Undersökning av svetsegenskaper för svetsning med rörtråd kontra homogen tråd

An examination of weld properties for welding with tube electrode vs. homogenous electrode

Patrik Eriksson
1. Abstract

Welding is a common method for joining of metal or plastic construction parts. This report describes several different weld methods in general terms. The report focuses on the GMAW method, specifically MAG welding.

A case study has also been performed for the company Wenmec. The task received from the company was to compare the mechanical properties of joints welded with the tube electrode called Nittetsu SM-3A and joints welded with the homogenous electrode called ESAB Aristorod 12.63. Both types of weld joint were welded with the MAG method with an Argon based shielding gas with 18% CO₂. The final task of this study is to compare the cost of these electrodes and then help Wenmec to decide which electrode that is the most cost effective.

Tensile testing, impact testing and fatigue testing were performed on the weld joint samples. The hardnesses, microstructures, failure zones and chemical composition were examined with optical microscopy and SEM.

The weld time, the amount of consumed electrode and the weld energy was measured during welding. These properties were similar and the differences between the different joints could be ignored.

Both weld joint types showed similar microstructures and hardnesses. The microstructure was ferrite with carbides or perlite at the grain boundaries. Some silicon oxides were found in the grains.

The yield strength, ultimate tensile strength and cycles to fatigue failure were similar in the two joint types, but the Aristorod weld joint showed higher impact strength and elongation at break.

The chemical composition showed that the SM-3A electrode was a metal cored electrode with some additions of deoxidizing elements and a Copper coating. The Aristorod 12.63 electrode also showed the presence of deoxidizing elements and likely had a Titanium based coating. The sheet metal used as the work pieces are called Ruukki Laser 355 MC and is steel with low Carbon content, some Manganese and some impurities.

The SM-3A electrode was costlier than the 12.63 electrode. This work concluded that the 12.63 electrode was a better alternative for Wenmec due to the lower cost, higher impact strength and higher elongation at break.

This report and work is the Master thesis for Patrik Eriksson, Karlstad University, Sweden 2012.

2. Sammanfattning

Svetsning är en vanlig metod för att sammanfoga detaljer av metall och i vissa fall plast. Denna rapport beskriver flera olika svetsmetoder och allmänna fakta kring dem varpå rapporten fördjupas inom GMAW metoden, specifikt MAG.

Mekanisk provning som utförts var dragprovning, slagprovning och utmattningsprovning. Mikrostrukturen och hårdheten i svetsfogarna jämfördes samt brotttytor och kemisk sammansättning undersöcktes med SEM.

Vid svetsning jämfördes svetsstid och materialåtgång samt den så kallade sträckenergin. Svetsteknikst var de båda svetsfogarna så lika att skillnader kunde ignoreras.

Det visade sig att de båda elektrodyterna gav upphov till svetsgos med likadan mikrostruktur och snarlik hårdhet. Mikrostrukturen visade sig vara ferritisk med vissa mängder karbid eller perlit vid
korngränserna. Partiklar i mikrostrukturen visade sig vara främst kiseloxider.

Cykler till utmattningsbrott, sträckgräns och brottgräns var snarlika mellan de båda svetsfogarna medan Aristorod 12.63 hade bättre brottöjning och slagseghet.

De ekonomiska aspekterna visar att SM-3A är ett dyrare alternativ än 12.63. Sammantaget kom detta arbete fram till att SM-3A inte är ett attraktivt alternativ för Wenmec då slagseghet och brottöjning var sämre och elektroden dessutom var dyrare.

Detta arbete och denna rapport utgör examensarbete för Patrik Eriksson, Karlstads Universitet 2012.

3. Förord

Företaget Wenmec tillverkar och svetsar detaljer av stål. Wenmec använder sig av MAG svetsning i många fall och företaget undersöker just nu möjligheten att byta svetselektrod från en homogen tråd till en rörtråd.

Detta arbete ska handla om eventuella skillnader mellan mekaniska egenskaper och kvalité i svetsmaterial svetsade med de två olika elektroderna.

Tack till:
Examinator: Jens Bergström
Handledare: Anders Gåård
Kontaktperson/svetsansvarig Wenmec: Fredrik Wessman
Forskningsingenjör: Christer Burman
Universitetsadjunkt: Göran Karlsson
Laboratorieingenjörer: Staffan Sunesson
Mikael Andersén
Ann-Christine Brox
Daniel Johansson
Göran Walan
Maria Malmström
4. Innehållsförteckning

1. Abstract ... 2
2. Sammanfattning ... 2
3. Förord .. 3
4. Innehållsförteckning ... 4
5. Inledning .. 6
 5.1. Om Wenmec .. 6
 5.2. Bakgrund .. 6
6. Teori .. 7
 6.1. Översikt av olika svetsmetoder ... 7
 6.1.1. Historia .. 7
 6.1.2. Gassvetsning ... 8
 6.1.3. Bågsvetsning .. 9
 6.1.4. TIG svetsning .. 10
 6.1.5. Plasmasvetsning ... 10
 6.1.6. Pulverbågsvetsning .. 11
 6.1.7. Motståndssvetsning .. 12
 6.1.8. Friktionssvetsning .. 12
 6.1.9. Ultraljudssvetsning .. 13
 6.1.10. Explosionssvetsning ... 13
 6.1.11. Magnetpulssvetsning ... 14
 6.1.12. Kalltryckssvetsning ... 14
 6.1.13. Diffusionssvetsning ... 14
 6.2. MIG/MAG svetsning och dess specifika egenskaper .. 15
 6.2.1. Skyddsgasen .. 16
 6.2.2. Elektroden .. 16
 6.2.3. Svetsens kvalité ... 17
 6.2.4. Svetsens egenskaper .. 18
 6.2.5. Rökgaser .. 20
 6.2.6. För och efterarbete ... 21
 6.3. Svetsfogen ... 22
 6.3.1. Fogberedning .. 22
 6.4. Fixering ... 22
 6.5. Mikrostruktur ... 23
7. Mål ... 24
8. Metod .. 24
 8.1. Provberedning ... 24
 8.2. Svetsning .. 25
5. Inledning

5.1. Om Wenmec

5.2. Bakgrund

Wenmec tillverkar produkter åt många olika företag inom flera branscher och produkterna används ofta som komponenter i stora maskiner. Laster som påverkar maskinkomponenterna varierar i storlek och typ; en del maskiner vibrerar med flera Hz men vid låga lastnivåer, medan andra utsätts för stora krafter med långa intervall. Fall då frekvens och last är hög förekommer också.

På grund av detta skall maskinkomponenterna hålla för höga påfrestningar och därför blir materialegenskaper, särskilt i svetsfogarna, viktiga eftersom svetsen riskerar att bli en svag punkt i konstruktionen. För att förbättra kvalité i svetsfogarna och sänka kostnader för sina kunder undersöker Wenmec olika metoder att öka hållfastheten och även om möjligt sänka tillverkningskostnaden. Ett sätt att åstadkomma detta kan vara att byta svetselektrod.

6. Teori

6.1. Översikt av olika svetsmetoder

Det finns många olika svetsmetoder som används i olika industriella tillämpningar. Följande delar av rapporten beskriver några av de vanligaste samt några mindre vanliga.

6.1.1. Historia

Smeder har i hundratals år använt sig av metoder för att sammanfoga metallstycken. Vanligast var vällning då smeden helt enkelt värmde upp metallstyckena till nära smältpunkten och sedan bearbetades de samman med hammare. Kunder var ofta bönder som emellanåt måste reparera sina verktyg [1].

Under andra världskriget uppstod behovet inom flygindustrin att svetsa i metaller som magnesium och aluminium vilket ställde speciella krav på elektroden. En speciell metod togs fram där en volframelektrod som inte smälte eller förbrukades användes. Idag används metoden, som kallas TIG-svetsning, till material som till exempel rostfria stål med mera [1].

Gassvetsningsmetoden utvecklades i Frankrike i slutet av 1800-talet då det upptäcktes att kombinationen av syre och acetylen vid förbränning når temperaturer på 3100°C. Dock var explosionsrisken för acetylen stor och därför fick metoden inget genomslag innan det upptäcktes att aceton kan lösa acetylen i stora mängder och att en massa gjord av granulerat träkol, asbest och kiselgr, den så kallade AGA massan kan ta upp stora mängder av aceton och därmed acetylen. Massan är dessutom explosionssäker [1].

6.1.2. Gassvetsning

Gassvetsning är en av de äldsta smältsvetsmetoderna och användes flitigt under lång tid. Idag har användningen minskat, men metoden är fortfarande mångsidig och dessutom billig. Den kan med fördel användas till reparations och montagearbeten, rör och konstruktionsvetsning med godstjocklek 0,5-6mm, sprickkänsliga material, gjutjärn, icke järnmetaller samt på och hårdsvetsning [1].

Värmekälla i detta fall utgörs av en blandning av acetylen (C₂H₂) och syre (O₂). När blandningen brinner når den en temperatur på 3100°C. Lågan har en förhållandevis låg temperatur och riktas mot fogens kanter vid svetsningen. Kanterna smälter som följd och eventuellt tillsatsmaterial tillförs. Smältan skyddas från oxidering av en reducerande zon i lågan. Därför bör lågan avlägsnas långsamt efter svetsningen [1].

Fördelar med gassvetsning inkluderar möjligheten att utjämma temperaturen i svetsen vilket
förhindrar härning. Godstjocklekars upp till 6mm kan svetsas med I-fog. Svetsningen kan göras snabbt och genomsättningen kan lätt kontrolleras varpå rotfel undviks. Utrustningen, Figur 2, är dessutom lätt att transportera, den kräver ingen el och är smidig nog för att använda i trånga utrymmen under besvärliga förhållanden [1].

6.1.3. Bågsvetsning

Alla bågsvetsningsmetoder bygger på ett plasma som innehåller fria elektroner, joner och molekyler. Plasmat bildas av elektricitet som genereras mellan två poler. För bågsvetsning utgörs oftast ena polen av arbetstycket och den andra av svetspistolen. Strömmen upprätthålls främst av den stadiga strömmen av elektroner. Ljuset från bågen kommer från elektroner som exciterar atomer i plasmat, när dessa atomer återgår till sitt ursprungliga energitillstånd avgör de ljus. Om plasmat brinner i en gas som CO$_2$ kan vämen dela upp molekylema till kol och syre under en tid innan atomena åter kombineras [1].

Väte används ibland som tillsats i argon för att öka värmetillförseln och inträngning vid svetsning i vissarostfria stål och nickel. Gasen kan dock ge porer och sprickor om den används på fel material. Syre tillsätts ibland vid MIG svetsning i stål för att stabilisera ljusbågen och kväve tillsätts ibland vid svetsning i duplexa rostfria stål för att förbättra korrosionsegenskaperna [1].
6.1.4. **TIG svetsning**

Figur 3: Utrustning för TIG-svetsning [1]

TIG står för Tungsten Inert Gas, det vill säga volfram inert gas. Metoden togs fram under andra världskriget för att kunna svetsa i aluminium. Numera används TIG för arbeten som kräver hög kvalité, homogenitet, renhet och fin yta [1].

Svetsning med metoden kan ske med eller utan tillsatsmaterial, detta tillförs i sådant fall för hand och består oftast av samma ämnen som arbetstycket, möjlig med deoxiderande tillsatser. Metoden klarar alla svetsbara material utom bly och zink. Den kan användas till alla fogtyper och svetslägen. Dock är metoden begränsad i hur tjocka gods som kan svetsas. Metoden klarar 0,5-3mm gods bäst. Produktiviteten är också relativt låg i förhållande med till exempel kortbågsvetsning [1].

För att åstadkomma god kvalité skall alla ytor noggrant rengöras från olja, fett och andra orenheter. Eventuella oxider som bildats under svetsningen bör avlägsnas eftersom de påverkar korrosionsskyddet negativt [1].

6.1.5. **Plasmasvetsning**

Figur 4: Principen för plasmasvetsning [1]

Plasmametoder för skärning i aluminium introducerades år 1956 och dagens metoder för både skärning och svetsning med plasma baseras på denna. En plasmasvets är till sin princip lik TIG-
svetsen. Plasmaströmmen utgår från en elektrod gjord av volfram och hålls på plats och skyddas av en skyddsgas, Figur 4, som till funktion och samsnärsättning är lik TIG-metodens skyddsgas [1].

Plasmabågen är smalare än TIG metodens koniska båge vilket gör metoden mindre känslig för förändringar av ljusbågens längd, men samtidigt mer känslig för variationer i sidled. Detta gör att plasmasvetsning ofta används i mekaniserade utrustningar som klarar kraven på precision i sidled [1].

Metoden kan användas till samma material som TIG-svetsning förutom magnesium. Bågen är stabil och lätt att tända, dessutom deformerar bågen inte arbetsstycket i någon större utsträckning. Den värmeåtervärmade zonen är liten och svetsfastheten är hög (cirka 4 gånger snabbare än TIG). Genom att sänka plasmagasflödet kan även plasmasvetsen fås att fungera som en TIG svets, vilket kan vara till fördel vid påsvetsning och vid svetsning av täckstränger [1].

Plasmasvetsning har även andra fördelar som att småsvetsning kan användas vid mycket tunna material. Stumfog kan användas utan tilläggsmaterial i tjockt gods, metallurgin håller en hög kvalité som kan bedömas under svetsförloppet och genom att använda den så kallade nyckelhålsmetoden säkerställs genomsvetsning. Nyckelhålsmetoden utförs genom att ha så stor värmetillförsel så både ytan och det inre av arbetsstycket smälter vilket skapar ett område av smält metall som i profil liknar ett nyckelhål [1].

6.1.6. Pulverbågs- svetsning

Pulverbågs- svetsning, eller Submerged Arc Welding (SAW) som metoden kallas på engelska, är en metod med hög produktivitet och utförs ofta maskinellt. Metoden använder sig av upp till tre ljusbågar som var och en täcks av ett pulver som tillförs konstant, Figur 5. Pulvrets uppdrag är att bilda slagg som skyddar svetsen från luftens syre och kväve, det skyddar också mot rök och strålning. Överblivet pulver sugs upp och återanvänds vilket kan vara problematiskt i vissa fall då det måste tas om hand och renas i ett separat system innan pulvret kan användas igen. Andra uppgifter som pulvret kan ha är att legera svetsmaterialet, stabilisera ljusbågen, göra ljusbågen lättare att tända, påverka flytbarhet i smälta, forma svetsrötter (svetsens topp) och att ge svetsgodset hög ytfinhet. Svetsens kvalité är som regel hög och ytan på svetsen blir mycket jämn och blank, dessutom brukar slagen lossna av sig självt [1].
6.1.7. **Motståndssvetsning**

Figur 6: Principen för motståndssvetsning [1]

Stuksvetsning används för hopsvetsning av stänger och trådar ände mot ände. Stängerna spänns först fast i en elektrod. När sedan ström tillförs blir ändarna p.g.a. övergångsmotståndet så varma att de kan pressas samman. Brännsvetsning är en metod där arbetstycketets komponenter pressas samman och förs mot varandra några gånger, vilket genererar friktionsvärmel. Efter denna förvärmning sker avbränningsfasen där delarna förs samman i ett kraftigt gnistregn [1].

6.1.8. **Friktionssvetsning**

Figur 7: Principen för friktionssvetsning [1]

Friktionssvetsning är ett alternativ svetsmetod där arbetstycketets komponenter pressas samman och förs mot varandra några gånger, vilket genererar friktionsvärmel. Efter denna förvärmning sker avbränningsfasen där delarna förs samman i ett kraftigt gnistregn [1].

Friktionssvetsning med roterande verktyg ger en mycket fin yta på svetsen, den kan vara nästan osynlig på rotsidan och har oftast bara några små ytmärken där verktyget gått fram på andra sidan. Andra fördelar är goda utmattningsegenskaper, inget behov av fogberedning, små värmespännningar, den kan användas för sprickkänsliga material och produktionshastigheten är relativt hög. Metoden är dessutom miljövänlig jämfört med smältsvetsning eftersom inget ljus och ingen rök eller gas utvecklas. Metoden kräver dock kraftig inspänning på grund av det stora tryck som utvecklas i arbetsstycket. Detta ställer därmed stora krav på fixturen m.m. [1].

6.1.9. Ultraljudssvetsning

Ultraljudssvetsning är en metod där arbetsstykets delar vibreras mot varandra med en frekvens på 20-50kHz och en rörelse med amplitud på någon hundradel av en millimeter. Metoden passar bra till både termoplaster och metaller, men detaljerna kan inte vara särskilt stora. Svetsmetoden används bland annat till elektriska ledare av koppar och aluminium [1].

6.1.10. Explosionssvetsning

6.1.11. Magnetpulssvetsning

Magnetpulssvetsning påminner till stora delar om explosionssvetsning, men istället för att utnyttja sprängämnen så används en kraftig magnetisk puls för att trycka samman fogytorna. Metoden fungerar genom att en kondensator med hög kapacitans under kort tid laddas ur i en spole som ligger runt arbetsstycket, Figur 9. Strömmen kan vara flera miljoner ampere och spänningen upp till 10 kV. I förhållande till explosionssvetsning finns flera fördelar, bland annat är ljudnivån lägre och metoden i sig är mycket snabbare p.g.a. att mindre förarbete krävs. Processen är kall, billig och håller hög precision samt kräver ingen direkt kontakt med någon strömkälla [1].

6.1.12. Kalltryckssvetsning

6.1.13. Diffusionssvetsning

Diffusionssvetsning är en metod som använder sig av hög temperatur och tryck för att under vakuum, eller skyddsgas svetsa ihop två ytor. Metoden orsakar ingen deformation eller smältning av materialet. Metoden kräver en fin, ren yta för att fungera och dessutom relativt lång tid, men klarar av många olika material. Flera olika metaller kan sammanfogas och även metall mot ickemetal kan svetsas [1].
6.2. **MIG/MAG svetsning och dess specifika egenskaper**

![Figur 10: MIG/MAG metoden [1]](image)

Gasmetallbågsvetsning eller Gas Metal Arc Welding (GMAW) är den mest använda metoden inom industrin. Metoden delas upp i MIG och MAG svetsning. MIG står för Metal Inert Gas, det vill säga svetsen skyddas av en inert gas som till exempel ädelgasen argon. Vid MAG (Metal Active Gas) svetsning är gasen däremot aktiv, det vill säga gasen reagerar med smältan. Vanligaste gasblandningarna är ren CO$_2$, eller en blandning av CO$_2$ och argon [1].

GMAW-svetsning är en metod baserad på bågsvetsning, det vill säga en ljusbåge bildas mellan två elektroder, Figur 10. Bågen är mycket varm och smälter därmed metallen i arbetsstycket. Vid GMAW utgörs ena elektroden av en tråd som kontinuerligt matas fram från en spole och smälts i spetsen av svetspistolen. Matningshastigheter på 2-20m/min är vanligt. Svetsrörelsen görs däremot för hand vilket har lett till att metoden kallas halvautomatisk [1].

![Figur 11: Tvärsnitt av svetspistolen [1]](image)

6.2.1. Skyddsgasan
I Västeuropa används oftast argon med upp till 20 % koldioxid (CO₂). Vid svetsning i läggefer Weber stål och kolstål tillsätts ibland en aning syrgas (O₂). Denna gasblandning ger en mer stabil ljusbåge än ren argon. Om gasskyddet är otillräckligt bildas ofta porositeter och andra defekter i svetsen vilket påverkar svetsfogens egenskaper negativt. Ren CO₂ ger bra skydd mot bindfel (dålig bindning mellan svetsgodens och grundmaterialet) och klarar föroreningar eller ytbehandlingar på arbetstyper och ändamålet. Öppningen kan även avkallas och gör inställningsområdet för utrustningen snävare. Ibland kräver CO₂ förvärmning eftersom stora uttag av gas orsakar tryckfall i tanken som då får gasen att kylas ner kraftigt [1], [2].

6.2.2. Elektroden
Svetselektroden är kontinuerlig vid GMAW svetsning och levereras oftast på spole. Diametern på tråden kan variera mellan 0,6 och 2,4 med mera. Elektrodens sammansättning och renhet påverkar i hög grad svetsens egenskaper såsom hållfasthet, korrosionsegskaper och rågform. Elektroden matas genom en slang och en svetspistol under svetsningen och den skall dessutom ha en bra elektrisk ledningsförmåga. Detta kräver att elektroden skall ha en viss utfyllning och hårdhet. Vid svetsning sker även viss avbränning av elektroden vilket måste tas i beräkning vid val av elektrod. Grundmaterialets sammansättning påverkar också elektrodalet [1].

Vid MIG svetsning reagerar inte skyddsgasen med smältan vilket gör att elektroden oftast bör vara av samma sammansättning som grundmaterialet. Vid svetsning i läggefer Weber stål med MAG-metoden oxideras ofta legeringsämnen i stället till slag, vilket kan ge en sprödare svets. Detta problem undviks genom att legera elektroden med deoxidiserande ämnen. Vanliga legeringsämnen är kisel och mangan, mens zirkonium, titan och aluminium förekommer också [1].

Figur 12: Tvärsnitt av rörelselektroden [1]
Principen för en rörelektrod, Figur 12, är att blandna de önskade legeringsämnen i ett pulver som sedan läggs i ett rör av olegerat stål. Idag används rörelektroder av två typer, de som kräver gasskydd och de som inte kräver det. Utrustningen som krävs för svetsning med rörelektrod är samma som för homogen tråd. Dock är ofta utrustningen grövre dimensionerad eftersom rörtråd oftast har grövre diameter än homogen tråd. Vid svetsning med rörtråd som inte kräver gasskydd, så kallad självskyddande tråd, kan svetspistolen göras enklare eftersom ingen extra gas behövs. Rökutvecklingen blir dock större vid höga strömströmmar vilket kan lösas genom att bygga in röksug i pistolen [1].

De rörelektroder som kräver skyddsgas brukar delas upp i metallpulverfyllda trådar och fluxfyllda trådar. Den metallpulverfyllda tråden innehåller pulver som mestadels består av järn med vissa legeringsämnen som bildar små öar av kiseloxid. Den fluxfyllda tråden bildar slagg för bättre kontroll av smältan vilket ger bättre egenskaper vid lägessvetsning. Risken för bindfel anses också vara lägre jämfört med massiv elektrod [1].

Fördelar med rörelektroder är att det så kallade insvetstalet är högt som följd av att strömtätheten (ström per areaenhethet) är hög. Insvetstalet är ett svetstekniskt mått på hur mycket metall som tillförs arbetstycket per tidsenhet. Rörelektroden är lätt att legera eftersom kärnan består av lättblandat pulver. Stabiliserande ämnen i pulvret gör att inställningsområdet på svetsutrustningen blir större, sidointrängningen är bättre än solid tråd och de basiska varianterna av rörtråden tål föroreningar i materialet mycket bra och ger ett gods som är segt och spricktäligt [1].

Fluxblandningen i rörelektroden kan vara basiska eller rutila. De basiska elektroderna ger hög slagseghet jämfört mot de rutila eftersom blandningen tar bort oxider och sulfider i svetsgodset. Elektroder belagda med en basisk ytbeläggning innehåller ofta en hel del kalksten CaCO₃ medan basiska rörelektrodblandningar ofta innehåller fluspat CaF₂. Basiska elektroder ger en trögflytande smälta vilket gör det relativt svårt att svetsa med dem. De rutila elektroderna innehåller ofta TiO₂ och är lättvetsade, dock ger de ofta en högre halt av väte i svetsgodset vilket kan ge vätesprickor. Detta problem har elektrotillverkare dock löst på senare år [3].

6.2.3. Svetsens kvalité

Kvalitén, produktiviteten och kostnaden för att sveta beror mycket på svetsutrustningens inställningar. Inställningarna brukar delas in i två grupper, första och andra ordningens reglerbarhet. Till första ordningen hör spänning, ström och svetsstabilitet, till andra ordningen hör svetspistolens vinkel, fri elektrodlängd, distans mellan svetselektrod och arbetstystycke, svetsriktning och position samt flöde av skyddsgas. Andra saker som påverkar svetsens egenskaper är elektrodens diameter.
och samansättning samt skyddsgasens sammansättning. Dessa egenskaper kan dock inte ändras under svetsandets gång till skillnad från de övriga [4].

\[Q = k \times \frac{U \times I \times 60}{\nu \times 1000} \]

Q: sträckenergi [kJ/mm]
U: bågspänning [V]
I: svetsström [A]
V: svetshastighet [mm/min]
K: svetsmetodens verkningsgrad

6.2.4. Svetsens egenskaper

Det visar sig att överföringen av värme från elektrod till arbetsstycke sker med små droppar av smält metall som styrs av komplexa mekanismer. Dropparna kan vara stora och globulära och kan nå storlekar större än elektroddiametern. De följer ljusbågen från elektrod hela vägen ner i smältan. Globulär överförning sker då spänningen och ström är mellan kortslutningsnivå och spraynivå, där dropparna övergår till en tät spray av mycket små droppar [7].

Enligt [7] hålls droppen kvar vid elektroden av ytspänning tills droppen blivit så stor att gravitation och andra krafter förmår dra loss den. När droppen glider nedåt drar den med sig mer smält material ned mot elektroddens ände. Smältan som hela tiden träffas av ljusbågen blir starkt magnetisk, vilket pressar nytt material ned mot svetsroten från den region där ljusbågen träffar ytan. Denna elektromagnetiska kraft bidrar vid att dra loss droppen från elektroden. När gravitation, elektromagnetism och friktion mellan droppe och smält elektrod blir större än ytspänningen lossnar droppen [7].

Figur 13: Härhhet över svetsen i [8]

Slipmetoder inkluderar gradning, slipning med skiva och vattenerodering. Slipning med skiva förbättrar utmattningshållfastheten med omkring 20-50% (testat vid 2x10^6 cykler). Gradning ger en förbättring på 50-200% vilket förklaras med att slipning med skiva repar ytan där reporna fungerar

6.2.5. Rökgaser

Vid svetsning bildas så kallad svetsrök, en blandning av olika gaser och stoftpartiklar. En del av rökgasplåttorna består av förångad metall direkt från elektrod och grundmaterial. Andra partiklar består av diverse oxider som bildas då ämnen i ytbeläggningar på arbetsstyrke och elektrod, metallängor, skyddsgas och ev. omgivande luft blandas [6].

Mängden och sammansättningen av svetsröken beror på vilken svetsmetod som används, vilka material som används i gods och tillsatsmaterial, ev. ytbeläggningar samt svetsparametrar. Oftast måste svetsröken ventileras bort för att inte skada svetsaren. Även skyddsgas kan vara farlig i för stora mängder då det tränger undan luften i trånga utrymmen. Ett vanligt sätt att få bort farliga gaser är att använda punktutsug och att undvika att svetsa på ytor täckta av till exempel olja, zink och färg då dessa utvecklar direkt giftig rök. Ozon (O\(_3\)) bildas då syre utsätts för UV strålning. Gasen är färglös och starkt frätande och angriper ofta kroppens sleinhinnor där den kan ge bröstsmärtor, tung andning och halsont. Gasen utvecklas särskilt vid TIG och MIG svetsning i aluminium [6]. Studier pekar på att en svetsare andas in en koncentration av svetsrök som är omkring 5 mg/m\(^3\). Sjukdomar som detta kan orsaka är kronisk bronkit, pneumonitis, metallröksfeber och försämring av lungfunktion [11].
6.2.6. För och efterarbete

Glödgning har dock några nackdelar; processen är dyr och det finns risk för försämring av hårdhet och hållfasthet vid överåldring i materialet. Mikrolegerade stål kan få sämre seghet vid avspänningsglödgning och hög sträckenergi då processen skapar urskiljning av karbider och nitrid. Vid låg sträckenergi kan segheten däremot bli bättre. Härdaade och anlöpta stål är särskilt riskabla att avspänningsglödga eftersom den tidigare värmebehandlingen kan förstöras vid för höga temperaturer. Materialet kan bland annat bli överåldrat vilket ger sämre hållfasthet och hårdhet då karbider växer till en sådan storlek att de inte längre har en förstärkande effekt [3].

Figur 14: Exempel på värmebehandling [3]
6.3. **Svetsfogen**

![Figur 15: Olika typer av svetsfogar [6]](image)

6.3.1. Fogberedning

Kanterna på arbetsstyckets delar måste ofta formas inför svetsningen för att svetsningen skall nå hela fogen. Exempel på formningsmetoder är svarvnings, hyvling, fräsning, slipning, klippning eller skärning med laser, gas eller vatten. När fogen har fått rätt form skall den rengöras och torkas noggrant [6].

6.4. Fixering

6.5. **Mikrostruktur**

Figuur 16: Tvärsnitt av svetsens olika zoner [6]

Utanför inträngningszonen ligger omvandlingszonen som består av grundmaterial som blivit upphettat så starkt att dess fassammansättning ändrats. Yttersta zonen innan rent grundmaterial är strukturändringszonen där värmen varit tillräcklig för att ändra struktur, men inte fas på grund materialet. Exempel på detta kan vara att kornstorleken ändrats [6].

För att optimera utmattningshållfastheten i svetsen bör övergången mellan svets och grundmaterial vara så jämn som möjligt, anledningen till detta är att en skarp övergång ökar spänningsskönstinationen i svetsen vilket drar ner livslängden [6].

Svetsgodset skiljer sig ofta från bulk materialet. Den kemiska sammansättningen kan vara annorlunda p.g.a. tillsatsmaterial. Mängden inneslutningar är som regel större i svetsgodset och svetsgodset är ett gjutet material medan bulk materialet oftast har värmebehandlats, valsats eller liknande. Inneslutningarna består mestadels av oxider, sulfider och oxisulfider. De återfinns både inne i materialet och på dess yta. Kemiskt brukar svetsgodset hålla en högre nivå av syre och väte. Renheten i svetsgodset kan styras med val av elektrod vid metallbågsbetsning, eller val av flux vid pulverbågsbetsning [3].

7. Mål

8. Metod
Wenmec använder ofta konstruktionsstål. Det stål som användes till detta arbete kommer från företaget Ruukki som är ett företag som specialiserar sig på energieffektiva applikationer. Stålet kallas Ruukki Laser 355 MC. Plåten är laserskuren och har 355MPa som flytspänning och finns att köpa i flera dimensioner. Detta arbete har använt 12mm tjocka plåtar [12].

Den alternativa elektrod Wenmec vill byta till är en rörelektrod som kallas ”Nittetsu SM-3A” och är enligt Nittetsu designad för användning i både manuell och automatisk svetsning och har designats för att ge svetsar med slagseghet över 47J vid -40° C enligt Charpys metod [14]. Denna rapport kommer fortsatt benämna elektrod som SM-3A.

8.1. Provberedning
Första steget för att tillverka prover för mekanisk testning är att tillverka provplåtar. För att få bra resultat i utmattningsprovning bör åtminstone 10 prov användas eftersom cykler till utmattning ofta varierar kraftigt. Även slagprovning kräver 10 prover eftersom slagsegheten också ofta varierar. Dragprovning är däremot en mer stabil process och kräver därför inte mer än 5 prover.

Enligt ASTM standard skall ett slagprov vara tillverkat av ett arbetstycke på 10 * 10 * 55mm i vanliga fall. Ett dragprov bör tillverkas av arbetstrycken med måtten 20 * T * 200mm eller 50 * T * 450mm, där T är provets tjocklek. Karlstads Universitet har däremot tagit fram en modifierad standard där arbetstrycket är 30 * T * 200mm. Utmattningsprovning har en mycket mindre strikt standard, det enda kravet är att dimensionera mätten så att knäckningsrisk och spänningsskoncentration minimeras [15]. Det visade sig att universitetets standardmätt på arbetstrycken för dragprov även fungerar här.

Svetsprover tillverkas normalt på så sätt att två fogeredda plåtar svetsas ihop till en enda plåt med mätten 300 * 350mm, 25mm tas sedan bort på varje sida eftersom början och slutet på en svets inte har bra egenskaper jämfört med resten av svetsen.
8.2. **Svetsning**

Figur 17: Illustration av fogberedning för stumfog

Svetsningen utfördes av Wenmec. Totalt svetsades 6 st. svetsprov varav 3 st. svetsades med tråd 12.63 och 3 st. svetsades med tråd SM-3A. Plåtarna var 12mm i tjocklek och hade fogberetts med en 45° fas vid kanten så att en V-fog kunde svetsas enligt Figur 17. Två av de sex svetsproven (svetsade med var sin elektrod) svetsades samman med två kälfogar, det vill säga. den ena plåten svetsas fast stående vinkelrätt på mitten av den andra enligt Figur 18. Vardera kälfogen bestod av en svetssträng.

Figur 18: Illustration av kälfog

De fyra svetsproven som svetsades med stumfog krävde flera strängar eftersom plåtens tjocklek var stor relativt strängtjockleken och strängbredden. Först svetsades en rotsvets i botten av fogen, ovanpå svetsades en fyllnadssvets och på toppen svetsades två toppsvetsar. Principen visas i Figur 19 och en av de färdigsvetsade plåtarna visas i Figur 20.

Figur 19: Översikt av svetsar i stumfogen. Siffrorna visar ordningen strängarna svetsades i
För att hindra smått stål från att rinna ut från rotsvetsen användes keramisk backning där en värmetålig tejp med små keramiska brickor fästes på baksidan av fogen. Fördjupningen i keramiken gör att smältan rinner åt sidorna och formar en bra svets istället för att rinna bort från plåten helt Figur 21.

8.3. Fräsning

Efter svetsningen måste svetsproven planfräsas för att ta bort ojämnheter och få proven till rätt tjocklek. Detta gjordes i en CNC maskin på Karlstads Universitet. Två stumsvetsprover frästes ner till 8mm tjocklek för att bli utmattningsprov. De övriga två stumsvetsproven frästes först ner till 10mm sedan sågades de i två delar där ena delen blev slagprov och den andra delen frästes ner till 7mm för att bli dragprover.

Plåtarna sågades ner till arbetsstycken på 30 * 7 * 200mm för dragproven och 30 * 8 * 200mm för utmattningsproven. De plåtar som skulle bli slagprov sågades till 55mm breda och 10mm tjocka remxor. Ett V-spår frästes sedan ut i remsornas mitt. Efter spåret frästs skars remsorna till 10mm
breda Charpy-V prov, Figur 22. Dragproven och slagproven frästes till sina slutgiltiga former enligt Figur 23 i samma CNC fräs som planfräsningen gjordes i.

![Figur 22: Charpy-V prover](image1)

![Figur 23: Geometri för dragprov och utmattningsprov](image2)
8.4. Mekanisk provning

Karlstads Universitet har ett labb för mekanisk provning med en dragprovsmaskin, Figur 24a och en Charpy-pendel, Figur 24b. Dragprovningsmaskinen innehåller en kraftig hydraulisk cylinder som kan dra med en kraft av 100kN. En stor fördel med denna maskin är att den klarar cyklisk belastning så maskinen klarar även utmattningsprovning. Genom att dra med kontrollerad kraft och samtidigt mäta provets längd är det möjligt att framställa en dragprovskurva där många av materialets egenskaper syns.

Figur 25: Cyklisk utmattningsprovning

8.5. Ljusmikroskopi och hårdhetsprovning

Ljusmikroskopin utfördes med två mikroskop av standardtyp utrustade med objektiv med 2x till 100x förstorning. I det ena belyses och observeras proven ovanifrån, i det andra belyses och observeras proven underifrån. För att se vid vilken fas utmattnings och dragproven gick sönder användes också ljusmikroskopi. Proven förbereddes på samma sätt som de övriga proven med enda skillnaden att en hårdare plast användes till ingjutningen. Detta för att bättre bevara detaljer vid provens kanter. Kornstorleken mättes även på stålet med hjälp av programvaran som tillhör ljusmikroskop. Storleken på kornen har betydelse för stålets styrka vilket gör det till en relevant materialegenskap.

8.6. SEM (Scanning Electron Microscope)

9. Resultat

9.1. Svetsdata

Arbetet som svetsning med de olika elektrodena krävde mättes vid svetstillfället. Plåtarnas vikt före och efter svetsningen mättes samt tiden för varje svetssträng, Tabell 1. Genom att mäta tiden kunde svetsastigtenheten räknas fram och med hjälp av mätningar av ström och spänning i svetsutrustningen kunde sträckenergin beräknas, Tabell 2.

Tabell 1 visar att svetstiden för 12.63 elektrod i de flesta fall var lägre än för SM-3A. Enda undantaget var fyllsvetsen i plåtarna med stumfog där SM-3A svetsen tog mindre tid. Vid svetsning av den andra rotsvetsen med SM-3A elektrod avbröts och återupptogs svetsningen en gång. Detta gav upphov till två mindre svetssträngar med 290 mm och 55 mm längd samt en drastiskt lägre svetstid på 63 s.

Svetsastigterna beräknades för varje sträng som svetsens längd dividerat med tiden för svetsning, \[v = \frac{I_{\text{sträng}}}{t} \]. Svetsens längd var 350mm i alla fall utom ett (den svetssträng som avbröts) då den blev 290 + 55 = 345mm. Sträckenergin beräknades därefter enligt Ekv. 1. Enligt Wenmec är ingen av sträckenergierna kritiskt höga.

Tabell 1: Svetsprovens vikt och svetstid

<table>
<thead>
<tr>
<th>Svetsplåt</th>
<th>Plåtvikt</th>
<th>Svetstid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Före Kg</td>
<td>Efter Kg</td>
</tr>
<tr>
<td>Rörtråd (SM-3A)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kälftog 1</td>
<td>9,72</td>
<td>9,86</td>
</tr>
<tr>
<td>Stumfog 2</td>
<td>9,68</td>
<td>10,04</td>
</tr>
<tr>
<td>3</td>
<td>9,74</td>
<td>10,08</td>
</tr>
<tr>
<td>Medel</td>
<td>9,71</td>
<td>9,99</td>
</tr>
<tr>
<td>Homogen tråd (12,63)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kälftog 1</td>
<td>9,70</td>
<td>9,90</td>
</tr>
<tr>
<td>Stumfog 2</td>
<td>9,70</td>
<td>10,10</td>
</tr>
<tr>
<td>3</td>
<td>9,70</td>
<td>10,08</td>
</tr>
<tr>
<td>Medel</td>
<td>9,70</td>
<td>10,03</td>
</tr>
</tbody>
</table>
Tabell 2: Svetshastighet, spänning, ström och sträckenergi

<table>
<thead>
<tr>
<th>Hastighet</th>
<th>Spänning</th>
<th>Ström</th>
<th>Sträckenergi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Svets</td>
<td>Fyll/Rot</td>
<td>Topp 1</td>
<td>Topp 2</td>
</tr>
<tr>
<td>Rot</td>
<td>sidan</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>mm/min</td>
<td>V</td>
<td>A</td>
</tr>
<tr>
<td>Rörtråd (SM-3A)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kälffog 1</td>
<td>233</td>
<td>280</td>
<td>220</td>
</tr>
<tr>
<td>Stumfog 2</td>
<td>175</td>
<td>285</td>
<td>220</td>
</tr>
<tr>
<td>3</td>
<td>159</td>
<td>285</td>
<td>240</td>
</tr>
<tr>
<td>Medel</td>
<td>189</td>
<td>28,3</td>
<td>227</td>
</tr>
<tr>
<td>Homogen tråd (12.63)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kälffog 1</td>
<td>233</td>
<td>30,6</td>
<td>235</td>
</tr>
<tr>
<td>Stumfog 2</td>
<td>194</td>
<td>30,6</td>
<td>230</td>
</tr>
<tr>
<td>3</td>
<td>186</td>
<td>30,5</td>
<td>230</td>
</tr>
<tr>
<td>Medel</td>
<td>205</td>
<td>30,6</td>
<td>232</td>
</tr>
</tbody>
</table>

9.2. Mekanisk provning

9.2.1. Dragprov

Tabell 3: Materialdata från Ruukki, Nittetsu och ESAB

<table>
<thead>
<tr>
<th></th>
<th>Sträckgräns (MPa)</th>
<th>Brottspänning (MPa)</th>
<th>Brotttöjning (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rukki Laser 355 MC</td>
<td>420</td>
<td>480</td>
<td>24,00%</td>
</tr>
<tr>
<td>Rent svetsmaterial SM-3A</td>
<td>520</td>
<td>580</td>
<td>29,00%</td>
</tr>
<tr>
<td>Rent svetsmaterial 12.63</td>
<td>485</td>
<td>570</td>
<td>25,00%</td>
</tr>
</tbody>
</table>

Tillverkarna av stålet och elektroderna angav endast sträckgräns, brotttöjning och brottspänning så några antaganden angående materialens egenskaper gjordes; Elasticitetsmodulen antogs vara det vanliga för stål, det vill säga, cirka 210GPa. Maximal spänning antogs ligga vid 14,7% töjning och slutgiltigt brott antogs ha inträffat vid 300MPa spänning. Dessa antaganden baseras på en
uppskattning från dragprovskurvorna för de båda svetstyperna i Figur 27 och Figur 28.

Dragprovskurvan för SM-3A svetsfog, Figur 27 visar att proven hade identiska egenskaper medan kurvan för 12.63 svetsfogen, Figur 28 visar en viss spridning i brottöjning. Brottöjningen var högst för prov 5 och lägst för prov 1 vilket tyder på att brottöjningen ökade längre från kanten av plåten då proven har numrerats från kanten (prov 1) in emot mitten (prov 5). Jämförelsen, Figur 29 visar att SM-3A svetsfogen har sämre brottöjning än stålplåten medan 12.63 fogen hade bättre brottöjning än stålet. En liten skillnad i brottspänning där 12.63 fogen hade högst värde kunde också ses i figuren.

Figur 26: Den elastiska delen av dragprovskurvorna i kraftig förstorning

Figur 27: Dragprov från plåt svetsad med elektrod SM-3A
Figur 28: Dragprov från plåt svetsad med elektrod 12.63

Figur 29: Jämförelse av dragproven med bulkmaterialets egenskaper
9.2.2. Slagprov

En undersökning av slagsegheten av de olika svetsstyperna gjordes också. Resultaten för detta visas i Figur 30. Figuren visar alla slagprov som gjordes samt medelvärdet av hårdheten. Data om slagseghet i stålplåten och rent svetsmaterial i tabellen och figuren härrör från Ruukki, Nittetsu och ESAB.

![Figur 30: Resultat av slagproven i stapelform](image)

9.2.3. Utmattningsprov

9.3. Visuell inspektion

Efter att den mekaniska provningen slutfördes gjordes en snabb visuell jämförelse av de olika proverna. Utmattningsprover och slagprover var aldrig samman med 200mm långa före provning. Det visade sig bland annat att utmattningsprover svetsade med SM-3A elektrod generellt gick sönder mitt i svetsen, det vill säga 100mm från provens nedre kanter, Figur 32. Proven svetsade med 12.63 elektrod gick av cirka 110mm från provets nedre kant, Figur 33. Något som också kan ses är att utmattningsproven från SM-3A varierar något i var utmattningsprover skulle bröts av cirka 95mm från kanten. Utmattningsprovens totala längder efter provning var lika som totala längden före provning.
Dragproven som visas i Figur 34 och Figur 35 mättes också. Ett av proven svetsat med 12.63 elektrod blev kortare än de andra, Figur 35. Brottytan på detta prov visade en tydlig por som var synlig med okulär besiktning. Dragproven visade även en sekundär midja på andra sidan svetsen, dock utan att brott inträffade.

Vid inspektion av slagproven sågs en markant skillnad i hur de gått sönder mellan de olika materialen. I Figur 36 syns att 12.63 proven endast delvis gick av medan SM-3A proven gick nästan helt av (de båda halvorna separeras enkelt med handkraft).
Figur 34: Dragprov från SM-3A svets. Stålskalan t.h. anger ungefärlig storlek

Figur 35: Dragprov från 12.63 svets. Stålskalan anger ungefärlig storlek

Figur 36: Slagprov. T.v. SM-3A, t.h. 12.63 svets
9.4. Mikroskopi

9.4.1. Mikrostruktur

Efter etsning av tvärsnitt från de båda svetstyperna framträde materialens mikrostruktur. Två panoramabilder gjordes för att ge överblick över svetsarna och dessa visas i Figur 37 och Figur 38. Panoramabilderna framställdes som sektioner där mikroskopet riktades mot en del av tvärsnittet i taget varpå en bild togs. Programvara användes sedan för att sammanfoga dessa bilder till en panorama bild. En defekt i en av mikroskopets linser gav upphov till fläckarna på de slutgiltiga bilderna.

![Figur 37: Panorama över SM-3A svetsen. De mörka regelbundna fläckarna harrör från en defekt på linsen. Reporna harrör troligen från otillräcklig polering](image1)

![Figur 38: Panorama över 12.63 svetsen. De mörka fläckarna harrör från en defekt i linsen](image2)
Figur 39: Närbild på dendriter i 12.63 svets

Figur 40: Övergång mellan dendritstruktur t.h. och värmeupplösta zonen t.v. Överst ses den underliggande svetsen som fått sin mikrostruktur förändrad av värme
Figur 41: Översikt för hela svetsen. Uppe i vänstra hörnet syns bulk materialet, t.h. syns dendritstruktur, i mitten syns den värmepåverkade zonen med en tydlig mörk linje mot bulk materialet

emellan, Figur 45.

Tabell 4: Kornstorlek i svetsens olika zoner. Alla mått är i µm.

<table>
<thead>
<tr>
<th>Alla mått är i µm</th>
<th>Bulk</th>
<th>Fin mikrostruktur</th>
<th>Grov mikrostruktur</th>
<th>Dendriter</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.63</td>
<td>4,2</td>
<td>3,2</td>
<td>5,3</td>
<td>2,9</td>
</tr>
<tr>
<td>SM-3A</td>
<td>5,0</td>
<td>3,9</td>
<td>N/A</td>
<td>3,4</td>
</tr>
</tbody>
</table>

Figur 42: Mikrostruktur i bulkzonen från SM-3A svetsgods
Figur 43: Mikrostruktur i finkornig zon från SM-3A svetsgods

Figur 44: Mikrostruktur i grovkornig zon från SM-3A svetsgods
9.4.2. **Hårdhetsmätning**

Figur 46: Härhet på linje från bulkstruktur ut mot dendritstruktur. 12a 2 mättes i 12.63 svetsens tvärsnitt och S3a 1 mättes i SM-3A tvärsnittet.

Med hjälp av Vickers metod kunde härheten i svetser mätas. Genom att mäta härheten längs linjer som spänner över flera faser kunde härheten för dessa faser mätas. I Figur 46 visas...

9.4.3. **Brottytor**

![Brottytor](image)

Figur 48: Brottysa dragprov i SM-3A svetsfog

Figur 49: Klassiska dragimplar i 12.63 svetsfog. De runda partiklar som syns i vissa djupa gropar är sulfider av olika slag (markerade med ringar).
Figur 50: Skjuvdimplar i 12.63 svetsfog. Runda partiklar är sulfider (markerade med ringar).

Figur 51: Sida av dragprov svetsad med 12.63-elektrod
Figur 52: Förstörning av partiklar från SM-3A dragprov

Figur 53: Spricka från slagprov svetsad med SM-3A tråd

Figur 54: Sprött brott i slagprov från SM-3A svets
Vid studie av utmattningsbrettytor är det normalt möjligt att se så kallade striationer, det vill säga linjer som liknar årsringarna på ett träd. I det här fallet har dock provet dragits isär och tryckts ihop så många gånger att striationerna närmast helt försvunnit. Däremot kunde initieringspunkterna för sprickorna identifieras utan problem.

Det visade sig att initieringspunkten för Figur 55 och Figur 56 båda ligger i porer. Detta verkar dock inte ha påverkat de mekaniska egenskaperna nämnvärt. Provet som visas i Figur 57 verkar ha bildat spricka vid någon ytdefekt, vilket förklarar att detta utmattningsprov sprack längre från svetsen än de övriga. Provet som visas i Figur 58 initierades i en partikel vid ytan av provet. Mätning av partikeln visade att den är 25,7\(\mu\)m i höjd och 63,1\(\mu\)m i längd. Vid jämförelse av de båda svetstyperna kunde inte någon större skillnad upptäckas. Däremot visar Figur 55 att svetsning med SM-3A elektrod gav fler porer. Närbild på initieringspunkten (ytdefekten) för provet i Figur 57 visas i Figur 59. Ytdefekten verkar vara en repa eller något liknande. Närbild på partikeln från ytan av provet i Figur 58 visas i Figur 60.

Utmattningsproven brettytor togs på samma sätt som dragprovens brettytor, det vill säga enligt Figur 47. Utmattningsproven sprack sönder mitt i svetsen i fall svetsade med SM-3A elektrod vilket ger att dessa brettytor visar upp mitten av svetsgodset. Proven svetsade med 12.63 elektrod sprack sönder cirka 10 mm från svetsens mitt vilket ger att dessa brettytor visar upp ett tvärsnitt från en del av den värmedem starter zonen.

Figur 55: Brettytan från utmattningsprov svetsad med SM-3A elektrod, notera porerna i överkant och särskilt den por där sprickan initierades
Figur 56: Brottytan från utmattningsprov svetsad med 12.63 elektrod. Notera sprickans initiering i en por.

Figur 57: Brottytan från utmattningsprov svetsad med SM-3A elektrod. Detta prov sprack längre från nederkanten än de andra.
Figur 58: Brittyskan från ett utmattningsprov svetsad med 12.63 elektrod

Figur 59: Närbild på initieringspunkt från SM-3A svets. Initiering verkar ha inletts i någon form av ytdefekt
Figur 60: Sprickans initieringspunkt i prov svetsad med 12.63 elektrod

Figur 61: Utmattningsbrott sett från sidan i SM-3A svets

Figur 62: Brott sett från sidan i det långa SM-3A provet. Sprickan växte nedåt i bild till den nådde faslinjen där sprickan sedan snabbt spred sig och orsakade slutligt brott
9.4.4. Kemisk analys

Tabell 5 visar en sammanställning av all kemisk analys som gjorts. De översta tre raderna ”Materialdata enligt tillverkare” visar data från tillverkare av det stål som användes och de båda elektroderna. Den nästföljande sektionen ”Elektroder” är uppmätta kemiska koncentrationer i tvärsnitt av de båda elektroderna. Positionerna där dessa sammansättningar togs visas i Figur 63 för SM-3A elektroden och Figur 64 för 12.63 elektroden. Sektionen ”Tvärsnitt” i Tabell 5 berör den kemiska sammansättningen i bulkmaterialet och dendritmaterialet. Det visade sig vara svårt att avgöra fasskillnaden då elektronmikroskopet inte kan observera den mikrostruktur som så tydligt framträder i ljusmikroskop. Dendriternas spektrum i SM-3A svetsen visas i Figur 65. Bulkens spektrum i 12.63 svetsen visas i Figur 66 och dendriternas spektrum visas i Figur 67. I sektionen ”Brottytor” visas slut kemisk sammansättning för de slaggpartiklar som påträffades i dragproven samt kemisk sammansättning i ett utvalt slagprov och utmattningsprov. Spektrum för den första slaggpartikeln i tabellen kan ses i Figur 68. Spektrum för den andra kan ses i Figur 69. Slagprovets spektrum kan ses i Figur 70 och utmattningsprovets spektrum kan ses i Figur 71.

Alla koncentrationer uppmättes i atomprocent. Värdena för kol och till viss del syre överskattas ofta i en analys av det här slaget eftersom föreningar i luft och rengöringsmedel ofta förorenar provytan och därmed stör mätningen.
Tabell 5: Kemisk sammansättning från SEM i atom procent

<table>
<thead>
<tr>
<th>Ämne</th>
<th>C</th>
<th>O</th>
<th>Si</th>
<th>Mn</th>
<th>P</th>
<th>S</th>
<th>Cu</th>
<th>Na</th>
<th>Al</th>
<th>K</th>
<th>Ca</th>
<th>Cr</th>
<th>Ti</th>
<th>Nb</th>
<th>V</th>
<th>Mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materialdata enligt tillverkare</td>
<td></td>
</tr>
<tr>
<td>Ruukki Laser 355 MC</td>
<td>0,05</td>
<td>0,02</td>
<td>0,76</td>
<td>0,007</td>
<td>0,004</td>
<td>0,033</td>
<td>0,031</td>
<td>0,006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ren svets SM-3A</td>
<td>0,05</td>
<td>0,56</td>
<td>1,56</td>
<td>0,010</td>
<td>0,013</td>
<td>0,25</td>
<td></td>
</tr>
<tr>
<td>12.63</td>
<td>0,09</td>
<td>0,70</td>
<td>1,08</td>
<td>0,013</td>
<td>0,013</td>
<td>0,05</td>
<td></td>
</tr>
<tr>
<td>Elektroder</td>
<td></td>
</tr>
<tr>
<td>Tråd SM-3A</td>
<td></td>
</tr>
<tr>
<td>Spektrum 1</td>
<td>17,55</td>
<td>42,40</td>
<td>0,91</td>
<td></td>
</tr>
<tr>
<td>Spektrum 2</td>
<td>22,88</td>
<td>35,40</td>
<td>20,76</td>
<td>3,40</td>
<td>0,15</td>
<td>0,84</td>
<td>0,20</td>
<td>0,40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spektrum 3</td>
<td>48,27</td>
<td>8,30</td>
<td>2,11</td>
<td>6,81</td>
<td>0,34</td>
<td>1,47</td>
<td></td>
</tr>
<tr>
<td>Spektrum 4</td>
<td>18,93</td>
<td></td>
</tr>
<tr>
<td>Spektrum 5</td>
<td>17,76</td>
<td>28,64</td>
<td>32,88</td>
<td>0,31</td>
<td>0,50</td>
<td>0,25</td>
<td>0,22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tråd 12.63</td>
<td></td>
</tr>
<tr>
<td>Spektrum 1</td>
<td>15,82</td>
<td>1,79</td>
<td>1,52</td>
<td></td>
</tr>
<tr>
<td>Spektrum 2</td>
<td>10,83</td>
<td>26,85</td>
<td>10,73</td>
<td>1,66</td>
<td>0,80</td>
<td></td>
</tr>
<tr>
<td>Spektrum 3</td>
<td>21,37</td>
<td>2,01</td>
<td>1,40</td>
<td></td>
</tr>
<tr>
<td>Spektrum 4</td>
<td>15,45</td>
<td>37,62</td>
<td>12,69</td>
<td>0,53</td>
<td>8,06</td>
<td></td>
</tr>
<tr>
<td>Tvärsnitt</td>
<td></td>
</tr>
<tr>
<td>SM-3A dendrit</td>
<td>26,06</td>
<td>1,06</td>
<td>1,33</td>
<td></td>
</tr>
<tr>
<td>12.63 bulk</td>
<td>16,82</td>
<td>0,68</td>
<td></td>
</tr>
<tr>
<td>12.63 dendrit</td>
<td></td>
</tr>
<tr>
<td>Spektrum 1</td>
<td>21,41</td>
<td>40,97</td>
<td>7,85</td>
<td>7,10</td>
<td>0,50</td>
<td>1,98</td>
<td>0,36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spektrum 2</td>
<td>14,07</td>
<td>0,72</td>
<td>1,07</td>
<td></td>
</tr>
<tr>
<td>Spektrum 3</td>
<td>23,86</td>
<td>35,15</td>
<td>6,80</td>
<td>5,64</td>
<td>0,64</td>
<td>0,96</td>
<td>0,23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spektrum 4</td>
<td>16,07</td>
<td>1,32</td>
<td>1,16</td>
<td></td>
</tr>
<tr>
<td>Brottytor</td>
<td></td>
</tr>
<tr>
<td>Slagg i prov A</td>
<td>23,35</td>
<td>25,31</td>
<td>12,56</td>
<td>18,65</td>
<td>3,92</td>
<td>3,03</td>
<td></td>
</tr>
<tr>
<td>Slagg i prov C</td>
<td>34,13</td>
<td>6,30</td>
<td>0,88</td>
<td>10,29</td>
<td></td>
</tr>
<tr>
<td>Slagprov SM-3A</td>
<td></td>
</tr>
<tr>
<td>Spektrum 1</td>
<td>12,18</td>
<td>50,19</td>
<td>14,45</td>
<td>9,08</td>
<td>0,79</td>
<td>2,93</td>
<td>0,86</td>
<td>1,30</td>
<td>0,36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spektrum 2</td>
<td>8,63</td>
<td>55,81</td>
<td>9,87</td>
<td>7,57</td>
<td>0,77</td>
<td>3,47</td>
<td>0,23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spektrum 3</td>
<td>26,00</td>
<td>1,40</td>
<td>1,35</td>
<td></td>
</tr>
<tr>
<td>Spektrum 4</td>
<td>12,15</td>
<td>45,45</td>
<td>8,67</td>
<td>6,99</td>
<td>0,67</td>
<td>2,89</td>
<td>0,23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spektrum 5</td>
<td>9,04</td>
<td>53,56</td>
<td>10,51</td>
<td>9,16</td>
<td>1,23</td>
<td>3,65</td>
<td>0,25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utmattningsprov G</td>
<td></td>
</tr>
<tr>
<td>Spektrum 1</td>
<td>6,08</td>
<td>60,03</td>
<td>8,23</td>
<td>0,17</td>
<td>16,88</td>
<td>8,06</td>
<td></td>
</tr>
<tr>
<td>Spektrum 2</td>
<td>6,15</td>
<td>38,11</td>
<td>0,37</td>
<td>26,46</td>
<td>24,17</td>
<td>1,62</td>
<td></td>
</tr>
<tr>
<td>Spektrum 3</td>
<td>6,99</td>
<td>16,11</td>
<td>12,23</td>
<td>20,06</td>
<td>1,58</td>
<td>38,60</td>
<td></td>
</tr>
<tr>
<td>Spektrum 4</td>
<td>5,79</td>
<td>60,81</td>
<td>19,42</td>
<td>7,76</td>
<td>1,26</td>
<td></td>
</tr>
<tr>
<td>Spektrum 5</td>
<td>9,02</td>
<td>35,81</td>
<td>0,41</td>
<td>7,76</td>
<td>2,13</td>
<td>0,36</td>
<td></td>
</tr>
</tbody>
</table>
Figur 63: Tvärsnitt av SM-3A elektrod

Figur 64: Tvärsnitt av 12.63 elektrod
Figur 65: Dendriter i tvärsnitt från SM-3A svets

Figur 66: Bulken i tvärsnitt från 12.63 svets
Figur 67: Dendriter från 12.63 svets

Figur 68: Slaggpartikel från dragprov svetsad med 12.63 elektrod
Figur 69: Slaggpartikel från dragprov svetsad med 12.63 elektrod (detta prov hade avvikande längd)

Figur 70: Spektrum i slagprov från SM-3A svets
Figur 71: Spektrum i utmattningsprov från 12.63 svets

Det visade sig att elektrod SM-3A till största delen består av järn och kol, det vill säga stål. (Spektrum 4 i Figur 63, kemisk sammansättning visas i sektionen ”Elektroder” i Tabell 5). Detta högkolstål har formats till ett rör runt ett solitt flussmedel i mitten, Figur 63. Flussmedlet tycks vara en kisel, järn och syre förening med en aning mangan, svavel, natrium, aluminium, calcium och krom (Spektrum 1-3 och 5 i Figur 63, kemisk sammansättning visas i sektionen ”Elektroder” i Tabell 5). Enligt tillverkaren skall det finnas koppar i elektroden, främst i ytan. Lagret verkar dock vara för tunt för SEM att upptäcka. Den solida 12.63 elektroden, Figur 64 består närmast uteslutande av ett högkolstål med någon procent kisel och mangan (Spektrum 1 i Figur 64 för tråd 12.63 i sektionen ”Elektroder” i Tabell 5). Några kisel-mangan oxider hittades i bulken, några innehöll en relativt stor mängd calcium (spektrum 4), andra innehöll svavel (spektrum 2).

Bulkmaterialёт i 12.63 tvärsnittet och per definition även bulkmaterialёт i SM-3A är stål med en aning mangan, Figur 66. Eftersom SEM tenderar att överskatta kolhalter är inte kolhalten tillförlitlig, men det är möjligt att jämföra halterna för att se vilken del av materialet som har högst kolhalt. Baserat på detta kan slutsatsen dras att SM-3A svetsen drar åt sig mer kol i dendritstrukturen än 12.63 svetsen.

Slaggpartiklarna som hittades i dragproven, Figur 69 verkar vara mangan och kalcium sulfider med en aning magnesium och aluminium. Några verkar också vara oxidier, Figur 68. Partiklarna i slaggprovet, Figur 70, verkar vara kisel och mangan-oxidier med några procent svavel, natrium, aluminium, kalium och titan. Spektrum 3 verkar visa en kisel och mangankarbid. Enligt föregående analyser initierades sprickan i utmattningsprovet i en partikel, Figur 71. Vid kemisk analys av partikeln befanns den vara en aluminium och kalciumoxid med 8% mangan och en aning svavel
och magnesium. Området runt den stora partikeln verkar också ha förorenats eftersom flera partiklar med liknande sammansättning hittades längre in i provet (Spektrum 3-5).

10. Diskussion

Detta arbete har handlat om MAG-svetsning med två olika elektroder vilka gav upphov till två olika svetsfogar. Dessa foga har sedan undersökt med mekanisk provning för att jämföra deras egenskaper.

Wenmecs svetsare använder sig av en mycket vanlig skyddsgas, argon med 18 % CO2. Svetsmetoden är därför MAG-svetsning då koldioxid är en aktiv gas. Motiveringen till detta gasval är att åstadkomma en god inträngningsförmåga samt getModel som gasen är relativt billig. Baserat på valet av skyddsgas, spänning och ström-nivån kan svetsningen antas ske med kortbäger och dropparna från den smälta elektroden var troligen globulära [1], [7]. Bilderna på tvärsnittets mikrostruktur visar att inträngningen var mycket god vilket ger en god spridning av värmen. Koldioxid kan dock orsaka föröreningar i smältan medför att deoxiderande ämnen har tillsätts [1].

Flödet av skyddsgas var 20l/min. Detta är relativt högt enligt teorin. Svetsningen blir dock mindre känslig för drag i lokalen. Wenmec kan möjligen spara in pengar på att använda lite mindre gasflöde då 5 l/min skall vara fullt tillräckligt i dragfri miljö [1], [2].

Elektrod 12.63 var ett vanligt kolstål med en aning kisel och mangan vilket är snarlikt med teorin som anger att elektroden kemiska sammansättning bör likna arbetsstyckets sammansättning. Kisel och mangan verkar dessutom deoxiderande vilket passar bra med skyddsgasen då den innehåller koldioxid [1], [17].

Den speciella sicksack form som brottyn i Figur 51 har antagit beror på att dragspänning och skjuvspänning tillsammans tenderar att vara högst i 45° vinkel mot dragspänningsriktningen. Denna form av brottyn är mycket vanlig vid duktila brott och kallas koopp kon fraktur [18], [17]. Figuren visar även upp följdlinjer som uppstå i ett plastiskt deformerat material. Kornen i detta område var tillplattade och mycket hård vilket överensstämmer med [18], [17]. Sträckgränsen i ett material med kornstruktur bestäms av Petch-Hall sambandet , där är sträckgränsen, är motstånd mot dislokationsrörelser och ber på materialval, är en materialkonstant som avgör hur mycket korngränsen påverkar egenskaperna och d är kornstorleken. En fin mikrostruktur tvingar en spricka att ständigt reinitieras vilket förbrukar mycket energi och materialet blir därmed segare [17].
Svetsproven i detta arbete blev i många fall sneda. Anledningen till detta var krympning i fogen då svetsningen skedde utan fixtur, förvärming eller liknande. Detta åtgärdades genom att planfräsa svetsproven tills de blev plana. En del av svetsproven var så sneda att provtjockleken justerades ned till 7 mm. Vid fortsättningsstudier bör svetsproven fixeras bättre, förslagsvis med häftsvetsar eller bryggor [6].

Enligt [18] hettas den värme påverkade zonen (HAZ) i svetsfogen upp till över rekristallisationstemperatur och får som följd kraftigt sänkt styrka till följd av att metallkornen växer. Hållfastheten i svetsfogen är, enligt [18], lägst vid övergången mellan svetsgod och inträngningszon. Troligen är det övergångslinjen som är svagast. Resultaten i detta projekt avviker från detta då mikroskopi tyder på att dragproven gick sönder i bulk materialet. Detta verkar ha samband med hårdheten som också var lägst i bulk materialet och sedan ökar in mot svetsens mitt.

cyklisk drag och tryckbelastning valdes. Felkällor vid utmattningsprovning är ofta stora eftersom slumpvisa defekter som porer och sprickor i materialet samt repor och slagger i ytan av provet har stor betydelse för utmattningshållfastheten.

Utmattningsbrottet verkar ha inträffat i svetsens mitt i fall med SM-3A elektrod och nära övergången mellan vårmepåverkade zonen och bulk i fall med 12.63 elektrod. Eftersom sprickor alltid sprids genom de svagaste punkterna i ett material kan det antas att den vårmepåverkade zonen är starkare mot utmattning än svetsten vid SM-3A svetsning. Svaga punkter i dessa provdelar var porer och diverse ytdefekter som kan ses i flera fall. I de prov som saknade sådana defekter började sprickorna i något av tvärnittets högra. Porer, porer och hörn fungerar som initieringspunkter för sprickor då spänningskoncentrationen är hög i sådana defekter. Teorin i denna rapport föreslår flera metoder för att minska risken för sådana defekter såsom slipning, gradning, återsmältning och värmebehandling [9]. Trots att utmattningssprickor inicierats i porer i flera av proven verkade inte detta påverkat cykler till utmattningsbrott överhuvudtaget. Alla utmattningsprover som har utförts vid samma spänningsamplitud visade upp jämförd antal cykler till utmattning oavsett om de svetsats med SM-3A eller 12.63-elektrod. Inga sprickor eller slagger verkade ha påverkat resultatet eftersom sådana defekter troligen skulle ha observerats i SEM och minskat cykler till utmattning drastiskt i något av proven vilket inte har kunnat ses i detta arbete.

Vissa av proven visade sig innehålla porer. Kanske uppstod dessa på grund av någon störning i gasskyddet just i de regionerna eller så kan porena ha orsakats av värme eller kväve som sippat in i svetsgodset under svetsningen [1]. Vid svetsning med SM-3A elektrod uppstod områden med många porer. Detta kan dock bero på svetsarens rörelse som använde rörelse. Inga bindföljder påträffades under detta arbete då den typen av defekt sannolikt påverkar svetsens brottspänning negativt vilket skulle kunnat påvisas i resultat.

Som tidigare beskrevet var dendriternas kornstorlek mindre än i bulken och den finkorniga strukturen. Detta resultat kan vara inkorrekt då zonen är fylld av stora ferritkorn med en kraftigt slumpmässig fas emellan. Denna mellansvag är troligen också organiserad i stora korn, men vid kornbedömmningen ansågs dessa korn vara många små korn och kornstorleken blev som resultat lägre. Den större kornstorleken som generellt kan observeras i SM-3A svetsfogen verkar ha uppstått som följd av den grövre kornstorleken i bulken då rekristallisation och värmeåterverkan kan anses vara konstant då svetstiderna var närmast identiska.

Utmattningsdata från tillverkarna av elektroden och stålet saknades tyvärr. Detta beror dock sannolikt på komplexiteten av utmattningsprovning och hur snabbt egenskaperna kan förändras av ytdefekter och geometri.

11. Slutsats

Det finns dock flera andra metoder att öka utmattningshållfastheten som har berörts i detta arbete och Wenmec rekommenderas att undersöka dessa metoder närmare.

Möjligt kan SM-3A ersätta någon annan elektrodtyp än 12.63, särskilt vid låga temperaturer då ett av Nittetsus säljargument är hög slagseghet vid låga temperaturer. Fortsatta undersökningar av detta rekommenderas.

Vid fortsatta undersökningar rekommenderas Wenmec att undersöka effekten av olika värmebehandlingar på svetsfogen och om självskyddande rörelektrod kan ge några fördelar på de mekaniska egenskaperna. Detta arbete har inte berört oförstörande provning vilket kan ge intressanta resultat. Wenmec rekommenderas att testa fler utmattningsprover vid fortsatta projekt då en mer komplett S-N kurva kan framställas.
12. Litteraturförteckning