nUn)→ 2ξ2

as n→∞ (Serfling, 1980, p 189); see also Shao (2003, Lemma 3.2, page 180).
Clearly, under Assumption 2.5, Var(nUn) is uniformly bounded, as p, n→∞.

Now, the theorem in Serfling (1980, p 194) gives the approximating distri-
bution of Un, and hence eventually of the statistic T . We note that, the factor n
in nUn is already available as a multiplier in Equation (12). Hence, with m = 2
and E(Un) = 0, we have

nUn
D−→

∞∑
j=1

νjCj −
∞∑
j=1

νj , (16)

under Assumption 2.5, where Cj ’s are independent chi-square random variables,
each with single degree of freedom, and they are weighted with the eigenvalues
νj such that

∑
j ν

2
j = ξ2 (see Shao, 2003, Theorem 3.5(ii), p 180). Using (16),

along with the convergence of 1
pE1, by Slutsky theorem (van der Vaart, 1998,

Lemma 2.8, p 11), T in Equation (11) can be written as

T − 1
D−→ W

K
, (17)

with W =
∑∞
j=1 νj(Cj − 1) and K =

∑∞
j=1 νj , as n, p → ∞, where K, under

Assumption 2.4, is uniformly bounded away from 0 and infinity. For simplicity,
let wj = νj/K such that (17) can be represented as

T − 1
D−→

∞∑
j=1

wj(Cj − 1) =

∞∑
j=1

wjCj − 1, (18)

which represents T similar to the representation of a quadratic form in Theorem
2.2, where

∑∞
j=1 wj = 1. This gives an exact analog of Theorem 2.2 for the case

when p → ∞, and hence a similar version of Box’s approximation can also be
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carried through. Since, E(W ) = 0 and Var(W ) = 2
∑∞
j=1 ν

2
j , therefore,

E(T ) = 1 (19)

Var(T ) =
2
∑∞
j=1 ν

2
j(∑∞

j=1 νj

)2 = 2

∞∑
j=1

w2
j , (20)

which are exactly the same moments as obtained for T under normality with
fixed p, i.e., the moments of χ2

f/f for the approximation in (8).
Now, it is also worth mentioning that, if we let p fixed but continue to relax

normality, we can simply go through the same procedure as explained above such
that the validity of the approximation (17) comes immediately. In fact, with
p fixed, it is relatively easier to show the approximation since the asymptotic
convergence of Un is directly applicable for n → ∞ without worrying about
bounding the expressions for large p. This shows that the original approximation
of T as given in Ahmad et al. (2008) for fixed p under normality, i.e., (8), is valid
without normality assumption whether p is kept fixed or is allowed to grow with
n. These results are summarized in Section 4 (see Remark 2). Clearly, using
the properties of chi-square distribution, the approximation for fixed p can also
be expressed as

T − 1√
2/f

D−→ N(0, 1), (21)

as n → ∞. A similar approximation for the present case, with p → ∞, can
be obtained using the following Hájek-Šidák Lemma (see Jiang, 2010, Example
6.6, p 183; Hájek et al., 1999, p 184) which eventually helps us prove the second
part of Theorem 2.6.

Lemma 2.7. Let X1, X2, . . . be iid random variables with mean 0 and variance
1. Let anj, 1 ≤ j ≤ n, be a sequence of constants such that maxj a

2
nj → 0 as

n→∞. Then
n∑
j=1

anjXj
D−→ N(0, 1),

as n→∞.

Consider Approximation (18). Since, E(Cj) = 1, Var(Cj) = 2, therefore, in

the notations of Lemma 2.7, Xj = (Cj − 1)/
√

2. Define aj = wj/
√∑

j w
2
j such

that
∑
j a

2
j = 1 and max a2j → 0 as p→∞. Then, by Lemma 2.7

∑
j

ajXj =

∑
j wj(Cj − 1)√

2
∑
j w

2
j

D−→ N(0, 1),

as p → ∞. Obviously, to make T practically workable, we need to estimate
unknown parameters used in the approximation. From wj = νj/

∑
j νj , and

from Equation (20), we need to estimate
∑
j νj ,

∑
j ν

2
j , (

∑
j νj)

2, where the
estimators must be unbiased, and consistent even when p → ∞. We know
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Table 1: Quantiles of T , given in Equation (3), for Exponential Distribution

CS p
n 1− α 10 20 50 100 200 500 1000

10 0.90 0.8810 0.8812 0.8775 0.8783 0.8797 0.8773 0.8795
0.95 0.9298 0.9246 0.9205 0.9205 0.9198 0.9188 0.9214
0.99 0.9792 0.9741 0.971 0.9725 0.968 0.9679 0.9683

20 0.90 0.8994 0.8954 0.8952 0.9000 0.8921 0.8891 0.8925
0.95 0.9385 0.9334 0.9325 0.9341 0.9319 0.9246 0.9268
0.99 0.9754 0.9741 0.9746 0.9694 0.9702 0.9685 0.9675

50 0.90 0.9077 0.8976 0.9030 0.9003 0.9006 0.9007 0.9030
0.95 0.9466 0.9385 0.9408 0.9364 0.9376 0.9367 0.9415
0.99 0.9799 0.976 0.9752 0.9722 0.9736 0.9740 0.9758

UN p
n α 10 20 50 100 200 500 1000

10 0.90 0.9177 0.922 0.9215 0.9169 0.9062 0.9125 0.9164
0.95 0.9669 0.9678 0.967 0.9635 0.9592 0.9591 0.9617
0.99 0.9968 0.9981 0.9976 0.9952 0.995 0.9939 0.9957

20 0.90 0.9081 0.9049 0.9085 0.9082 0.9009 0.9065 0.9078
0.95 0.9593 0.958 0.9577 0.9579 0.9531 0.9569 0.9555
0.99 0.9937 0.9943 0.994 0.9938 0.9938 0.9920 0.9927

50 0.90 0.9075 0.9037 0.9090 0.9038 0.9038 0.9073 0.9020
0.95 0.9561 0.9522 0.9529 0.9518 0.9547 0.9529 0.9504
0.99 0.9932 0.9901 0.9901 0.9906 0.9913 0.9914 0.9920

that, 1
pE1,

1
p2E2 and 1

p2E3 are unbiased estimators of these three traces (see

(9)). Then, we can replace the sums in the approximation by their estimators
if we can prove that they are also consistent with respect to the traces they
estimate. This consistency for 1

pE1 is already shown, which immediately leads

to the consistency of 1
p2E2, under Assumptions 2.3-2.5, by the independence of

quadratic forms involved in E2. For 1
p2E3, we note that,

Cov(A2
kl, A

2
rs) ≤ Var(A2

kl) ≤ E(A4
kl) ≤

[
E(A2

k)
]2
,

by Cauchy-Schwarz inequality, and then the result follows from (13) and As-
sumption 2.5. Summing up the results, we have

T − E(T )√
V̂ar(T )

D−→ N(0, 1),

where V̂ar(T ) = 2E3/E2, when n, p→∞, as needed to be proved.

3 Simulations

The test statistic is investigated through simulations under a variety of pa-
rameter settings, for both test size and power. Tables 1 and 2 report esti-
mated quantiles of T for standard exponential and uniform distributions. The

10



0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.2

0.4

0.6

0.8

1.0

Exp(1) / CS / n = 10

δ

1
−

β

p = 50
p = 200
p = 1000

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.0

0.2

0.4

0.6

0.8

1.0

Exp(1) / UN / n = 10 

δ

1
−

β

p = 50
p = 200
p = 1000

0.0 0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8

1.0

Exp(1) / CS / n = 50

δ

1
−

β

p = 100
p = 500
p = 1000

0.00 0.05 0.10 0.15 0.20

0.2

0.4

0.6

0.8

1.0

Exp(1) / UN / n = 50 

δ

1
−

β

p = 100
p = 500
p = 1000

Figure 1: Power curves of T : Exponential Distribution

nominal quantiles, 1 − α = 0.90, 0.95, 0.99, are estimated for three moder-
ate sample sizes, n = 10, 20, 50, each n combined with several dimensions,
p = 10, 20, 50, 100, 200, 500, 1000. Further, two covariance structures are im-
posed on Σ, viz. compound symmetry (CS) and unstructured (UN). The CS
structure is defined as Σ = σ2 [(1− ρ)I + ρJ], where I is the identity matrix, J
is the matrix of ones, and σ2 > 0 and ρ are constants, whereas the UN pattern
refers to Σ = (σij)

p
i,j=1. For the simulations reported here, it is assumed that

σ2 = 1, ρ = 0.5 for CS, and σij = 1(1)p (i = j), ρij = (i− 1)/p (i > j), for UN.
As is evident from Table 1, the statistic is slightly liberal under CS struc-

ture and slightly conservative under UN structure for exponential distribution
for n = 10, but the accuracy improves significantly for only a moderate increase

11



Table 2: Quantiles of T , given in Equation (3), for Uniform Distribution

CS p
n 1− α 10 20 50 100 200 500 1000

10 0.90 0.9083 0.9053 0.9082 0.903 0.9073 0.901 0.9036
0.95 0.9526 0.9467 0.9483 0.9457 0.9456 0.9439 0.9468
0.99 0.9916 0.9873 0.9862 0.9863 0.9854 0.9871 0.9855

20 0.90 0.9094 0.9094 0.9094 0.9118 0.9131 0.9029 0.9026
0.95 0.9511 0.9468 0.9498 0.9490 0.9465 0.9448 0.9421
0.99 0.9874 0.9862 0.9850 0.9856 0.9827 0.9825 0.9815

50 0.90 0.9150 0.9111 0.9119 0.9149 0.9113 0.9106 0.9074
0.95 0.9540 0.9496 0.9481 0.9510 0.9462 0.9458 0.9444
0.99 0.9873 0.9857 0.9843 0.9842 0.9828 0.9818 0.9804

UN p
n α 10 20 50 100 200 500 1000

10 0.90 0.9067 0.9079 0.9069 0.9149 0.9097 0.9126 0.9104
0.95 0.9582 0.9581 0.9590 0.9619 0.9606 0.9598 0.9574
0.99 0.9938 0.9949 0.9958 0.9964 0.9947 0.9935 0.995

20 0.90 0.9075 0.9090 0.9025 0.9053 0.9065 0.9020 0.9078
0.95 0.9573 0.9564 0.9546 0.9537 0.955 0.9545 0.9554
0.99 0.9935 0.9923 0.9944 0.9923 0.9922 0.9919 0.9927

50 0.90 0.9077 0.9039 0.8971 0.8996 0.8974 0.9023 0.903
0.95 0.9528 0.9532 0.9507 0.9533 0.9483 0.9538 0.9536
0.99 0.9907 0.9909 0.9906 0.9917 0.9901 0.9916 0.9902

in the sample size, i.e. for n = 20 and n = 50. For uniform distribution (Table
2), the results are relatively better for n as small as 10, and improves for in-
creasing n. Further, for any fixed n, the accuracy for both distributions remains
intact for increasing p which shows the high-dimensional consistency of the test
statistic.

A similar performance of the statistic is also observed in power computa-
tions, as reported in Figures 1 (Exponential distribution) and 2 (Uniform dis-
tribution). The upper panel of each figure represents power curves for n = 10
with p = 50, 200, 1000 and the lower panel of each figure represents power curves
for n = 50 with p = 100, 500, 1000. Further, within each of these panels, the
left (right) part depicts power curves for CS (UN) covariance pattern. The
nominal quantile for all power computations is fixed at 0.95, and δ represents
the alternative hypothesis under which the power is computed. Note that this
alternative hypothesis can be represented as µ = δip

−1, where µ = E(X),

p−1 =
(

1
p ,

2
p , . . . ,

p
p

)′
, and δi is the ith value of δ.

We observe that the power of the test statistic is not only high, but increases
for increasing dimension. We observe a discernably better performance under
UN pattern than under CS pattern, particularly regarding increase in power for
increasing dimension, which is somewhat clear given the eigenstructure of the
two covariance patterns. Another significant difference, also present in the esti-
mated test sizes, is the relatively better performance of the statistic for uniform
distribution than for exponential distribution. This is also comprehensible tak-
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Figure 2: Power curves of T : Uniform Distribution

ing into account the fact that exponential distribution represents one of the most

serious violations of normality.

4 Some Remarks

4.1 High dimensional asymptotics and U-statistics

As the convergence of the statistic to a weighted sum of independent chi-square
random variables, as shown in (16), is the linchpin of the proof, it deserves a
closer look. It is an interesting extension of the finite dimensional case of The-
orem 2.2 to an infinite dimensional case that is the subject of this paper. This
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fundamental result is based on an orthogonal expansion of the kernel 1
ph(Xk,Xl)

of the degenerate U -statistic, Un, in terms of orthogonal functions, represented
as

h(Xk,Xl) =

∞∑
j=1

νjej(Xk)ej(Xl) (22)

where νj ’s and ej ’s are, respectively, the eigenvalues and orthonormal eigen-
functions of h(Xk,Xl). The validity of the approximation of T in (16) rests on
certain conditions imposed on h(Xk,Xl) in the expansion (22). First, from (14),
we have ξ1 = 0 and ξ2 <∞, where the former is known as the the condition of
(first order) degeneracy of the kernel (Lee, 1990, p 78), and the latter ensures,
under Assumption 2.5, that the kernel is square-integrable, i.e. that the L2

norm of its eigenvalues is finite. A brief but nice exposition of the theory is
given in van der Vaart (1998, Ch. 12). For more details, see Denker (1985),
Serfling (1980, Ch. 5), Lee (1990, Ch. 3), and Koroljuk and Borovskich
(1994, Ch. 4).

A particularly interesting feature of the test statistic is that the degenerate
kernel it is based upon is of order 2, and as van der Vaart (1998, p 168)
puts it, the orthogonal expansion, like (22), of such a second order kernel is the
most straightforward to comprehend, and which is guaranteed by the Hilbert-
Schmidt theory of self-adjoint linear operators (see, for example, Reed and
Simon, 1980, Theorem VI.16, p 203). A detailed study of the theory of oper-
ators and their properties is given, for example, in Dunford and Schwartz
(1963), and Kreyszig (1978).

Finally, the convergence of the expansion in (22) is in mean square, in the
sense that

E

h(Xk,Xl)−
p∑
j=1

νjej(Xk)ej(Xl)

2

=

∞∑
j=p+1

ν2j → 0,

as p → ∞, i.e., the approximation corresponds to at most countably many
eigenvalues (van der Vaart, 1998, p 168). This L2-convergence helps us es-
tablish (16) as a modification to the result of Theorem 2.2 for p → ∞ and
under non-normality. A more thorough treatment of this theory for its use in
high dimensional inference is the subject of another manuscript.

4.2 Box’s approximation

As briefly explained after Equations (19) and (20), the approximate limit dis-
tribution of the test statistic T (Theorem 2.6) is also valid if we keep normality
assumption relaxed but assume p fixed, where p may also exceed n. This shows
that the validity of T , and hence that of Box’s approximation (Theorem 2.2) is
valid for both n-asymptotics and for (n, p)-asymptotics, and whether F is as-
sumed multivariate normal (as shown in Ahmad et al., 2008), or F represents
any multivariate distribution with finite fourth moment, as proved here under
Assumptions 2.3-2.5.
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The approximation for fixed p, of course, does not heavily depend on As-
sumptions 2.3-2.5. Under normality, none of these assumptions is needed for
either Box’s approximation or the asymptotic distribution of T , as shown in Ah-
mad et al. (2008), whereas Assumptions 2.3 and 2.4 are obviously needed when
normality is relaxed. In the later case, under H0, the multivariate central limit
theorem (Lehmann, 1999, Theorem 5.4.4, p 313) gives asymptotic normality
of
√
nX, and the continuous mapping theorem (Jiang, 2010, Theorem 2.12,

p 30) yields the asymptotic chi-square distribution nX
′
X ≈ χ2

p, as n → ∞.
Alternatively, the asymptotic theory of U -statistics can be used in which case
the expressions in Section 2 are clearly much easier to deal with for fixed p case
than for arbitrarily growing p.

For example, the statistic T in Equation (11) reduces to T = 1 + E0/E1,
without the divisor p which does not influence the asymptotic limits, and all
the computations go through. In this sense, we consider the approximation of T
for fixed p as a special case of the one presented in Section 2. For reference, we
summarize the results in the following theorems, including the result based on
normality assumption (Ahmad, 2008, Ahmad et al., 2008), leaving the detailed
derivations aside. The first theorem is for Box’s approximation, and the second
for the test statistic T . Without loss of generality, we continue to assume µ = 0.

Theorem 4.1. (Theorem 2.2, revisited) Consider model (1), and let Q =

nX
′
X be as defined in Section 2. We have the following.

1. Assume p fixed and n→∞. If (a) F is multivariate normal, or (b) F is
as in (1) for which Assumptions 2.3-2.4 are satisfied, then,

nX
′
X ≈

p∑
j=1

λjCj ,

where λj are the eigenvalues of Σ and Cj are iid χ2
1.

2. Assume n → ∞ and p → ∞, and F is as in (1) for which Assumptions
2.3-2.5 are satisfied. Then (see Equation (16))

nX
′
X ≈

∞∑
j=1

νjCj ,

where Cj are iid χ2
1 and νj are the eigenvalues of 1

pΣ.

Theorem 4.2. (The test statistic) Consider model (1). Let T = Q/E1 be
the test statistic as defined in Equation (3), and E2, E3 be as defined in (9),

with f̂ = E2/E3. We have the following.

1. Assume p fixed and n→∞. If (a) F is multivariate normal, or (b) F is
as in (1) for which Assumptions 2.3-2.4 are satisfied, then,

fT
D−→ χ2

f ,

where f = [
∑p
j=1 λj ]

2/
∑p
j=1 λ

2
j is estimated as f̂ .
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2. Assume n → ∞ and p → ∞, and F is as in (1) for which Assumptions
2.3-2.5 are satisfied. Then

fT
D−→ χ2

f ,

where f = [
∑∞
j=1 νj ]

2/
∑∞
j=1 ν

2
j is estimated as f̂ .

We notice that, for fixed p case, an explicit expression for Var(E1) is not
furnished in Proposition 2.1. In fact, a closer look at the proof of Proposition 5
in Ahmad et al. (2008) reveals that this variance is not needed to compute the
moments of the test statistic using the delta method, as they originally used.
However, in order to study the properties of estimators, one may need certain
moments, and there is a plethora of literature on the moments of quadratic
forms without normality assumption. Under the assumption of independence
of Xks, s = 1, . . . , p, the variance of a quadratic form is given in Atiqullah
(1962) without proof, a general proof of which is given in Seber and Lee (2003,
p 10) and a proof for the central case is given in Placket (1960, p 16); see
also Ohtaki (1990, Corollary A.2). In fact, Theorem A.1 in Ohtaki (1990) is
a very general result for the moments of quadratic forms replacing normality
assumption with the assumption of finite moments of order up to order 4. For
example, a substitution of n = 1 in this theorem trivially yields the multivari-
ate version of Atiqullah’s result which is more fitting for the computation of
Var(E1) directly. A brief sketch of the proof of the general theorem is given by
Ohtaki (see page 89 of the manuscript) which shows that the proof is extremely
straightforward. For more related work, see the references given in the context
of Assumption 2.3 and the references cited therein.

4.3 Testing a general linear hypothesis

Although, for simplicity, the test statistic is discussed in the context of testing
the usual multivariate hypothesis H0 : µ = 0, one can, however, also use it
to test a general linear hypothesis with certain hypothesis matrix defining the
appropriate contrasts on the elements of the vector Xk. For example, we may
test H0 : Hµ = 0, where H is a hypothesis matrix. For a unique representation,
H0 can be replaced with an equivalent hypothesis H0 : Pµ = 0, where P =
H(H′H)−H′, and (·)− denotes a g-inverse. The two-fold advantages of using
P are that it significantly reduces the computational burden due to it being a
projection matrix (symmetric and idempotent), and that it can help us impose
a factorial structure on the random vector Xk, so that the use of the statistic T
can be extended to other hypotheses of interest, for example repeated measures
profile analysis, or factorial structures for between effects, etc. Then, for this
one-sample case, the hypothesis matrix P is either of the form P = I − 1

pJ

(when there is no structure), where I is the identity matrix, and J is the matrix
of 1s, or it is of the form P⊗C, where C is a matrix of contrasts regarding the
imposed structure, and ⊗ denotes the Kronecker product. Hence, C may be a
single matrix, or itself a Kronecker product of several other similar matrices,
depending upon the number of factors involved and the type of between-factor
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hypotheses of interest. But in either case, C does not involve the dimension p.
This immediately leads us to see that, for p → ∞, the statistic can be used to
test either of these hypotheses. For some examples of the hypothesis matrix P
used to test multi-factorial structure in a design, see Ahmad (2008).

5 Summary and conclusions

A statistic for testing the mean vector is presented when the dimension of the
multivariate vector, p, may exceed the number of such vectors, n, and the un-
derlying distribution need not necessarily be multivariate normal. Using the
asymptotic theory of one-sample first-order degenerate U -statistics, the test
statistic is shown to follow an approximate chi-square distribution, and based
on a classical asymptotic result, eventually to an approximate normal distribu-
tion. The main result of the paper, Theorem 2.6, leads to a modified version
of the Box’s approximation for non-normal and high-dimensional multivariate
data.

It is further illustrated, through simulation studies, that the statistic per-
forms accurately, both in size estimation and power, for a moderate n and a very
large p, and that the statistic maintains these properties for the most commonly
used covariance structures. It is shown in simulation results, that the largeness
of n for the validity of the approximation of the test statistic, for practical pur-
poses, refers only to moderate sample sizes and the accuracy of the test statistic
remains intact even when p grows much larger than n.
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