
All for the Price of Few
(Parameterized Verification through View Abstraction)

Parosh Aziz Abdulla1, Frédéric Haziza1, and Lukáš Holı́k12

1 Uppsala University, Sweden
2 Brno University of Technology, Czech Republic.

Abstract. We present a simple and efficient framework for automatic verifica-
tion of systems with a parameteric number of communicating processes. The
processes may be organized in various topologies such as words, multisets, rings,
or trees. Our method needs to inspect only a small number of processes in order
to show correctness of the whole system. It relies on an abstraction function that
views the system from the perspective of a fixed number of processes. The ab-
straction is used during the verification procedure in order to dynamically detect
cut-off points beyond which the search of the state space need not continue. We
show that the method is complete for a large class of well quasi-ordered systems
including Petri nets. Our experimentation on a variety of benchmarks demon-
strate that the method is highly efficient and that it works well even for classes of
systems with undecidable verification problems.

1 Introduction

We address verification of safety properties for parameterized systems that consist of
arbitrary numbers of components (processes) organized according to a regular pattern.
The task is to perform parameterized verification, i.e., to verify correctness regard-
less of the number of processes. This amounts to the verification of an infinite family;
namely one for each possible size of the system. The term parameterized refers to the
fact that the size of the system is (implicitly) a parameter of the verification problem.
Parameterized systems arise naturally in the modeling of mutual exclusion algorithms,
bus protocols, distributed algorithms, telecommunication protocols, and cache coher-
ence protocols. For instance, the specification of a mutual exclusion protocol may be
parameterized by the number of processes that participate in a given session of the pro-
tocol. In such a case, it is interesting to verify correctness regardless of the number of
participants in a particular session. As usual, the verification of safety properties can be
reduced to the problem of checking the reachability of a set of bad configurations (the
set of configurations that violate the safety property).

Existing approaches. An important approach to parameterized verification has been
regular model checking [25, 5, 9] in which regular languages are used as symbolic rep-
resentations of infinite sets of system configurations, and automata-based techniques
are employed to implement the verification procedure. The main problem with such
techniques is that they are heavy since they usually rely on several layers of compu-
tationally expensive automata-theoretic constructions, in many cases leading to a state

space explosion that severely limits their applicability. Another class of methods an-
alyze approximated system behavior through the use of abstraction techniques. Such
methods include counter abstraction [22, 30], invisible invariant generation [6, 31], en-
vironment abstraction [11], and monotonic abstraction [3] (see Section 7).

In a similar manner to [24], this work is inspired by a strong empirical evidence that
parameterized systems often enjoy a small model property. More precisely, analyzing
only a small number of processes (rather than the whole family) is sufficient to capture
the reachability of bad configurations. On the one hand, bad configurations can often be
characterized by minimal conditions that are possible to specify through a fixed number
of witness processes. For instance, in a mutual exclusion protocol, a bad configuration
contains two processes in their critical sections; and in a cache coherence protocol,
a bad configuration contains two cache lines in their exclusive states. In both cases,
having the two witnesses is sufficient to make the configuration bad (regardless of the
actual size of the configuration). On the other hand, it is usually the case that such bad
patterns (if existing) appear already in small instances of the system, as observed in our
experimental section.

Our approach. We introduce a method that exploits the small model property, and per-
forms parameterized verification by only inspecting a small set of fixed instances of
the system. Furthermore, the instances that need to be considered are often small in
size (typically three or four processes) which allows for a very efficient verification
procedure. The framework can be applied uniformly to generate fully automatic verifi-
cation algorithms for wide classes of parameterized systems including ones that operate
on linear, ring, or tree-like topologies, or systems that contain unbounded collections
of anonymous processes (the latter class is henceforth referred to as having a multi-
set topology).

At the heart of the method is an operation that allows to detect cut-off points beyond
which the verification procedure need not continue. Intuitively, reaching a cut-off point
means that we need not inspect larger instances of the system: the information collected
so far during the exploration of the state space allows us to conclude safely that no
bad configurations will occur in the larger instances. The cut-off analysis is executed
dynamically in the sense that it is performed on-the-fly during the verification procedure
itself. It is based on an abstraction function, called view abstraction, parameterized
by a constant k, and it approximates a configuration by the set of all its projections
containing at most k processes. We call the sub-configurations views. For instance, when
a configuration is a word of process states (represented as an array of processes), its
abstraction is the set of all its subwords of length at most k. Furthermore, for a given
set of views X , its concretization, denoted as γk(X), is the set of configurations (of any
size) for which all their views belong to X .

The verification method performs two search procedures in parallel. The first per-
forms a standard (explicit-state) forward reachability analysis trying to find a bad con-
figuration among system configurations of size k (for some natural number k). If a bad
configuration is encountered then the system is not safe. The second procedure per-
forms a symbolic forward reachability analysis in the abstract domain of sets of views
of size at most k. When the computation terminates, it will have collected an over-
approximation of all views of size up to k of all reachable configurations (of all sizes).

If there is no bad configuration in the concretization of this set, then a cut-off point has
been found and the system can be claimed safe. If neither of the parallel procedures
reaches a conclusion during iteration k, the value of k is increased by one (thus increas-
ing the precision of the abstraction). Notice that the abstract search requires computing
the abstract post-image of a set X of views of size at most k, which is the set X ′ of views
(of size at most k) of successors of γk(X). Obviously, this cannot be performed straight-
forwardly since the set of configurations γk(X) is infinite. A crucial contribution of the
paper is to show that, for all the classes of parameterized systems that we consider, it is
sufficient to only compute successors of configurations from γk(X) that are of the size
at most k+ `, where ` is a small constant, typically 1. Intuitively, the reason is that the
precondition for firing a transition is the presence of a bounded number of processes in
certain states. The views need only to encompass these processes in order to determine
the successor view. This property is satisfied by a wide class of concurrent systems in-
cluding the ones we consider in this paper. For instance, in rendez-vous communication
between a pair of processes, the transition is conditioned by the states of two processes;
in broadcast communication, one process initiates the transition (while the other pro-
cesses may be in any state); in existential global transitions (see below), we need two
processes, namely the witness and the process performing the transition; in Petri nets,
the number of required processes is bounded by the in-degree of the transitions (which
is fixed for a given Petri net), etc. We will show formally that this property is satisfied
by all the types of transitions we consider.

Applications. We have instantiated the method to obtain automatic verification proce-
dures for four classes of parameterized systems, namely systems where the processes
are organized as arrays, rings, trees, or multisets. Each instantiation is straightforward
and is achieved by defining the manner in which we define the views of a configura-
tion. More precisely, these views are (naturally) defined as subwords, cyclic subwords,
subtrees, resp. subsets for the above four classes. Once the views are fixed we obtain a
fully automatic procedure for all parameterized systems in the class. In the systems we
consider, we allow a rich set of features, in which processes may perform local transi-
tions, rendez-vous, broadcasts, and universally or existentially guarded transitions. In a
universally guarded transition, the process checks whether the states of all other pro-
cesses inside the system satisfy a given constraint before it performs the transition. In
an existentially quantified transition, the processes checks that there is at least one other
process satisfying the condition. Furthermore, we allow dynamic behaviors such as the
creation and deletion of processes during the execution of the system.

In the basic variant of our method, we assume that existential and universal global
conditions of transitions are checked atomically. The same assumption is made in many
landmark works on parameterized systems (e.g. [11, 31, 10, 5, 6, 29, 3]). However, ac-
tual implementations of global checks are usually not atomic. They are typically imple-
mented as for-loops ranging over indices of processes. Iterations of such a loop may be
interleaved with transitions of other processes, therefore modeling the loop as an atomic
transition means under-approximating the behavior of the system. Verification of sys-
tems with non-atomic global checks is significantly harder. It requires to distinguish
intermediate states of a for-loop performed by a process. Their number is proportional
to the number of processes in the system. Moreover, any number of processes may be

performing a for-loop at the same time. As we will show, our method can be easily
adapted to this setting, while retaining its simplicity and efficiency.

Implementation. We have implemented a prototype based on the method and run it
on a wide class of benchmarks, including mutual exclusion protocols on arrays (e.g.,
Burns’, Szymanski’s, and Dijkstra’s protocols), cache coherent protocols (e.g., MOSI
and German’s protocol), different protocols on tree-like architectures (e.g. percolate,
arbiter, and leader election), ring protocols (token passing), and different Petri nets.

The class of systems we consider have undecidable reachability properties, and
hence our method is necessarily incomplete (the verification procedure is not guar-
anteed to terminate in case the safety property is satisfied). However, as shown by our
experimentation, the tool terminates efficiently on all the tested benchmarks.

Completeness. Although the method is not complete in general, we show that is com-
plete for a large class of systems, namely those that induce well quasi-ordered transi-
tion systems [2, 1] and satisfy certain additional technical requirements. This implies
that our method is complete for e.g., Petri nets. Notice that, as evident from our experi-
ments, the method can in practice handle even systems that are outside the class.

Outline. To simplify the presentation, we instantiate our framework in a step-wise man-
ner. In Section 2, we introduce our model for parameterized systems operating on linear
topologies and describe our verification method in Section 3. In Section 4, we describe
how the framework can be extended to incorporate other kinds of transitions such as
broadcast, rendez-vous, dynamic process deletion/creation, and non-atomic checks of
global conditions; and to cover other classes of topologies such as ring, multiset, and
tree-like structures. The completeness of our method for well quasi-ordered systems is
shown in Section 5. We report on our experimental results in Section 6, and describe
related work in Section 7. Finally, we give some conclusions and directions for future
research in Section 8.

2 Parameterized Systems

We introduce a standard notion of a parameterized system operating on a linear topol-
ogy, where processes may perform local transitions or universally/existentially guarded
transitions (this is the standard model used e.g. in [31, 11, 3, 29]).

A parameterized system is a pair P = (Q,∆) where Q is a finite set of local states
of a process and ∆ is a set of transition rules over Q. A transition rule is either local or
global. A local rule is of the form s→ s′, where the process changes its local state from
s to s′ independently of the local states of the other processes. A global rule is of the
form ifQ j ◦ i : S then s→ s′, where Q ∈ {∃,∀}, ◦ ∈ {<,>, 6=} and S⊆Q. Here, the ith
process checks also the local states of the other processes when it makes the move. For
instance, the condition ∀ j < i : S means that “for every j such that j < i, the jth process
should be in a local state that belongs to the set S”; the condition ∀ j 6= i : S means that
“all processes except the ith one should be in local states that belong to the set S”; etc.

A parameterized system P = (Q,∆) induces a transition system (TS) T = (C,→)
where C = Q∗ is the set of its configurations and→⊆C×C is the transition relation.

We use c[i] to denote the state of the ith process within the configuration c. The transition
relation→ contains a transition c→ c′ with c[i] = s, c′[i] = s′, c[j] = c′[j] for all j : j 6= i
iff either (i) ∆ contains a local rule s→ s′, or (ii) ∆ contains a global rule ifQ j ◦ i :
S then s→ s′, and one of the following conditions is satisfied:

– Q= ∀ and for all j : 1≤ j ≤ |c| such that j ◦ i, it holds that c[j] ∈ S.
– Q= ∃ and there exists j : 1≤ j ≤ |c| such that j ◦ i and c[j] ∈ S.

An instance of the reachability problem is defined by a parameterized system P =
(Q,∆), a regular set I ⊆ Q+ of initial configurations, and a set Bad ⊆ Q+ of bad con-
figurations. Let v be the usual subword relation, i.e., u v s1 . . .sn iff u = si1 . . .sik ,1 ≤
i1. . .ik ≤ n and i j < i j+1 for all j : 1≤ j < k. We assume that Bad is the upward closure
{c | ∃b ∈ B : b v c} of a given finite set B ⊆ Q+ of minimal bad configurations. This
is a common way of specifying bad configurations which often appears in practice, see
e.g. the running example of Burn’s mutual exclusion protocol below. We say that c ∈C
is reachable iff there are c0, . . . ,cl ∈ C such that c0 ∈ I, cl = c, and ci → ci+1 for all
0 ≤ i < l. We use R to denote the set of all reachable configurations. We say that the
system P is safe w.r.t. I and Bad if no bad configuration is reachable, i.e. R ∩Bad = /0.

We define the post-image of a set X ⊆C to be the set post(X) := {c′ | c→ c′∧c∈X}.
For n∈N and a set of configurations S⊆C, we use Sn to denote its subset {c∈ S | |c|≤n}
of configurations of size up to n.

Running example. We illustrate the notion of a parameterized systems with the exam-
ple of Burns’ mutual exclusion protocol [26]. The protocol ensures exclusive access to
a shared resource in a system consisting of an unbounded number of processes orga-
nized in an array. The pseudocode of the process at the ith position of the array and
the transition rules of the parameterized system are given in Figure 1. A state of the ith
process consists of a program location and a value of the local variable flag[i]. Since the
value of flag[i] is invariant at each location, states correspond to locations.

A configuration of the induced transition system is a word over the alphabet {1, . . . ,6}
of local process states. The task is to check that the protocol guarantees exclusive access
to the shared resource (line 6) regardless of the number of processes. A configuration is
considered to be bad if it contains two occurrences of state 6 , i.e., the set of minimal
bad configurations B is { 6 6 }. Initially, all processes are in state 1 , i.e. I = 1

+.

Burns(i)
1 flag[i] := 0;
2 if ∃ j < i : flag[i] = 1 then goto 1;
3 flag[i] := 1;
4 if ∃ j < i : flag[i] = 1 then goto 1;
5 await ∀ j > i : flag[j] 6= 1;

6 flag[i] := 0; goto 1 CS

1 2 3

456

∃ j < i : {4,5,6}

∀ j < i : {1,2,3}

∀ j < i : {1,2,3}

∃ j < i : {4,5,6}

∀ j > i : {1,2,3}

Fig. 1. Pseudocode and transition rules of Burns’ protocol.

3 Verification Method

In this section, we describe our verification method instantiated to the case of parame-
terized systems described in Section 2. First, we describe the abstraction we use, then
we present the procedure.

3.1 View Abstraction

We abstract a configuration c by a set of views each of which is a subword of c. The
abstraction function αk : C→ 2Ck maps a configuration c into the set αk(c) = {v ∈Ck |
vv c} of all its views (subwords) of size up to k. We lift αk to sets of configurations as
usual. For every k ∈ N, the concretization function γk : 2Ck → 2C inputs a set of views
V ⊆Ck, and returns the set of configurations that can be reconstructed from the views
in V . In other words, γk(V) = {c ∈C | αk(c)⊆V}.

Abstract post-image. As usual, the abstract post-image of a set of views V ⊆Ck is de-
fined as Apostk(V) = αk(post(γk(V))). Computing Apostk(V) is a central component of
our verification procedure. It cannot be computed straightforwardly since the set γk(V)
is typically infinite. As a main contribution of the paper, we show that it is sufficient
to consider only those configurations in γk(V) whose sizes are up to k+ 1. There are
finitely many such configurations, and hence their post-image can be computed. For-
mally, for ` ≥ 0, we define γ`k(V) := γk(V)∩C` and show the following small model
lemma for the class of systems of Section 2. We will show similar lemmas for the other
classes of systems that we present in the later sections.

Lemma 1. For any k∈N and X ⊆Ck, αk(post(γk(X))) ∪ X = αk(post(γk+1
k (X))) ∪ X .

The property of the transition relation which allows us to prove the lemma is that,
loosely speaking, the transitions have small preconditions. That is, there is a transition
that can be fired from a configuration c and generate a view v ∈Ck only if c contains a
certain view v′ of some limited size, here up to k+1.

Running Example. Consider for instance the set V = {1,2,3,4,6,12,16,32,34,42} ⊆
C2 of views of Burns’ protocol. We will illustrate that we need to reason only about
configurations of γ2(V), which are of size at most 3, to decide which views belong to
Apost2(V).

Take the existentially guarded transition 2→ 1. It can be fired only from configura-
tions that contain 2 together with a witness from {4,5,6} on the left. Apost2(V) contains
the view 31 since γ

2+1
2 (V) contains 342 from where the existential transition 2→ 1 can

be fired. (342 belongs to γ2(V) because all its views 2, 3, 4, 32, 34, and 42 are in V). It
does not contain the view 22 since 12 cannot be completed by the needed witness (12
cannot be extended by, e.g., 6 since V does not contain 26 and 62).

Consider now the universally guarded transition 2→ 3. The transition can be fired
only from configurations that contain 2. Since 2 → 3 can be fired on 32 ∈ γ2(V),
Apost2(V) contains 33. But it does not contain the view 43 since the universal guard
prevents firing 2→ 3 on configurations containing 42.

Proof. We present the part of the proof of Lemma 1 which deals with existentially
guarded transitions. The parts dealing with local and universally guarded transitions are
simpler and are moved to the appendix. We will show that for any configuration c ∈
γk(V) of size m > k+1 such that there is a transition c→ c′ induced by an existentially
guarded rule r ∈ ∆ with v′ ∈ αk(c′), the following holds: Either v′ ∈ V or there is a
configuration d ∈ γk(V) of size at most k+1 with a transition d→ d′ induced by r with
v′ ∈ αk(d′).

A subset of positions p = {i1, . . . , il} ⊆ {1, . . . ,n}, l ≤ k, with i1 < .. . < il of a
configuration c = s1 . . .sn defines the view view(c, p) = si1 . . .sil of c. By definition,
v′ equals view(c′, p) for some p ⊆ {1, . . . ,m}. Let v be view(c, p). Notice that since
c ∈ γk(V), any view of c of size at least k belongs to γk(V). Therefore also v ∈ γk(V).
Let 1 ≤ i ≤ m be the index of the position in which c′ differs from c. If i 6∈ p, then
v = view(c, p) = view(c′, p) = v′. In this case, we trivially have v′ ∈ V . We can take
d = v and d′ = v′.

Assume now that i∈ p. Let r be the rule if∃ j ◦ i : S then s→ t where ◦ ∈ {<,>, 6=}.
There are two cases: 1) there is a witness w from S at some position j ∈ p enabling the
transition c→ c′. Then v still contains the witness on an appropriate position needed to
fire r. Therefore v→ v′ is a transition of the system induced by r, and we can take d = v
and d′ = v′. 2) no witness enabling the transition c→ c′ is at a position j ∈ p. Then there
is no guarantee that v→ v′ is a transition of the system. However, the witness enabling
the transition c→ c′ is at some position j ∈ {1, . . . ,m}. We will create a configuration
of size at most k+1 by including this position j to v, as illustrated in the figure. Let p′ =
p∪{ j}. Then view(c, p′)→ view(c′, p′) is a transition of the system induced by r since
view(c, p′) contains both s and a witness from S at an appropriate position. We clearly
have that v′ ∈ αk(view(c′, p′)). We also have that view(c, p′)∈ γk(V) since view(c, p′)v
c and c ∈ γk(V). We may therefore take d = view(c, p′) and d′ = view(c′, p′). ut

ws

t

∃ w

i jv

v′

3.2 Procedure

Our verification procedure for solving an instance of the verification problem defined
in Section 2 is described in Algorithm 1. It performs two search procedures in parallel.
Specifically, it searches for a bad configuration reachable from initial configurations of
size k; and it searches for a cut-off point k where it derives a set of views V ⊆Ck such
that

(i) V is an invariant for the instances of the system (that is, R ⊆ γk(V) and
Apostk(V)⊆V), and

(ii) which is sufficient to prove R safe (that is, γk(V)∩Bad = /0).

Algorithm 1: Verification Procedure
1 for k := 1 to ∞ do
2 if Rk ∩Bad 6= /0 then return Unsafe
3 V := µX .αk(I)∪Apostk(X)
4 if γk(V)∩Bad = /0 then return Safe

For a given k, an invariant V is computed on line 3. Notice that V is well-defined
since γk,post,αk and hence also Apostk are monotonic functions for all k ∈ N (w.r.t.
⊆). Lemma 2 guarantees that V is indeed an invariant:

Lemma 2. For any i ∈ N and X ⊆Ci, αi(I)⊆ X ∧ Aposti(X)⊆ X =⇒ αi(R)⊆ X.

If the system is unsafe, the search on line 2 will eventually discovers a bad config-
uration. The cut-off condition is tested on line 4. If the test does not pass, then we do
not know whether the system is indeed unsafe or whether the analysis has hit a spurious
counterexample (due to a too liberal abstraction). Therefore, the algorithm increases
precision of the abstraction by increasing k and reiterating the loop. An effective imple-
mentation of the procedure requires carrying out the following steps:

1. Computing the abstraction αk(I) of initial configurations. This step is usually easy.
For instance, in the case of Burns’ protocol, all processes are initially in state 1,
hence αk(I) contains only the words 1l , l ≤ k. Generally, I is a (very simple) regular
set, and αk(I) is computed using a straightforward automata construction.

2. Computing the abstract post-image. Thanks to Lemma 1, the abstract post-image
can be computed by applying γ

k+1
k (which yields a finite set), post, and αk (in that

order).
3. Evaluating the test γk(V)∩Bad = /0. Since Bad is the upward closure of a finite set

B, the test can be carried out by testing whether there is b ∈ B such that αk(b)⊆V .
4. Exact reachability analysis. Line 2 requires the computation of Rk. Since Rk is

finite, this can be done using any procedure for exact state space exploration.

Since the problem is generally undecidable, existence of k for which the test on line 4
succeeds for a safe system cannot be guaranteed and the algorithm may not terminate.
However, as discussed in Section 5, such a guarantee can be given under the addi-
tional requirement of monotonicity of transition relation w.r.t. a well-quasi ordering.
The method terminates otherwise for all our examples discussed in Section 6, many of
which are not well quasi-ordered.

Running example. When run on Burns’ protocol, Algorithm 1 starts by computing R1 =
{1, . . . ,6}. Because R1 does not contain any bad configurations, the algorithm moves
onto computing the fixpoint V1 of line 3. The iteration starts with X = α1(I) = {1} and
continues until X = V1 = {1, . . . ,6}. The test on line 4 subsequently fails since γ1(V1)
contains 66. Since both tests fail, the first iteration does not allow us to conclude whether
the protocol is safe or not, so the algorithm increases the precision of the abstraction by
increasing k.

In the second iteration with k = 2, R2 is still safe. The fixpoint computation starts
with X = α2(I) = {1,11}. When Apost2 is applied on {1,11}, we first construct the
set γ

2+1
2 ({1,11}) which contains the extension 111 of 11, 11 and 1. Their successors

are 2,12,21, and 112,121,211, which are abstracted into {1,2,11,12,21}. The fix-
point computation continues with X = {1,2,11,12,21} and constructs the concretiza-
tion γ3

2(X) = X ∪{112,121,211}. Their successors are 2,3,12,21,22,31,13, and 122,
212, 221, 113, 131, 311 which are abstracted into the views 1,2,3,11,12,21,22,31,13.
The next iteration will start with X = {1,2,3,11,12,21,22,13,31}. The computation
reaches, after 8 further iterations, the fixpoint X = V2 which contains all words from
{1, . . . ,6}∪{1, . . . ,6}2 except 65 and 66. This set satisfies the assumptions of Lemma 2,
and hence it is guaranteed to contain all views (of size at most 2) of all reachable con-
figurations of the system. Since the view 66 is not present (recall α2(Bad) = {6,66}),
no reachable configuration of the system is bad. The algorithm reached the cut-off point
k = 2 of Burns’ protocol, and the system is proved safe.

4 Extensions

In this section, we describe how to extend the class of parameterized systems that we
presented in Section 2. The extensions are obtained 1) by extending the types of tran-
sition rules that we allow, 2) by replacing transitions with atomically checked global
conditions by more realistic for-loops, and 3) by considering topologies other than the
linear ones. As we shall see below, the extensions can be handled by our method with
straightforward extensions of the method of Section 3.

4.1 More Communication Mechanisms

Broadcast. In a broadcast transition, an arbitrary number of processes change states
simultaneously. A broadcast rule is a pair (s→ s′,{r1→ r′1, . . . ,rm→ r′m}). It is deter-
ministic in the sense that ri 6= r j for i 6= j. The broadcast is initiated by a process, called
the initiator, which triggers the transition rule s→ s′. Together with the initiator, an
arbitrary number of processes, called the receptors, change state simultaneously. More
precisely, if the local state of a process is ri, then the process changes its local state to
r′i. Processes whose local states are different from s,r1, . . .rm remain passive during the
broadcast. Formally, the broadcast rule induces transitions c→ c′ of T where for some
i : 1 ≤ i ≤ |c|, c[i] = s, c′[i] = s′, and for each j : 1 ≤ j 6= i ≤ |c|, if c[j] = rk (for some
k) then c′[j] = r′k, otherwise c[j] = c′[j].

In a similar manner to globally guarded transitions, broadcast transitions have small
preconditions. Namely, to fire a transition, it is enough that an initiator is present in the
transition. More precisely, for parameterized systems with local, global, and broadcast
transitions, Lemma 1 still holds (in the proof of Lemma 1, the initiator is treated analo-
gously to a witness of an existential transition). Therefore, the verification method from
Section 3 can be used without any change.

Rendez-vous. In rendez-vous, multiple processes change their states simultaneously.
A simple rendez-vous transition rule is a tuple of local rules δ = (r1 → r′1, . . . ,rm →

r′m),m > 1. Multiple occurrences of local rules with the same source state r in the tuple
does not mean non-determinism, but that the rendez-vous requires multiple occurrences
of r in the configuration to be triggered. Formally, the rule induces transitions c→ c′ of
T such that there are i1, . . . , im with i j 6= ik for all j 6= k, such that c[i1] · · ·c[im] = r1 · · ·rm,
c′[i1] · · ·c′[im] = r′1 · · ·r′m, and c′[`] = c[`] if ` 6∈ {i1, . . . , im}.

Additionally, we define a generalized rendez-vous (or just rendez-vous) transition
rules in order to model creation and deletion of processes and also Petri net transitions
that change the number of tokens in the net. A generalized rendez-vous rule δ is as
a simple rendez-vous rule, but it can in addition to the local rules contain two types
of special rules: of the form • → r,• 6∈ Q (acting as a placeholder), which are used to
model creation of processes, and of the form r→ •, which are used to model deletion
of processes. When a generalized rendez-vous rule is fired, the starting configuration
is first enriched with • symbols in order to facilitate creation of processes by the rule
• → r, then the rule is applied as if it was a simple rendez-vous rule, treating • as a
normal state (states of the processes that are to be deleted are rewritten to • by the rules
r→ •). Finally, all occurrences of • are removed. Formally, a generalized rendez-vous
rule induces a transition c→ c′ if there is c• ∈ {•}∗c[1]{•}∗ · · ·{•}∗c[|c|]{•}∗ such that
c• → c′• is a transition of the system with states Q∪ {•} induced by δ (treated as a
simple rendez-vous rule), and c′ arises from c′• by erasing all occurrences of •.

Rendez-vous transitions have small preconditions, but unlike existentially quanti-
fied transitions, firing a transition may require presence of more than two (but still a
fixed number) processes in certain states (the number is the arity of the transition). It
essentially corresponds to requiring the presence of more than one witness. This is why
Lemma 1 holds here only in the weaker variant:

Lemma 3. Let ∆ contain rules of any previously described type (i.e., local, global,
broadcast, rendez-vous), and let m+ 1 is the largest arity of a rendez-vous rule in ∆.
Then, for any k and V ⊆Ck, αk(post(γk(V))) ∪ V = αk(post(γk+m

k (V))) ∪ V .

Global variables. Communication via shared variables is modeled using a special pro-
cess, called controller. Its local state records the state of all shared variables in the sys-
tem. A configuration of a system with global variables is then a word s1 . . .snc where
s1, . . . ,sn are the states of individual processes and c is the state of the controller. An
individual process can read and update a shared variable. A read is modeled by a rendez-
vous rule of the form (s→ s′,c→ c) where c is a state of the controller and s,s′ are states
of the process. An update is modeled using a rendez-vous rule (s→ s′,c→ c′).

To verify systems with shared variables of finite domains, we use a variant of the
abstraction function which always keeps the state of the controller in the view. Formally,
for a configuration wc where w⊆ Q+ and c is the state of the controller, αk returns the
set of words vc where v is a subword of w of length at most k. The concretization and
abstract-post image are then defined analogously as before, based on αk, Lemma 1 and
Lemma 2 still hold. The method of Section 3 can be thus used in the same way as
before.

Another type of global variable is a process pointer, i.e., a variable ranging over
process indices. This is used, e.g., in Dijkstra’s mutual exclusion protocol. A process
pointer is modeled by a local Boolean flag p for each process state. The value of p is

true iff the pointer points to the process (it is true for precisely one process in every
configuration). An update of the pointer is modeled by a rendez-vous transition rule
which sets to false the flag of the process currently pointed to by the pointer and sets to
true the flag of the process which is to become the target of the pointer.

4.2 Transitions that do not Preserve Size

We now discuss the case when the transition relation does not preserve size of con-
figurations, which happens in the case of generalised rendez-vous. Rk then cannot be
computed straightforwardly since computations reaching configurations of the size up
to k may traverse configurations of larger sizes. Therefore, similarly as in [21], we only
consider runs of the system visiting configurations of the size up to k. That is, on line 2
of Algorithm 1, instead of computing Rk = µX . Ik ∪ post(X), we compute its under-
approximation µX .(I ∪ post(X))∩Ck. The computation terminates provided that Ck is
finite. The algorithm is still guaranteed to return Unsafe if a configuration in Bad is
reachable, since then there is k ∈ N such that the bad configuration is reachable by a
finite path traversing configurations of the size at most k.

4.3 Non-atomic Global Conditions

We extend our method to handle systems where global conditions are not checked atom-
ically. We replace both existentially and universally guarded transition rules by a simple
variant of a for-loop rule:

if foreach j ◦ i : S then q→ r else q→ s

where q,r,s∈Q is resp. a source state, a target state, and an escape state, ◦ ∈ {<,>, 6=},
and S ⊆ Q is a condition. For instance, line 2 of Burns’ protocol would be replaced by
if foreach j < i : {1,2,3} then 2→ 3 else 2→ 1.

The semantics of a system with for-loop rules is defined as an extension of the
transition system from Section 2. Configurations are extended with a binary relation
over their positions, that is, a configuration is now a pair (c,X) where c is a word over
Q and X is a binary relation over its positions {1, . . . , |c|}. The relation X is used to
encode intermediate states of for-loops. Intuitively, a process at position i performing
a for-loop puts (i, j) into X to mark that it has processed the position j.

Formally, a parameterized system P = (Q,∆) which includes for-loop rules induces
a transition system T =(C,→) where C⊆Q+×(N×N). For technical convenience, we
assume that a source of a for-loop rule in ∆ is not a source of any other rule in ∆.3Then
every for-loop rule if foreach j ◦ i : S then q→ r else q→ s induces transitions t =
(w,X)→ (w′,X′) with w[i] = q for some i : 1≤ i≤ |w| which may be of the following
three forms: (illustrated using the aforementioned example rule from Burn’s protocol).

3 Without this restriction, the state of a process would have to contain additional information
recording which for-loop is the process currently performing. Note that the restriction does
not limit the modeling power of the formalism. Any potential branching may be moved to
predecessors of the sources of the for-loop.

Iteration: The ith process checks that the state of a next
unchecked process in the range is in S and marks it. That
is, there is j : 1 ≤ j ≤ |w| with j ◦ i, (i, j) 6∈X, w[j] ∈ S, and
the resulting configuration has w′ = w and X′ =X∪{(i, j)}.

2

→
2

Iteration

Escape: If the state of some process in the range which is still
to be checked violates the loop condition, then the ith process
may escape to the state s. That is, there is j : 1 ≤ j ≤ |w|
with j◦ i, (i, j) 6∈X, and w[j] 6∈ S. The resulting configuration
has w′[k] = w[k] for all k 6= i and w[i] = s. The execution of
the for-loop ends and the marks of process i are reset, i.e.,
X′ =X\{(i,k) | k ∈ N}.

24

→

14

Escape

Terminal: When the states of all processes from the range
have been successfully checked, the for-loop ends and the ith
process moves to the terminal state r. That is, if there is no
j : 1≤ j ≤ |w| with j ◦ i and (i, j) 6∈X, then w′[k] = w[k] for
all k 6= i, w′[i] = r, and X′ =X\{(i,k) | k ∈ N}.

2

→

3

Terminal

Other rules behave as before on the w part of configurations and they do not in-
fluence the X part. That is, a local, broadcast, or rendez-vous rule induces transitions
(w,X)→ (w′,X) where w→ w′ is a transition induced by the rule as described in Sec-
tion 2.

Verification. To verify systems with for-loop rules using our method, we define an
abstraction αk. Intuitively, we view a configuration c = (w,X) as a graph with vertices
being the positions of w and edges being defined by (i) the ordering of the positions and
(ii) the relation X. The vertices are labeled by the states of processes at the positions.
αk(c) then returns the set of subgraphs of c where every subgraph contains a subset of
at most k vertices of c (positions of w) and the maximal subset of edges of c adjacent
with the chosen vertices.

Formally, given a configuration c= (w,X), αk(c) is the set of views v= (w′,X′)∈C
of size at most k (i.e., |w′| = l ≤ k) such that there exists an injection ρ : {1, . . . l} →
{1, . . . , |w|}, l ≤ k where for all i, j : 1≤ i, j ≤ l:

– i < j iff ρ(i)< ρ(j),
– w′[i] = w[ρ(i)] (i.e., w′ v w), and
– (i, j) ∈X′ iff (ρ(i),ρ(j)) ∈X.

The notions of concretization and abstract post-image are defined in the same manner as
in Section 3 based on based on α. Lemma 1 holds here in the same wording (as shown
in the appendix). Thus the verification method for systems with for-loops is analogous
to the method of Section 3.

4.4 Tree Topology

We extend our method to systems where configurations are trees. For simplicity, we
restrict ourselves to complete binary trees.

Trees. Let N be a prefix closed set of words over the alphabet {0,1} called nodes and
let Q be a finite set. A (binary) tree over Q is a mapping t : N → Q. The node ε is
called the root, nodes that are not prefixes of other nodes are called leaves. For a node
v = v′i, i ∈ {0,1}, v′ is the parent of v, the node v0 is the left child of v and v1 is its
right child. Every node v′ = vw,w ∈ {0,1}+ is a descendant of v. The depth of the tree
is the length of the longest leaf. A tree is complete if all its leaves have the same length
and every non-leaf node has both children. A tree t ′ : N′→ Q is a subtree of t, denoted
t ′ � t, iff there exists a injective map e : N′→ N which respects the descendant relation
and labeling. That is, t ′(v) = t(e(v)) and v is a descendant of v′ iff e(v) is a descendant
of e(v′).

Parameterized systems with tree topology. The definitions for parameterized systems
with a tree topology are analogous to the definitions for systems with a linear topology
(Section 2). A parameterized system P =(Q,∆) induces a transition system T =(C,→)
where C is the set of complete trees over Q. The set ∆ of transition rules is a set of local
and tree transition rules. The transitions of→ are obtained from rules of ∆ as follows.
A local rule is of the form s→ s′ and it locally changes the label of a node from s to s′.
A tree rule is a triple s(s0,s1)→ s′(s′0,s

′
1). The rule can be applied to a node v and its

left and right children v0, v1 with labels s, s0, and s1, respectively, and it changes their
labels to s′, s′0, and s′1, respectively.

The reachability problem is defined in a similar manner to the case of linear systems.
The set B of minimal bad configurations is a finite set of trees over Q, I is a regular
tree-language, and Bad is the upward closure of B w.r.t. the subtree relation �. In the
notation Cn and Rn, n refers to the depth of trees rather than to the length of words.

Verification. The verification method of Section 3 is easily extended to the tree topol-
ogy. The text of Section 3 can be taken almost verbatim with the difference that instead
of words, we manipulate complete trees, subword relation is replaced by subtree re-
lation, and k now refers to the depth of trees rather than the length of words. That is,
a view of size k is a tree of depth k and the abstraction αk(t) returns all complete sub-
trees of depth at most k of the tree t. Concretization and abstract post-image are defined
analogously as in Section 3, based on αk. The set I may be given in the form of a tree
automaton. The computation of αk(I) may be then done over the structure of the tree
automaton. We can compute the abstract post-image since Lemma 1 holds here in the
same wording as in Section 3. The test γk(V)∩Bad = /0 is carried out in the same way
as in Section 3 since Bad is an upward closure of a set B w.r.t. �. The points 1-4 of
Section 3 are thus satisfied and Algorithm 1 can be used as a verification procedure for
systems with tree topology.

4.5 Ring Topology

The method can be extended also to systems with a ring topology. In a parameterized
system with ring topology, processes are organized in a circular array and they syn-
chronize by near-neighbor communication. We model system with a ring topology as
systems with linear topology of Section 2, where a configuration c ∈ Q+ is interpreted
as a circular word. The set ∆ may contain local and near-neighbor transition rules. A

near-neighbor rule is a pair (s1→ s′1,s2→ s′2). It induces the transition c→ c′ of→ if
either c = cL s1s2 cR and c′ = cL s′1s′2 cR (i.e. the 2 processes are adjacent in the config-
uration c) or c = s2 c̄ s1 and c′ = s′2 c̄ s′1 (i.e. the 2 processes are positioned at the end of
the configuration c). The latter case covers the communication between the extremities
since configurations encode circular words.

Verification. A word u is a circular subword of a word v, denoted u E v, iff there are
v1,v2 such that v = v1v2 and u v v2 v1. The only difference compared to the method
for the systems with a linear topology is that the standard subword relation is in all
definitions replaced by the circular subword relation E. An equivalent of Lemma 1
holds here in unchanged wording, points 1-4 are satisfied, and Algorithm 1 is thus
a verification procedure for systems with ring topology.

4.6 Multiset Topology

Systems which we refer to as systems with multiset topology are a special case of the
systems with a linear topology of Section 2. Typical representatives of these systems are
Petri nets, which correspond precisely to systems of Section 4 with only (generalized)
rendez-vous transitions. Systems with multiset topology may contain all types of tran-
sitions including local, global, broadcast, and rendez-vous, with the exception of global
transitions with the scope of indices j > i and j < i (i.e., only j 6= i is permitted). Since
the processes have no way of distinguishing their respective positions within a configu-
ration, the notion of ordering of positions within a configuration is not meaningful and
configurations can be represented as multisets.

5 Completeness for Well Quasi-Ordered Systems

In this section, will show that the scheme desribed by Algorithm 1 is complete for a
wide class of well-quasi ordered systems. To state the result in general terms, we will
first give some definitions from the theory of well quasi-ordered systems (c.f. [1]).

A well quasi-ordering (WQO) is a preorder� over a set S such that for every infinite
sequence s1,s2, . . . of elements of S, there exists i and j such that i < j and si � s j. The
upward-closure ↑T of a set T ⊆ S w.r.t. � is the set {s ∈ S | ∃t ∈ T : t � s} and its
downward-closure is the set ↓T = {s ∈ S | ∃t ∈ T : s � t}. A set is upward-closed if it
equals its upward-closure and it is downward-closed if it equals its downward-closure.
If T is upward closed, its complement S \T is downward closed and, conversely, if T
is downward closed, its complement is upward closed. For every upward closed set T ,
there exists a minimal (w.r.t ⊆) set Gen such that ↑Gen = T , called generator of T ,
which is finite. If moreover � is a partial order, then Gen is unique.

A relation R⊆ S×S is monotonic w.r.t. � if whenever (s1,s2) ∈ R and s1 � s′1, then
there is s′2 with (s′1,s

′
2) ∈ R and s2 � s′2. Given a relation f ⊆ S×S monotonic w.r.t. �

and a set T ⊆ S, it holds that if f (T) ⊆ T , then f (↓T) ⊆ ↓T , where f (T) is the image
of T defined as {t ′ | ∃t ∈ T : (t, t ′) ∈ f}.

The reasoning in Section 3 is based on the natural notion of a size of a configuration.
Its generalization is the notion of a discrete measure over a set S, a function |.| : S→ N

which fulfills the property that for every k ∈N, {s∈ S | |s|= k} is finite. A discrete mea-
sure is necessary to obtain the completeness result as it allows enumerating elements
of S of the same size. In particular, this property guarantees termination of the fixpoint
computation on Line 3 of Algorithm 1. We note that the existence of a discrete measure
is implied by a stronger restriction of [8] to the so called discrete transition systems.

We say that a transition system T = (C,→) is well-quasi ordered by a WQO � ⊆
C×C if → is monotonic w.r.t. �. Given a well-quasi ordered transition system and
a measure |.| : C→ N, we define an abstraction function αk,k ∈ N such that αk(c) =
{c′ ∈C | c′ � c}. The corresponding concretization γk and abstract post-image Apostk
are then defined based on αk and |.| as in Section 3.1.

Lemma 2 holds here in the same wording as in Section 3. The main component of
the completeness result is the following theorem.

Theorem 1. Let T = (C,→) be a well-quasi ordered transition system with a measure
|.|. Let I be any subset of C and let Bad be upward-closed w.r.t.�. Then, if T is safe w.r.t.
I and Bad, then there is k ∈N such that for V = µX .αk(I)∪Apostk(X), Bad∩γk(V) = /0.

Proof. Recall first that γk,post,Apostk,αk are monotonic functions w.r.t.⊆ for all k∈N.
Let Gen be the minimal generator of the upward closed set C \↓R . We will prove that
k can be chosen as k = max{|c| | c ∈ Gen}. Such k exists because Gen is finite.

We first show an auxiliary claim that γk(αk(↓R))⊆↓R . Let s∈ γk(αk(↓R)). For the
sake of contradiction, suppose that s 6∈ ↓R . We have that s ∈C \↓R = ↑Gen and there
is a generator t ∈ Gen with t � s. By the definition of k, |t| ≤ k. Since t ∈ Gen, t 6∈ ↓R
and hence t 6∈ αk(↓R). But due to this and since t � s, we have that s 6∈ γk(αk(↓R)) (by
the definition of γk) which contradicts the initial assumption and the claim is proven.

Next, we argue that αk(↓R) is stable under abstract post, that is, Apostk(αk(↓R))⊆
αk(↓R). Since R is stable under post and post is monotonic w.r.t. �, we know that ↓R
is stable under post (that is, post(↓R) ⊆ ↓R). Then, by the definition of Apostk, and
by monotonicity of αk w.r.t. ⊆, we have Apostk(αk(↓R)) = αk(post(γk(αk(↓R)))) ⊆
αk(post(↓R))⊆ αk(↓R).

Since ↓R contains I, αk(I) ⊆ αk(↓R). αk(↓R) is thus a fixpoint of λX .αk(I)∪
Apostk(X). Because V is the least fixpoint of λX .αk(I)∪Apostk(X), V ⊆αk(↓R). From,
R ∩Bad = /0 and since Bad is upward closed, we know that ↓R ∩Bad = /0. Because
γk(V)⊆ γk(αk(↓R))⊆ ↓R and ↓R ∩Bad = /0, γk(V)∩Bad = /0. ut

Theorem 1 guarantees that for a safe well quasi-ordered system, there exists k for
which the test on line 4 of Algorithm 1 succeeds. Conversely, Lemma 2, which, as
mentioned above, still holds for the general class of well-quasi ordered systems, then
assures than if the test on line 2 succeeds, the system is indeed safe.

Complete algorithm. The schema described by Algorithm 1 (or its variant from Sec-
tion 4.2 if the transition relation is not size-preserving) gives a complete verification
procedure for a well quasi-ordered system provided that all the four steps of its for-loop
can be effectively evaluated. This is guaranteed by the following requirements:

i. αk(I) can be computed,
ii. the measure |.| is discrete,

iii. for a configuration c, post(c) and αk(c) can be computed,
iv. for a finite set of views V , γ

k+1
k (V) can be computed, and

v. a variant of Lemma 1 holds.

Point (i) is point 1 of Section 3. Points (ii)-(v) guarantee that we can compute abstract
post-image (point 2 of Section 3). We can test γk(V)∩Bad = /0 (point 3 of Section 3)
since due to (ii), V is always finite. Exact reachability analysis of configurations of a
bounded size (point 4 of Section 3) can be carried out since we can iterate post due to
(iii) and the iteration terminates after a finite number of steps due to (ii). Point (ii) also
assures termination of the computation of the fixpoint on line 3 (V is always finite).

Overall, Algorithm 1 is a complete verification procedure for parameterized systems
of Section 2 with local and existential transitions rules, broadcast and rendez-vous. The
induced transition relation is indeed monotonic w.r.t. the preorder v which is a WQO
and the length of a configuration is a discrete measure. An important subclass of such
systems are Petri nets, which, as mentioned in Section 4, correspond to systems with
multiset topology and generalized rendez-vous transition rules. Systems of Section 2
with universally guarded transition rules do not satisfy the assumptions: the induced
transition relation is not monotonic.

6 Experimental results

Based on our method, we have implemented a prototype in OCaml to check safety prop-
erties for a number of parameterized systems with different topologies. The examples
cover cache coherence protocols, communication protocols through trees and rings and
mutual exclusion protocols.

Table 1. Experimental Results

Protocol Time k |V | γ
k+`
k (V)

Array

Demo (toy example) 0.01s 2 17 53
Burns 0.01s 2 34 186
Dijkstra 0.07s 2 93 695
Szymanski 0.02s 2 48 264

Multiset
MOSI Coherency 0.01s 1 10 23
German’s Coherency 15.3s 6 1890 15567

Petri Net

German (simplified) 0.03s 2 43 96
BH250 2.85s 2 503 503
MOESI Coherency 0.01s 1 13 20
Critical Section 0.01s 5 27 46
Kanban ? ≥ 20 ? ?

Tree
Percolate 0.05s 2 34 933
Tree Arbiter 0.7s 2 88 7680
Leader Election 0.1s 2 74 362

Ring Token Passing 0.01s 2 2 2

We report the results in Table 1, running on a 2.4 GHz laptop with 4GB memory.
We have categorized the experiments per topology. We display the running times (in
seconds), the value of k and the final number of views generated (|V |). In most cases,
the method terminates almost immediately illustrating the small model property: all
patterns occur for small instances of the system. Observe that the sizes of the views are
small as well, confirming the intuition that interactions between processes are of limited
scope.

The bulk of the algorithm lies in the computation of the set γ
k+`
k (V) and also the set

Rk. An example on which the algorithm fails is the Kanban system from [24]. This is
a typical case where the cut-off condition is satisfied at high values of k. [24] refers to
the computation of, at least, the set R20. R20 is large and so is the concretization of its
views.

7 Related Work

An extensive amount of work has been devoted to regular model checking, e.g. [25, 12];
and in particular augmenting regular model checking with techniques such as widen-
ing [9, 32], abstraction [10], and acceleration [5]. All these works rely on computing the
transitive closure of transducers or on iterating them on regular languages. Our method
is significantly simpler and more efficient.

A technique of particular interest for parameterized systems is that of counter ab-
straction. The idea is to keep track of the number of processes which satisfy a certain
property [22, 17, 13, 14, 30]. In general, counter abstraction is designed for systems with
unstructured or clique architectures. As mentioned, our method can cope with these
kinds of systems but also with more general classes of topologies. Several works re-
duce parameterized verification to the verification of finite-state models. Among these,
the invisible invariants method [6, 31] and the work of [29] exploit cut-off properties to
check invariants for mutual exclusion protocols. The success of the method depends on
the heuristic used in the generation of the candidate invariant. This method sometimes
(e.g. for German’s protocol) requires insertion of auxiliary program variables for com-
pleting the proof. The nature of invariants generated by our method is similar to that
of the aforementioned works, since our invariant sets of views of size at most k can be
seen as universally quantified assertions over reachable k-tuples of processes.

In [7], finite-state abstractions for verification of systems specified in WS1S are
computed on-the-fly by using the weakest precondition operator. The method requires
the user to provide a set of predicates on which to compute the abstract model.

The idea of refining the view abstraction by increasing k is similar in spirit to the
work of [28] which discusses increasing precision of thread modular verification (Carte-
sian abstraction) by remembering some relationships between states of processes. Their
refinement mechanism is more local, targeting the source of undesirable imprecision;
however, it is not directly applicable to parameterized verification.

Environment abstraction [11] combines predicate abstraction with the counter ab-
straction. The technique is applied to Szymanski’s algorithm. The model of [11] con-
tains a more restricted form of global conditions than ours, and also does not include

features such as broadcast communication, rendez-vous communication, and dynamic
creation and deletion of processes.

Recently, we have introduced the method of monotonic abstraction [3] that com-
bines regular model checking with abstraction in order to produce systems that have
monotonic behaviors w.r.t. a well quasi-ordering on the state space. In contrast to the
method of this paper, the abstract system still needs to be analyzed using full sym-
bolic reachability analysis on an infinite-state system. The only work we are aware of
which attempts to automatically verify systems with non-atomic global transitions is [4]
which applies monotonic abstraction. The abstraction in this case amounts to a verifi-
cation procedure that operates on unbounded graphs, and thus is a non-trivial extension
of the existing framework. As we saw, our method is easily extended to the case of
non-atomic transitions.

The method of [21, 20] and its reformulated, generic version of [19] are in princi-
ple similar to ours. They come with a complete method for well-quasi ordered systems
which is an alternative to backward reachability analysis based on a forward explo-
ration. Unlike our method, they target well-quasi ordered systems only and have not
been instantiated for topologies other than multisets and lossy channel systems.

Constant-size cut-offs have been defined for ring networks in [16] where commu-
nication is only allowed through token passing. More general communication mecha-
nisms such as guards over local and shared variables are described in [15]. However,
the cut-offs are linear in the number of states of the components, which makes the ver-
ification task intractable on most of our examples.

The closest work to ours is the one in [24] that also relies on dynamic detection of
cut-off points. The class of systems considered in [24] corresponds essentially to Petri
nets. In particular, it cannot deal with systems with linear or tree-like topologies. The
method relies on the ability to perform backward reachability analysis on the underlying
transition system. This means that the algorithm of [24] cannot be applied on systems
with undecidable reachability problems (such as the ones we consider in this paper).
The method of [24] is yet complete.

8 Conclusion and Future Work

We have presented a uniform framework for automatic verification of different classes
of parameterized systems with topologies such as words, trees, rings, or multisets, with
an extension to handle non-atomic global conditions. The framework allows to per-
form parameterized verification by only considering a small set of instances of the sys-
tem. We have proved that the presented algorithm is complete for a wide class of well
quasi-ordered systems. Based on the method, we have implemented a prototype which
performs efficiently on a wide range of benchmarks.

We are currently working on extending the framework to the case of multi-threaded
programs operating on dynamic heap structures. These systems have notoriously com-
plicated behaviors. Showing that verification can be carried out through the analysis of
only a small number of threads would allow for more efficient algorithms for these sys-
tems. Furthermore, our algorithm relies on a very simple abstraction function, where a
configuration of the system is approximated by its sub-structures (subwords, subtrees,

etc.). We believe that our approach can be lifted to more general classes of abstractions.
This would allow for abstraction schemes that are more precise than existing ones, e.g.,
thread-modular abstraction [18] and Cartesian abstraction [27].

Obviously, the bottleneck in the application of the method is when the cut-off con-
dition is only satisfied at high values of k (see e.g., the Kanban example in Section 6).
We plan therefore to integrate the method with advanced tools that can perform efficient
forward reachability analysis, like SPIN [23], and to use efficient symbolic encodings
for compact representations for the set of views.

9 Acknowledgements

This work was supported by the Uppsala Programming for Multicore Architectures
Research Center (UpMarc) and the Czech Science Foundation (project P103/10/0306).

References

1. Abdulla, P.A.: Well (and better) quasi-ordered transition systems. Bulletin of Sym-
bolic Logic 16(4), 457–515 (2010)

2. Abdulla, P.A., Čerāns, K., Jonsson, B., Tsay, Y.K.: General decidability theorems
for infinite-state systems. In: LICS’96. pp. 313–321 (1996)

3. Abdulla, P.A., Henda, N.B., Delzanno, G., Rezine, A.: Regular model check-
ing without transducers (on efficient verification of parameterized systems). In:
TACAS’07. LNCS, vol. 4424, pp. 721–736. Springer (2007)

4. Abdulla, P.A., Henda, N.B., Delzanno, G., Rezine, A.: Handling parameterized sys-
tems with non-atomic global conditions. In: VMCAI’08. LNCS, vol. 4905, pp. 22–
36. Springer (2008)

5. Abdulla, P.A., Jonsson, B., Nilsson, M., d’Orso, J.: Regular model checking made
simple and efficient. In: CONCUR’02. LNCS, vol. 2421, pp. 116–130. Springer
(2002)

6. Arons, T., Pnueli, A., Ruah, S., Xu, J., Zuck, L.: Parameterized verification with
automatically computed inductive assertions. In: CAV’01. LNCS, vol. 2102, pp.
221–234. Springer (2001)

7. Baukus, K., Lakhnech, Y., Stahl, K.: Parameterized verification of a cache coher-
ence protocol: Safety and liveness. In: VMCAI’02. LNCS, vol. 2294, pp. 317–330.
Springer (2002)

8. Bingham, J.D., Hu, A.J.: Empirically efficient verification for a class of infinite-
state systems. In: TACAS’05. LNCS, vol. 3440, pp. 77–92. Springer (2005)

9. Boigelot, B., Legay, A., Wolper, P.: Iterating transducers in the large. In: CAV’03.
LNCS, vol. 2725, pp. 223–235. Springer (2003)

10. Bouajjani, A., Habermehl, P., Vojnar, T.: Abstract regular model checking. In:
CAV’04. LNCS, vol. 3114, pp. 372–386. Springer (2004)

11. Clarke, E., Talupur, M., Veith, H.: Environment abstraction for parameterized ver-
ification. In: VMCAI’06. LNCS, vol. 3855, pp. 126–141. Springer (2006)

12. Dams, D., Lakhnech, Y., Steffen, M.: Iterating transducers. In: CAV’01. LNCS,
vol. 2102. Springer (2001)

13. Delzanno, G.: Automatic verification of cache coherence protocols. In: Emerson,
Sistla (eds.) CAV’00. LNCS, vol. 1855, pp. 53–68. Springer (2000)

14. Delzanno, G.: Verification of consistency protocols via infinite-state symbolic
model checking. In: FORTE’00. IFIP Conference Proceedings, vol. 183, pp. 171–
186. Kluwer (2000)

15. Emerson, E.A., Kahlon, V.: Reducing model checking of the many to the few. In:
CADE’00. LNCS, vol. 1831, pp. 236–254. Springer (2000)

16. Emerson, E., Namjoshi, K.: Reasoning about rings. In: POPL’95. pp. 85–94 (1995)
17. Esparza, J., Finkel, A., Mayr, R.: On the verification of broadcast protocols. In:

LICS’99. IEEE Computer Society (1999)
18. Flanagan, C., Qadeer, S.: Thread-modular model checking. In: SPIN’03. LNCS,

vol. 2648, pp. 213–224. Springer (2003)
19. Ganty, P., Raskin, J.F., Begin, L.V.: A Complete Abstract Interpretation Framework

for Coverability Properties of WSTS. In: VMCAI’06. LNCS, vol. 3855, pp. 49–64.
Springer (2006)

20. Geeraerts, G., Raskin, J.F., Begin, L.V.: Expand, enlarge and check... made effi-
cient. In: CAV’05. LNCS, vol. 3576, pp. 394–407. Springer (2005)

21. Geeraerts, G., Raskin, J.F., Begin, L.V.: Expand, Enlarge and Check: New algo-
rithms for the coverability problem of WSTS. J. Comput. Syst. Sci. 72(1), 180–203
(2006)

22. German, S.M., Sistla, A.P.: Reasoning about systems with many processes. J. ACM
39(3), 675–735 (1992)

23. Holzmann, G.J.: The model checker spin. IEEE Trans. Software Eng. 23(5), 279–
295 (1997)

24. Kaiser, A., Kroening, D., Wahl, T.: Dynamic cutoff detection in parameterized con-
current programs. In: CAV’10. LNCS, vol. 6174, pp. 645–659. Springer (2010)

25. Kesten, Y., Maler, O., Marcus, M., Pnueli, A., Shahar, E.: Symbolic model checking
with rich assertional languages. Theor. Comput. Sci. 256, 93–112 (2001)

26. Lynch, N.A., Shamir, B.P.: Distributed algorithms, lecture notes for 6.852, fall
1992. Tech. Rep. MIT/LCS/RSS-20, MIT (1993)

27. Malkis, A., Podelski, A., Rybalchenko, A.: Thread-modular verification is carte-
sian abstract interpretation. In: ICTAC’06. LNCS, vol. 4281, pp. 183–197. Springer
(2006)

28. Malkis, A., Podelski, A., Rybalchenko, A.: Precise thread-modular verification. In:
SAS’07. LNCS, vol. 4634, pp. 218–232. Springer (2007)

29. Namjoshi, K.S.: Symmetry and completeness in the analysis of parameterized sys-
tems. In: VMCAI’07. LNCS, vol. 4349, pp. 299–313. Springer (2007)

30. Pnueli, A., Xu, J., Zuck, L.: Liveness with (0,1,infinity)-counter abstraction. In:
CAV’02. LNCS, vol. 2404. Springer (2002)

31. Pnueli, A., Ruah, S., Zuck, L.D.: Automatic deductive verification with invisible
invariants. In: TACAS’01. LNCS, vol. 2031, pp. 82–97. Springer (2001)

32. Touili, T.: Regular Model Checking using Widening Techniques. Electronic Notes
in Theoretical Computer Science 50(4) (2001), proc. of VEPAS’01

