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Abstract—State estimation and control are intimately related
processes in robot handling of flexible and articulated objects.
While for rigid objects, we can generate a CAD model before-
hand and a state estimation boils down to estimation of pose
or velocity of the object, in case of flexible and articulated
objects, such as a cloth, the representation of the object’s state
is heavily dependent on the task and execution. For example,
when folding a cloth, the representation will mainly depend on
the way the folding is executed.

In this paper, we address the problem of learning a temporal
object model from observations generated during task execu-
tion. We use the case of dynamic cloth folding as a proof-of-
concept for our methodology. In cloth folding, the most impor-
tant information is contained in the temporal structure of the
data requiring appropriate representation of the observations,
fast state estimation and a suitable prediction mechanism.

Our approach is realized through efficient implementation
of feature extraction and a generative process model, exploit-
ing recent hardware advances in conjunction with principled
probabilistic models. The model is capable of representing the
temporal structure of the data and it is robust to noise in the
observations. We present results exploiting our model to classify
the success of a folding action.

I. INTRODUCTION
Robots assisting humans in natural environments need to

be capable of manipulating complex objects: objects that are
articulated or flexible and can be folded or bent. Enabling
manipulation of such objects requires modeling of state-
space that is more complex that the state-space for rigid
objects. One example is origami folding where a piece of
paper is transformed into a variety of different shapes. One
may model the whole process as a sequence of folds and
flips. A similar idea applies to household tasks such as
laundry folding. The important scientific question is how
to model these sequence so that it suitably describes the
possible states of an objects and facilitates robot control.
One way of addressing the problem is to use a parametrized
model. In the very recent work presented in [17], the authors
parametrize different garments by picking out a minimal set
of parameters consisting of defining points on the contour,
such that the desired range of shapes can be described.

We instead develop a non-parametric approach where we
learn the sequence of deformations that define a certain
action. In this way, we do not need to create a model
manually for a given object, but can rather learn the model
from observations. Furthermore, we do not have to define
a set of possible actions beforehand. The challenge here
is that it is desirable to learn from as few observations as
possible. With the proposed model we show that the state
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Fig. 1. An overview of the approach: from a video stream, features SH
are extracted at each image frame. At time t, SHt together with the previous
state St�1 generate a new state St . A robot can at any time query the model
about its current state. The more observations are available, the more certain
the state estimate is. A detailed description of the model is given in Fig. 2.

space can be kept very small. It is therefore possible to
populate that space, and thus learn, from a limited set of
observations. Our approach integrates state modeling and
prediction of flexible objects. We demonstrate the validity of
the method in both static scenarios, where the time it takes
to perform the manipulation is not an issue, and in dynamic
scenarios, where the timing must be taken into account. We
demonstrate the static scenarios through folding of clothing
items, and also apply the method to the dynamic folding
scenario presented in [21] to demonstrate the usefulness of
the method in scenarios where a high processing speed is
essential.

The main contributions of our work are:
• Methods for efficient extraction of visual features based

on an object’s shape.
• An approach for classification of a task sequence that

continuously integrates new observations and allows for
a decision at any given time step in that sequence.

• A fully generative model for state transitions.
The paper is structured as follows: In Sec. III we detail

related work. In Sec. IV the method using Shape Contexts is
described, and Sec. V details parts of the implementation. In
Sec. VI the method is evaluated and the results are discussed.
Sec. VII summarizes the paper.

II. SYSTEM OVERVIEW

As mentioned in the introduction, several important sce-
narios in robotic applications are characterized by intricate
temporal structures of state changes. An example being the
alterations of state induced by the deformation applied to

Fig. 1. An overview of the approach: from a video stream, features SH
are extracted at each image frame. At time t, SHt together with the previous
state St−1 generate a new state St . A robot can at any time query the model
about its current state. The more observations are available, the more certain
the state estimate is. A detailed description of the model is given in Fig. 2.

space can be kept very small. It is therefore possible to
populate that space, and thus learn, from a limited set of
observations. Our approach integrates state modeling and
prediction of flexible objects. We demonstrate the validity of
the method in both static scenarios, where the time it takes
to perform the manipulation is not an issue, and in dynamic
scenarios, where the timing must be taken into account. We
demonstrate the static scenarios through folding of clothing
items, and also apply the method to the dynamic folding
scenario presented in [21] to demonstrate the usefulness of
the method in scenarios where a high processing speed is
essential.

The main contributions of our work are:
• Methods for efficient extraction of visual features based

on an object’s shape.
• An approach for classification of a task sequence that

continuously integrates new observations and allows for
a decision at any given time step in that sequence.

• A fully generative model for state transitions.
The paper is structured as follows: In Sec. III we detail

related work. In Sec. IV the method using Shape Contexts is
described, and Sec. V details parts of the implementation. In
Sec. VI the method is evaluated and the results are discussed.
Sec. VII summarizes the paper.

II. SYSTEM OVERVIEW

Several important scenarios in robotic applications are
characterized by intricate temporal structures of state
changes. An example being the alterations of state induced
by the deformation applied to a shirt during folding. These
characteristics can be very complicated with respect to both
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Fig. 2. An overview of the system that follows two paths. In the training
stage, a set of sequences, where tasks are performed on an object, are used to
generate a set of characteristic states Strain given extracted features SHtrain.
These states are then used for training HMM:s for different actions or tasks.
In the execution stage, new observations are continuously processed and fed
to the HMM:s, which gives the possibility to observe the state of the object
at any time during task execution.

temporal structures of state changes. An example being the
alterations of state induced by the deformation applied to
a shirt during folding. These characteristics can be very
complicated with respect to both time and space changing at
a rapid pace. This makes modeling such data very demanding
as it requires detailed, often high-dimensional parameteriza-
tions which requires significant computational resources. In
this paper we are motivated by the notion that by encoding
just a rough temporal structure we can achieve a trade-off
between complexity of representation and descriptive power.
Reducing the complexity in the state representation allows to
focus on the modeling of the temporal signature where we
believe a significant portion of the interesting information is
retained.

As an example portraining these characteristics, albeit in
the extreme, we will look at the scenario of modelling a
rapidly folding cloth. This example shows all the challenging
characteristics: there is no obvious notion of state and the
temporal alterations is happening very rapidly. In this paper,
we present a data driven and non-parametric approach to
building a model of this scenario. Specifically, by learning
the notion of state from data we remove the constraint of
a semanticly meaningful representation. We exploit this to
find a small number of states. The states are in isolation
not informative but due to the small number it allows for
efficient temporal modelling. Further, the small number of
states allows for application of a non-parametric temporal
model removing the need to make further assumptions about
the transitional characteristics of states.

The central motivation behind the method is that we
are observing a continuous sequence of object deformation.
This means that between each observation, changes in the
object are subtile. These changes are not easy to capture
with an image based descriptor solely. However, by using a
robust descriptor and instead exploiting the temporal aspect
of the data by modeling the sequence we get much more

descriptive power. An additional requirement concerns the
applicability in dynamic scenarios. Here processing speed is
of the essence, so the descriptor and modeling should be
computationally cheap.

The purpose of the system is to model the state of an
object when provided with a video sequence showing the
deformation of the object due to some action a2A . Fig. ??
shows an overview of the proposed system which consists
of two separate paths: One training stage and one test stage.
A set of video sequences is used as training data, which
are generated from observations of different actions applied
to the object. The images are processed for features which
are used as a basis for generating object states, i.e. typical
deformations of the object when applied with actions in A .
These are then used together with the features to build one
temporal model of the sequences for each action.

In the test stage frames from a video sequence are con-
tinuously processed for features, which are then used in the
temporal model. The robot can at any point query the system
for its belief about its current state, something that can than
be used for e.g. classification or control.

In Sec. ?? we detail the different steps of the method,
and in Sec. ?? we include some implementation details
regarding the issue of achieving sufficient processing speeds
in dynamic scenarios.

III. RELATED WORK

Modeling and manipulation of deformable and articulated
objects is a natural requirement for a service robot. A
popular application in this field of research is manipulation
of clothing items. One aspect of this research is to estimate
the state of the object. By letting the robot hold a garment
with one hand Kita et al . [?][?] tried to estimate its state
by comparing a 3D point cloud of the object to simulated
models representing different states of that garment. By
knowing the state they could select a second part to grasp
and by that spreading the garment. Another work where
the authors seek the configuration of clothes is [?]. Similar
to this work they exploit observations from the temporal
sequence that occur when regrasping the cloth. However,
they make these observations when the object has reached a
static state, whereas we integrate new observations as they
become available. Wang et al . seeks the state of socks [?].
Using texture and shape features they want to predict e.g.
the orientation of a sock and whether it is inside out for the
purpose of pairing socks or turning them with the right side
out. Differently to this work the authors need to have very
high resolution images in order to detect small textures, and
in addition use a combination of features that would be to
slow for using in a dynamic scenario.

Another aspect concerns modeling of deformable objects.
A popular approach is to represent objects with a number of
key points, and model the interactions between these points
[?]. This has been used in our previous work for robot motion
generation for cloth folding [?].

Fig. 2. An overview of the system that follows two paths. In the training
stage, a set of sequences, where tasks are performed on an object, are used to
generate a set of characteristic states Strain given extracted features SHtrain.
These states are then used for training Hidden Markov Models (HMM)
for different actions or tasks. In the execution stage, new observations are
continuously processed and fed to the HMM:s, which gives the possibility
to observe the state of the object at any time during task execution.

time and space changing at a rapid pace. This makes mod-
eling such data very demanding as it requires detailed, often
high-dimensional parameterizations which requires signifi-
cant computational resources. In this paper we are motivated
by the notion that by encoding just a rough temporal structure
we can achieve a trade-off between complexity of represen-
tation and descriptive power. Reducing the complexity in the
state representation allows to focus on the modeling of the
temporal signature where we believe a significant portion of
the interesting information is retained.

As an example portraying these characteristics, albeit in
the extreme, we will look at the scenario of modeling a
rapidly folding cloth. This example shows all the challenging
characteristics: there is no obvious notion of state and the
temporal alterations is happening very rapidly. In this paper,
we present a data driven and non-parametric approach to
building a model of this scenario. Specifically, by learning
the notion of state from data we remove the constraint of
a semantically meaningful representation. We exploit this to
find a small number of states. The states are in isolation
not informative but due to the small number it allows for
efficient temporal modeling. Further, the small number of
states allows for application of a non-parametric temporal
model removing the need to make further assumptions about
the transitional characteristics of states.

The central motivation behind the method is that we
are observing a continuous sequence of object deformation.
This means that between each observation, changes in the
object are subtile. These changes are not easy to capture
with an image based descriptor solely. However, by using a
robust descriptor and instead exploiting the temporal aspect
of the data by modeling the sequence we get much more
descriptive power. An additional requirement concerns the
applicability in dynamic scenarios. Here processing speed is
of the essence, so the descriptor and modeling should be
computationally cheap.

The purpose of the system is to model the state of an

object when provided with a video sequence showing the
deformation of the object due to some action a ∈A . Fig. 2
shows an overview of the proposed system which consists
of two separate paths: One training stage and one test stage.
A set of video sequences is used as training data, which
are generated from observations of different actions applied
to the object. The images are processed for features which
are used as a basis for generating object states, i.e. typical
deformations of the object when applied with actions in A .
These are then used together with the features to build one
temporal model of the sequences for each action.

In the test stage frames from a video sequence are con-
tinuously processed for features, which are then used in the
temporal model. The robot can at any point query the system
for its belief about its current state, something that can than
be used for e.g. classification or control.

III. RELATED WORK

Modeling and manipulation of deformable and articulated
objects is a natural requirement for a service robot. A
popular application in this field of research is manipulation
of clothing items. One aspect of this research is to estimate
the state of the object. By letting the robot hold a garment
with one hand Kita et al . [14][15] tried to estimate its state
by comparing a 3D point cloud of the object to simulated
models representing different states of that garment. By
knowing the state they could select a second part to grasp
and by that spreading the garment. Another work where the
authors seek the configuration of clothes is [11]. Similar
to this work they exploit observations from the temporal
sequence that occur when regrasping the cloth. However, they
make these observations when the object has reached a static
state, whereas we integrate new observations as they become
available.

Another aspect concerns modeling of deformable objects.
A popular approach is to represent objects with a number of
key points, and model the interactions between these points
[8]. This has been used in our previous work for robot motion
generation for cloth folding [21].

Planning is another important aspect of manipulation. In
[4] the authors addresses robotic folding of clothes. The robot
uses the geometry of the object to plan a sequence of folds
to reach a final configuration. In [1] Balkcom et al . presented
work on robotic origami folding. Here the robot is presented
with a pattern detailing where the folds on the paper should
be done. Given this, the task of the robot is to create a plan
to execute these folds. This is a difficult task, but even when
the folding becomes more complex, it is like [4] still of the
static type. In dynamic scenarios, we cannot plan how the
object will evolve. Rather, once the motion is underway we
need to observe the object in order to make a prediction of
its evolution. This makes the dynamic scenario significantly
more challenging to model, and requires a suitable prediction
model which is difficult to design due to the high number of
degrees of freedom of a flexible object.



Fig. 3. The shape context for the blue point is created by locating remaining
selected points along the contour (red) with respect to the blue point in a
log-polar grid, represented by the circle in the figure. The bins in this grid
constitute the histogram that is the shape context. For visualization purposes,
the outer rings of the grid have been left out.

In [19] the robot spreads a towel by finding and grasping
two adjacent corners in the image using vision and two
robotic manipulators. The two hands are in constant contact
with the cloth, something that cannot always be expected. In
our work we instead explore objects in free motion. In [13],
the authors presented a high speed dynamic manipulation
task consisting of rotating a pizza using a pizza spade as
manipulator by controlling its the rotation and translation in
depth. The movements of the manipulator is controlled using
visual feedback with markers on the pizza. While markers
greatly simplify tracking at a high frame rate, using them is
not plausible in many real world scenarios.

IV. METHOD

In the sections below we provide a detailed description of
the method, but we first give an overview in relation to Fig. 2.
During the training stage a set of video sequences {Seqtrain}
are used, which are generated from different actions. For each
image in each sequence feature vectors SHtrain

t,s are generated
to produce the set SHtrain , {SHtrain

t,s }. These feature vectors
are used to produce a number of states Strain. In the following
step one Hidden Markov Model (HMM) is trained for each
action. Strain serve as basis for the states in these HMM:s.

Features SHtest
t are extracted from the test sequence

Seqtest . These features correspond to observations in the
HMM:s, which model the likelihood of the object being in a
certain state at a given time step, for a given action. A robot
can retrieve information from this system by regarding the
likelihood of the sequence having been generated from one
of the actions, and how likely the current state estimate of
the object is.

A. Feature Vector Extraction

The state of an object is a global property, i.e. the objects
deformation can only be described by relating all parts of
the objects to each other. By recognizing this, we utilize the
Shape Context descriptor to represent the image observations
[18]. This descriptor works on an object’s contour and
parametrizes the contour by creating a histogram of distances
and orientations between one point on the contour to the
rest of the points, see Fig. 3. Contours are extracted with
a slightly modified version of the Canny edge detector [9]
for the GPU. The difference is that the hysteresis step is
disregarded. This reduces edge quality, but in our setting the

difference was not significant. The shape context descriptor
has been used for many purposes, mainly for matching and
recognition [3], [18], but also in a manipulation context by
generating grasping points [7]. These works take advantage
of the fact that shape contexts can capture a large intra-
class variability. In this work we deal with deformable
objects such that smooth frame-by-frame transitions will be
observed. Nonetheless, depending on the object’s initial state
the evolution through time will be different, something that
shape contexts are able to capture.

We select M key points from the object’s contour, which
is extracted as explained in Sec. IV. The shape context
histogram is divided into rn radial, and αn angular bins.
An edge image at time t in sequence s is consequently
represented with a set of shape contexts SCt,s, which holds
one shape context corresponding to each of the key points
around the contour.

During training, a set of shape contexts for one image,
SCt,s, is generated for each training image, producing the set
SCtrain. Rather than using these directly as feature vectors,
we search for a more compact representation in order to
remove correspondence problems in matching. In [18] the au-
thors introduced Shapemes. These are canonical base shapes
that are formed by vector quantization on the shape contexts
using k-means (see Fig. 5). The idea is that key points in
close proximity will have very similar shape context, and
can be replaced by the same shapeme. By assigning the
shape context of each point to the closest shapeme, and
creating a Shapeme Histogram, we get a much more compact
descriptor while retaining most of the descriptive power.
Hence matching can be done by comparing shapemes rather
than the expensive combinatorial matching done in [3].

Algorithm 1 gives an overview of the feature vector
extraction. Details of some of the functions can be found
in Sec. V. After training, each image will be described by
a shapeme histogram SHt,s. The set of shapeme histograms
SH, created from all training images, form the foundation
when training the model.

B. State Generation

In our work there are no predetermined classes when using
shape contexts for classification as opposed to previous work
utilizing the same feature. Instead, we want to create our
own classes, or states, from the training set SH. Fig. 4(a)
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Fig. 5. Shape contexts are first created for each key point on the contour
(left figure). After clustering all shape contexts, each key point are assigned
to one of these clusters, creating a shapeme histogram (right figure).



(a) State transitions for three successful sequences (left) and three failed ones (right) of the first
three PCA-components (Principal Component Analysis) of SH. The sequences progress from
blue to dark red

(b) The plot shows the clustering of the three
first PCA-components of SH.

Fig. 4. Illustrations of the state space.

shows the evolution of a number of sequences from the first
three PCA-components of SH. This plot reveals that in the
beginning of each sequence, all examples are confined to
a restricted volume, and then spread as the object evolves
through time. We cluster this space, referred to as the state
space, to generate the states.

The clustering is done by training an R-component Gaus-
sian Mixture Model (GMM), p(x) = ∑

R
i=1 πiN(x|µi,Σi), us-

ing the Expectation-Maximization-algorithm. The GMM is
trained over the first Q PCA-components of SH. Since we
in this stage are interested in modeling the different states
the cloth might be in, all images are used regardless of which
action that produced the sequence.

An example of a resulting clustering can be seen in
Fig. 4(b). The GMM models the states of the cloth which, at
any given instance in a sequence, is computed as the most
likely component of the GMM given a shapeme histogram
SHt,s:

St,s = State(SHt,s) = argmax
i

πiNi(SHt,s|µi,Σi), (1)

C. Modeling using HMM

Now that each time step in each training sequence is
assigned to a state, we train a model over these sequences.
Given the temporal nature of the problem, we choose an
HMM as our model. An HMM defines a random process
that produces data sequences ξ in a way such that the data
in each time step is generated from one of a number of states
S. It is modeled with parameters λ a = {qa,T a,O}. O models
observation probabilities Oi = p(xt |St = i), i.e. the probability
in time step t of observing x given that state St = i. O is
shared over all actions. T a models transition probabilities
T a

j,i = pa(St+1 = j|St = i) for action a, i.e. the probability of
transitioning to state j in the next time step given the current
state St = i. qa denotes the prior probabilities, i.e. pa(S0 = i)
for action a.

From Sec. IV-B we have already computed the proba-
bilities O, i.e. if we know which GMM-component that
generated the observation, we have

Oi = p(SHt,s|St = i) = πiNi(SHt,s|µi,Σi). (2)

Since we have computed St,s = State(SHt,s), we can compute
T a:

T a
j,i = pa(St+1 = j|St = i) =

∑r,s[Sr,s = i∧Sr+1,s = j]

∑r,s[Sr,s = i]
. (3)

Here s∈ Seqtrain, r∈ 1..N−1, and [X ] is an indicator function

[X ] = 1 if X is true, 0 otherwise. (4)

For each action a we generate an HMM, λ a. Considering
the amount of data that we have (see Sec. VI), we do not
have to make any assumptions about the transitions, so a
non-parametric estimation of T a is preferable. qa can be
computed in the same way as T a, there is however not
enough data to make this estimation properly, so we set qa

to be a uniform prior. When creating the state space in Sec.
IV-B, we do not make any distinction between sequences
from different actions, since we want to model the whole
state space of the cloth, so when creating this space we
include examples from all actions. Therefore the difference
between different actions will largely be the transitions they
make through the state space.

For classification scenarios we want to decide whether a
new sequence s′ is generated from action a. We compare the
probability of the sequence being produced by the HMM:s,
and use maximum likelihood to select which one:

class(s′) = argmax
a

P(s′|λ a). (5)

The probability P(s′|λ a) is computed with the forward algo-
rithm. Although the experiments in this paper perform the
classification for the entire sequence, an additional benefit
of using a temporal model is that it is possible to read out
probabilities from the HMM after any given time step. This
means that it is possible to make the classification at an
earlier stage, but with potentially reduced certainty.

An additional benefit of using a generative model is that
we can synthesize state transitions which could be linked to
motor commands for control in manipulation settings.



Algorithm 1 Feature Extraction
for s ∈ Seqtrain do

for t = 1 to N do
Contourt,s← extractContours(Imaget,s)
Pt,s← getKeyPoints(Contourt,s,M)
SCt,s← getShapeContext(Pt,s)

SC←{SCt,s|∀t,∀s}
Shapemes← k-means(SC,K)
for each SCt,s in SC do

for i = 1 to M do
SHt,s[ getClosestShapeme(SCt,s(i)) ]← 1

SH←{SHt,s|∀t,∀s}

Algorithm 2 P← getKeyPoints(Contour,M)

1) Parallel b ∈ B: sb← countEdgepixels(Contour)
2) CPU: cs0← 0
for b ∈ B do

csb = csb−1 + sb

3) Parallel b ∈ B:
Pall [csb−1 : csb]← getEdgepixels(Contour)

4) P← sample(Pall ,M)

Algorithm 3 SC← getShapeContext(P)
Require: SC[a,b] = 0

dx = logα|p−P(x)|, θx = angularBin(p,P(x))
atomicAdd(SC[dx,θx],1)

V. IMPLEMENTATION DETAILS

Using the graphics processing unit (GPU) significantly
speeds up certain types of processing, in particular the image
processing, in which tasks are often easily parallelizable, like
computing gradients for the edge detection. Others are easier
to implement sequentially on the CPU. Here we provide
implementation details for some specific problems that were
solved on the GPU to speed up processing.

a) Key Point Sampling: Given an edge image, we need
to sample the contour in M places. These should be evenly
distributed over the contour. In a sequential implementation
the first step would have been to search for contour points
in the image, generate a list of contour points by tracing
the contours and then evenly sampling this list. The problem
with a GPU implementation is that the GPU processes small
blocks (16x16 pixels in our case) of the image separately,
and there is no way to transfer information between these
blocks in the same execution. Therefore we cannot know how
many key points to sample from each block. We solve this by
running the sampling in several execution steps according to
Algorithm 2. Step 1) is done using parallel reduction on each
block, and step 3) can be done by first sorting the edge pixels
within a block, and then copying the number of edge pixels
in that block, to the final list Ptot . Sorting within a block
can be done efficiently using bitonic sort [2]. Finally step
4) samples this list on the CPU, which is done by randomly
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Fig. 7. The distribution over states for the two actions in the static scenario.

picking one point, and then evenly sample another M− 1
points. The results will slightly differ from the sequential
algorithm, but it will produce an evenly distributed sampling.

b) Shape Context Generation: For generating shape
contexts for a set of key points, we let each block compute
the shape context for one point p, and each thread in that
block is responsible for computing one distance. The details
of the shape context kernel can be found in Algorithm 3.
Here angularBin(p,q) returns the index for one of six equally
spaced angular bins that the point pair p,q is placed in.
By using atomicAdd, we ensure that two threads cannot
simultaneously increase one specific bin.

VI. EXPERIMENTS AND EVALUATION

We run two different experiments showing the validity
of our approach. The first experiment is static, describing
the folding of a shirt, The second experiment is different,
being extremely dynamic, depicting the rapid folding of a
piece of thin cloth. The challenges of the two experiments
are different, in the first experiment the state transitions are
slow but the variance in the different states is large. This will
test the descriptive range of the image feature. In the latter
experiment the state changes are very subtle which will test
the resolution of the state representation. Furthermore, the
changes are very rapid testing the resolution of our algorithm
and the efficiency of our implementation. The model is
trained as described in Sec. IV, and the testing procedure
for a sequence is as follows:

1) For each image, detect contours, select key points and
compute shape contexts.

2) For each shape context, find closest shapeme and
construct SH, i.e. the sequence of feature vectors for
the test images.

3) Project the vectors on the Q first PCA-components
from the training.

4) Run SH on λ a,∀a using the forward algorithm.

A. Static Scenario

We demonstrate the system in a t-shirt folding scenario
using two actions, correct fold and bad fold (Fig. 6). The
execution of both actions are similar: Folding the left side,
the right side and then from the top. With the latter action the
fold was however done sloppily, producing a result deviating
from the expected one. We recorded ten sequences of each
action, varying aspects like time to fold, final size of the
folded t-shirt, and in the bad fold case, different deviations
from the correct fold. Fig. 7 shows the distributions of states
for both actions. These are very similar, indicating that it is



Fig. 6. Examples of instances of the correct fold action (top) and the bad fold action (bottom).

not about which states the t-shirt takes during the action. This
justifies the central belief of this paper, that the information
lies in the transitions through these states.

For training we randomly selected six sequences of each
action, and used the remaining for testing. The procedure was
repeated 100 times to get an average. The sequences were
between 400 and 600 frames, and we use every fifth frame
for training. Between 1000 and 2000 contour points were
detected in each image, and M = 250 of them were sampled.
For Shape Contexts, 10 angular and 6 radial bins were used,
and K = 32 shapemes were created. We tried different R and
Q values, but not so much difference could be observed. For
R = 11,Q = 7 we got an average classification result of 0.81
for both actions.

Having a temporal model is beneficial in many ways since
it also allows for early detection of errors. In the static case
the HMM also makes the method time-invariant. One-shot
classification, such as classifying each frame using an SVM,
would be hard since the data is not aligned. We tried to
classify the last image of the sequences (the folded shirt)
with an SVM, but this turned out to give poor performance
slightly above random. Even if the data would be aligned, we
would run into the problem of having too few examples to
train from, contrary to the sequence of data for the temporal
model as discussed above. In the dynamic scenario the data
is in fact aligned due to the same motion repeatedly being
produced by the robot. In this case we compare the temporal
model with a different SVM-approach as discussed next.

B. Dynamic Scenario
In order to test the system in dynamic scenarios, we use

the scenario of [21] in which the robot holds a cloth at its
upper rim and grabs the lower rim in the air by swinging the
cloth (See Fig. 8). Due to parameters that are hard to control,
like initial position and stretching of the cloth, many attempts
fail. This results in two actions being used: successful folding
and failed folding. We let the robot discriminate between
these cases. The whole folding sequence takes around 400 ms
which means that the modeling has to be done at high speed.

We conducted experiments using 9 instances of the suc-
cessful folding, and 18 of the failed folding. Images are
captured at 1000 Hz, and we use every third frame for
both training and testing. On average between 500 and 1500
contour points were detected in the images, and we sample
M = 128 from each one of them. For training, 12 sequences,
6 from each action, containing 128 images each were used,

which gives |SCtrain| ' 200 000 vectors. The vectors were
clustered into K = 32 shapemes. 12 sequences with 128
images each means that 1536 Shapeme Histograms were
used to create the state space. By using R ≤ 13 we have
on average at least 118 vectors per cluster. As in the static
case, we repeated this 100 times to get a reliable average.

Some parameters need to be set, mainly concerning the
number of key points to be used, the size of the shape
context histogram, the number of shapemes, how many PCA-
components to use and how many clusters in the final state
space. We present results by varying the final number of
PCA-components to use, Q, and the number of clusters used
in the state space, R. Tab. I shows results from running
the classification over a few different parameter settings. As
seen from the table, like in the static case the results does
not vary significantly for the different parameter settings,
indicating robustness of the method. The numbers are taken
from sequences classified using all available observations.
The somewhat low classification rate indicates that there is
overlap between successful and unsuccessful attempts. This
is partly due to the single frontal view of the scene not
providing enough discriminative information.

Fig. 9 shows two examples of the output of the HMM
classification throughout the sequence, averaged over 100
runs. As expected, given the results in Fig. 4(a), in the
beginning of the sequence the classification is random, while
the benefit of using transitions can be seen after a bit more
than half way into the sequence when the classification rate
of both successful and failed examples increases.

For reference, to emphasize that the classification is de-
pending on time, we use a bag-of-words approach and train
a support vector machine (SVM) as follows: For time steps
1, .., t we create a histogram over the states computed as

Fig. 8. Frames 0, 100, 200, 300, 400 and 450 of a successful folding.



(R,Q) (9,3) (9,5) (9,7) (9,9) (11,3) (11,5) (11,7) (11,9) (13,3) (13,5) (13,7) (13,9)
TP 0.72 0.75 0.70 0.67 0.74 0.77 0.70 0.77 0.68 0.72 0.69 0.73
TN 0.70 0.67 0.63 0.67 0.69 0.68 0.69 0.66 0.70 0.72 0.70 0.68

TABLE I
THE TABLE SHOWS THE TRUE POSITIVE (CORRECTLY CLASSIFIED SUCCESSFUL EXAMPLES) AND TRUE NEGATIVE RATES (CORRECTLY CLASSIFIED
FAILED EXAMPLES) FROM RUNNING THE CLASSIFICATION OVER A NUMBER OF PARAMETER SETTINGS (R,Q). BEST PERFORMANCE IS ACHIEVED

FOR (R,Q) = (13,5) WHICH GIVES A CLASSIFICATION RATE OF 72% FOR BOTH CLASSES.

in Eq. 1 and train the SVM using these. When t is small
there is naturally too little information for a good classifier,
but even as t grows, the classifier fluctuates around random
performance, clearly showing the need for a temporal inter-
pretation of the data. Furthermore, by using an HMM there
is natural compensation for differences in time to perform
an action, as shown in the static case.

VII. CONCLUSIONS

Robots will need the ability to observe and understand
actions that are performed around them. One essential aspect
of this is understanding how objects behave. While rigid ob-
jects are easily modeled, flexible objects are inherently much
more complex, and therefore maybe even more important to
understand. Furthermore, some actions that are dynamic in
nature, i.e. the those where the temporal aspect cannot be
affected by the performer, puts additional requirements on
the modeling.

In this work we used folding of objects as scenarios for
modeling and evaluating an effective integration of vision
based representation for complex objects in synergy with
a principled probabilistic method for encoding of temporal
tasks. The model describes how the contour of the object
evolves through a folding sequence. We showed how this can
be used to monitor that the execution is evolving as planned.
The system was evaluated in two scenarios - one involving
human folding and one involving rapid robot motion. Our
model is fully generative and could be coupled with an
additional control mechanism in order to generate a more
active robot execution. The model also allows us to make
continuous predictions over time, accumulating evidence to
make a more informed decision.

The next step is to integrate the presented system in the
dynamic scenario with an active feedback loop to perform
corrective motions improving the ratio of successful attempts.
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Fig. 9. The plots show the classification rates over time for parameter
settings (Q,R) = (9,3) (left), and (Q,R) = (13,3) (right) as read out from
the HMM:s, and averaged over 100 runs.
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