

Institutionen för datavetenskap
Department of Computer and Information Science

Final thesis

Automatic Test Builder

by

Saad Zeb Abbasi

LIU-IDA/LITH-EX-A—12/029—SE

 2012-06-04

Linköpings universitet

SE-581 83 Linköping, Sweden

Linköpings universitet

581 83 Linköping

Final Thesis

Automatic Test Builder

by

Saad Zeb Abbasi

LIU-IDA/LITH-EX-A—12/029—SE

2012-06-04

Examiner: Kristian Sandahl

Supervisor: Pär Emanuelsson

Abstract

In Ericsson, the Automation Team automates test cases that are frequently rerun. This process
involves copying data related to a particular Configured Test Case from a database and then
pasting it into a java file created to run a test case. In one java file, there can be more than one
Configured Test Cases. So information can vary. Then the tester has to add package name,
necessary imports, member variables, preamble and post amble methods, help methods and
main execution methods. A lot of time and effort are consumed in writing the whole code.
The Automation Team came up with a proposal of having a tool that can generate this whole
information and the tester just has to add or remove minor changes. This will save time and
resources. So the development of tool started and finally a tool named Automatic Test Builder
developed in java was created to help automation teams in Ottawa, Kista and Linkoping.

This document elaborates problem statement, opted approach, tools used in development
process, a detailed overview of all development stages of Automatic Test Builder. This
document also explains issues what came during the development, evaluation and usability
analysis of Automatic Test Builder.

Acknowledgements

Thanks to all mighty Allah, creator of this universe. He gave me strength to start, continue
and complete this major minestrone of my educational career. I am also thankful to my
parents, my wife and my siblings to aid me with their prayers and moral support. I am also
humbly thankful to my supervisor Kristian Sandahl who led me throughout this thesis work
with his valuable guidance and succored me with his valuable experience. I also thanks to my
supervisors at Ericsson Jonas Widén and Sören Andersson for their protagonist vision
resulting in a quality product. I am extremely thankful to all my friends and well-wishers for
their encouragement and adherence.

I dedicate this thesis work to my family.

Table of Contents

Abstract ... 3

Acknowledgements .. 4

Table of Contents ... 5

1 Introduction ... 1

1.1 Problem statement ... 1

1.2 Context of study .. 1

1.3 Teams interaction in Ericsson .. 2

1.4 Approach ... 3

1.4.1 Development method .. 3

1.4.2 Verification and validation .. 5

1.4.3 Tools .. 5

1.4.4 Programming Language .. 5

2 Contribution ... 5

3 Theoretical framework ... 6

3.1 Software testing ... 6

3.2 Testing levels ... 7

3.2.1 Unit Testing .. 7

3.2.2 Pros and Cons ... 7

3.2.3 Stubs and Drivers ... 7

3.2.4 Integration Testing .. 7

3.2.5 System Testing ... 11

3.2.6 Acceptance testing .. 11

3.3 Testing modes ... 12

3.3.1 Black-box Testing .. 12

3.3.2 Pros and Cons ... 12

3.3.3 White-box Testing .. 13

3.3.4 Pros and Cons ... 13

3.3.5 Grey box testing ... 14

3.3.6 Pros and Cons ... 14

3.4 Testing Types .. 14

3.4.1 Functional testing ... 14

3.4.2 Pros and Cons ... 14

3.4.3 Non-functional testing .. 15

3.4.4 Regression testing ... 16

3.4.5 Progression testing .. 16

3.4.6 Automation testing ... 16

3.4.7 Pros and Cons ... 17

3.5 Hardware and tools .. 17

3.6 JCAT framework ... 18

3.6.1 JCAT Layers .. 18

3.6.2 JUnit 3 .. 19

3.6.3 Subversion .. 19

3.6.4 Eforge... 19

3.6.5 Maven .. 20

3.6.6 Hudson ... 21

3.6.7 Sonar .. 22

3.7 Information model ... 23

3.7.1 FV Legacy team ... 24

3.7.2 Automation team .. 24

3.7.3 Work Package .. 24

3.7.4 TC suite .. 24

3.7.5 TC .. 24

3.7.6 CTC.. 24

3.7.7 TC Header .. 24

3.7.8 Preamble .. 24

3.7.9 Post amble .. 25

3.7.10 Help methods.. 25

3.7.11 Main execution TC methods ... 25

3.7.12 Test methods .. 25

3.7.13 Signum ... 25

4 Implementation .. 26

4.1 Overall structure of the application .. 26

4.2 Screen shots of application .. 28

4.3 Structure of java file .. 38

4.4 Class diagram of java file... 40

4.5 Inputs and output of the application ... 41

4.6 Manually created java file VS Java file created by Automatic Test Builder 41

5 Development process ... 42

5.1 Semi-automated process .. 42

5.1.1 Generation of text file ... 42

5.1.2 Reading text file and saving data in local database .. 43

5.1.3 TC header generation .. 43

5.2 Fully-automated process .. 43

5.2.1 Connection to database using SOAP service ... 43

5.2.2 Java file generation ... 44

5.3 GUI Design ... 44

5.4 Working GUI ... 44

5.5 Adding main execution TC methods and help methods .. 44

5.6 Creation of help methods class hierarchy ... 45

5.6.1 Creation of Hardware methods class hierarchy.. 45

5.6.2 Creation of System Function Group methods class hierarchy 46

5.7 Documentation development ... 47

5.8 Training of testers .. 47

6 Discussion .. 48

6.1 What they did before ... 48

6.2 What they can do now ... 48

6.3 Testing of the system ... 48

6.4 Estimations of experts about the application .. 48

6.5 Future Improvements ... 49

6.6 Reflection on development method .. 49

7 References ... 50

8 Appendix ... 51

8.1 Mockups .. 51

8.2 Code Snippets .. 57

8.2.1 Reading text file ... 57

8.2.2 Saving data into local database .. 59

8.3 Main execution TC methods example .. 59

8.4 Test method example ... 60

8.5 Manually created java file .. 60

8.6 Java file created by Automatic Test Builder ... 72

8.7 Time plan .. 80

1

1 Introduction

1.1 Problem statement

At the Long Term Evolution Radio Access Network (LTE RAN) Integration & Verification
department, verification and troubleshooting of new and legacy features is performed. The test
cases (TC) that will be frequently re-run are automated. Automation of the test cases is carried
out by the Automation team using JCAT framework. All support for JCAT is provided by Test
Automation Core (TAC) Team. According to the Team Lead of automation team Jonas Widén “It
takes about two weeks to write an automated test case”. Because they have to first write all
information about each Configured Test Case (CTC) included into a test case. There can be one
or more than one CTCs in a single test case which means that huge information is needed to be
written or copy and paste from the database each time a tester automates a test case. Then they
have to follow a standardized structure to write an automated test case. They have Help methods
which they have to write from scratch or copy and paste from the central repository each time
they create an automated test case.
All above mentioned steps take around two weeks or more to be completed. If the tester is not
skilled in automation, it can take even more. To minimize the time spend on adding CTC
information, creating a structure of the automated test case and adding methods, Team Lead
automation Jonas Widén and Senior member automation Sören Andersson came up with an idea
of having a tool that can do all tedious jobs so that they can speed up the automation process.
The work consists of development of a tool that allows a tester to enter CTC ID and all
information regarding that CTC ID shall be fetched from database. This information shall be
editable before putting this information into the TC header as comments. Every CTC belongs to a
specific System Function Group. This tool shall add all help methods of that System Function
Group to the java file. There shall be an option to select hardware. Based on hardware selection,
help methods regarding hardware shall be added in the resulting java file. Finally, the tool shall
ask for the test case name and path where java file will be saved. After providing all the
information, a java file with TC header, complete test case structure, Main execution methods
and help methods shall be created.
The result of the work shall be presented to the testers in department. Instructions on how to use
and configure the tool shall be made available on internal wiki pages.
Development of such a tool that can speed up the automation process was requested by
automation team. This tool will be used by automation team. So, client and end user of this tool is
automation team.

1.2 Context of study

This thesis work was carried out in Ericsson Linköping. The department was Feature
Verification. The Team which was initiator or this thesis work and which will use the end product
of this thesis work was Automation team. There are three automation teams, in Linköping, Kista
and Ottawa. The automation team in Linkoping consists of three testers and a Team Lead. The
automation team automates test cases that are frequently rerun. Test cases are given to the
automation team for automation by Feature Verification (FV Legacy team. So, it can be said that
the client of the automation team is Legacy team. But other teams can also run the automated test
cases. The automation team uses JCAT as testing framework. All the test cases are developed in
Java language and are run in JCAT environment using eclipse IDE. All support related to JCAT
is provided by the TAC team.

2

In November 2011, the automation team was created. They started working on their first
automation project in January 2012. This project contains eighty- five test cases that will be
automated by the automation team. To speed up their automation process, they proposed a tool
that can generate a structure of test case and tester can fill in missing code. Finally development
of such tool now named as Automatic Test Builder was started in February 2012. As described in
section 1.4.1, prototyping was selected as development method. The whole development process
was divided into several implementation phases. After completing each implementation phase, a
prototype of the Automatic Test Builder was presented to the automation teams in Ottawa, Kista
and Linkoping. Their feedback was taken and the development of new prototype was use to start.
This process was continued until all the requirements were implemented. Testing was done
throughout the development process. Usability testing was done by automation teams.

1.3 Teams interaction in Ericsson

Figure 1, Teams interaction model

Figure 1 shows team interaction model. There are three automation teams, In Ottawa, Kista and

Linkoping. Client of Automation teams are FV legacy teams. Automation teams communicate

with FV Legacy teams to get test cases. These test cases are written by FV legacy teams. Then

the automation team automates the test cases and delivers automated test cases. Other teams can

also use those automated test cases.

All kinds of JCAT support is provided by TAC team. If automation team needs JCAT support
classes, they will ask TAC team.

3

1.4 Approach

Thesis work started by reading necessary documents and studying current work flow of
automation team so that a better understanding of their technical terminologies and a good sketch
of how they work can be developed.
Work started by having several meetings with automation team so that they can express and
discuss their requirements and a better idea of what automation team really wants can be attained.
After meetings, development of very first version of the product was started.

1.4.1 Development method
Prototyping was used as the development method to interact with the automation team. The main
reason behind choosing prototyping was to involve the automation team in all development
stages and in all decisions about how the end product should be. By doing this, validation of the
product is carried out frequently. Figure 2 shows different prototypes of the tool. This figure also
shows major features implemented in each Prototype. In each new prototype, improved features
were improved from the previous prototype. For example as shown in following figure, in
prototype 5, GUI was improved from the GUI of prototype 4. Detailed description of each
prototype is given in section 0.

4

Figure 2, Prototypes

Read data from text file Generating TC header

Prototype 1

Generating TC header

Prototype 2

Reading data from Database

Prototype 3

GUI

Generating TC header Reading data from Database

 Improved GUI

Improved TC header

Code structure

Reading data from Database

 Improved GUI

Improved TC header Reading data from Database

Help methods

Improved Code structure

Prototype 5

 Improved GUI

Improved TC header Reading data from Database

Help methods

Improved Code structure

Prototype 6

 Help methods class hierarchy

Improved GUI

Improved TC header Reading data from Database

Help methods

Improved Code structure

SFG methods SFG methods class hierarchy

Prototype 7

Help methods class hierarchy

Prototype 4

5

1.4.2 Verification and validation
Verification and validation is the process of testing and inspecting the software to ensure whether
the software is according to the customer´s expectations.
Verification is an internal ongoing process to ensure that the product is rightly developed. Testing
is done to ensure that we are developing the system right. Whereas, validation is done by the end
of each phase to ensure that we are developing the right system. For validation, customer checks
the system and gives a verdict that this product is according my needs or not.
For verification, continuous testing was carried out throughout the development process by me.
Validation of each prototype was done when the prototype was shown to the automation team.
After they have validated each prototype, development of next prototype was started. This
ensured high quality of the product.

1.4.3 Tools
Eclipse IDE was used for the development of ATB (Automatic Test Builder). There were two
main reasons for selecting Eclipse as development environment. First was that, Automation team
which will use ACG is working in Eclipse to run their test cases. So, there will be fewer problems
for the client in the maintenance of Automatic Test Builder. Secondly, in the initial requirements,
client expressed the desire to have an Eclipse based application.

1.4.4 Programming Language
Java was used as programming language because Automation team is working in java. Java is an
open source language with widely available support. So maintenance of the product becomes
very easy.

2 Contribution
This report contains a brief description of whole thesis work. It explains different implementation
phases. This report educates the reader by discussing different testing techniques specially
software test automation. After reading this report, the reader will have an idea of how to plan
thesis work and how automation is carried out in Ericsson. This report emphasizes the importance
of client involvement in development process. If client is involved in all development phases by
giving his feedback then we can minimize the risk of implementing changes late in project which
are extremely difficult to handle. Design of any project is a base for development. If a change in
requirement demands design change then it will consume huge time, effort and money to
implement that change. So by reading this report, a reader can understand the importance of
strong client involvement. Client involvement was the main reason for choosing prototyping as
development method. For more information about development method, please see section 1.4.1.
Objective of automation team behind this thesis work is to have a tool that can save their time
and efforts consumed in gathering required data from different places and putting it into a single
java file. They want to standardize structure of test case so that all test cases should have same
structure. This will make it easy to maintain test cases. They also want to remove the variations in
versions of help methods. Summing it up, automation team wants that this tool should generate a
java file containing a structure described in Figure 29.

6

3 Theoretical framework

3.1 Software testing

There are many definitions explaining testing but according to IEEE Standard 610.12-1990,
"IEEE Standard Glossary of Software Engineering Terminology", Testing is
"The process of operating a system or component under specified conditions, observing or
recording the results, and making an evaluation of some aspect of the system or component.”
Above definition incorporates the whole testing process. Testing constitutes running a system in
controlled environment and observing behavior of system and depending on behavior, verdict is
given about the system. [9]
Lee Copeland in his book “A Practitioner's Guide to Software Test Design” described testing as
“testing is the process of comparing "what is" with "what ought to be.” [3]
“comparing What is with what ought to be” refers to comparing actual results with expected
result.
Software testing is a process in which the system under test is analyzed whether is it doing what
customer wants from it. The aim of software testing is to help designers in making a product that
is capable of performing desired operations. Testing techniques are selected depending on which
software aspect is of more importance for the customer. For example for web sites, customer
wants that his website should run on all web browsers. So for this, compatibility testing will be
performed. If the requirement of the client is to perform compatibility testing and the testing team
performs usability testing then the end product will probably be something which client does not
want. So, choosing right testing technique depending on the requirement of the customer is
extremely vital in developing a high quality product.
Following are some of the most important testing techniques. Among bellow described testing
techniques, some were used in the thesis work depending on the customer’s requirements. For
more details about different testing techniques, please refer to reference. [21]

7

3.2 Testing levels

3.2.1 Unit Testing
In unit testing, a smallest testable code from the whole system is selected, it is segregated from

the system and its behavior is analyzed. Each unit is tested before integrating them to form a

complete system. Units can be imagined as blocks, when they are tested and combined, a

complete system is formed. For unit testing, Stubs and Drivers are needed to be written. If top

down approach is used then stubs are written and if bottom up approach is used then drivers are

written.

If a system has for example two units and these units are not tested before integrating them

together then problems can arise in anyone of the two units and finding the root cause of that

problem will be difficult because tester has to look into the whole system. On the other side, if

each unit is separately tested then any bug in unit one will be isolated and fix without taking care

of unit two and same will be the case for unit two. So unit testing allows isolating bugs and fixing

them separately. Finally, after all units are independently tested, they can be combined to form a

complete system. Integration testing will be done of that whole system. For more information

about unit testing, please refer to reference. [13]

3.2.2 Pros and Cons
Unit testing enables a tester to find such classes or methods that are not behaving according to the
specifications, providing the information about correctness of code. As aim of unit testing is to
find bugs that are lurking on low level so this testing approach does not consider the whole
system or how these units will communicate with other units, leaving defects that can occur when
different units intercommunicate. So it can be said that unit testing does not test the design of a
system. Testing a small unit of a big system is very simple as compared to testing how different
units are working together to achieve the final task.

3.2.3 Stubs and Drivers
The stubs are usually written by testers and are dummy units that act like real units. They only

return the value which calling unit needs. Logic is not implemented in the stubs. The stubs are

used in Top down integration approach. Whereas the drivers have less throwaway code as

compared to stubs [12] and are used in Bottom up approach.

3.2.4 Integration Testing
Integration testing can be said as testing of interfaces of independently tested units. Integration
testing is performed after unit testing but before validation testing. For validation testing, please
see section 1.4.2. When unit testing is successfully performed and all units are ready to be
integrated, units are combined together and their interfaces are tested. The aim behind integration
testing is to know that units are interacting with each other properly to complete a collective task.
Inputs are given to the integrated system and outputs are analyzed. All units should collaborate
with each other as they are intended to do and the system should generate the expected result.
There are four ways of integrating a system.

3.2.4.1 Top down
First one is top down, in top down approach, integration starts from upper level and goes to the
lowest level.

Let, there is a system containing seven units. These seven units are independently tested. Now,

they have to be integrated as shown in

with stubs of units B and C. So, unit A will be tested by integrating it with the stubs of unit B and

C. When unit A will be completely tested, stubs will be gradually replaced by real units. This

process will be followed from top that is unit A to the bottom that is unit D, E, F, and G. As

bottom most units are leaves, so no stubs for them are required. For top down integration, nodes

1 stubs are required.

3.2.4.2 Pros and Cons
Test cases are written keeping in mind th
the defects in design of the system are uncovered earlier in the testing process. In top down
integration approach, no drivers are needed. But there are also some draw backs of this approach.
As in top down approach, high level problems are uncovered but there is a great probability of
leaving technical details which results in uncovered low level defects. One other limitation is that
if the unit for which stub is to be written is very complex that is
writing stub for that unit will be very hard.

First one is top down, in top down approach, integration starts from upper level and goes to the

Figure 3, Top down integration

Let, there is a system containing seven units. These seven units are independently tested. Now,

they have to be integrated as shown in Figure 3. In top down approach, unit A will be integrated

with stubs of units B and C. So, unit A will be tested by integrating it with the stubs of unit B and

C. When unit A will be completely tested, stubs will be gradually replaced by real units. This

be followed from top that is unit A to the bottom that is unit D, E, F, and G. As

bottom most units are leaves, so no stubs for them are required. For top down integration, nodes

Test cases are written keeping in mind the functional requirements of the system under test. So,
the defects in design of the system are uncovered earlier in the testing process. In top down
integration approach, no drivers are needed. But there are also some draw backs of this approach.

p down approach, high level problems are uncovered but there is a great probability of
leaving technical details which results in uncovered low level defects. One other limitation is that
if the unit for which stub is to be written is very complex that is having a lot of conditions than
writing stub for that unit will be very hard.

8

First one is top down, in top down approach, integration starts from upper level and goes to the

Let, there is a system containing seven units. These seven units are independently tested. Now,

top down approach, unit A will be integrated

with stubs of units B and C. So, unit A will be tested by integrating it with the stubs of unit B and

C. When unit A will be completely tested, stubs will be gradually replaced by real units. This

be followed from top that is unit A to the bottom that is unit D, E, F, and G. As

bottom most units are leaves, so no stubs for them are required. For top down integration, nodes-

e functional requirements of the system under test. So,
the defects in design of the system are uncovered earlier in the testing process. In top down
integration approach, no drivers are needed. But there are also some draw backs of this approach.

p down approach, high level problems are uncovered but there is a great probability of
leaving technical details which results in uncovered low level defects. One other limitation is that

having a lot of conditions than

3.2.4.3 Bottom up
Second is bottom up approach, in this approach, integration starts from bottom and goes to the

top most level. In this approach, drivers are used instead of upper lev

in Figure 4 is under bottom up integration, then first, units D and E are integrated with the driver

of unit B. After testing units D and E integration will move to next level. This will continue until

top most unit is integrated. If top down and bottom up integration approaches are compared then

it can be said that less drivers are needed than stubs. As in

the whole system. But only three drivers are needed to test the same system using bottom up

approach. For bottom up integration app

3.2.4.4 Pros and Cons
When bottom up development is used then using bottom up integration testing approach is more

worthy. Low level details are focused more which results

level. But on the other hand, low level components are usually available off

bottom up integration testing approach is very useful when there is a system with real time

requirements. But limitation of b

from low level so the user feedback about the system

a system which user probably has not asked for. In bottom up integration, drivers are writ

which are more complex and harder to write than stubs.

3.2.4.5 Big bang
Third approach is Big bang, in this approach, all units are integrated at once and then wh
system is tested. Integrating the whole system at once saves time but also introduces the difficulty
in fault isolation. If a system has many units then tracking fault becomes extremely difficult.

3.2.4.6 Pros and Cons
Big bang integration testing approach is
interfaces should be well-defined to be tested using big bang integration testing approach. As the
whole system is integration at once so no stubs or drivers are needed but this also introduces a
problem of fault isolation which makes it very hard to find whether the bug is in a unit or in the
interface of the unit. This also incorporates the chance of skipping extremely important bugs that
should be uncovered during testing of the system. Integrating th
makes it difficult to confirm test case coverage.

Second is bottom up approach, in this approach, integration starts from bottom and goes to the

top most level. In this approach, drivers are used instead of upper level units. If a system shown

is under bottom up integration, then first, units D and E are integrated with the driver

ng units D and E integration will move to next level. This will continue until

top most unit is integrated. If top down and bottom up integration approaches are compared then

it can be said that less drivers are needed than stubs. As in Figure 3, six stubs are needed to test

the whole system. But only three drivers are needed to test the same system using bottom up

approach. For bottom up integration approach, nodes – leaves drivers are required.

Figure 4, Bottom up

When bottom up development is used then using bottom up integration testing approach is more

worthy. Low level details are focused more which results in uncovering more defects on low

level. But on the other hand, low level components are usually available off–the shelf. Usually

bottom up integration testing approach is very useful when there is a system with real time

requirements. But limitation of bottom up integration testing approach is that as testing is started

from low level so the user feedback about the system is postponed which can result in developing

a system which user probably has not asked for. In bottom up integration, drivers are writ

which are more complex and harder to write than stubs. [16]

Third approach is Big bang, in this approach, all units are integrated at once and then wh
system is tested. Integrating the whole system at once saves time but also introduces the difficulty
in fault isolation. If a system has many units then tracking fault becomes extremely difficult.

Big bang integration testing approach is perhaps useful for small systems. The units and their
defined to be tested using big bang integration testing approach. As the

whole system is integration at once so no stubs or drivers are needed but this also introduces a
m of fault isolation which makes it very hard to find whether the bug is in a unit or in the

interface of the unit. This also incorporates the chance of skipping extremely important bugs that
should be uncovered during testing of the system. Integrating the whole system at once also
makes it difficult to confirm test case coverage.

9

Second is bottom up approach, in this approach, integration starts from bottom and goes to the

el units. If a system shown

is under bottom up integration, then first, units D and E are integrated with the driver

ng units D and E integration will move to next level. This will continue until

top most unit is integrated. If top down and bottom up integration approaches are compared then

, six stubs are needed to test

the whole system. But only three drivers are needed to test the same system using bottom up

leaves drivers are required.

When bottom up development is used then using bottom up integration testing approach is more

in uncovering more defects on low

the shelf. Usually

bottom up integration testing approach is very useful when there is a system with real time

ottom up integration testing approach is that as testing is started

which can result in developing

a system which user probably has not asked for. In bottom up integration, drivers are written

Third approach is Big bang, in this approach, all units are integrated at once and then whole
system is tested. Integrating the whole system at once saves time but also introduces the difficulty
in fault isolation. If a system has many units then tracking fault becomes extremely difficult.

perhaps useful for small systems. The units and their
defined to be tested using big bang integration testing approach. As the

whole system is integration at once so no stubs or drivers are needed but this also introduces a
m of fault isolation which makes it very hard to find whether the bug is in a unit or in the

interface of the unit. This also incorporates the chance of skipping extremely important bugs that
e whole system at once also

3.2.4.7 Sandwich
The last approach is sandwich approach. This is a combination of top down and bottom up
approaches. In Sandwich approach, a middle level is identified, Top down approac
top most level to the middle level and bottom up approach is used from bottom level to middle
level. In some cases, a sub tree is integrated and tested using big bang and other sub trees are
integrated using top down or bottom up integratio
number of stubs and drivers are needed to test the whole system. For example, in
stubs and two drivers are needed. But fault isolation is compromised.

3.2.4.8 Pros and Cons
In sandwich integration testing approach, the whole system is tested in a gradual manner. If the
system crashes, newly integrated component is analyzed. The testing progress can be easily
verified against the decomposition tree. The limitation of sandwich integrat
that it is assumed that the structure and units are correct. So testing can only be performed on
correct structures. As sandwich integration testing approach is a combination of both top down
and bottom up integration testing approa
If any change occurs in any unit, the whole system has to be retested.

Middle level

The last approach is sandwich approach. This is a combination of top down and bottom up
approaches. In Sandwich approach, a middle level is identified, Top down approac
top most level to the middle level and bottom up approach is used from bottom level to middle
level. In some cases, a sub tree is integrated and tested using big bang and other sub trees are
integrated using top down or bottom up integration approaches. By using this approach, less
number of stubs and drivers are needed to test the whole system. For example, in

o drivers are needed. But fault isolation is compromised. [17]

Figure 5, Sandwich integration

ich integration testing approach, the whole system is tested in a gradual manner. If the
system crashes, newly integrated component is analyzed. The testing progress can be easily
verified against the decomposition tree. The limitation of sandwich integration testing approach is
that it is assumed that the structure and units are correct. So testing can only be performed on
correct structures. As sandwich integration testing approach is a combination of both top down
and bottom up integration testing approaches, so both stubs and drivers are required to be written.
If any change occurs in any unit, the whole system has to be retested. [17]

10

The last approach is sandwich approach. This is a combination of top down and bottom up
approaches. In Sandwich approach, a middle level is identified, Top down approach is used from
top most level to the middle level and bottom up approach is used from bottom level to middle
level. In some cases, a sub tree is integrated and tested using big bang and other sub trees are

n approaches. By using this approach, less
number of stubs and drivers are needed to test the whole system. For example, in Figure 5, two

ich integration testing approach, the whole system is tested in a gradual manner. If the
system crashes, newly integrated component is analyzed. The testing progress can be easily

ion testing approach is
that it is assumed that the structure and units are correct. So testing can only be performed on
correct structures. As sandwich integration testing approach is a combination of both top down

ches, so both stubs and drivers are required to be written.

11

3.2.4.9 Pair wise integration
Pair wise integration is performed using a call-graph instead of using decomposition tree as used
in top down, bottom up, big bang and sandwich integration testing techniques. The main benefit
of pair wise integration is that no stubs or drivers are needed in this type of integration. Real units
are used instead of investing efforts in developing stubs are drivers. In pair wise integration, one
integration session is used to integrate one pair of units. In Figure 6, six sessions are used to test
whole system.

3.2.4.10 Pros and Cons
There is increase in number of sessions but extra effort is saved that is consumed in writing stubs
and drivers. The drawback of pair wise integration testing is that if a bug appears in a unit, let’s
say unit B in Figure 6, it can be seen that unit B is used in three different pair wise integrations.
Bug will be fixed but those three pair wise integrations will have to be repeated and retested.

3.2.5 System Testing
System testing is performed on a complete system after it is integrated. System testing is carried
out after integration testing. The tester does not have to have knowledge of internal structure of
the system under test. Tester will give inputs and analyze outputs. The aim behind system testing
is to check whether the whole system is producing right results. The System should implement all
specified functional requirements. The whole system is considered as a single unit. System
testing includes, functional testing and performance testing. Functional testing validates
functional requirements whereas performance testing validates nonfunctional requirements. For
more details about system testing, please refer to reference [15]and reference [12]

3.2.6 Acceptance testing
Acceptance testing is done to validate the requirements. It involves end user evaluation about the
end product. There are special tests that are designed for acceptance testing. These special tests
are called benchmark tests. Bench mark tests are test cases that are executed on different products
from the same category to have comparison of new product and its competitors.
Pilot testing involves installing the system for experimental purposes and testing it against daily
working. In some cases, pilot tests are done primarily in house before deploying it in real

A

B

E D

C

G F

Figure 6, Pair wise integration

12

environment for real pilot test. This in house pilot testing is called alpha testing. The pilot testing
performed by end user is called beta testing. One other approach in acceptance testing is to
deploy the new system in parallel with old system. The advantage of this approach is if new
system fails to meet user requirements then user can immediately switch to old system. User’s
everyday working will not be affected in case of any system failure. For more information about
acceptance testing, please refer to reference [16]

3.3 Testing modes

3.3.1 Black-box Testing

As shown in Figure 7, in black box testing, we do not have any knowledge of code structure, we
understand the system only by giving inputs and taking outputs. In black box testing, inputs are
given to the system under test and then actual outputs are compared with expected outputs. If
actual outputs match with expected outputs then we say that system is performing right function
and it has passed the test case. But if actual outputs are not same as expected output then we say
that system has failed the test case and correction in system should be made. Black box testing is
performed on user requirements and system specification.
To perform black box testing, tester does not have to have programming knowledge as he does
not go into the implementation details. Tester should only know what system under test should
do. Tester gives inputs and takes records outputs without know how system under test is
generating this output. Black box testing can be performed on unit level or on system level. For
more details about black box testing, please refer to reference [20]

3.3.2 Pros and Cons
Black box testing technique can be used at any level. As the testing level increases, the size of the
system also increases and it becomes difficult to perform white box testing. So at higher levels,
the black box testing is more suitable. When using black box testing, the tester cannot be sure of
how much code he has covered. Or whether a particular block of code is tested or not because he
has no access to the code, he cannot see the code.[3] But on the other hand, black box testing
does not require a tester to be good in programming.

Inputs Outputs

Figure 7, Black box testing

13

3.3.3 White-box Testing

White box testing has different synonyms. White box testing is also called as structural testing or
clear box testing or transparent box testing. All terms have almost same meaning that is the code
is visible to the tester. In white box testing, we have access to the internal structure of the system
as shown in Figure 8. We can peek into the code and analyze how code is working. We can see
implementation details of a system. In order to perform white box testing, a tester needs to have
good programming skills in order to successfully design and execute test cases. Tester selects
inputs that execute all necessary code. Which input will execute which code? This information is
gathered by examining the code structure of the system under test. After giving inputs, the tester
examines the inputs and behavior of the system. This strategy helps to improve the quality of the
code by exposing loop holes in the code.
White box testing can be performed on unit or system level testing. White box testing is also
performed on integration testing. In unit level testing, white box testing is done to see different
paths within a unit. In integration level testing, white box testing is performed to examine paths
between different units. For more details about white box testing, please refer to reference [22]
and reference. [10]White box testing has two main sub types, data flow testing and control flow
testing. Data flow testing concentrates more on the points where values are assigned to the
variables or where these values are used whereas control flow testing concentrates more on code
that cannot be tested using inspections and reviews. In control flow testing, the testing is based on
internal paths and structure of the system. To test how much code is tested, a criterion called code
coverage is used. Code coverage can be done on different levels. For example, line coverage,
decision coverage and condition coverage. In line coverage, the aim is to execute lines of the
code, irrespective of the decision or condition. In decision coverage, the aim is to test the decision
for true and false whereas in condition coverage, the aim is to test each condition within a
decision. But the problem in condition coverage is that each condition is not tested for both true
and false. To overcome this limitation, multiple condition coverage is used. In multiple condition
coverage, each condition within a decision is tested for both true and false.

3.3.4 Pros and Cons
By using white box testing, code structure can be improved. As in data flow testing, improper use
of variable values can be detected and eliminated. Limitation of control flow testing is that tester
should have good programming skills to control flow of the code. Because of the fact that tester
has to understand the code, control flow testing becomes very time consuming.

Inputs Outputs

Figure 8, White box testing

14

3.3.5 Grey box testing
Grey box testing is in between black box testing and white box testing. It is also called
translucent testing. In grey box testing, tester only knows such details of the code which enables
him to understand that a how a particular feature is implemented. It is not necessary for a tester to
know all implementation details. While performing grey box testing, the tester prepares the test
cases using black box strategy that is preparation of test cases using requirement specification
documents and then analyze particular feature of the system using white box testing strategy. For
more details about white grey testing, please refer to reference [4]

3.3.6 Pros and Cons
Grey box testing technique has the benefits of both black box testing technique and white box
testing technique. But its limitation is that as there is no full code access to the tester so no full
code coverage can be assured by the tester.

3.4 Testing Types

3.4.1 Functional testing
Functional testing is considered as a sub-type of black box testing because we concentrate more
on what the system is doing rather than how the system is doing. In functional testing, we do not
peek into the implementation details of the system under test. We provide inputs to the system
and see the behavior of the system and record the outputs. Then we analyze that the system is
performing the right indented functionality.
For example, for this thesis work, when functionality testing of AddCtcID interface was
performed. CTC ID was entered and next button was pressed. Expected result was that the system
under test should fetch data regarding that CTC ID and text areas of next interfaces should be
populated with that data. So this expected result was matched with actual result. If on pressing
next button system under test fetches the right and data and populates the text areas of next
interfaces with this right data then system is performing its intended functionality correctly.
There are different types of functional testing. For example, boundary testing and equivalence
class testing. Boundary testing focuses on the input boundaries of a system because mostly the
bugs lie on the boundaries. These bugs can be either in requirements of a system or in the code.
Most efficient way of finding these bugs is inspection [6]. Boundary value testing is performed
by first identifying equivalence Classes then by identifying boundary of each equivalence class.
For each boundary value, test cases are created. These test cases are created by selecting one
value on boundary, one value just above the boundary and one value just below the boundary.
The aim behind equivalence class testing is to reduce the number of test cases to a manageable
size with keeping reasonable test coverage. Each equivalence class contains data that results in
same output from the program.
One very important feature of white box testing is code coverage. Code coverage means that how
much code is executed when test cases are run. By using this information, particular code
segments can be tested. High code coverage requires more test cases. Writing test cases require
effort and time. There are several tools in market for measuring code coverage. One of the tools
is BullseyeCoverage. This tool is used to measure code coverage of C++ programs.

3.4.2 Pros and Cons
The equivalence Class testing is effective where system takes set of data within a range. It is
assumed that all data in one equivalence class is treated same by the system. Boundary value
testing and equivalence class testing can be performed on unit level, integration level or system
level.

15

3.4.3 Non-functional testing
In the non-functional testing, the system is tested against the non-functional requirements. The
non-functional requirements define quality aspects of a system. If a system is fulfilling all
functional requirements but the system is unsecure or the system is very slow then the customer
will probably not want such kind of a system. So only implementing functional requirements
does not make a system complete. To test non-functional attributes, non-functional testing is
used. Following are some of the examples of non-functional testing.

3.4.3.1 Compatibility testing
Compatibility testing is an example of non-functional testing. In compatibility testing we test the
system under test in different environments. The aim behind running system under test in
different environments is to check how it behaviors in different environments. For example for
this thesis, system was run in Windows environment and in Linux environment. The difference in
behavior was recorded and analyzed. As the system was intended to run in mostly Linux
environment and sometimes in windows environment, more emphasize was for Linux
environment. It was seen that Functionality was same in both environments only some minor
graphical changes were recorded. For example, appearance of text fields, text areas, buttons and
alert messages etc were different in Windows and Linux.

3.4.3.2 Usability testing
The aim behind usability testing is to analyze how much user friendly the system is or we can say
that how easy it is for the users of the system to perform their operations correctly. Usability
testing of a system is done by giving it to its end users. End users of a system test it and give their
feedback regarding the system. Feedback of the users is the input for improvement of the system.
To increase the usability of software, usability testing is performed. In usability testing, users are
given an opportunity to use the system. They are given some tasks that they have to complete.
While they are performing those tasks, usability experts observe users’ behavior. Users are
encouraged to think aloud. Usability experts then ask some questions after the completion of each
task. These questions are for example, how easy or difficult you found it to complete the task?
What options you want to add into the software, what options you think are confusing. How you
want them to be? After taking the feedback, usability experts prepare their analysis and give their
recommendations to the developers about design changes. After the development of new
prototype, the prototype is again tested by the users and same process is followed. Improvements
are measured and the process is repeated until expected usability level is achieved.
For this thesis, after development of a prototype, automation team was asked to use the system.
After their use, their feedback was taken and improvement was carried out for the next prototype.
For example, there was a Execute Query button on AddCtcID interface as shown in Figure 37.
When the prototype was given to automation team for usability testing, one of the automation
team members gave feedback that this button should be removed and functionality of this button
should be put in Next button. This feedback was discussed with automation team lead and after
his approval, this change was implemented in next prototype.

3.4.3.3 Pros and Cons
There is a general perception that usability testing is not necessary, it requires complex and
expensive activities. But in reality, usability activities are expensive but they pay off. It is proved
in various cases that usability increases the sale, reduces maintenance and redesign costs, it
reduces user support costs and improve brand name. [14]

16

3.4.4 Regression testing
Regression testing is done to uncover new bugs that may have introduced during the
implementation of new features. The aim of regression testing is to verify old functionality after a
new release or a new prototype. For example in this thesis work, regression testing of all old
functionalities was performed in a newly developed prototype. Old functionalities were tested
and it was ensured that old functions are working as they are intended to work and new
functionality has not affected old functionality.

3.4.5 Progression testing
Progression testing is performed to test new functionality after the system has undergone a new
change or an update. In this testing, we do not test old functionalities. We only test new
functionalities. Our aim is to uncover defects in newly implemented features. For example for
this thesis, when a new interface was added to the tool, in progression testing, all functionality of
that newly added interface was tested. Interfaces already present in the tool were not tested while
doing progression testing.

3.4.6 Automation testing
The goal behind automation testing is to find bugs effectively, efficiently, quickly and as cheap as
possible. Main concept behind automated testing is that there is an application which executes
Software Under Test (SUT). That application gives proper inputs and compares each actual
output with expected output. After writing a test suite, the test suite can be run without any
human intervention. A test suite can be run manually or automatically. After the execution of a
test suite, produced results are examined. Results usually provide information about passed and
failed test cases.
Code based test inputs can be generated by using code coverage information. If code coverage
information shows any unexecuted code segment then such kind of inputs can be given to the
program which executes that particular code segment. Secondly, in automation testing, interface
based test inputs can also be generated. For example, If the tester has to find broken hyperlinks in
a web page, a test can be made in which each link is clicked and checked whether it is broken or
not. A well-known tool Quick Test Professional provides this functionality. Thirdly, test cases
can be generated based on specifications. For this purpose, specifications should be in a format
that a tool can read. A tool can read specifications and generate boundary values, valid and
invalid equivalence classes or expected out comes.
Test suites are helpful in various aspects. Some of them are as follow:

• Test suite should be run to verify even a minor change.

• No need to manually test every feature of software after each change.

• All test suites are run before a new release.

• If software behavior is different in different environments, test suits should be run for
each environment.

• After implementing a new functionality, test suite for that functionality should be written.
This provides initial testing of the code.

• Test suite not only executes the software but also it is responsible for setting up the
environment for the software and after execution, clearing the environment.

In Ericsson, automation team is currently working on a project containing eighty five test cases.

This thesis work is to develop a tool that can produce a java file that will perform automation

testing. So we can say that, the output of this tool will be input for the test automation.

17

3.4.7 Pros and Cons
Automated test cases can perform tedious jobs like clicking on each link on a web page and
check whether is it broken or not or any button on a web page is working or not. The tests that are
rerun can be automated and rerun without any human intervention. The quality of testing process
can be improved by defining a proper standard of the test cases and generate automated test cases
using that standard. Human may miss some steps during the testing which compromises the
quality of testing but by automating test cases, this danger can be minimized. If a test case is
written properly and that test case is completing all required steps then testing quality will not be
decreased. That complete test case can be run again and again without any worry of missing any
step.
The drawback of automated test cases is that people usually have very high expectations that by
using automation testing, many new defects will be uncovered. But in reality, the automated tests
can contain deficiencies. There is a possibility that automated tests are badly designed or written.
So depending fully on automated tests can lead to undesirable results. One other drawback of the
automation testing is maintenance. Maintenance of automated tests is costly.

3.5 Hardware and tools

 Figure 9 shows how hardware is booked. Automation team is a sub part of Feature Verification
department, when automation team has to use any hardware, they see whether the hardware
which they want to use are available or not. They see this in a booking tool used by feature
verification department. Anyone from feature verification department who wants to use hardware
has to book it in the booking system. Then automation team generates a ticket for configuration
of specified hardware. Configuration of hardware is responsibility of ITTE team. They configure
hardware. After configuration, Automation team can use the hardware.

Test cases are run using one or more than one hardware. When a test case is run, help methods
are added to set up hardware or after using reset the hardware. These methods contain code to
connect to the specific hardware. Give input data and then takes back the result.
All hardware are used to simulate real network entities. Names of the hardware used by
automation team are given below.

1. CCN
2. AeroFlex
3. LTESim
4. PropSim
5. OSS
6. Real UE
7. ENodeB

ITTE team

Booking

tool

Feature
Verification

Department

Hardware

Tickets

Hardware Use hardware
Does Configurations

Generate tickets

Figure 9, Hardware access process

18

3.6 JCAT framework

JCAT framework is used to test java based applications. JCAT framework consists of several
parts and is based on Open Source software.
Following are some advantages of JCAT:

• Java based development environment.

• Test cases executed directly from Eclipse.

• Rapid Test Case development with debug features.

• Reduced execution time.

• Open source frame work, community driven maintenance and support.

3.6.1 JCAT Layers
As shown in Figure 10, there are six different JCAT layers. Automation team works in Test Case
layer. Automatic Test Builder will generate java file that will be run in Test case layer.

Figure 10, JCAT Layers

In the thesis work, Subversion is used for version control and Maven is used for management of
project’s build. More information about Subversion and Maven is given bellow with other parts
of JCAT.

There are two testing frameworks in Ericsson, first one is Generic Test Environment (GTE). The
GTE was developed by Ericsson in erlang, a language developed by Ericsson. The GTE is used
by Design and Development department for white box testing. The automation team performs
black box testing. The hardware management using GTE is extremely difficult, JCAT provides
an ease to use hardware. So automation team uses JCAT as testing framework.

19

3.6.2 JUnit 3

“JUnit is a simple framework to write repeatable tests. It is an instance of xUnit architecture for
unit testing frameworks.” [19]

3.6.3 Subversion

Subversion is a very popular version control system. It is an open source system founded in year
2000 by CollabNet, It was developed as a project of Apache Software Foundation. Figure 11
shows architecture of subversion.[2]

Figure 11, Subversion architecture

3.6.4 Eforge

Eforge is a home for developers within Ericsson who are collaborating on code, who want to work in a new, agile
way, or who want to publish reusable software components for other Ericsson engineers across the entire Ericsson
Group to use. Eforge provides a set of tools that are well known in the open source community, such as source code
revision control, mailing lists, bug tracking, message boards/forums, task management, and total web-based

administration for project owners. [5]

20

3.6.5 Maven

“Apache Maven is a software project management and comprehension tool. Based on the concept of a project object
model (POM), Maven can manage a project's build, reporting and documentation from a central piece of information.

“[1]

[11]

Figure 12, Maven architecture

21

3.6.6 Hudson
Hudson is used for Build Management. Hudson has been configured to check for new commits
every thirty minutes and run a new build if anything has changed. If the build is successful, any
Unit tests found in the project will also be executed.
Hudson is an open source continuous integration (CI) server. A Continuous Integration server can
perform following tasks [5]

• Commit source code

• Building the project and then testing the project

• Publishing the results

• Deliver results to specified team personals
Figure 13 shows architectural overview of Hudson.

[8]
Figure 13, Architecture Overview

3.6.7 Sonar
Sonar is an open source platform to
different aspects of quality of code.

Figure

After build and tests have been successfully run, Sonar takes over and ch
than six hundred coding rules, unit test code coverage, and all classical metrics related to Lines of
Code, Cyclomatic complexity, Duplicated code and Comments.

platform to maintain quality of the code. Sonar incorporates seven
of code. [18]

[18]
Figure 14, seven aspects of quality of code

After build and tests have been successfully run, Sonar takes over and checks the code for more
coding rules, unit test code coverage, and all classical metrics related to Lines of

Code, Cyclomatic complexity, Duplicated code and Comments.[18]

22

Sonar incorporates seven

ecks the code for more
coding rules, unit test code coverage, and all classical metrics related to Lines of

3.7 Information model

Figure 15, shows information model of the entities used in this thesis report. A brief explanation

of how these entities communicate with each othe

given below.

, shows information model of the entities used in this thesis report. A brief explanation

of how these entities communicate with each other and a short description of these entities is

Figure 15, Information model

23

, shows information model of the entities used in this thesis report. A brief explanation

r and a short description of these entities is

24

3.7.1 FV Legacy team
Legacy team is responsible for:

• Creating test cases.

• Execution of Legacy CTC:s

• Reviewing code and TC description, handover, mentor roles.

• Automation of CTC backlog.

• Execution of automated test cases developed by automation teams.

The test cases that are run again and again are delivered to automation team by Feature

Verification (FV) team for automation. Automation team automates the test cases and legacy

team run those automated test cases. As shown in Figure 15, legacy team directly communicates

with automation team. Legacy team uses test cases by having access to work packages.

3.7.2 Automation team
Automation team automates test cases given by FV team. These test cases are put in work

packages. Figure 15 shows communication of automation team with legacy team. Automation

team automates test cases and put them in work package.

3.7.3 Work Package
Work Package is a collection of different TC suites.

3.7.4 TC suite
The whole java file can also be said as TC Suite and the TC suite includes one or many CTCs.

3.7.5 TC
TC is abbreviation for Test Case. TC is a collection of different CTCs. A TC belongs to a TC

suite. One TC can have one or more than one CTCs. Relationships of TC are shown in Figure 15.

3.7.6 CTC

CTC is abbreviation for Configured Test Case. One CTC can belong to only one TC. There can

be one or more CTCs belonging to one TC as shown in Figure 15.

3.7.7 TC Header
Java file contains a description (TC Header) of the whole TC suite; this description is fetched
from database. TC Header contains CTC ID, TC ID, TC heading, TC details, System Function
Group, CTC heading, CTC details, quality level and configuration values. All above information
is already stored in the database in different columns of different tables. Previously, the tester has
to connect to the database, execute a query and fetch these column values from each table. Then
he used to copy this information and paste it into the java file under TC header. Now, this job is
being done by Automatic Test Builder. For more information about TC header generation, please
read section 5.1.3 and section 5.2.

3.7.8 Preamble
Preamble part includes all methods required to setup environment for executing test case, which
includes following steps:

• All variables are initialized.

• Hardware configurations are done.

• Resources required to execute test case are reserved.

25

3.7.9 Post amble
Post amble part includes all methods required to restore the environment. For example free the
memory reserved in preamble phase, restore attributes reserved in preamble phase and restore the
environment to the original state.

3.7.10 Help methods
Help methods are the methods which are used in test case class. For example methods used to
setup the environment and restore the environment.
In automatically generated java file, implementation of these methods is moved to other classes
and methods are called by creating an object of that class.

3.7.11 Main execution TC methods
In main execution TC, tester writes the code which will be executed in order to run a test case.
After running the code for each CTC, a verdict is returned. Verdict tells whether the test is pass
or fail. For each CTC there is a separate execution method.
For example of main execution TC methods, please see section 8.3.

3.7.12 Test methods
These methods are the implementation of Main execution TC methods. Tester calls test methods
in main execution TC method. For example of test method, please see section 8.4.

3.7.13 Signum
Signum is an employee ID.

4 Implementation

4.1 Overall structure of the application

Figure 16 shows the overall package structure of the thesis work. All thesis work is under one
package named automatic_code_generator_src. automatic_code
sub packages named as hardware_files, images, SFG_files, user_interface, working_code.
Hardware _files package contains all text files. Each text file contains all imports, member
variables, preamble part, post amble part re
files containing all data related to seven different hardware. If automation teams decide to add
more hardware, they can simply go in hardware_files package and add more text files containing
all necessary data of hardware. This data will be put into the generated java file if specific
hardware is selected. Similarly, SFG_files package contains all text files related to each SFG. At
this time, there are twenty two different SFG. So there are twenty two
User_interface package contains classes for user interfaces. As there are seven user interfaces. So
there are seven different classes. Working_code package contains two classes. CodeGenerator
class contains different methods that are
by MainPage class.

structure of the application

shows the overall package structure of the thesis work. All thesis work is under one
package named automatic_code_generator_src. automatic_code_generator_src package has five
sub packages named as hardware_files, images, SFG_files, user_interface, working_code.
Hardware _files package contains all text files. Each text file contains all imports, member
variables, preamble part, post amble part related to one hardware. So in total there are seven text
files containing all data related to seven different hardware. If automation teams decide to add
more hardware, they can simply go in hardware_files package and add more text files containing

ssary data of hardware. This data will be put into the generated java file if specific
hardware is selected. Similarly, SFG_files package contains all text files related to each SFG. At
this time, there are twenty two different SFG. So there are twenty two different text files.
User_interface package contains classes for user interfaces. As there are seven user interfaces. So
there are seven different classes. Working_code package contains two classes. CodeGenerator
class contains different methods that are used in interface classes and PanelHistory class is used

Figure 16, Package structure

26

shows the overall package structure of the thesis work. All thesis work is under one
_generator_src package has five

sub packages named as hardware_files, images, SFG_files, user_interface, working_code.
Hardware _files package contains all text files. Each text file contains all imports, member

lated to one hardware. So in total there are seven text
files containing all data related to seven different hardware. If automation teams decide to add
more hardware, they can simply go in hardware_files package and add more text files containing

ssary data of hardware. This data will be put into the generated java file if specific
hardware is selected. Similarly, SFG_files package contains all text files related to each SFG. At

different text files.
User_interface package contains classes for user interfaces. As there are seven user interfaces. So
there are seven different classes. Working_code package contains two classes. CodeGenerator

used in interface classes and PanelHistory class is used

27

Figure 17, Class diagram

Figure 17 shows class diagram of all classes in the thesis work project.

28

4.2 Screen shots of application

Figure 18, MainPage interface

Above is the first screen that comes when a user runs Automatic Test Builder. For the thesis
work, there is only one option to search by CTC ID, but more search criteria can also be added.
E.g. Search by TC ID, Search by Work Package. For this reason, size of this interface is bigger to
accommodate future additions. For more information about the future improvements, please see
section 6.5.

29

Figure 19, AddCtcID interface

In this interface, user can add or remove CTC IDs. When user is finished with entering CTC IDs,
he will press next button. On pressing next button, data regarding each CTC ID will be fetched
from database and text fields on next interfaces will be populated.
When user enters a CTC ID, he can check automated and regression statuses of CTC ID by
pressing enter button while keeping the focus in the text field. These statuses help user to decide
whether to automate entered CTC or not.
If CTC ID is not valid, on pressing enter button, alert message will come showing that CTC ID is
not valid, please enter valid CTC ID.
There are two checks implemented on this interface.

1. User cannot delete first row.
2. User cannot move to next or last interface without entering at least one CTC ID.
3. If user enters same CTC ID more than once, alert message appears specifying duplicate

CTC IDs and asking to remove duplicate occurrences. Without removing duplicate
occurrences, data is not fetched from database.

30

Figure 20, with multiple CTCs

Screen shot shows multiple CTC IDs.

31

Figure 21, TcInformation

Screen shot shows information fetched from database regarding TC ID. User can edit this
information.

32

Figure 22, CtcInformation

Screen shot shows information fetched from database regarding CTC ID. User can edit this
information.

33

Figure 23, HardwareInformation

In this interface, user has to enter TC name, the name of java file which will be generated will
contain TC name and _TestCase appended at the end. User can also change file name in next
interface. After entering TC name, user can select hardware which he wants to use for the test
case.
There are two checks implemented on this interface.

1. User must enter TC name.
2. TC name must contain Work Package number at the end of TC name.

34

Figure 24, HardwareInformation

Screen shot shows volition of second check.

35

Figure 25, GenerateFile

In this interface, Signum of user will be displayed in Signum field. User can also change it.
User will select the location of java file. After selecting location, user can press on Generate java
File button and java file will be created on specified location.
There are two checks implemented on this interface.

1. Signum field cannot remain empty.
2. User has to select file location. Generate java File button will remain disabled until user

selects file location.

36

Figure 26, GenerateFile

Screen shot shows Browse window after user has clicked on Browse button.

37

Figure 27, GenerateFile

Screen shot shows confirmation message after Generate java File button is clicked.

38

4.3 Structure of java file

Initial structure of the java file which is generated by Automatic Test Builder is shown in Figure
28.
Initially it was decided that implementation of Help methods will be in java file generated by
Automatic Test Builder but this decision was changed later and new requirement was that a new
class hierarchy should be created and help methods implementation should be moved to those
classes. If any help method needs to be added then that method should be called by creating an
object of class containing specified help method. So this change was implemented and structure
of java file was changed. Figure 29 shows final structure of the java file.

TC Header

Preamble

Main Execution TC

Post amble

Help and Test Methods

TC Suite

Figure 28, Initial java file structure

39

Figure 29, Final java file structure

TC Header

Preamble

Main Execution TC

Post amble

Help methods

TC Suite

Test methods

40

4.4 Class diagram of java file

Figure 30 shows class diagram of java file created by Automatic Test Builder. In Figure 30
TestCase class is the java file created by Automatic Test Builder, it is inherited from
LteBaseTestCase class. Implementation of all help methods are in HardwareMethods class,
SFGMethods class and their child classes. Any help method that a tester wants to use in the test
case, he can call it from any of these classes.

Figure 30, Class diagram of java file

41

4.5 Inputs and output of the application

Figure 31 shows all inputs to the Application. Tester enters CTC ID then after the data is fetched
from database and displayed on different interfaces, he can change any information. Then on
Hardware interface, he has to enter test case name and select hardware. He also has to enter
signum in generate file interface and specify the java file path.

4.6 Manually created java file VS Java file created by Automatic Test
Builder

In manually created java file, tester has to create a class with the name of test case, Write header
TC (description of test case class) then we has to add all imports, member variables, call all help
methods used in preamble part, all help methods used in post amble part. Then he has to write
main execution TC methods. He also has to implement test methods and help methods. Where as
in the java file created by Automatic Test Builder, All above mentioned parts are add
automatically. Tester just has to validate these parts. If he thinks that any code is missing, he can
add that code or if he thinks any code is extra, he can remove that code. But java file provides a
complete structure of whole test case. One main difference in manually created java file and java
file created by Automatic Test Builder is that in manually created java file, implementation of
help methods is included where as in java file created by Automatic Test Builder, implementation
is moved to other classes. Methods are called from those classes. For more information regarding
structure of java file, please see section 4.3.

Database

Figure 31, Inputs and outputs of system

Application

1. CTC ID.
2. Any change in TC

or CTC information.
3. Test case name.
4. Hardware.
5. Signum.
6. Path where java file

will be saved.

Java file

42

5 Development process
The task was assigned to me of developing such a tool that can collect different parts of a test
case from different sources and based on tester’s selection, assemble all parts in the right order
and create a java file.
Thesis work was started on February 13th, 2012. The first task was to develop organizational
understanding by reading all necessary organizational literature such as
“JCAT_RAN_getting_started” and “Test_Design_User_Guide”. Then a presentation was
delivered by the automation team lead to give a clearer idea of what they are expecting from this
thesis work. Then the task was to develop a time plan for the whole thesis work. This time plan
was not final but it was just to create an abstract view that will help to organize the development
activities. This time plan was developed keeping in mind current requirements. Time plan was
sent to the Line Manager. The Time plan is included in section 8.7.
Then there were discussions with team lead to elaborate the requirements.
After these discussions, Development was started. The development process was divided into
following stages.

5.1 Semi-automated process

5.1.1 Generation of text file
First task was to read data from database and store it locally so that the data can be used for
further processing. It was decided by the automation team lead that they require data of nine
columns from database. This data will be added into the TC header.
As in section 6.1, it is explained that automation team does not have direct access to the database.
So they can only fetch information using a tool ClearQuest. So, how to get required data from
database using eclipse?
This was a big question mark which was to be answered. Several meetings were arranged with
the team lead automation to discussed possible solution of connecting to database using eclipse.
In meetings, team lead automation suggested that as there is a functionality of ClearQuest that
after executing a query, a text file can be generated containing query results. This text file can be
used for the input. It was decided that this option will be used and in parallel, meetings will be
arranged with the development team and efforts will be made to get direct access to the database.

So, for the first step, the tester will generate a text file manually and save it on a location and
Automatic Test Builder will read that text file and process the data in it. Finally, after all
processing, a java file will be created. Figure 32 describes the structure of fetching data from
database through ClearQuest, generating a text file and then giving text file as input to the tool.
After tester edits the information, java file will be created.

Text file

Tool
(Automatic

Test Builder)
Java file Data from database

Tester
ClearQuest

Figure 32, Semi-automated structure

43

5.1.2 Reading text file and saving data in local database
Now the second step was to read text file and then save data in a local database.
The text file contained all nine column values regarding each CTC ID separated by a delimiter
“;”. Each column value was separated and saved in a local variable. For the code review, please
see section 8.2.1.
After reading data from the text file, next task was to save information into the local database. So
that information can be used for further processing.
For that purpose, design of the local database was created and discussed with the Team Lead of
automation team. After agreement, the database was created. Mysql was used as database
management system.
After the successfully creation of database, code was written to put all information into local
database. For the code review, please see section 8.2.2.

5.1.3 TC header generation
T database results were mainly used in TC header creation. Series of meetings with automation
team were conducted to finalize which column value should be put into which TC header part.
After agreement, a complete code was written to get information from local database and then put
each column value into the specified TC header part.
After completing the semi-automatic process, first prototype was presented to the automation
team. Figure 2 shows first prototype.

5.2 Fully-automated process

Figure 33 exhibits the fully automated process. Information regarding each CTC ID is fetched
from the database using a SOAP service by the tool. After tester edits the information, a java file
is generated. Fully automated process was implemented in Prototype 2, it was the replacement of
reading data from the text file.

5.2.1 Connection to database using SOAP service

As discussed in section 5.1.1, it was decided to have continuous contact with development team
so that any solution to establish a connection between eclipse and the database can be attained.
After posting question on Ericsson’s internal forum, contacting different Ericsson’s department
members, arranging meetings with development team members. Finally, two solutions were
proposed.

1. xml dump by sending a url request. CTC ID, signum and password will be embedded
within the url.

2. String of column values by using SOAP service developed by Ericsson. CTC ID and all
column names will be provided as input arguments.

Tool
(Automatic

Test Builder)
Java file Data from database

Tester

Figure 33, Fully-automated structure

44

The first option was not an efficient solution because xml dump contains all column values
regarding each CTC ID but we only needed nine column values. So, fetching all column values
from the database will increase load on the database server. So this solution was not considered.
Second solution was efficient and viable because only required data was being fetched from the
database minimizing load on the database server. Second advantage was that the resulting data
can be directly stored in a string variable. So no parsing of the data was needed, which increased
the efficiency of the tool.
Now next step was to study the SOAP service so that by using it, data can be fetched from the
database. After studying the SOAP service, it was concluded that there are some methods
provided by the SOAP service that can be used to establish connection to the database and then
on giving column names and CTC ID, column values can be fetched from the database. So after
studying the SOAP, algorithm was designed to fetch data and then save it and then use it in
further processes.

5.2.2 Java file generation
Finally, text file generation, text file parsing, saving information in the local database, fetching
information from the local database was replaced by new module.

5.3 GUI Design

After completion of the main back-end development, GUI development was next stage. In this
stage, the first step was to have discussions with automation team, understand their needs and
then prepare the mockups. After discussions, the mockups were prepared. After approval from
the Team Lead automation, GUI design was started. Design was based on the mockups.
Snapshots of the mockups are shown in section 8.1. Each mockup represents an interface of
Automatic Test Builder.

5.4 Working GUI

After designing the GUI, next phase was to embed code into the GUI so that it performs desired
functionality. Some code was already written, for example fetching data from the database and
putting information into the TC header. Other code was written in this phase of making working
GUI. Working GUI was implemented in prototype 3. GUI was continuously improved for all
subsequent prototypes. Code structure of the java file was firstly implemented in prototype 4 and
was continuously improved in all subsequent prototypes.

5.5 Adding main execution TC methods and help methods

Adding the help methods was comparatively difficult than adding main methods. This section
discusses more about adding the help methods. Regarding information about the main methods,
please refer to section 3.7.11.
Concept of adding the help methods is that any method that will be used in setting up the
environment or clearing the environment or any method used in the main execution TC part will
be added here.
Before the development of this tool, each test case had complete implementation of all help
methods within a java file. If any change occurs in the implementation of help method, all test
cases containing that help method will have to be changed manually. This creates a huge work
load. This problem was resolved by developing a new class for the help methods. All help
methods were implemented in that class and were called in the java file. This eliminated the
problem of having different implementations of single help method. Main execution TC methods
and help methods were firstly implemented in prototype 5.

45

5.6 Creation of help methods class hierarchy

After the creation of new class for help methods, requirement was once again changed that with
the passage of time, number of help methods will increase. So it will become extremely difficult
to search any particular help method or change it if they are in a single class. This will create
huge difficulty to maintain this one class. So help methods should be divided in such a way that
maintenance of help methods becomes easier. So it was then decided by the automation team to
have a completely new class hierarchy of help methods.

5.6.1 Creation of Hardware methods class hierarchy
So after discussions, it was decided that separate classes will be created for each hardware and all
hardware classes will be inherited from a parent class containing common methods used by all
hardware classes. Figure 34 shows class hierarchy of hardware methods. Hardware methods class
hierarchy was implemented in prototype 6.

Figure 34, Hardware methods class hierarchy

46

5.6.2 Creation of System Function Group methods class hierarchy
After agreeing upon creating hardware help methods class hierarchy, creation of SFG (System
Function Group) class hierarchy came under discussion. There are twenty-two different SFG, so
following same approach as hardware methods class hierarchy was not a good idea. Creation and
maintenance of seven classes is much easier that creation and maintenance of twenty-two
different SFG classes. So after several discussions, it was decided that division of SFG classes
will be made on other criteria for example, all methods relating to through put will be put in one
class. Then all these classes will be inherited from one parent SFG methods class. For this thesis
work, only one class named “Start and Restart RBS” was created just to give guidance to the
testers so that they can add new classes in the future by themselves. There was a possibility that
the SFG parent class can contain some hardware methods that are in hardware parent class. So it
was decided that SFG parent class will inherit those common methods from hardware parent
class. Figure 35 shows class hierarchy of SGF methods. In Figure 35, child classes of
SFGMethods class are just to illustrate future creation of classes. SFG methods class hierarchy
was implemented in prototype 7.

Figure 35, SFG help methods class hierarchy

47

5.7 Documentation development

One of the requirements was development of documentation about Automatic Test Builder. This
all documentation should be available on Ericsson’s internal wiki pages.
List of documents that were prepared is:

• Manual about Automatic Test Builder

• Tutorial on how to start Automatic Test Builder

• Tutorial on how to run Automatic Test Builder and generator java file.

5.8 Training of testers

Automatic Test Builder was on SVN so when development was complete, it was available to
automation team to test and use it. Several demonstration sessions were arranged to show the
working of Automatic Test Builder. Testers were encouraged to give their feedback so that the
quality of Automatic Test Builder can be improved. Tutorials were developed to help the testers
in running Automatic Test Builder without any problem.

48

6 Discussion

6.1 What they did before

Before the development of this tool, automation team sued to automate test cases manually in
JCAT environment. They have to write Header information of each CTC so that tester can know
about the test case by reading header information. They also have to create a test class, write
preamble, post amble, help and main test methods for each test case they automate. Writing this
all code was a very hectic and timing consuming. There was no defined standard for writing a test
case which incorporated inconsistencies.
If any information is needed from database, a tool named ClearQuest is used to fetch information
from the database. Information is fetched by executing queries. By using this tool, a tester can
add, delete and update any information of Work package, Test Case, Configured Test Case.
Tester does not have direct access to database. He can only access database using ClearQuest.
ClearQuest provides a functionality to create a text file of the results fetched from database.

6.2 What they can do now

The FV legacy team tests each hardware by executing test cases generated by Automatic Test
Builder. So, the level of testing performed by the FV legacy team using Automatic Test Builder
is unit testing. The testing mode for which the test cases generated by Automatic Test Builder are
used is Black box testing as generated test cases only tests the functionality of each hardware by
giving inputs and comparing expected outputs to the actual outputs. The test cases generated by
Automatic Test Builder are not aimed to test how a particular hardware is performing the
required functionality. FV legacy team is only concerned about what a particular hardware is
doing. As discussed earlier that the test cases generated by Automatic Test Builder only tests the
functionality, so the Testing type is functional testing.
Using this tool, a tester just enters CTC ID and all CTC details are fetched from the database.
Then he can edit the information if he wants to and finally a java file is automatically generated.
A complete structure of test case class with all preamble, post amble, help methods and main test
methods are generated. He then adds or removes some code and run test case class in JCAT
environment. Effort and time is saved.

6.3 Testing of the system

Testing was performed by me throughout the development process. Before the completion of a
prototype, complete testing of all implemented features was carried out by me. After showing the
prototype to the automation team, usability testing of the prototype was carried out. Changes
suggested after usability testing and new features were implemented and then regression and
progression testing were performed. For more information about testing techniques used in this
thesis work, please see section 3.1. After testing, new prototype was shown to automation team.
So testing was done for all prototypes throughout the development process. This continuous
testing strategy resulted in a high product quality.

6.4 Estimations of experts about the application

According to Team Lead Jonas Widén “It takes about two weeks to write automated test case”.
When it was asked that how much time it will take after generating java file from Automatic Test
Builder, he said “It will take one week”. So considering Jonas’s opinion, Automatic Test Builder
will save 50 percent of the total time spent in writing automated test case.

49

6.5 Future Improvements

This tool is the first internally developed tool that automation team will use to speed up their
automation process. Automation team can use this tool as a base and add more functionality in
this tool to make it more sophisticated and intelligent.
Some future improvements can be for example, in the very first interface which provides the
option to search by CTC ID. More search options can be provided. Like, Search by TC ID,
Search by Work package. For adding each search criteria, all interfaces related to this search
criteria, will be developed.
Other improvement can be to add functionality in Hardware interface to add more than one
instance of each hardware because for this thesis work, tester can add only one instance of
hardware.

6.6 Reflection on development method

It is a general perception that in the beginning of the software development process, client does
not know what he really wants. With the passage of time, he changes his requirements. Keeping
in mind this phenomenon, there should be a development method that can deal with requirement
changes efficiently. In the beginning of this thesis work, the client and end user that is automation
team was not hundred percent clear about what they finally want. I wanted that I should
communicate with automation team as much as possible so that I can understand their
requirements better. I also wanted that I involve automation team by getting their feedback
throughout the development process so that I could develop the right system for them. I searched
for a development method that incorporates all of my requirements. The prototyping method was
the best option for me. I started working using prototyping as the development method. I used to
show automation team every prototype that I developed, I used to discuss each functionality
before implementation. I used to take their requirement and then suggest my solution and give
them a freedom to decide what they want. After their decision, I used to implement that particular
functionality. Soon after the implementation of that functionality, I used to show them the
implemented requirement so that if they want, they can even more improve that functionality.
Sometimes I had to do extra work because of change in requirement but by always welcoming
their requirements, I noticed an increase in satisfaction level of automation team.
One more important factor to successfully incorporate the changes was that I tried to reduce the
coupling (inter dependency of different modules) so that in future if I had to change (add or
remove) some functionality, other parts of the system would not be affected. For decoupling, I
made a separate class named CodeGenerator that contained all methods that were used in the
system to perform different operations. If I had to add any new functionality, I added one more
method to fulfill that functionality. I also reused already written methods to implement new
functionality. This allowed me to save my efforts from writing the code from scratch to
implement new functionality. I would also like to mention that I got a great support from internet
in finding different solutions. I did not prefer to reinvent the wheel.
In the end, I would like to say that if you work continuously and have faith in Almighty God,
You will be successful.

50

7 References

[1] Apache. (u.d.). Maven. Hämtat från 2012: http://maven.apache.org/ den 12 May 2012
[2] apache.org. (2012). subversion. Hämtat från http://subversion.apache.org/ den 12 May

2012
[3] Copeland, L. (2004). A Practitioner's Guide to Software Test Design. Library of Congress

and British CIP information.
[4] Coulter, A. C. (den 17 January 2010). Gray Box Software Testing Methodology. Hämtat

från http://legacy.cleanscape.net/docs_lib/paper_graybox.pdf den 12 May 2012
[5] Ericsson. (2012). Eforge. Hämtat från https://eforge.lmera.ericsson.se/sf/sfmain/do/home

den 12 May 2012
[6] Gilb, T., & Graham, D. (1993). Software Inspections.
[7] Hudson. (2012). Hudson. Hämtat från http://hudson-ci.org/docs/HudsonIntro.pdf den 12

May 2012
[8] Hudson. (2012). Hudson. Hämtat från http://hudson-ci.org/docs/HudsonArch-Web.pdf

den 12 May 2012
[9] IEEE Standard Glossary of Software Engineering Terminology. (u.d.). IEEE Standard

610.12-1990.
[10] Janvi Badlaney, R. G. (2006). An Introduction to Data-Flow Testing. Hämtat från

ftp://ftp.ncsu.edu/pub/tech/2006/TR-2006-22.pdf den 12 May 2012
[11] Java. (2012). Maven repository managers enterprise. Hämtat från

http://today.java.net/article/2010/01/04/maven-repository-managers-enterprise den 12
May 2012

[12] Jorgensen, P. C. (2008). Software Testing: A Craftsman's Approach, Third
Edition. Auerbach Publications.

[13] Microsoft. (den 22 May 2012). Unit testing. Hämtat från MSDN:
http://msdn.microsoft.com/en-us/library/aa292197(v=vs.71).aspx den 12 May 2012

[14] Ragnemalm, E. (2012). Industrial Engineering and economical issues. Hämtat
från LIU: http://www.ida.liu.se/~TDDD03/material/Introduction2012.pdf den 12 May
2012

[15] René R Klöscha, P. W. (2001). A testing approach for large system portfolios in
industrial environments. Technical University of Vienna, Austria. Vienna: Information
Systems Institute.

[16] Sandahl, K. (2012). Software enigeering. Hämtat från liu.se:
http://www.ida.liu.se/~TDDC88/theory/lectures.shtml den 12 May 2012

[17] Sandahl, K. (2012). Software Testing. Hämtat från LIU:
http://www.ida.liu.se/~TDDD04/lectures/TDDD04_Lecture%2006_1slides.pdf den 1
June 2012

[18] sonarsource. (2012). sonarsource. Hämtat från http://www.sonarsource.org/ den
12 May 2012

[19] sourceforge.net. (2012). Junit. Hämtat från sourceforge.net:
http://junit.sourceforge.net/ den 12 May 2012

[20] T.E.J Vos, F. L. (2012). Evolutionary Functional Black-box Testing in an
Industrial Setting. Software Quality Journal, 1-30.

[21] Testing, B. C. (April 2001). Standard for Software Component Testing, Working”,
Draft 3.4, 27.

[22] Yu, Y. T. (2004). On the Testing Methods Used by Beginning Software Testers.
Information & Software Technology, 329-335.

8 Appendix

8.1 Mockups

Figure

Figure 36, Interface for Search by CTC ID

51

52

Figure 37, Interface for entering CTC IDs

Later on it was decided that Execute Query button should be removed and functionality of

Execute Query button should be put in Next button.

53

Figure 38, Interface for displaying TC information

54

Figure 39, Interface for displaying CTC information

Later on it was decided that CTC Verdict should be removed because CTC Verdict is not

necessary information for TC header.

55

Figure 40, Interface for hardware selection

In the beginning, it was decided that there should be an option to import a text file containing

names of hardware. So Load names button was added in above interface but later on text file

containing hardware names was moved to the package on Automatic Test Builder so now there

was no need to externally select a text file. So Load names button was removed.

Later on it was also decided that functionality of Ok button should be moved in next button. So

Ok button was removed and functionality was moved in Next Button.

56

Figure 41, Interface for java file generation

57

8.2 Code Snippets

8.2.1 Reading text file
public void readFromFile(){
 try{

 String[] colValues = new String[totalNumberOfCol];//Used to
store the values of string file
// totalNumberOfCol is 9.
 int colNum=0;//Used to track which column is so that we can
paste right value in right column in DataBase
 FileInputStream fstream = new
FileInputStream("c:\\Users\\eabbsaa\\Documents\\autoFile.txt");
 DataInputStream in = new DataInputStream(fstream);// Get
the object of DataInputStream
 BufferedReader br = new BufferedReader(new
InputStreamReader(in));
 String strLine,newStr="";
 int indexOfColon=0,counter=0,preIndex=0;

 while ((strLine = br.readLine()) != null) {//Read File
Line By Line

 indexOfColon=0;
 preIndex=0;
 counter=0;//Counts how many times ';' occurred in a
line(StrLine)
 //Boolean lastDataOnLine=false;
 System.out.println (strLine);
 for(int i=0;i<strLine.length();i++)//Count how many
times ; has occurred in the string strLine
 {
 if(strLine.charAt(i)==';')
 counter++;
 }
 System.out.println(counter);
 /**
 * If there will be data then newStr.length() !=0
and if there will not be a colon then we will not do colNum++
 */
 for(int i=0;i<counter;i++)//If there is data and
also there are colons and there is no data but there are colons(Columns with
no value)
 {
 indexOfColon=strLine.indexOf(";",
indexOfColon)+1;
 System.out.println(indexOfColon);
 if(i==0)//to handle new line,previous line
data will be appended to new line data

newStr=newStr+"\r\n"+strLine.substring(0, indexOfColon-1);
 else
 newStr=strLine.substring(preIndex,
indexOfColon-1);
 preIndex=indexOfColon;
 System.out.println(newStr);

58

 colValues[colNum]=newStr;

 colNum++;

 }
 newStr=strLine.substring(preIndex,
strLine.length());
 if(newStr.length()!=0 && counter!=0){//There is data
and colon but last data on line

 //if(lastDataOnLine==true)
 colValues[colNum]=newStr;

 }
 else if(newStr.length()!=0 && counter==0){//Data but
no colon, to handle data like ======= or -------

colValues[colNum]=colValues[colNum]+"\t\n"+newStr;
 newStr=colValues[colNum];
 }
 if(colNum==totalNumberOfCol-1)
 {
 saveToDB(colValues);
 colNum=0;//when we reach last column,reset the
column index to 0
 }
 //System.out.println(newStr);
 }
 in.close();//Close the input stream
 }catch (Exception e){//Catch exception if any
 System.err.println("Error: " + e.getMessage());
 }
 }

59

8.2.2 Saving data into local database

public void saveToDB(String[] colValues){

 String dbUrl = "jdbc:mysql://localhost/test_db";
 //String dbClass = "com.mysql.jdbc.Driver";
 String query = "insert into headerinfo"+

 "(CTC_ID,TC_ID,TC_Headline,TC_Details,SFG,CTC_Headline,CTC_Details,Verdi
ct,QL,Configuration_Values)"
 +" Values(\""

 +colValues[1]+"\",\""+colValues[2]+"\",\""+colValues[3]+"\",\""+colValue
s[4]+"\",\""

 +colValues[5]+"\",\""+colValues[6]+"\",\""+colValues[7]+"\",\""+colValue
s[8]+"\",\""+colValues[9]+"\",\""+colValues[10]
 +"\")";

 try {

 Class.forName("com.mysql.jdbc.Driver");
 Connection con = DriverManager.getConnection (dbUrl);
 Statement stmtStatement = con.createStatement();
 int val = stmtStatement.executeUpdate(query);

 }
 catch(SQLException e) {
 e.printStackTrace();
 } catch (ClassNotFoundException e) {
 e.printStackTrace();
 }
 }

8.3 Main execution TC methods example

@Override
protected Verdict execution() throws Throwable {
// This line is to enter comments in log.
setTestStep("execution start");
if(isTmRunning("LTE00000001")
 executeLTE00000001();
 // This is Main execution TC method for CTC ID LTE00000001. All help methods and other
code are written in its implementation i.e. Test Methods.
if(isTmRunning("LTE00000002")
// This is Main execution TC method for CTC ID LTE00000002. All help methods and other
code are written in its implementation i.e. Test Methods.
 executeLTE00000002 ();
if(isTmRunning("LTE00000003")
// This is Main execution TC method for CTC ID LTE00000003. All help methods and other
code are written in its implementation i.e. Test Methods.
 executeLTE00000003 ();

60

if(isTmRunning("LTE00000004")
// This is Main execution TC method for CTC ID LTE00000004. All help methods and other
code are written in its implementation i.e. Test Methods.
 executeLTE00000004 ();
//This will return verdict whether this test is passed or fail.
 return getThcVerdict();
}

8.4 Test method example

 private void executeLTE00000550() throws Throwable {
// This line is to enter comments in log.
 setTestStep("executeLTE00000550");
//Here tester adds all code which he wants to execute to test CTC ID LTE00000550.
 // TODO
 }

8.5 Manually created java file

TC Suite

package com.ericsson.ate.lte_ran_iov.feature_verification.automation_12B.testcase;

import java.util.ArrayList;

TC Header
/**
 *
 * CTCs covered by this test case
 * LTE00000001 - ANRGSM_DRX sleep period assignment - STP4
 *
 *
 * --- IMPLEMENTATION ---
 *
 * LTE00000001
 * Short description about will be tested in LTE00000001.
 *
 *
 * --- VERDICT ---
 *
 * LTE00000001
 * PASS is set if the number of successful CGI measurements exceeds 90% for any of
 * the following DRX periods 256ms, 320ms, 512ms, 640ms, 1024ms, 1280ms, 2480ms,
*2560ms.
 *
 *
 *

61

--- RESOURCE PROPERTIES IN TM4LTE---
 *
 * configuration I&V_Full
 * ue1 ue li liaeroflex013
 * enb1 enb li lienb0510
 * enb2
 * pgw cpg ln cpg7
 * isp1 isp ln lniperf001
 * ltelogtool1
 * mme1
 * enb3
 * oss1
 * stp
 * portbase 0
 * eclipse.workspace.path default
 * enb3communicatortype Amos
 * jcat.loglevel info
 * enb1communicatortype Amos
 * enb2communicatortype Amos
 * view ate_default_atelte
 * runtype DEV
 * verdictreporting All CTCs
 *
 * --- CTC PROPERTIES IN TM4LTE---
 *
 * ANRGSM_DRX_SleepPeriodAssignment_WP1898__targetgerancellid 100
 *
 *
 *
 * @author emicile
 */
public class ANRGSM_DRX_SleepPeriodAssignment_WP1898_TestCase extends
LteBaseTestCase
{
 /**
* CTC ID for WP1***
*/
public static enum CtcId
{
/**
* ANRGSM_DRX sleep period assignment.
 */
LTE00000001
}
private Moshell moshellSourceEnb;
 private HandlerManagedObject handlerManagedObject;

62

 private String targetGeranCellId;
 private UeNasMode ueNasMode;

Preamble
@Override
 protected Verdict preamble() throws Exception
 {
 setTestStep("preamble");

 targetGeranCellId = getTestCaseProperty("TargetGeranCellId");

 // Moshell setup
 CommunicatorOptions communicatorOptions = new CommunicatorOptions();
 communicatorOptions.configureCompleteMom("1"); // Enable complete mom
 communicatorOptions.useDefaultSetup();
 communicatorOptions.useConnectWithDetect();
 moshellSourceEnb =
LteRm.enb1.generateConfiguredMoshellSession(communicatorOptions);
 handlerManagedObject = new HandlerManagedObject(moshellSourceEnb);

 // Start undo mode (for cr/del/rdel/set/bl/deb/acc commands only)

 // Create the needed parent MOs for ExternalGeranCell and GeranCellRelation and
 // make sure that GeranFrequencyGroupRelation exists (precondition).
 createNeededMOs();

 // ueNasMode setup
 ManagedObjectService moService =
LteRm.enb1.provideManagedObjectService(LteRm.enb1.getDefaultMoshellSession());
 EUtranCellFDDMO cellMO =
moService.getEUtranCellFDDMO("ENodeBFunction=1,EUtranCellFDD=1");
 UeNasModeBuilder nasModeBuilder = LteRm.ue1.getNasModeBuilder();
 int cellId = EnbUtil.calculatePhysicalCellId(cellMO.getPhysicalLayerCellIdGroup(),
cellMO.getPhysicalLayerSubCellId());
 int earfcndl = cellMO.getEarfcndl();
 int frequencyBand = FrequencyBandConverter.getFrequencyBand(earfcndl);
 int dlFrequency = (int) EnbUtil.calculateDlFrequency(earfcndl);

nasModeBuilder.setNumOfUe(1).setFrequencyBand(frequencyBand).setCellIdAll(cellId).setDlF
requencyAll(dlFrequency);
 ueNasMode = nasModeBuilder.build();

 // Set serviceStateAnr to operable
 setServiceStateAnrToOperable();

 // Set anrStateGSM to active
 setAnrStateGSMIsActive();

63

 // Remove any ExternalGeranCell pointing at target cell
 // Also removes MOs reserving the ExternalgeranCell, i.e. GeranCellRelations
 removeAnyExternalGeranCellPointingToTargetNode();

 // Verify that the UE source cell is an eUtranCellFdd.
 verifySourceCellIsEutranCellFDD();

 // Verify UE is inactive in RAC --> Tester says wait for 2 seconds and the UE is inactive
 try
 {
 sleep(2);
 }
 catch (InterruptedException e)
 {
 setThcLteVerdictAndPrintToLog(new LteVerdict(INCONC,
 "Thread sleep interrupted. This might cause and/or be caused by an
unreliable environment." +
 " UE might not have had enough time "));
 }

 return getThcVerdict();
 }

Main Execution TC
@Override
 protected Verdict execution() throws Throwable
 {
 setTestStep("execution");

 // Execute test of CTC LTE00000001
 executeLTE00000001();

 return getThcVerdict();
 }

64

Postamble
@Override
 protected Verdict postamble()
 {
 setTestStep("postamble");

 // Stop undo mode(u-) and restore environment
 stopUndoAndRestoreEnvironment(moshellSourceEnb);

 // Disconnect Moshell
 moshellSourceEnb.disconnect();
 setThcLteVerdict(moshellSourceEnb.verifyNoErrors());

 return getThcVerdict();
 }

 Help and Test Methods

 // ##
 // ## TEST METHODS ##
 // ##

 private void executeLTE00000001()
 {
 setTestStep("executeLTE00000001");

 // A1 Connect to the RBS using moshell.
 // Moshell should already have been connected in preamble(), just verify
 boolean connected = moshellSourceEnb.isConnected();
 if (!connected)
 {
 setTmLteVerdictAndPrintToLog(CtcId.LTE00000001,
 new LteVerdict(ERROR, "Moshell was unexpectedly not connected to the RBS."));
 }

 // A2 Change DRX period. Use the following values, one in each iteration [256, 320, 512,
640, 1024, 1280, 2480, 2560].
 String systemConstantsLine = getLineContainingString(answergetSystemC,
"SystemConstants");
 String[] split = systemConstantsLine.trim().split(" ");
 String proxyNumber = split[0];
 String ldnSystemConstants = split[split.length -1];
 if (!answerAcl.contains("writeSystConst"))
 {
 setTmLteVerdictAndPrintToLog(CtcId.LTE00000001,

65

 new LteVerdict(ERROR, "Could not list command WriteSystConst for MO
SystemConstants."));
 }
 String[] drxPeriodList = {"256", "320", "512", "640", "1024", "1280", "2480", "2560"};
 for (String drxPeriod drxPeriodList)
 {
 // Set DRX period
 handlerManagedObject.doManagedObjectAction(ldnSystemConstants, "writeSystConst",
new String[]{"283", drxPeriod}); // TODO Check why undo doesn't work when HW is available
 if (!answergetSystemC.contains("283" + drxPeriod))
 {
 setTmLteVerdictAndPrintToLog(CtcId.LTE00000001,
 new LteVerdict(ERROR, "DRX period was not correctly set."));
 }

 // Repeat A3, A4, R6, A7, A8 at least 10 times
 for (int i = 0; i < 10 ; i++)
 {
 // A3 Detach and attach UE to source eNodeB
 int detachAllJobID = ueNasMode.detachAll();
 ueNasMode.waitUntilJobIsDone(detachAllJobID, 120);
 int attachAllJobID = ueNasMode.attachAll();
 ueNasMode.waitUntilJobIsDone(attachAllJobID, 120);

 // A4 Move UE until measurement report mention target cell

 // R6 The S-eNodeB has created the MOs for Geran external cell and Geran cell
relation

 // A7 & A8 IF R6 MOs exist Increase number of successful CGI measurements
 // and delete MOs. Go back to A4
 // ELSE Increase number of unsuccessful CGI Measurements and go back to A4

 }

 // A9 IF at least 90% of CGI Measurments are successful --> Test passed
 // ELSE Go to A2

 }

 setTmLteVerdict(CtcId.LTE00000001, new LteVerdict(PASS));
 }

66

 // ##
 // ## HELP METHODS ##
 // ##

 /**
 * Sets serviceStateAnr to operable
 */
 private void setServiceStateAnrToOperable() throws Exception
 {
 // Try to set serviceStateAnr to operable

handlerManagedObject.setManagedObjectAttribute("Licensing=1,OptionalFeatures=1,Anr=1",
"serviceStateAnr", "1");
 LteVerdict verifyNoErrorsVerdict = moshellSourceEnb.verifyNoErrors();

 // If we failed to set serviceStateAnr, throw exception.
 if (!verifyNoErrorsVerdict.getVerdict().equals(Verdict.PASS))
 {
 String errorMessage = "Could not set serviceStateAnr to operable.";
 setTmLteVerdictAndPrintToLog(CtcId.LTE00000001, new LteVerdict(ERROR,
errorMessage));
 throw new Exception(errorMessage);
 }
 }

 /**
 * Sets anrStateGSM to active
 */
 private void setAnrStateGSMIsActive() throws Exception
 {
 // Try to set anrStateGsm to active
 handlerManagedObject.setManagedObjectAttribute("AnrFunction=1,AnrFunctionGeran=1",
"anrStateGsm", "1");
 LteVerdict verifyNoErrorsVerdict = moshellSourceEnb.verifyNoErrors();

 // If we failed to set anrStateGsm, throw exception.
 if (!verifyNoErrorsVerdict.getVerdict().equals(Verdict.PASS))
 {
 String errorMessage = "Could not set anrStateGsm to active.";
 setTmLteVerdictAndPrintToLog(CtcId.LTE00000001, new LteVerdict(ERROR,
errorMessage));
 throw new Exception(errorMessage);
 }
 }

 /**

67

 * Removes any ExternalGeranCell pointing to target cell.
 */
 private void removeAnyExternalGeranCellPointingToTargetNode()
 {
ExternalGeranCellId");

 //Check that at least one ExternalGeranCell exists
 if (resultExternalEUtranCellFDD.contains("ExternalGeranCell"))
 {
 Collection<String> linesContainingExternalgeranCells =
 getAllLinesContainingString(resultExternalEUtranCellFDD, "ExternalGeranCellId");

 // Loop over found ExternalGeranCells
 for (String lineContainingExternalgeranCell linesContainingExternalgeranCells)
 {
 String[] split = lineContainingExternalgeranCell.trim().split(" ");
 String ldnExternalGeranCell = split[0];

 String lineContainingCellIdentity = getLineContainingString(answerGetCellIdentity,
"cellIdentity");
 String[] split2 = lineContainingCellIdentity.trim().split(" ");
 String cellIdentityValue = split2[split2.length - 1];

 // Check if the cell identity of the target Geran cell matches the
 // cell identity of the ExternalGeranCell.
 if (targetGeranCellId.equals(cellIdentityValue))
 {
 Collection<String> linesContainingReservedBy =
getAllLinesContainingString(answerGetReservedBy, ">>> reservedBy");
 for (String lineReservedBy linesContainingReservedBy)
 {
 String[] split3 = lineReservedBy.trim().split(" ");
 String ldnToreservingObject = split3[split3.length -1];
 handlerManagedObject.deleteManagedObject(ldnToreservingObject);
 }

 // Remove the ExternalGeranCell
 handlerManagedObject.deleteManagedObject(ldnExternalGeranCell);
 // TODO
 }
 }
 }
 }
 /**
 * Creates the needed parent MOs for ExternalGeranCell and GeranCellRelation. In the
process it

68

 * also makes sure that GeranFrequencyRelation exists which the test instruction says must be
verified.
 */
 private void createNeededMOs() throws Exception
 {
 // Parent MOs needed for ExternalGeranCell
 // +-ENodeBFunction
 // +-GeraNetwork
 // +-GeranFreqGroup
 // +-GeranFrequency

 // GeraNetwork
 handlerManagedObject.createManagedObject("ENodeBFunction=1,GeraNetwork=1");
 LteVerdict verifyNoErrorsVerdict = moshellSourceEnb.verifyNoErrors();
 if (!verifyNoErrorsVerdict.getVerdict().equals(Verdict.PASS))
 {
 String errorMessage = "Could not create MO ENodeBFunction=1,GeraNetwork=1.";
 setTmLteVerdictAndPrintToLog(CtcId.LTE00000001, new LteVerdict(ERROR,
errorMessage));
 throw new Exception(errorMessage);
 }

 // GeranFreqGroup

handlerManagedObject.createManagedObject("ENodeBFunction=1,GeraNetwork=1,GeranFreq
Group=1",
 new String[]{"1"}); //frequencyGroupId
 verifyNoErrorsVerdict = moshellSourceEnb.verifyNoErrors();
 if (!verifyNoErrorsVerdict.getVerdict().equals(Verdict.PASS))
 {
 String errorMessage = "Could not create MO
ENodeBFunction=1,GeraNetwork=1,GeranFreqGroup=1.";
 setTmLteVerdictAndPrintToLog(CtcId.LTE00000001, new LteVerdict(ERROR,
errorMessage));
 throw new Exception(errorMessage);
 }

 // GeranFrequency

handlerManagedObject.createManagedObject("ENodeBFunction=1,GeraNetwork=1,GeranFreq
Group=1,GeranFrequency=1",
 new String[]{"1","d"}); // arfcnValueGeranDl & bandIndicator
 verifyNoErrorsVerdict = moshellSourceEnb.verifyNoErrors();
 if (!verifyNoErrorsVerdict.getVerdict().equals(Verdict.PASS))
 {

69

 String errorMessage = "Could not create MO
ENodeBFunction=1,GeraNetwork=1,GeranFreqGroup=1,GeranFrequency=1.";
 setTmLteVerdictAndPrintToLog(CtcId.LTE00000001, new LteVerdict(ERROR,
errorMessage));
 throw new Exception(errorMessage);
 }

 // Parent MOs needed for GeranCellRelation
 // +-ENodeBFunction
 // +-EUtranCellFDD
 // +-GeranFreqGroupRelation

 // EUtranCellFDD
 handlerManagedObject.createManagedObject("ENodeBFunction=1,EUtranCellFDD=1");
 verifyNoErrorsVerdict = moshellSourceEnb.verifyNoErrors();
 if (!verifyNoErrorsVerdict.getVerdict().equals(Verdict.PASS))
 {
 String errorMessage = "Could not create MO ENodeBFunction=1,EUtranCellFDD=1.";
 setTmLteVerdictAndPrintToLog(CtcId.LTE00000001, new LteVerdict(ERROR,
errorMessage));
 throw new Exception(errorMessage);
 }

 // GeranFreqGroupRelation

handlerManagedObject.createManagedObject("ENodeBFunction=1,EUtranCellFDD=1,GeranFre
qGroupRelation=1",
 new
String[]{"ENodeBFunction=1,GeraNetwork=1,GeranFreqGroup=1"});
 verifyNoErrorsVerdict = moshellSourceEnb.verifyNoErrors();
 if (!verifyNoErrorsVerdict.getVerdict().equals(Verdict.PASS))
 {
 String errorMessage = "Could not create MO
ENodeBFunction=1,EUtranCellFDD=1,GeranFreqGroupRelation=1.";
 setTmLteVerdictAndPrintToLog(CtcId.LTE00000001, new LteVerdict(ERROR,
errorMessage));
 throw new Exception(errorMessage);
 }

 }

 /**
 * Verifies that the UE source cell is an eUtranCellFdd.
 */

70

private void verifySourceCellIsEutranCellFDD()
 {
 // MO EUtranCellFDD can not be created on a TDD node. So if one exists it is
 // verified that this is an eUtranCellFdd cell. An EUtranCellFDD MO should
 // have been created in createNeededMOs().
 if (!answerEUtranCellFDDId.contains("EUtranCellFDDId"))
 {
 String errorMessage = "Test case setup phase went wrong. Source cell is not of type
EUtranCellFDD";
 setThcLteVerdictAndPrintToLog(new LteVerdict(ERROR, errorMessage));
 }
 }

 /**
 * Stops Moshells undo mode and runs the restore file generated by the undo mode.
 *
 * @param moshellSourceEnb An Moshell session connected to the eNodeB to be restored.
 */
 private void stopUndoAndRestoreEnvironment(Moshell moshellSourceEnb)
 {
 // Fetch the line containing the undo file command. The line looks something like this
 // "To undo, execute command run
/home/emicile/moshell_logfiles/logs_moshell/undo/undo_LIENB0506_120124-101402.mos
($undocommandfile)"
 String undoFileLine = getLineContainingString(answerStopUndo, ".mos");

 // Look for the undo file command in line
 Pattern pattern = Pattern.compile(".*(run.*.mos).*");
 Matcher matcher = pattern.matcher(undoFileLine);

 // If undo file command found
 if (matcher.matches())
 {
 // Run undo file
 String runUndoFileCommand = matcher.group(1);
 setThcLteVerdict(moshellSourceEnb.verifyNoErrors());

 setThcLteVerdict(moshellSourceEnb.verifyNoErrors());

runUndoFileCommand.length() - 4) + ".log");
 setThcLteVerdict(moshellSourceEnb.verifyNoErrors());
 }
 else
 {
 setThcLteVerdictAndPrintToLog(new LteVerdict(ERROR,

71

 "Test case tear down phase went wrong. Could not find the undo file
command. " +
 "Searched in string " + undoFileLine));
 }

 }

 /**
 * Returns the first line containing the given string from a multi lined text.
 *
 * @param completeText The multi lined text
 * @param stringToFindInLine The wanted string to find line from
 * @return The line containing the string or null if the string was not found in any line.
 */
 private String getLineContainingString(String completeText, String stringToFindInLine)
 {
 String[] lines = completeText.split("\n");
 for (String line lines)
 {
 if (line.contains(stringToFindInLine))
 {
 return line;
 }
 }
 return null;
 }

 /**
 * Returns all lines containing the given string from a multi lined text.
 *
 * @param completeText The multi lined text
 * @param stringToSearchFor The wanted string to find lines from
 * @return The lines containing the string or null if the string was not found in any line.
 */
 private Collection<String> getAllLinesContainingString(String completeText, String
stringToSearchFor)
 {
 String[] lines = completeText.split("\n");
 Collection<String> result = new ArrayList<String>();
 for (String line lines)
 {
 if (line.contains(stringToSearchFor))
 {
 result.add(line);
 }
 }

72

 if (result.isEmpty())
 {
 return null;
 }
 return result;
 }

 private class trace
}

8.6 Java file created by Automatic Test Builder

Automatic Test Builder generates a java file containing following code.

/*
#---
Ericsson AB 2012
#---

COPYRIGHT Ericsson AB 2012

The copyright to the computer program(s) herein is the property
of ERICSSON AB, Sweden. The programs may be used and/or copied
only with the written permission from ERICSSON AB or in
accordance with the terms and conditions stipulated in the
agreement/contract under which the program(s) have been supplied.

 */

Package
com.ericsson.ate.lte_ran_iov.testcode.generic.automatic_code_generator_hardware_files;
//***Common

import
com.ericsson.ate.lte_ran_iov.testcode.generic.automatic_code_generator_hardware_files.ACG_T
estCaseMethods;
import com.ericsson.thc.tes.jtex.Verdict;
import com.ericsson.ate.lte_ran_iov.testcase.LteBaseTestCase;
import com.ericsson.ate.lte_ran_iov.testsupport.prepostcheck.PrePostCheckHandler;
import com.ericsson.ate.lte_ran_iov.testsupport.tool.Moshell;
import com.ericsson.ate.lte_ran_iov.testsupport.handler.HandlerManagedObject;
import java.util.ArrayList;

73

//***Sector & Carrier Group Handling - RBS

//***Start and Restart - RBS

//***Support System - RBS

//***SW Management - RBS

/**
---TC HEADER---
--

--CTC ID--

LTE00000550;LTE00011137;LTE00074805;LTE00001440

--TC ID--

LTE00000514

--TC Heading--

INT_RANSF024 Add sector, create MOs with moshell

--TC Details--

DESCRIPTION
Integration of use case, feature not fully delivered.
Iteration 2: OaM, RAC, NC

PRECONDITION

74

AntennaUnitGroup MO and required parents created

TEST INSTRUCTION
Test tool needed for execution:

moshell

 TEST SEQUENCE
Create MOs according to MOM in LSV with moshell or AMOS

Define max number of MOs with max number of relations

A limitation in It2 is 1:1 relation between sectorFunction and antennaUnitGroup
The final implementation is 1:4.

Check that all MOs and attributes are correctly created
Create a CV and set the CV to startable
Restart the node
Verify that all created MOs remain and that all attributes have correct values

POSTCONDITION
An executing CV with MOs according to test case is set to startable

PASS CRITERIA
Verify that all created MOs remain and that all attributes have correct values

--System Function Group--

 **** LTE00000550 SFG****
Sector & Carrier Group Handling - RBS
 **** LTE00011137 SFG****
Start and Restart - RBS
 **** LTE00074805 SFG****
Support System - RBS
 **** LTE00001440 SFG****
SW Management - RBS

--CTC Heading--

 **** LTE00000550 HeadLine****
INT_RANSF024 Add sector, create MOs with moshell - RAN_I&V_1
 **** LTE00011137 Headline****
RANUC018.A1 Historical oscillator data exist, using NTP clock reference, DUL_Step2 -
I&V_Standalone

75

 **** LTE00074805 Headline****
WP 1477 EXTALM: Update alarm port operational state when RRU contact is established -
I&V_Standalone
 **** LTE00001440 Headline****
Basic LTE Support SMO, restore of CV - RAN_I&V_13

--CTC Details--

 **** LTE00000550 Description****
CTC SPECIFIC PRECONDITION
Integration of use case, feature not fully delivered.
Iteration 2: OaM, RAC, NC

CTC SPECIFIC TEST INSTRUCTION

CTC SPECIFIC POSTCONDITION

PASS CRITERIA

 **** LTE00011137 Description****
CTC SPECIFIC PRECONDITION

CTC SPECIFIC TEST INSTRUCTION

CTC SPECIFIC POSTCONDITION

PASS CRITERIA

 **** LTE00074805 Description****
CTC SPECIFIC PRECONDITION

CTC SPECIFIC TEST INSTRUCTION

CTC SPECIFIC POSTCONDITION

PASS CRITERIA

 **** LTE00001440 Description****
CTC SPECIFIC PRECONDITION

CTC SPECIFIC TEST INSTRUCTION

CTC SPECIFIC POSTCONDITION

76

PASS CRITERIA

--Quality Level--

 **** LTE00000550 Quality Level****
N/A
 **** LTE00011137 Quality Level****
N/A
 **** LTE00074805 Quality Level****
QL3
 **** LTE00001440 Quality Level****
N/A

--Configuration Values--

 **** LTE00000550 Configuration Values****
1 Digital Units N/A
 **** LTE00011137 Configuration Values****
1 Digital Units N/A
1-12 Radio Units N/A
 **** LTE00074805 Configuration Values****
R1 ConfigurationVersion N/A
STP4 ConfigurationType N/A
 **** LTE00001440 Configuration Values****
1 Digital Units N/A

 *@author eabbsaa
 *@time stamp 2012/05/04 18:29:17

 */
public class testWP1_TestCase extends LteBaseTestCase {

 ACG_TestCaseMethods tcMethodsObj=new ACG_TestCaseMethods();
 /**
 * WP1
 **/
 public static enum CtcId {
 LTE00000550, LTE00011137, LTE00074805, LTE00001440
 }
 // ##
 // ## MEMBER VARIABLES ##
 // ##
 //***Common

77

 private int m_cellId;
 private Moshell m_moshell;
 private HandlerManagedObject m_hmo;
 private PrePostCheckHandler m_prePostCheckHandler;

 //***Sector & Carrier Group Handling - RBS

 //***Start and Restart - RBS

 //***Support System - RBS

 //***SW Management - RBS

 // ##
 // ## PREAMBLE ##
 // ##

 @Override
 protected Verdict preamble() {
 setTestStep("preamble");
 //***Commo

 tcMethodsObj.init();

 //***Sector & Carrier Group Handling - RBS

 //***Start and Restart - RBS

 //***Support System - RBS

 //***SW Management - RBS

 return getThcVerdict();
 }
 // ##
 // ## MAIN EXECUTION TC ##
 // ##

 @Override
 protected Verdict execution() throws Throwable {
 setTestStep("execution start");
 //if(isTmRunning("LTE00000550")
 executeLTE00000550();
 //if(isTmRunning("LTE00011137")
 executeLTE00011137();

78

 //if(isTmRunning("LTE00074805")
 executeLTE00074805();
 //if(isTmRunning("LTE00001440")
 executeLTE00001440();

 return getThcVerdict();
 }

 // ##
 // ## POSTAMBLE ##
 // ##

 @Override
 protected Verdict postamble() {
 setTestStep("postamble");

 //***Common

 //***Sector & Carrier Group Handling - RBS

 //***Start and Restart - RBS

 //***Support System - RBS

 //***SW Management - RBS

 return getThcVerdict();
 }

 // ##
 // ## TEST METHODS ##
 // ##
 private void executeLTE00000550() throws Throwable {
 setTestStep("executeLTE00000550");
 // TODO

 }
 private void executeLTE00011137() throws Throwable {
 setTestStep("executeLTE00011137");
 // TODO

 }
 private void executeLTE00074805() throws Throwable {
 setTestStep("executeLTE00074805");
 // TODO

79

 }
 private void executeLTE00001440() throws Throwable {
 setTestStep("executeLTE00001440");
 // TODO

 }

}

80

8.7 Time plan

Weeks Task

Name

Sub Tasks Description Status

7 Pre-Study Understanding how automation team works.
Reading documents:
1. Getting started with JCAT at RAN I&V
2. LTE RAN 1&V Test Automation Development
3. ClearQuestAPIReference
4. Code template
5. Test_Design_User_Guide

Completed

7,8 Meetings Meetings with Sören Andersson and Jonas Widén to
understand what the problem statement is. Discussing
solutions, selecting best possible solution

Completed

9,10 Learning Study different reference materials to know how to do
the required job efficiently.
Learning how to use VE Window Builder.
Studying SOAP, Tomcat application server, axis.
Learning how to use Rational ClearQuest.

Completed

10 Environme
nt setting

Setting up Eclipse IDE for Java Developers Helios
SR2.
Adding required JAR files.
Installation of VE Window Builder
Studying Mysql.
 Getting access to the required information.
Getting required access rights.

Completed

11,12 Semi-
automated
process

Database
Connectivity

Meeting with concerned persons and try to get access
to the Database TM4LTE

Completed

Generating Text
file manually

Write a query and save results in a text file.
Deigning and creation of local database and then
reading all data from the text file and then saving it
into the local database.
Writing code to read data from text file and then
generate a java file according to the code template.

Reading and
saving query
results from text
file to local
database

Generating java
file automatically

12,13 Fully
automated
process

Connect
TM4LTE using
SOAP

Designing and writing code to connect database
TM4LTE directly from eclipse and fetching data from
it.
Generating java file and embedding data into java file
according to the code template provided.

Completed

Generating java
file from the
results

81

14,15 GUI
design

Mockup
development

Meeting with Sören Andersson and Jonas Widén.
Finalizing GUI.
Development of Mockups.
Discussions on mockups.
Creating GUI from Mockups.

Completed

GUI
development

15,16,
17

Working
GUI

Add real code to
GUI

Edit code according to the GUI structure to make GUI
working.

Completed

Presentation to
Mats Wärme,
Jonas Widén and
Sören Andersson

18,19 Adding
main
methods
and help
methods

Designing and
creating local
database

 Completed

Meetings

Specification of
all main methods
and help
methods

Adding methods
to code

20,21 Document
ation
developme
nt

Writing manual
for the
Automatic code
generator tool

 Completed

Writing Javadocs

22 Training of
testers

Delivering the
tool to testers

 Completed

Training sessions

23,24,
25,26

Writing
thesis
report

 Completed

