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† ACCESS Linnaeus Centre, Signal Processing Lab, KTH Royal Institute of Technology, 10044 Stockholm.

Abstract—The indirect learning architecture (ILA) is the most
used methodology for the identification of Digital Pre-distorter
(DPD) functions for nonlinear systems, particularly for high
power amplifiers. The ILA principle works in black box modeling
relying on the inversion of input and output signals of the
nonlinear system, such that the inverse is estimated. This paper
presents the impact of disturbances, such as noise in the DPD
identification. Experiments were performed with a state-of-art
Doherty power amplifier intended for base station operation
in current telecommunication wireless networks. As expected,
a degradation in the performance of the DPD (measured in
normalized mean square error (NMSE)) is found in our ex-
periments. However, adjacent channel power ratio (ACPR) can
be a misleading figure of merit showing improvement in the
performance for wrongly estimated DPD functions.

I. INTRODUCTION

The “green” trend drives technology towards increased

efficiency also in telecommunication. Simultaneously, the re-

quirements from the customers in terms of capacity increases

every year with the increasing number of mobile devices.

These two simultaneous demands put more and more stringent

requirements on the components handling the signals. One

such component that is required in all wireless communication

is the radio frequency (RF) power amplifier (PA).

The RF PA is the active component creating the highest

power levels in any wireless communication system, which

means that it has to operate with high efficiency in order not

to waste supplied power. On the other hand, highly efficient

operation of a PA when using amplitude modulated signals

typically results in nonlinear distortions [1] that degrade

the performance of the network. For this reason, regulatory

requirements limit the amount of distortion that is tolerable,

commonly in the form of limits on the power emitted in

neighboring frequency channels.

Due to these requirements it has become necessary to

improve the linearity and thereby reducing the distortions.

One such method is that of digital pre-distortion (DPD). A

commonly used method to find the parameters of the DPD is

the indirect learning architecture (ILA) [2]. The ILA is based

on identifying a post-distorter that is used as a pre-distorter.

The advantage of the ILA is that the computational burden

is considerably reduced compared to P :th order inverses in

the case of Volterra systems or direct learning approaches [2].

However, the ILA requires an inversion of a system where the

Fig. 1. ILA for inverse identification.

noise is inside of the regression matrix, a nonlinear error-in-

variables problem [3]. This effect is investigated in this paper.

The structure of the paper is as follows. Section II introduces

the ILA, the modeling, and shows the derivation of the bias in

model parameters due to the noise. The experimental set up

is described in section III. Results and discussion are given in

section IV and the conclusions are presented in section V.

II. THEORY

This section introduces DPD, the ILA and derives the bias

terms due to the noise when using a linear least-squares

estimation procedure.

A. DPD and the ILA

The principle of DPD parameter estimation using the ILA

is depicted in Fig. 1. The output signal y of the device under

test (DUT) was measured. The input signal u is known and is

considered to be noise free, as illustrated in Fig. 1 a) and b).

the input and output signals are used to identify the inverse

system using the ILA principle [2], where the input is treated

as output and the output as input.

In a more realistic scenario, the measurement process will

add noise to the sequences [4]. Thus, the output signal (de-

noted z in the Fig. 1 a) will be polluted by a noise sequence (v)

to render the measured output (y). This creates the nonlinear

error-in-variables problem to be studied in this paper.



B. Modeling

To estimate the behavior of a system from input and

output measurements is known as system identification. The

identification process involves various issues such as modeling

system structure, model order, estimation of model parameters

and its validation [5]. In this paper the behavioral model used

for the identification is extended envelope memory polynomial

(EEMP) [6]. EEMP is described by the following equation

y(n) = H1 +H2, (1)

with

H1 =

M1∑

m1=0

hm1
u(n−m1), (2)

and

H2 =

[P+1

2 ]∑

p=2

M2∑

m2=0

h2p−1
m2

u(n) |u(n−m2)|
2(p−1)

, (3)

where M1 and M2 are two separate memory depths, P is

the model order, hm1
and hm2

are the model coefficients.

EEMP is an extension of the envelope memory polynomial

(EMP) [6] which includes linear memory terms to encounter

the frequency dependency of the linear term.

C. Identification

The estimation of the model parameters from a set of input-

output measurements is performed by minimization of the

sum-squared error between the observed data and the model

output:

J(θ) =
N−1∑

n=0

|e(n)|
2
=

N−1∑

n=0

|y(n)− f(u(n), θ)|
2
. (4)

In (4), J(θ) defines the cost function to be optimized, u(n)
and y(n) are the n : th sample of the input and output signals,

respectively, and N the total number of samples. f(u(n), θ)
is the nonlinear function describing the input to the output

relationship.

The model in (1) is linear in the parameters. Therefore, the

problem of estimating the parameters θ can be rewritten in

matrix form as

J(θ) = ‖y −Hθ‖
2
2 , (5)

where H = H(u) is the regression matrix. Hence, the least

square estimation (LSE) criterion is employed to find this

estimate as:

θ̂ = (H∗H)−1H∗y. (6)

For the case presented in this paper, input and output are

interchanged in equation 1 accordingly to the ILA principle

for identifying the inverse system.
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Fig. 2. Frobenius norm of the covariance and cross-covariance matrices as
a function of the number of samples N.

D. Noise Impact

As described in a previous section, the identification is

made using LSE techniques (QR decomposition for example

in Matlab) by solving:

θ̂ = argmin
θ

{
‖u−Hθ‖

2
2

}
. (7)

With θ containing the parameters of the inverse model. The

regression matrix formed by the output sampled sequence is

polluted with additive white Gaussian noise (AWGN) of zero

mean and σ2 variance. Hence the regression matrix gets a

contribution from the noise that is model dependent such a

contribution is denoted by He in the following equation:

H = H(y + v) = H0 +He. (8)

Using LSE in equation (8) yields:

θ̂ = ((H0 +He)
∗(H0 +He))

−1(H0 +He)
∗u. (9)

Note that the matrix inverse in the right hand side of

equation (9) contains the terms H∗

eH0, and H∗

0He. These

terms represent the cross covariance matrices of output of

the model and disturbance. Since the noise is uncorrelated

with both the input and output sequences, for a number of

samples (N ) that goes to infinity, the covariances will tend to

zero. A simulation of the DPD identification with an output

sequence polluted with AWGN yields the results shown in

Fig. 2. The signal-to-noise-ratio (SNR) is set to 28 dB and

the covariance and cross covariance matrices are estimated

for several number of samples and normalized to H∗

0H0. Fig.

2 shows the Frobenious norm of respective matix (in dB)

for different number of samples. It is clear that, the cross-

covariance matrix reduces its Frobenious norm with a trend

towards zero.
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Fig. 3. Measurement setup to assess the impact of noise in the DPD
identification using the ILA principle.

Hence, for large N the cross-covariance matrices H∗

eH0 and

H∗

0He can be neglected. Thus, equation (9) can be written as:

θ̂ = [H∗

0H0 +H∗

eHe]
−1

(H0 +He)
∗u (10)

Using the well known inverse matrix lemma, the last ex-

pression can be expanded in:

θ̂ = (H∗

0H0)
−1H∗

0u+B, (11)

with

B = Yu−
{
X [I+X]

−1
(H∗

0H0)
−1

}
(H∗

0 +H∗

e)u. (12)

Previous equations show that the estimated θ̂ contains a bias

term (B) which depends on the noise level. With the matrices

X, and Y denoting

Y = (H∗

0H0)
−1H∗

e (13)

X = (H∗

0H0)
−1(H∗

eHe). (14)

III. EXPERIMENTAL

The measurement setup is shown in Fig. 3. It consists of

a vector signal generator (VSG), a driver amplifier, the PA

under test, a wideband downconverter and an analog-to-digital

converter (ADC) with a sampling rate of 400 MHz and a

resolution of 14 bits. The sampling frequency was chosen to

capture an exact number of points for every measured period,

known as coherent sampling [7].

Test signals were 5 MHz wide random multitone signals

with crest factor of approximately 10 dB. Two signal sets were

used, one for identification of the predistorter parameters and

one for the validation.

Performance results are presented in terms of normalized

mean-square error (NMSE) and as adjacent channel power

leakage ratio (ACPR). The NMSE is given by

NMSE =

∫
Φe(f) df∫
Φy(f) df

(15)
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Fig. 4. Power spectrum of the output and DPD output of the PA. Two cases
shown, SNR = 15 dB and noise-free for identification.

where Φe(f) is the power spectrum of the model error e(n) in

(4) and Φy(f) is the power spectrum of the measured output

signal y(n). The integration is carried out across the available

bandwidth. The ACEPR is given by

ACEPR =

∫
adj. ch.

Φe(f) df∫
ch.

Φy(f) df
, (16)

where the integration in the numerator is done over the

adjacent 5 MHz wide channel with the largest amount of power

and the integration in the denominator is done over the input

channel band.

The PA under test is a Doherty amplifier intended for 3G

operation. In the experiments, this DUT was not operated in

extreme compression; since models usually show lower perfor-

mances in this regimes. Our aim is to depict the noise impact

on the DPD parameter identification. Hence, the amplifier was

operated under mild saturation conditions and the model used

for it has shown good performances.

IV. RESULTS

The measurement step was performed with coherent aver-

aging to minimize the impact of the measurement system, a

coherent averaging of 800 times is performed in the measured

sequences. Such process reduces the level of the noise floor

of the VSA. In a subsequent step, the measured output iden-

tification sequence was digitally contaminated with complex

circularly symmetric Gaussian noise at certain SNR to further

proceed with the identification of the DPD parameters as

described in Section II. As shown earlier in this paper, the

noise polluting the output sequence creates a bias estimate of

the DPD coefficients. Further, such a bias depends on the DPD

model as well as on the SNR conditions of the experiment.
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Fig. 5. DPD performance (measured in NMSE) under different SNR
conditions in the identification.
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Fig. 6. DPD performance (measured in ACPR) under different SNR
conditions in the identification.

Fig. 4 shows the power spectrum of the output (no com-

pensated) and the DPD output for two levels of noise in the

identification of the DPD.

Fig. 5 shows the NMSE obtained with DPD for different

SNRs in the identification output sequence. The NMSE level

obtained without DPD is also shown in the Fig.5.

Fig. 6 shows ACPR results with and without applying

DPD for different SNR conditions in the identification. This

result indicates for lower SNRs, e.g. lower than 25dB, the

performance of DPD as a measure of ACPR has improved as

shown in Fig. 6.

Fig. 5 indicates that NMSE degrades when noise is present

in the measured data, such degradation can worse the perfor-

mance compared to the case where no DPD is applied (SNR

≈ 23dB).

On the other hand, ACPR shows a better performance which

can be a misleading result if only this metric is chosen as a

figure of merit for analysis of the performance.

V. CONCLUSION

DPD identification using the ILA principle with noisy

output sequences results in a bias estimate when using LSE

solution. Such bias degrades the DPD performance measured

as NMSE and ACPR. As pointed in Fig. 5 and Fig. 6, the

ACPR can be a misleading figure of merit for assessing the

DPD performance of the DPD function in the presence of

noise.

REFERENCES

[1] S. Cripps, Advanced Techniques in Rf Power Amplifier Design. Upper
Saddle River, NJ, USA: Artech House, 2002.

[2] C. Eun and E. Powers, “A new volterra predistorter based on the indirect
learning architecture,” IEEE Trans. Signal Process., vol. 45, no. 1, pp.
223 –227, jan 1997.

[3] L. Ljung, System identification: theory for the user. Upper Saddle River,
NJ, USA: Prentice-Hall, Inc., 1986.

[4] D. Wisell, D. Ronnow, and P. Handel, “A technique to extend the
bandwidth of an rf power amplifier test bed,” IEEE Trans. Instrum. Meas.,
vol. 56, no. 4, pp. 1488 –1494, Aug. 2007.

[5] P. N. Landin, M. Isaksson, and P. Händel, “Parameter extraction and
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