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Abstract

In this report, the propagation of TEM waves along a coaxial waveguide with
a step discontinuity on its outer wall is investigated rigorously by applying direct
Fourier transform and reducing the problem into the solution of a modified Wiener-
Hopf equation. The solution for the field terms are determined in terms of infinite
number of unknown coefficients which satisfy an infinite set of linear algebraic
equations. These equations are solved numerically and the effect of area ratio is
presented graphically at the end of the analysis. Also, the same problem is analyzed
by applying mode matching technique and the results of the two approaches are
compared. It is observed numerically that the Wiener-Hopf technique provides a
better convergence than the mode matching technique.

1 Introduction

Electromagnetic wave propagation in waveguides has been an interesting topic and
subject to various engineering problems, such as microwave and transmission line mea-
surement techniques, filters, connectors and matching devices, one of which is the mea-
surement setup described in [1], where experiments utilizing electromagnetic pulses have
been performed on a 80 km long High Voltage Direct Current (HVDC) power cable in a
factory [2] and on the 250 km long Baltic HVDC power cable [3]. Low frequency elec-
tromagnetic modeling of this measurement setup is very interesting as there exist many
scattering mechanisms such as different inner and outer radii of two connected coaxial
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cables (step discontinuity on the outer and inner walls), different dielectric media, etc.
Among these, scattering by step discontinuities in coaxial waveguides has been drawing
interest since many decades. It was first studied by Whinnery in 1944 where he obtained
an equivalent circuit by placing an admittance at the plane of discontinuity in the case
of TM waves [4]. Then in 1998, Mongiardo et. al. analyzed the same problem with
generalized network formulation by the use of Green’s function [5]. Yu et. al. applied
nonuniform FDTD technique to study cascaded circularly symmetric discontinuities on
waveguides in 2001 [6]. Finally in 2006, Fallahi and Rashed-Mohassel considered dyadic
Green’s function approach using the principle of scattering superposition for the problem
where there is a step discontinuity on the inner wall [7].

In this report, TEM wave propagation along a coaxial waveguide with a step discon-
tinuity on the outer wall is analyzed rigorously, in order to understand the effect of the
area expansion on the scattering phenomenon as part of the above mentioned measure-
ment setup. The analysis is done by considering the same method as in [8] where direct
Fourier transform is applied and the problem is reduced into the solution of a modified
Wiener-Hopf equation. The solution for the field terms are determined in terms of infinite
number of unknown coefficients which satisfy an infinite set of linear algebraic equations.
These equations are solved numerically and the effect of area ratio on the reflection and
transmission coefficients is presented graphically at the end of the analysis.

The same problem is then analyzed by applying the mode matching technique as
described in [9]. This technique has been widely used in previous works involving step
discontinuities at waveguides in general [10, 11, 12] and at coaxial waveguides [13, 14]
when the discontinuities exist both on inner and outer walls. Following a similar proce-
dure as described in [12], the scattering coefficients are determined and they are compared
to the ones obtained via the Wiener-Hopf technique. Besides, it is observed numerically
that the Wiener-Hopf technique provides a better convergence than the mode matching
technique. The flow of energy is also analyzed in this report.

A time dependence exp (−iωt) with ω being the angular frequency is assumed and
supressed throughout the analysis.

2 Formulation of the problem

Consider a semi-infinite coaxial cylindrical waveguide whose inner and outer cylin-
drical walls are located at S = {ρ = a,−∞ < z < 0} and S = {ρ = b,−∞ < z < 0} is
connected to another semi-infinite coaxial cylindrical waveguide whose inner and outer
cylindrical walls are located at S = {ρ = a, 0 < z <∞} and S = {ρ = d, 0 < z <∞}
(see Figure 1).

Let the incident TEM mode propagating in the positive z direction be given by

H i
φ (ρ, z) = ui (ρ, z) =

eikz

ρ
(1)

where k is the propagation constant which is assumed to have a small positive imaginary
part corresponding to a slightly lossy medium. The lossless case can then be obtained
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Figure 1: The geometry of the problem.

by letting Im (k) → 0 at the end of the analysis. In virtue of the axial symmetry of the
problem, all the field components may be expressed in terms of Hφ (ρ, z) = u (ρ, z) as

Eρ =
1

iωε

∂

∂z
u (ρ, z) and Ez = − 1

iωε

1

ρ

∂

∂ρ
[ρu (ρ, z)] (2)

where the other components of the fields are zero. For the sake of analytical convenience,
the total field uT (ρ, z) can be expressed as

uT (ρ, z) =

{
ui (ρ, z) + u1 (ρ, z) , a < ρ < b
u2 (ρ, z)H (z) , b < ρ < d

(3)

with H (z) being the Heaviside step function and where u1 (ρ, z) and u2 (ρ, z) are the
scattered fields which satisfy the Helmholtz equation[

∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

∂2

∂z2
+

(
k2 − 1

ρ2

)]
uj (ρ, z) = 0 , j = 1, 2 (4)

in their domains of validity with the boundary conditions

u1 (a, z) + a
∂

∂ρ
u1 (a, z) = 0 , z ∈ (−∞,∞) , (5)

u1 (b, z) + b
∂

∂ρ
u1 (b, z) = 0 , z ∈ (−∞, 0) , (6)

u2 (d, z) + d
∂

∂ρ
u2 (d, z) = 0 , z ∈ (0,∞) , (7)

∂u (ρ, 0)

∂z
= 0 , ρ ∈ (b, d) , (8)

continuity relations

u1 (b, z) + b
∂

∂ρ
u1 (b, z) = u2 (b, z) + b

∂

∂ρ
u2 (b, z) , z ∈ (0,∞) , (9)
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and

u1 (b, z) +
eikz

b
= u2 (b, z) , z ∈ (0,∞) . (10)

To ensure the uniqueness of the mixed boundary-value problem defined by the Helmholtz
equation and the conditions (5)–(9), one has to take into account the radiation and edge
conditions [9] as well which are(

∂u

∂ρ
− iku

)
= O

(
ρ−1/2

)
, ρ→∞ (11)

and
Hφ = O

(
z2/3

)
, Ez = O

(
z−1/3

)
, z → 0, (12)

respectively.
The Fourier transform of the Helmholtz equation satisfied by u1 (ρ, z) with respect to

z, in the range of z ∈ (−∞,∞) gives[
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

(
K2 (α)− 1

ρ2

)]
F (ρ, α) = 0. (13)

−k

k

Re α

L

Im α

Figure 2: Complex α−plane.

Here K (α) =
√
k2 − α2 is the square-root function defined in the complex α-plane,

cut along α = k to α = k + i∞ and α = −k to α = −k − i∞, such that K (0) = k (this
choice of branch will be assumed for all square-root functions throughout the paper, see
Figure 2), and the Fourier transform is defined by

F (ρ, α) = F− (ρ, α) + F+ (ρ, α) (14)

where

F± (ρ, α) = ±
∫ ±∞
0

u1 (ρ, z) eiαzdz. (15)
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Notice that F+ (ρ, α) and F− (ρ, α) are unknown functions which are regular in the half-
planes Im (α) > Im (−k) and Im (α) < Im (k), respectively. The general solution of (13)
is determined as

F (ρ, α) = A (α) J1 (Kρ) +B (α) Y1 (Kρ) . (16)

Here J1 (Kρ) and Y1 (Kρ) are the usual Bessel functions of the first and second kinds,
respectively. Applying Fourier transform to the boundary condition (5) yields

B (α) = −A (α)
J0 (Ka)

Y0 (Ka)
. (17)

Substituting (17) into (16), one gets

F (ρ, α) =
A (α)

Y0 (Ka)
[J1 (Kρ) Y0 (Ka)− J0 (Ka) Y1 (Kρ)] . (18)

On the other hand, the Fourier transform of the boundary condition (6) gives

F− (b, α) + bF ′− (b, α) = 0, (19)

which allows one to write

A (α) =

[
F+ (b, α) + bF ′+ (b, α)

]
Y0 (Ka)

Kb [J0 (Kb) Y0 (Ka)− J0 (Ka) Y0 (Kb)]
. (20)

Hence, equation (18) becomes

F (ρ, α) = P+ (α)
[J1 (Kρ) Y0 (Ka)− J0 (Ka) Y1 (Kρ)]

Kb [J0 (Kb) Y0 (Ka)− J0 (Ka) Y0 (Kb)]
, (21)

where P+ (α) stands for
P+ (α) = F+ (b, α) + bF ′+ (b, α) . (22)

Similarly, the scattered field u2 (ρ, z) satisfies the Helmholtz equation in the region ρ ∈
(b, d), z ∈ (0,∞), whose Fourier transform with respect to z yields[

∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

(
K2 (α)− 1

ρ2

)]
G+ (ρ, α) = −iαf (ρ) , (23)

where the boundary condition (8) is taken into account while G+ (ρ, α) and f (ρ) stand
for

G+ (ρ, α) =

∫ ∞
0

u2 (ρ, z) eiαzdα, (24)

and
f (ρ) = u2 (ρ, 0) , (25)

respectively. A particular solution of (23) can be expressed in terms of the Green’s
function related to this differential equation, which satisfies[

1

ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+

(
K2 (α)− 1

ρ2

)]
G (ρ, t, α) =

1

t
δ (ρ− t) , ρ, t ∈ (b, d) (26)
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where
G (t+ 0, t, α)− G (t− 0, t, α) = 0 (27)

and
∂

∂ρ
G (t+ 0, t, α)− ∂

∂ρ
G (t− 0, t, α) =

1

t
, (28)

with the conditions

G (b, t, α) + b
∂

∂ρ
G (b, t, α) = 0 (29)

and

G (d, t, α) + d
∂

∂ρ
G (d, t, α) = 0. (30)

The general solution of (26) is in the form of

G (ρ, t, α) =

{
AJ1 (Kρ) +BY1 (Kρ) , b < ρ < t
CJ1 (Kρ) +DY1 (Kρ) , t < ρ < d

. (31)

Taking into account the equations given in (27-30), the Green’s function is determined
as

G (ρ, t, α) =
Q (ρ, t, α)

M (b, d, α)
(32)

with

Q (ρ, t, α) =
π

2

{
L (t, d, α)L (ρ, b, α) , b < ρ < t
L (t, b, α)L (ρ, d, α) , t < ρ < d

(33)

and
M (ρ1, ρ2, α) = J0 (Kρ1) Y0 (Kρ2)− J0 (Kρ2) Y0 (Kρ1) . (34)

In (33), L (ρ1, ρ2, α) stands for

L (ρ1, ρ2, α) = J1 (Kρ1) Y0 (Kρ2)− J0 (Kρ2) Y1 (Kρ1) . (35)

Hence, the general solution of (23) can be expressed as

G+ (ρ, α) =
1

M (b, d, α)
{C (α) [J1 (Kρ) Y0 (Kd)− J0 (Kd) Y1 (Kρ)]

−iα

∫ d

b

f (t)Q (t, ρ, α) tdt

}
. (36)

The Fourier transform of the continuity relation (9) yields

C (α) =
P+ (α)

Kb
(37)

and (36) becomes

G+ (ρ, α) =
1

K2bM (b, d, α)
{P+ (α)K [J1 (Kρ) Y0 (Kd)− J0 (Kd) Y1 (Kρ)]

−iαb

∫ d

b

f (t)K2Q (t, ρ, α) tdt

}
. (38)
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Although the left-hand side of (38) at ρ = b is a regular function of α in the upper
half-plane, the regularity of the right-hand side is violated by the presence of simple poles
occurring at the zeros of K2M (b, d, α) lying in the upper half of the complex α−plane,
namely, at α = γm’s (m = 0, 1, 2, ...). These poles can be eliminated by imposing that
their residues are zero. This gives

f0 =
P+ (k)

ikb log (d/b)
(39)

and

fm =
2

iγmb

Y0 (Γmd) Y0 (Γmb)[
Y2

0 (Γmb)− Y2
0 (Γmd)

]P+ (γm) , m = 1, 2, ... (40)

with

f0 =
1

log (d/b)

∫ d

b

f (t) dt, (41)

fm =
2Y2

0 (Γmb)[
Y2

0 (Γmb)− Y2
0 (Γmd)

] ∫ d

b

f (t)
[π

2
ΓmL (t, d, γm)

]
tdt , m = 1, 2, ... (42)

and
Γm =

√
k2 − γ2m , m = 1, 2, ...

Owing to (39-42), f (ρ) can be expanded into Fourier-Bessel series as

f (ρ) =
f0
ρ

+
∞∑
m=1

fm

{π
2

Γm [J1 (Γmρ) Y0 (Γmd)− J0 (Γmd) Y1 (Γmρ)]
}
. (43)

Now, substituting (38) into the Fourier transform of the continuity relation (10) and
making use of (14), (16) and (21), one gets

N (α)

(k2 − α2)
P+ (α) + bP− (α) =

i

(α + k)
+

iαb

M (b, d, α)

∫ d

b

f (t)Q (t, b, α) tdt (44)

with

N (α) =
2

πb

M (a, d, α)

M (b, d, α)M (a, b, α)
(45)

and
P− (α) = F− (b, α) . (46)

Incorporating (43) into (44), we obtain after term by term integration

N (α)

(k2 − α2)
P+ (α) + bF− (b, α) =

i

(α + k)
+

iαf0
(k2 − α2)

− i
∞∑
m=1

αfm
(α2 − γ2m)

Y0 (Γmd)

Y0 (Γmb)
. (47)
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Equation (47) is nothing but the modified Wiener-Hopf equation to be solved. Applying
classical Wiener-Hopf procedure, one determines

P+ (α) =
2ik

N+ (α)N+ (k)
− ikf0
N+ (α)N+ (k)

− i

2

∞∑
m=1

fm
(α + γm)

Y0 (Γmd)

Y0 (Γmb)

(k + α) (k + γm)

N+ (α)N+ (γm)
, (48)

with N+ (α) being the usual split function

N+ (α) =

√
2

πb

M+ (a, d, α)

M+ (b, d, α)M+ (a, b, α)
, (49)

where the factorization of M (ρ1, ρ2, α) is done by following the procedure described in
[15]. The unknown coefficients fm (m = 0, 1, 2, ...) can be calculated by taking into
account equations (39), (40) and (48) simultaneously, which yields the algebraic system
of equations

Af = B, (50)

where the elements of A, namely Amn are

A00 =

[
N+ (k) b log (d/b) +

1

N+ (k)

]
Am0 =

2kχm
N+ (k)

, m = 1, 2, ...

A0n =
Y0 (Γnd)

N+ (γn) Y0 (Γnb)
, n = 1, 2, ...

Amn =


1 + χm

Y0 (Γmd)

Y0 (Γmb)

(k + γm)2

2γmN+ (γm)
, n = m

(k + γm)χm
(γm + γn)

Y0 (Γnd)

Y0 (Γnb)

(k + γn)

N+ (γn)
, n 6= m

, m,n = 1, 2, .. (51)

and the elements of B, namely Bm are

Bm =


2

N+ (k)
, m = 0

4kχm
N+ (k)

, m = 1, 2, ...
(52)

with

χm =
Y0 (Γmd) Y0 (Γmb)[

Y2
0 (Γmb)− Y2

0 (Γmd)
] 1

γmbN+ (γm)
. (53)
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3 Analysis of the fields

The scattered field u1 (ρ, z) can be determined by solving the inverse Fourier transform
integral

u1 (ρ, z) =
1

2π

∫
L
F (ρ, α) e−iαzdα. (54)

where L is depicted in Figure 2. Considering (21) and (48), the above integral becomes

u1 (ρ, z) =
i

2π

2

πb

∫
L

{
2k

N+ (α)N+ (k)
− kf0
N+ (α)N+ (k)

−1

2

∞∑
m=1

fm
(α + γm)

Y0 (Γmd)

Y0 (Γmb)

(k + α) (k + γm)

N+ (α)N+ (γm)

}

×
π
2
K [J1 (Kρ) Y0 (Ka)− J0 (Ka) Y1 (Kρ)]

(k2 − α2)M (b, a, α)
e−iαzdα. (55)

In order to determine the reflected field back to the region z < 0, the above integral
can be evaluated by virtue of Jordan’s lemma and the application of the law of residues,
yielding the sum of the residues related to the poles occurring at the simple zeros of
(k2 − α2)M (b, a, α) lying in the upper half-plane, namely, at α = αn’s (n = 0, 1, 2, ...).
Denoting the reflected field as

u1 (ρ, z) = R0
e−ikz

ρ
+
∞∑
n=1

Rn
π

2
Kn [J1 (Knρ) Y0 (Kna)− J0 (Kna) Y1 (Knρ)] e−iαnz , z < 0

(56)
with

Kn =
√
k2 − α2

n, (57)

the reflection coefficient Rn is found to be

Rn =
2

πb

{
kf0

N+ (αn)N+ (k)
− 2k

N+ (αn)N+ (k)

+
1

2

∞∑
m=1

fm
(αn + γm)

Y0 (Γmd)

Y0 (Γmb)

(k + αn) (k + γm)

N+ (αn)N+ (γm)

}
× 1

[(k2 − α2)M (b, a, α)]′α→αn

(58)

For the fundamental TEM mode (n = 0) reflected back to z < 0, we find

R0 =
1

2b log (b/a)N+ (k)N+ (k)

{
f0 − 2 +N+ (k)

∞∑
m=1

fm
N+ (γm)

Y0 (Γmd)

Y0 (Γmb)

}
. (59)

In a similar fashion, the transmission coefficient can be determined by evaluating the
integral in (55) for z > 0 to give

u2 (ρ, z) = T0
eikz

ρ
+
∞∑
n=1

Tn
π

2
ξn [J1 (ξnρ) Y0 (ξna)− J0 (ξna) Y1 (ξnρ)] eiβnz , z > 0 (60)
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with
ξn =

√
k2 − β2

n (61)

and βn’s are the simple zeros of (k2 − α2)M (a, d, α), where β0 = k. The transmission
coefficients Tn’s and T0 are determined as

Tn =

{
(f0 − 2) k

N+ (k)
+

1

2

∞∑
m=1

fm
(γm − βn)

Y0 (Γmd)

Y0 (Γmb)

(k − βn) (k + γm)

N+ (γm)

}

× M (b, d, βn)N+ (βn)

[(k2 − α2)M (a, d, α)]′α→−βn
(62)

and

T0 = (f0 − 2)
log (d/b)

2 log (d/a)
, (63)

respectively.

4 Mode-Matching Formulation

The geometry of the problem is also suitable for applying mode-matching technique
[9]. For this type of formulation, the geometry is divided into two regions as shown in
Figure 3 and the φ−component of the total magnetic field at each region is defined as

H
(T )
φ =


eikz

ρ
+ u1 (ρ, z) , ρ ∈ (a, b) , z < 0 (Region A)

u2 (ρ, z) , ρ ∈ (a, d) , z > 0 (Region B)
. (64)

with

H
(A)
φ (ρ, z) = u1 (ρ, z) =

∞∑
n=0

Rnϕn (ρ) e−iαnz (65)

and

H
(B)
φ (ρ, z) = u2 (ρ, z) =

∞∑
n=0

Tnψn (ρ) eiβnz. (66)

where αn’s are the zeros of the function (k2 − α2)M (a, b, α) and

Kn =
√
k2 − α2

n. (67)

ϕn (ρ) and ψn (ρ) in (65) and (66) stand for

ϕn (ρ) =
π

2
Kn [J1 (Knρ) Y0 (Kna)− J0 (Kna) Y1 (Knρ)] (68)

and
ψn (ρ) =

π

2
ξn [J1 (ξnρ) Y0 (ξna)− J0 (ξna) Y1 (ξnρ)] , (69)
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Region A

Region B

ρ

z

z=0

Figure 3: Regions for mode-matching technique.

respectively.
Hence, ρ−components of the electric fields become

E(A)
ρ (ρ, z) =

1

iωε

∂

∂z
u1 (ρ, z) = −

∞∑
n=0

αn
ωε
Rnϕn (ρ) e−iαnz (70)

and

E(B)
ρ (ρ, z) =

1

iωε

∂

∂z
u2 (ρ, z) =

∞∑
n=0

βn
ωε
Tnψn (ρ) eiβnz. (71)

Note that the eigenfunctions in the Fourier-Bessel series in (65) and (66) are determined,
such that, u1 (ρ, z) and u2 (ρ, z) satisfy the boundary conditions

u1 (a, z) + a
∂

∂ρ
u1 (a, z) = 0, (72)

u1 (b, z) + b
∂

∂ρ
u1 (b, z) = 0, (73)

u2 (a, z) + a
∂

∂ρ
u2 (a, z) = 0 (74)

and

u2 (d, z) + d
∂

∂ρ
u2 (d, z) = 0. (75)

Following the procedure described in [12], the unknown coefficients in the series ex-
pansions are to be determined by taking into account the continuity of the tangential
components of the electric and the magnetic fields at z = 0, namely

Eρ
(
ρ, 0+

)
=

{
Eρ (ρ, 0−) , ρ ∈ (a, b)

0 , ρ ∈ (b, d)
(76)

and
Hφ

(
ρ, 0−

)
= Hφ

(
ρ, 0+

)
, ρ ∈ (a, b) . (77)

11



Multiplying (76) by ψm (ρ) and integrating along ρ ∈ (a, d) yields

βmTmQ
(1)
m = kU (1)

m −
∞∑
n=0

αnRn4(1)
mn (78)

with

4(1)
mn =

∫ b

a

ϕn (ρ)ψm (ρ) ρdρ , Q(1)
m =

∫ d

a

ψm (ρ)ψn (ρ) ρdρ , U (1)
m =

∫ b

a

ψm (ρ) dρ.

(79)
Similarly, multiplying (77) by ϕm (ρ) and integration along ρ ∈ (a, b) gives

U (2)
m +RmQ

(2)
m =

∞∑
n=0

Tn4(2)
mn, (80)

with

4(2)
mn =

∫ b

a

ϕm (ρ)ψn (ρ) ρdρ , Q(2)
m =

∫ b

a

ϕn (ρ)ϕm (ρ) ρdρ , U (2)
m =

∫ b

a

ϕm (ρ) dρ.

(81)
As a result, equations

βmTmQ
(1)
m = kU (1)

m −
Q∑
n=0

αnRn4(1)
mn , m = 0, 1, 2, ..., P (82)

and

U (2)
m +RmQ

(2)
m =

P∑
n=0

Tn4(2)
mn , m = 0, 1, 2, ..., Q (83)

completely describe the junction uniquely according to [12] forming a N×N system with
N = P + Q. Note that P must be greater than Q because equation (82) involves more

information than equation (83). The explicit expressions for 4(1)
mn, 4(2)

mn, Q
(1)
m , Q

(2)
m , U

(1)
m

and U
(2)
m are

4(1)
mn =



log (b/a) , m = 0, n = 0
0 , m = 0, n 6= 0

π

2
M (a, b, βm) , m 6= 0, n = 0

π

2

ξ2m
(ξ2m −K2

n)

Y0 (Kna)

Y0 (Knb)
M (a, b, βm) , m 6= 0, n 6= 0

, (84)

4(2)
mn =


log (b/a) , m = 0, n = 0

π
2
M (a, b, βn) , m = 0, n 6= 0

0 , m 6= 0, n = 0
π

2

ξ2n
(ξ2n −K2

m)

Y0 (Kma)

Y0 (Kmb)
M (a, b, βn) , m 6= 0, n 6= 0

, (85)
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Q(1)
m =


log (d/a) , m = 0[

Y2
0 (ξma)− Y2

0 (ξmd)
]

2Y2
0 (ξmd)

, m 6= 0
, (86)

Q(2)
m =


log (b/a) , m = 0[

Y2
0 (Kma)− Y2

0 (Kmb)
]

2Y2
0 (Kmb)

, m 6= 0
, (87)

U (1)
m =

{
log (b/a) , m = 0

π
2
M (a, b, βm) , m 6= 0

(88)

and

U (2)
m =

{
log (b/a) , m = 0

0 , m 6= 0
, (89)

respectively. Constructing the system of linear equations properly allows one to deter-
mine the coefficients Rn and Tn numerically. Note that, when there is only the fundamen-
tal TEM mode propagating, the transmission coefficients calculated via mode matching
technique and Wiener-Hopf technique have the relation

T0,Wiener−Hopf = T0,Mode−Matching − 1 (90)

due to the difference in defining the total field in two formulations.

5 Power Analysis

Considering the mode matching formulation and the frequencies where only the funda-
mental TEM mode is propagating, φ−component of the magnetic field and ρ−component
of the electric field are

H
(A)
φ =

eikz

ρ
+R0

e−ikz

ρ
, E(A)

ρ =
k

ωε

eikz

ρ
− k

ωε
R0

e−ikz

ρ
(91)

in region A (z < 0)and

H
(B)
φ = T0

eikz

ρ
, E(B)

ρ =
k

ωε
T0

eikz

ρ
(92)

in region B (z > 0). Considering the general formula for calculating the power

P =
1

2
Re

{∫ ∫
S

(
E(A)
ρ âρ ×H(A)∗

φ âφ

)}
· âzdS, (93)

the power in regions A and B become

P (A) =
πk

ωε

(
1− |R0|2

)
log (b/a) (94)
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and

P (B) =
πk

ωε
|T0|2 log (d/a) , (95)

respectively. The conservation of energy yields(
1− |R0|2

)
log (b/a) = |T0|2 log (d/a) . (96)

The above relation is observed in the numerical calculations as well.

6 Computational Results

In this section, the results obtained via both Wiener-Hopf and Mode-Matching tech-
niques are evaluated numerically and compared to each other and the effect of the ratio of
cross-sectional areas of the connected coaxial waveguides is presented graphically. Dur-
ing the numerical analysis, one needs to calculate the zeros of the functions M (a, b, α),
M (a, d, α) and M (b, d, α). If M (a, b, α) is analyzed asymptotically for large |α| by taking
into account

J0 (z) '
√

2

πz
cos
(
z − π

4

)
for large |z| (97)

and

Y0 (z) '
√

2

πz
sin
(
z − π

4

)
for large |z| , (98)

one gets the eigenvalue equation

sin [Km (b− a)] = 0 m = 1, 2, ... (99)

to give

Km '
mπ

(b− a)
m = 1, 2, .... (100)

Thus, the zeros of M (a, b, α) are calculated by

αm =
√
k2 −K2

m m = 1, 2, .... (101)

Similarly, for the function M (a, d, α) one finds

ξm '
mπ

(d− a)
m = 1, 2, ... (102)

and
βm =

√
k2 − ξ2m m = 1, 2, .... (103)

Here αm’s and βm’s correspond to the wavenumbers of higher-order modes associated
with their indices in the regions A and B, respectively. Hence, the corresponding modes
are propagating only when these wavenumbers become purely real. Note that, the right-
hand sides of the equations (100) and (102) are only the asymptotic expressions for Km
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Figure 4: Variation of M (a, b, α) with respect to K (α).

and ξm. So these are assumed as the initial values in the Newton’s procedure to find the
accurate values and the numerical calculations for a = 1 cm, b = 3 cm and d = 10 cm
give

f = 1.58 GHz

for the cut-off frequency of the first higher-order mode to be propagating in region B and

f = 7.39 GHz

in region A. For the same values of a, b and d, the functions M (a, b, α) and M (a, d, α)
are presented in Figures 4 and 5, respectively.

On the other hand, the asymptotic expression for the zeros of M (b, d, α) can be found
in a similar fashion to give

Γm '
mπ

(d− b)
and γm =

√
k2 − Γ2

m , m = 1, 2, ..... (104)

Since both Wiener-Hopf and Mode-Matching analyses involve infinite sets of linear
algebraic equations, convergence of the solution regarding the truncation number must
be illustrated for each technique. Figures 6-9 show the dependence of the magnitudes
of the reflection and transmission coefficients R0 and T0 to the truncation number N at
frequencies f = 100 MHz and f = 4 GHz for a = 1 cm, b = 3 cm and d = 10 cm.
These figure show that the Wiener-Hopf technique provides a better convergence than
the Mode-Matching technique. This issue is well-known in literature as the lack of edge
conditions in the latter technique causes slower convergence.

The Figures 10-13 illustrate the effect of the ratio of cross-sectional areas of the con-
nected coaxial waveguides for different ranges of frequency on the reflection and trans-
mission coefficients. In these figures, the area ratios defined by

Area ratio =
S2

S1

=
(d2 − a2)
(b2 − a2)

(105)
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Figure 5: Variation of M (a, d, α) with respect to K (α).

Figure 6: Convergence of |R0| at f = 100 MHz.
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Figure 7: Convergence of |T0| at f = 100 MHz.

Figure 8: Convergence of |R0| at f = 4 GHz.
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Figure 9: Convergence of |T0| at f = 4 GHz.

are 12.375 for black line, 6.6 for blue line and 4.125 for red line. Also, the return and in-
sertion losses are presented in Figures 14-17 for the same area ratios, which are calculated
directly by

RL = −20 log |R0| (106)

and
IL = −20 log |T0| , (107)

respectively. It can be observed in these figures that the two methods, i.e. Wiener-
Hopf technique and Mode-Matching technique, have excellent agreement. Besides, one
can conlude that when the area ratio increases, the magnitude of the reflection coefficient
also increases while the magnitude of the tranmission coefficient decreases. Consequently,
the same trend is observed in the return and insertion losses. This means that when the
area ratio is increased, more energy is reflected back and less is transmitted to region
B. Figures 10, 12, 14 and 16 are of special interest due to the need of low frequency
electromagnetic modeling of the measurement setup described in [1].

Note that, the transmission coefficient in these figures correspond to the one defined
in (66), and the relation (90) is taken into account when comparing two methods.

Additionally, the magnitudes of the reflection and the transmission coefficients are
presented in Figures 18 and 19 upto 4 GHz, where two additional TM modes are observed
to start propagating in region B after their relevant cut-off frequencies are exceeded.
When new modes start to propagate, the energy carried by the fundamental TEM mode
is obviously decreased dramatically. This can be observed in these figures as well.

7 Concluding Remarks

In this report, the propagation of TEM waves along a coaxial waveguide with a step
discontinuity on its outer wall is analyzed by applying Wiener-Hopf and Mode-Matching
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Figure 10: Magnitude of R0 upto f = 10 MHz.

Figure 11: Magnitude of R0 upto f = 1.5 GHz.
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Figure 12: Magnitude of T0 upto f = 10 MHz.

Figure 13: Magnitude of T0 upto f = 1.5 GHz.
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Figure 14: Insertion loss upto f = 10 MHz.

Figure 15: Insertion loss upto f = 1.5 GHz.
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Figure 16: Return loss upto f = 10 MHz.

Figure 17: Return loss upto f = 1.5 GHz.
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Figure 18: Magnitude of R0 upto f = 4 GHz.

Figure 19: Magnitude of T0 upto f = 4 GHz.
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techniques, both of which are considered to be rigorous analyses apart from the slower
convergence observed in the latter. The agreement of two methods is excellent. The
results illustrated in the previous section provide understanding of the effect of a step
discontinuity on the outer wall of a coaxial waveguide on the propagation of TEM waves.
This type of scattering mechanism is one of the many occuring in the measurement setup
described in [1]. In particular, these results illustrate the great importance of an area
change in the modeling of connector mismatch at low frequencies. So, in order to have
a further development in the electromagnetic modeling of this measurement setup, one
can include the other scattering mechanisms and apply similar analyses. This will be the
subjects of forthcoming studies by the authors.
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