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Abstract

We formally generalize the sign-definiteness lemma to thee af complex-valued matrices and multiple
norm-bounded uncertainties. This lemma has found manyicapioins in the study of the stability of control
systems, and in the design and optimization of robust tewss in communications. We then present three
different novel applications of this lemma in the area of tinuser multiple-input multiple-output (MIMO) robust
transceiver optimization. Specifically, the scenariosntériest are: (i) robust linear beamforming in an interfgrin
adhoc network, (ii) robust design of a general relay networgluding the two-way relay channel as a special
case, and (iii) a half-duplex one-way relay system with ipldtrelays. For these networks, we formulate the
design problems of minimizing the (sum) MSE of the symbokdgon subject to different average power budget
constraints. We show that these design problems are norexdwith bilinear or trilinear constraints) and semi-
infinite in multiple independent uncertainty matrix-vadueariables. We propose a two-stage solution where in
the first step the semi-infinite constraints are convertelingar matrix inequalities using the generalized sign-
definiteness lemma, and in the second step, we use an ieeagorithm based on alternating convex search
(ACS). Via simulations we evaluate the performance of tteppsed scheme.

|. INTRODUCTION

Robust design refers to a design problem in which there isesddnd of uncertainty in the problem
data or parameters. In control engineering, this is a walddished discipline and there are many
standard texts on the subject, see, e.g., [1], [2] and treraetes therein. More recently, the robust
design paradigm has been used for various applicationsgimakiprocessing and communications,
most notably antenna array beamforming problems. Someepiorg contributions for beamforming
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applications are contained in [3], [4], which introduce@ ttoncept of robust beamforming, taking
uncertainties in the array response into account. Furtieddmental contributions on robust beam-
forming can be found in, e.g., [5]-[13] (see also the refeesntherein).

Many robust design problems can be cast as semi-infinitenggdtion problems (optimization
problems with infinitely many constraints). The sign-dgéness lemma which was first proposed by
I.A. Petersen [14] is a tool which reduces such a semi-igfipibblem to a much simpler linear matrix
inequality. This lemma was motivated by the study of stabihf systems with uncertain parameters
in control theory, and in that field it has also been used fbusbH,, control design. The lemma
is also applicable to the worst-case transceiver optiigimadesigns considered in this paper (which
are completely different problems tha&h,, design). Hence, the lemma as such is extremely versatile
and useful in many different disciplines.

In this paper we generalize the sign-definiteness lemma d@octise in which the system has
multiple uncertainties and all variables are complex valuss we will see, this generalization has
many applications in joint robust transceiver optimizatfor multiuser multiple-input multiple-output
(MIMO) communication systems. We will present three spedfiplications: (i) an interfering adhoc
network, (ii) a general amplify-and-forvard MIMO relay metrk (including two-way relaying as a
special case), and (iii) a multi-relay network. Howeveg #pplications of the lemma are not limited to
these three cases, and similar analysis and design s&siegn be used for many related applications
as well. For example, it is possible to extend our method tughitive radio” setups that involve
additional constraints on the interference generated dyrdnsmitters. The optimization variables in
the applications that we consider are the precoder and iegtiah filters. Specifically, we design a
set oflinear precoders and equalizers, optimized under the assumgtaaronly imperfect channel
state information (CSI) is available. We model the CSI utaiety using a ball-shaped norm bounded
error (NBE) model and adopt a worst-case design methodptegulting in a system design which
maximizes performance for the worst possible CSI reabirasis defined by the NBE. We also extend
the design problems to a cognitive radio (CR) setup. In tlkiggp we use (sum) MSE to quantify
performance, see Section Il for more details.

The application setups that we consider here represent moo@ls for many practically important
scenarios. For example, the interference channel regebéy the interfering adhoc network appli-
cation is a common model for spectrum sharing in wirelessvoidds [43]. The interference relay
channel represented by our general relay network model cadeinfor example the scenario of a
relay in a wireless system that is shared between multipégatprs [45]. The two-way relay channel
using amplify-and-forward processing is known to be an irtggd building block both for future
cellular and wireless sensor networks [44].

A. Related Recent Work

As already noted, robust optimization for beamforming agapions has a significant history that
started with the pioneering work of [3] and was followed byesal early, important papers [4],
[8], [10]. Later contributions to the topic include [5]-[7[9], [11]-[13]. Next we will review the
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most recent works which are related to our applicationsatdl problems have been considered
before for multiple-input single-output (MISO) and MIMO mmnunication systems. For example
in [15]-[19] the transmitters for the MISO broadcast chdrn(B&) were optimized using different
design criteria including MSE, sum-MSE and signal-to-ifgeence-plus-noise ratio (SINR) subject to
different power constraints in different setups includ@B networks. There are also many papers that
robustly design similar systems with multiple antennasath lends (i.e., the MIMO case) [20]-[25]
in single-user or multi-user networks. All these problems such that each semi-infinite constraint
includes only one uncertainty variable, and they mostlypntet® the complex-valued version of the
sign-definiteness lemma published in [26] to resolve theisginiteness of the constraints.

Similarly, there are several papers that study variousasé the capacity and beamforming design
for relay channels, especially for the two-way relay chaff@/RC) [27]-[35] and the interference
relay channel (IRC) [36]—-[42] with or without (CSI) uncertty. In [36] the Gaussian IRC with
different relaying schemes like compress-and-forwaranmate-and-forward, and hash-and-forward
is studied. The authors use a new approach to find an uppedlmuthe sum-rate capacity of such
a system, by studying the strong and the weak interferergimmes and establish the sum-capacity,
which, in turn, serves as an upper bound on the sum-capdditg @saussian IRC with bounded relay
power. The capacity of a cognitive relay-assisted Gaussiarference channel is studied in [37]. An
achievable rate region for the system is derived by compittire Han-Kobayashi coding scheme for
the general interference channel with dirty paper codirefeRence [37] also derives outer bounds on
the capacity region and obtains the number of degrees ofidreeof the system. A novel sum-rate
outer bound for the Gaussian interference channel witheg islpresented in [38] and [39]. The power
allocation problem for interference relay channels is a@ered in [40], [41]. Due to the competitive
nature of the multiuser environment, the problem is modekea strategic non-cooperative game. It
is shown that this game always has a unique Nash equilibumash-and-forward relaying scheme
is studied in [42].

B. Contributions

This paper unifies the results presented in our confererperpd61]-[63] in a comprehensive form

and presents additional discussion and comparisons. Td@fispcontributions of the paper are:

o We generalize the sign-definiteness lemma to the case oflegnaglued quantities with multiple
uncertainties in each design constraint.

« We formulate and solve the linear beamforming problem inrdaarfering adhoc network. This
contribution generalizes the method employed in [25] inclhihe authors assumed that each
MSE constraint is only affected by one single uncertaintyrse.

o We propose a generalized model for a relaying network, wiicludes the cases of TWRC and
IRC with direct links, and we optimally design precoders @agalizers for this network.

o We show that the theory developed for the aforementionedarks can be applied to a multi-
relay network as well.
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The philosophy of the presentation is to highlight the widage of the applications of the sign-
definiteness lemma, and to illuminate the similarities ia thesign methods used for the different
network topologies. The structure of the remainder of tlapgy is as follows. System models and
problem formulations for robust beamforming in the interfg adhoc network, in the general relay
network, and in the multi-relay network are presented intiSes 11-B, 1I-C and II-D, respectively.
In Section Il we present the generalized version of the -sigfiniteness lemma and prove it. The
robust solution to the previously introduced problems avergin Section V. Simulation results are
provided in Section V. Section VI concludes the paper.

Notation: Boldfaced letters are used for vectors or matrices. The fiélthe complex numbers,
the field of n-dimensional complex vectors and the field »af x n-dimensional complex-valued
matrices are denoted b§, C™ and C™*", respectively. For any vectar or for any matrix X,
|lz|| and|| X || » denote the Euclidean and the Frobenius norms of that vectoratrix, respectively.
To denote the transpose and conjugate transpose of a majfixand (-)* are used®{-} denotes
the real part of its argument. Positive semi-definitenesa ofatrix X is denoted byX > 0. To
show a vertically concatenated vectorized version of aimatre write vec [], and to show the block
diagonal concatenation of a set of matrices we whiteliag |. .. ], respectively. FinallyE, [f(x)] is
the expectation off (x) with respect to the stochastic varialkte

Il. SYSTEM MODEL AND PROBLEM FORMULATIONS

In this section we present the system models and problemulations of the three different
applications. It should be noted that the application of sigm-definiteness lemma, which will be
presented in the next sub-sections is not limited to thessethetworks. This lemma can be applied
to any general robust mean-squared error estimation inrdeepce of model uncertainties (see, e.g.,
Section |V of [26]), especially when there are several irdgent uncertainties associated with each
design constraint.

We will use an MSE based problem formulation. The MSE is a wsthblished measure for the
type of problem we consider [15]-[17], [19]-[25], [27] and general in the context of severely
delay constrained applications that use short codes or emeaoded transmission, see for example
[54]-[56]. Note also that short inner codes optimized wigspect to MSE may be used as building
blocks in communication systems that have an outer erngecting code, in a similar spirit to the
way space-time block codes based on signal-space divégsityiques can be used as inner codes in
coded multiantenna transmissionklnfortunately, extending our framework to using achieeaaite
instead of MSE does not appear to be directly possible, anldave to leave this as an open problem.
It is also noteworthy that throughout this paper we assuratttie receivers, where applicable, treat
the interference as noise and do not try to decode it first.

We will first give a brief background on the uncertainty and thodel we use to describe it, and
then we will proceed with the applications.

1strictly speaking, using mutual information as performeantetric is better than MSE in this context, e.g., see [57].
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Fig. 1. Signal flow graph of an interfering adhoc network

A. Background

In the following examples, we assume that the model unceytds due to uncertainty in the
CSI. Since we are interested in MIMO communications, an tateCSl, sayH € C™*"™ can be
described using the following NBE model (see, e.g., [4] dmlreferences therein):

HeH2{H+A||A|r <6} (1)

In this notationH is the nominal value of the channel (that is known to the tratisr and receiver)
and A is the deterministically unknown perturbation termMf. The only information that we have
regardingA is that it is norm bounded.

The motivation to use a spherical uncertainty region is ibf(1) with Gaussian distributions, this
is the region with the smallest volume that contains a givebability mass. (2) Given knowledge
only of the error magnitude range but no other informatioaudlit, a spherical uncertainty region is
reasonable from a symmetry point of view.

In today’s communication systems, the receiver typicadiyneates the CSI using pilot symbols sent
from the transmitter side. The receiver usually sends tl8$ leack to the transmitter side. Because
of estimation errors, the CSl is generally uncertain, anthgwo quantization errors the uncertainty
of the CSI at the transmitter could be different from the utaiety of the CSI at the receiver. In this
paper, however, we use a single model to describe both @ities. This is simple, and moreover it
is natural if the design of both the transmitter and recefiters is done jointly at a central processing
node, and then both the transmitter and the receiver areniefth of the matrices that they should
use. In this case, there is only nominal version of each adlamtthough the receivers could have
done somewhat better as they would typically have a highalitguCSl.

B. Application 1: Multiuser Interfering Network

1) System Model: The first application is transceiver optimization for areifiéring adhoc network,
see Fig. 1. In this network] independent links (Tx-Rx pairs) are communicating over areth
channel. In theth link, : = 1,--- , I; the Tx node aims to senfl; independent data streams using
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T; antennas towards the destination (Rx node) which is eqdippith R; receive antennas. We
assume that the symbols emitted by the source are zero-nmelpendent and have equal energy,
i.e., Eg, [s;] = 0,Es, [sis}] = I, wheres; € C% is the transmitted vector of the source node. This
information is linearly precoded using the precoding maf; ¢ C™*% and is sent towards the
destination over a Rayleigh fading wireless MIMO chankg), ¢ C?:<T:, Each link also interferes
with the other links and the unintended receivers receigetthnsmitted signal over the channels
H;; ChixTi j =1,...,I, andj # i. In each Rx node, the received data is linearly equalized
using the receive matridD; € C%:* % The received vector signal at the receiver is equal to

I
8i=D; | HyP;s; +» H;P;s;+n; 2)
=
wheren; € C%i is zero-mean white Gaussian noise with variange
Unlike in conventional design problems, in this paper, th&l @& not assumed to be perfectly
known. We use a NBE model framework [4] to describe the ingmr€SI. More preciselyd;; can

take on values as follows:
Hij e Hij={H;j+ Ay | |Aylr <655}, (3)

whereﬁij is the nominal CSI andy;; denotes the norm-bounded uncertainty. To best design this
network, we can jointly optimize the precoding and equdlimamatrices in different ways as will
be described in the following sections.

2) Worst-case Problem Formulation: In the problem formulations that we target in this paper, the
MSE of each link ¥SE;, Vi) and the transmit power of each Tx nod&¥;, Vi) play important roles.
These quantities are defined as follows:

TxP; = Esi [HP181||2] ,\V/i, (4a)
MSEl é E{Si}w [ng — SiHQ] s V’L, (4b)
2
I
= E{Sz‘}w (DlH”Pz — ISi)Si + Z DiHjinSj + Dlnz , Vi. (4C)
j=1
J#i

We will give the exact expressions for these quantitieswelon the following problem formulations
we exploit the worst-case methodology, i.e., the condsaif the resulting optimization problems
should be satisfied for all possible channel realizatiorisneé based on the NBE framework of (3),
including the least favorable one. It is clear that the Idagbrable (worst-case) channel realization
results in the largest MSE or transmit power.

One way to formulate the design problem for this network ismimimize the system-wide sum
MSE of the symbol detection subject to an average transmitepa@onstraint for each link. This
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optimization problem in its epigraph form can be written alofvs:

I
P (MIN-)
subject to TxP; <~;, Vi,
MSE; <7, {VH;; € H;j}i;,Vi.
where~; is the power budget for théh link. An alternative way of formulating the problem is to
minimize the sum-transmit power, subject to MSE constsa{nt), as follows:

I
minimize E T (MIN-2)
{Pi,Di,7i >0}, =

subject to TxP; <7, Vi,
MSE; < p;, {VHU € /Hij}i,j,Vi.

Although both these formulations are useful from the peargpe of system design, none of them
will guarantee fairness among the different links. In theiges mentioned above, it is possible that
the link with the best CSl is allocated most of the availaldsources of the network, which leads
to poor service for the others. To prevent this unwanted tewea propose the following min-max
fairness formulation, in which the network is optimized teagantee the best possible service for the
weakest link. This min-max fairness problem formulation file MSE minimization can be written

as follows:
minimize max MSE; (MIN-3)
{P,;,D;} VH;;EH;;,Y,])
subject to TxP; < ;.

which is equivalent to the following problem:

minimize T (52)
{Pini}{:lvTEO

subject to TxP; <r;, Vi, (5b)
MSE; < T {VHW € /Hij}i,j,VZ’. (5¢)

It is clear that despite the different perspectives basedvbith the optimization problem is
formulated, the resulting optimization problems have dlainstructure, and it suffices to give solution
details for one of them. By appropriately introducing slaciciables, a similar procedure can be
applied to other formulations.

C. Application 2: General Non-Regenerative Amplify and Forward Interfering Relay Network

1) System Model: The signal flow diagram of a general wireless relay systenesated in Fig. 2.
In this system, two distinct transmitter-receiver painsugianeously communicate with each other
in two consecutive time slots. Each pair has its own trangamit receive sides. Unlike the one-way
relay channel in which, to initiate a half-duplex communiga service, two distinct time slots are
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Fig. 2. Signal Flow Graph of a General Relay Channel

required, in this system two-way communication is providisthg two time slots. In the first time
slot, both terminals simultaneously transmit their datéhto destination and to the relay node. In the
second time slot, the relay node broadcasts a combinatithredfignal that it received in the first time
slot, after performing a linear processing (beamforminggration. Both other receivers listen during
the second time slot. By means of this relaying process,angd of the data is facilitated between
the two transmitters and the two receivers. Effectivelg thlaying operation serves to increase the
SINR.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 5,,,,,,,,,7(7_, Destination 2

Source 2 1—o Destination 1

Fig. 3. Signal flow graph of a one-way relay channel

This model is general enough to cover one-way relay chanmetsway relay channels, and
Gaussian interfering relay channels. If only one link existthis system (see Fig. 3), i.&,, F'1, G,
and E, are the only non-zero elements, the system model reduchattofta one-way relay channel.
If G, is zero, we have a one-way relay channel without a direct lihd# , is hon-zero, we have a
model for a relay channel in a cognitive radio setup. The seéageceiver can be seen as a primary
user to be protected. If two links simultaneously exist, thet destination nodes are cross co-located,
then by choosingy; = a5 = 0 the self-cancellation filters will be activated, and we havaodel for
the two-way relay channel. In the more general case of twarfering links with no self cancellation,
i.e., a1 = ap = 1, this model describes a Gaussian interfering network.

To transmitS;,i = 1,2, independent streams of zero-mean, unit-variance datac (C,i =
1, 2) with independent elements towards either end of the conwation link, each transmitter uses
T;,i = 1,2, transmit antennas. The receivers are equipped Rjth = 1,2, receive antennas, while
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the relay has: andt receive and transmit antennas, respectively. The sourdesnprecode the data
using the precoding matrice®; € CT:*5:, The precoded data is then sent over the wireless fading
channelsG; € CF*Ti H, ¢ Cl*T-i E; ¢ C"™*"i i = 1,2, where X _; with the subscript—:
refers to a quantity belonging to the other index in the lblieix notation we use here. That is

X = - ©)

At the relay node, the received signal is amplified udifige C**". The resulting signal is transmitted
to the destinations in the next time slot over the chani#gls CFi*t ; =1, 2.

In the case of a TWRC, we set; = ay = 0, since each terminal knows its own transmitted
signal. Then, first a self-cancellation filter,C; € C*5-i, is applied to the received signal. The
aim of this filter is to suppress each node’s own signal whiak been retransmitted by the relay.
After appropriately combining the received signals andodéty using the linear equalize®; €
CSxF: j =1,2, the received signals are as follows:

In this equationn € C" ande; € C% are additive zero-mean noise signals with independent
elements and varianceﬁ and agi, respectively. Due to the limited feedback between the sode
it is assumed that only the nominal value of the CSI is knowrtht® system and that the CSI
follows the norm bounded error model. That is, for any complalued matrix quantity such as

Ei,—iaFi,—iaGi,—iaHi,—i’ say X, we have:
X €8x ={X +Ax | |Ax|r < dx}, (8)

where X is the fixed nominal value of the CSI for each of the channels Ang is the norm-
bounded variation (uncertainty) around this nominal valtle next use this signal model to formulate
optimization problems.

2) Problem Formulation: Our goal is to jointly optimize the source precoders, thaydleamformer,
and the destination equalizers. To do so, we can formulatedesign problem either in terms of
a min-max fairness, relay transmit power minimization, gstem-wide sum-MSE (SMSE) mini-
mization. After choosing the performance measure of théegsyswe can consider the corresponding
optimization problem with the power budgets of both soured the relay node, or the allowed MSE
of each link.

To facilitate the computation of the MSE of each link, and ttesmit powers of the sources and
the relay nodes, we use Lemma 2 presented in Section IV. Basddis lemma, the MSE of the
links (MSE;,7 = 1,2), and the transmit powers of the sour@&X;,,: = 1,2) and the relay TxP,.)

March 7, 2013 DRAFT



10

nodes are given as follows:

TxP,, = E, [||Pis]l3], i=1,2 (9a)
= [|Pi]l%, (9b)
TxP, 2 Es, , 0 [|W(E1 P81 + E2Pssy) + W3] (9c)
= |WE\Pi|% + [|[WE2Pof3 + 0 [W][E, (9d)
MSE; £ Eg, , ues |18 — sill?], i=1,2 (9e)

= |Di(G; + F;WE;)P; — I||%. + o..| D, F; W||%

+||D; (o H; + F;WE_;)P_; — (1 — o;)Cy] | + o2, | Dil| % (9f)

Using these quantities, the problem formulation in its eggidp form to minimize the SMSE is as
follows:

Pi%%if,ncif’izo T+ T (AFIRN-1)
subject to TxPg, < P, 1 =1,2,
TxP, < P, V(E;, E_;) € 8p, x8p_,,i =1,2,
MSE, <71, VE, €8, E_;€8g_,,F;,€8p,,G; €8q,,H; €8p,,i =1,2,
where P, and P, are the power budgets of the source nodes and the relay nbdeléBign problem

to minimize the transmit power of the relay, and the min-makness problem are as follows,
respectively:

Pi,rv{l,i’nDiglci'zheTZO T (AFIRN-2)
subject to TxP,, < P, 1 =1,2,
TxP, <71, VE, €8g,,E_, €8g_,,1 =1,2
MSE, <~,;, VE, €8g,,E_, €8g_,,F; €8p,,G, €8¢q,,H;, € 8p,,1=1,2,

and

minimize T (AFIRN-3)
P;W.,D;,C;,7>0

subject to TxP,, < P, i =1,2,
TxP, < Py, VE,; € SEiaE—i S SE,“Z. =1,2,
MSE; < T, VE, € SEi,E,i S SE,iaFi € SanGz S SG’”Hi € SH”'L =1,2,

where P;, and P, are the power limits of the source and the relay nodes,qand= 1,2 are the
MSE targets for each link. All these three variants of theigteproblem have a similar structure,
and the theory which underlies each of them can be appliedemther two. Therefore, in Section
IV we only give further details on the solution to the SMSE lgeon formulation.
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Fig. 4. Signal flow graph of a general relay channel with mpigtirelays

D. Application 3: Multi-Relay Network

1) SystemModel: Fig. 4 depicts the multiple-relay network application. Téis a source node with
transmit antennas which is transmittiSgstreams of zero-mean, unit-variance independent infoomat
symbols, i.e.,s € C°, to the destination. The destination hAsreceive antennas. In this systein
independent relay nodes help the source. Each relay nodpuipped withr;,i = 1,--- | L receive
andt;,i = 1,--- , L, transmit antennas. The CSI between the source and the eefapliesented by
G; € C"*T and the CSI between the relay nodes and the destinationrisseagted byH ; € CHx%i,

We will use linear precoding, equalizing and beamforminthatsource, destination and relay nodes,
defined by the linear operators (matricd3)c C**5, D € C5*® andW; € C**":. We assume that
the noise affecting the received signals at the relay andigstination is zero-mean and Gaussian.

The received signal at the destination is

i=1 i=1

L L
§=D (Z H,W,G;Ps+ > H;We;+ n) (10)

The noise termg; € C" andn € C* are zero-mean Gaussian with variancésanda?l, respectively.
As before we assume that the CSI belongs to a nhorm boundedtaintye region:

H,cH;,={H;+A; | |Ail|lr <5}, (11a)
G €G ={Gi+A; | |Aillr <N} (11b)
2) Worst-case Problem Formulation: We next formulate the design problem which is based on mini-

mizing the system-wide MSEMEE) of the symbol detection subject to power constraints asthece
(TxP,) and relay nodesT&P,..). The problem in its epigraph form is

minimize T (MRN)
P,D,{Wi}i,Tzo

subject to TxP, < P,
TxP,, < Pm., VG, € G;, Vi,
MSE < T, {VGZ € Ql}z, {VHZ € /H@}@,VZ,

whereP, and P,, are the power budgets for the source and the relay nodegdsible to formulate
the design problem using different objectives, such as pawer minimization or minimization of
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the maximum relay transmit power. However, all these déffeformulations have a similar structure,
and we only focus on the above problem.

E. Remarks about the Problem Formulations

Referring back to the problem formulations given above,ftilewing remarks can be made:

Remark 1: Itis clear thatTxP,,,i = 1,2, TxP,, andMSE;,: = 1,2, are linear, bilinear, and trilinear
functions of the design variables, respectively. Heree®,., andMSE;,7 = 1,2, are non-convex in
the design variables. ¢

Remark 2: In these robust problem formulations, the last constraamés semi-infinite, i.e., they
represent an infinite number of constraints. Moreover, thestaints are not simultaneously convex
in the design variables. Both these properties make thelgmmobiery hard to solve (it is NP-hatd
¢

Remark 3: Clearly if we setox = 0, Sx becomes a singleton set, comprising only the nominal
value of the CSI for each channel. This case is the perfects€&iario and we will use this scenario
as a benchmark when assessing the performance of the higguitbposed here. ¢

In the following sections we first present a lemma to deal wmi-infinite constraints, and then
we propose a two-stage mechanism to simplify each problémnan equivalent problem. We then
provide an iterative algorithm which solves the equivalerblem near-optimally.

IIl. SIGN-DEFINITENESSLEMMA WITH MULTIPLE UNCERTAINTIES

In this section we formally generalize Petersen’s signnitefiess lemma [14], [48], [49] to multiple
complex valued uncertainties . The complex-valued versfothis lemmafor a single uncertainty is
proved in [26]. The motivation for providing this novel ergon is that the aforementioned versions
of the lemma are inapplicable to solve the problems that we liarmulated in Section Il in this
paper.

Lemma 1: Given matricesA and {P;,Q,}Y, with A = A*, the semi-infinite Linear Matrix
Inequality (LMI) of the form

N
A= (PiX.Q+ QX Py, Vi, Xi:| Xl < (12)
=1
holds if and only if there exist nonnegative real numbars - - , ey such that
(A-Y Y, 6QiQ —mP} - —xxPy]
*%1P1 €1I 0 t 0. (13)
L _%NPN 0 ce GNI ]

2Finding the global optimum even for a smooth non-convex liwgar problem (say, a problem with bilinear objective ftime or
constraints, in our treatment, or generally a worst-cagen@ation problem which is a semi-infinite problem) is an-N&d problem.
See, e.g., [58], [59].
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The matrix norm in this lemma is the spectral norm. Later,iit ke applied to models wher&; is
a vector, and in that case the spectral norm is equal to thieeRras norm.

Proof: 3 The structure of the proof is to first use standard mathemiatols to transform (12),
and then apply th&-Procedure [50]. It is known that

Aii(P;‘XiQinLQfoPi), VX | X <, i=1,---,N; (14)
i=1
holds if and only if for everyx (based on the definition of a positive semi-definite matri@][5
x Az > {én?gc 3 (" P X, Qx+x"Q; X P;x) (15)
lNi—l i=1
=2) Pl Q| (16)
i=1
where

Using the Cauchy-Schwarz inequality the above equationbeaexpressed as

N
Az —2) R{y;Pix} >0, Va,y,:lyll < 1Quel, i=1,--- N (18)
=1
Sincelly;|| < ||Q,x|| is equivalent tax*Q; Q,x — y y, = 0, it is possible to express it in terms of a
quadratic expression. By choosiag= [T, yT, - ,y%]7, it is possible to write the above quadratic
expression as*M,z > 0 whereM,; is a block partitioned matrix, i.eM; £ [MU; 1] n1) v
where
MU =3 1 j—k=i#1, (19)
0 otherwise

Using this notation it is possible to write (18) as anotheadpatic form, i.e.,
N
T Ax — QZ wif{y;P;x} >0 = 2*Mpz>0 (20)
=1
where M, is a block partitioned matrix as well,

A —%1P>{ s —%NP?V
_J’fIPl 0 e 0
M, = . . , . (21)
_*%NPN 0 0 ]

30ur proof follows the footsteps of the proof of Propositionf26]. In our manuscript, equations (14) and (16) corresptw (102) and
(103) of [26], except for that we have multiple uncertaistiaside the summation. Unfortunately, (104) of [26] comsaa typographical
error and should react* Az — 2pR{y* Px} > 0 instead; the corresponding equation in our paper is (18puinproof, due to the
requirements of our setup, we also need a change of variblgstain a compact representation of the uncertainty kketisce, we provide

a self-contained proof.
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Using this notation, it is possible to reformulate (18) as tbllowing implication:
ZM;z>0, i=1,---,N = 2*Myz>0 (22)

Using the general form of thé&-procedure [50] for quadratic functions and non-strictgunalities,
(22) holds if there exists,--- ,eny > 0 such that the LMI (13) holds and this completes the proof.
[ |

IV. ROBUST SOLUTION

In this section we will present the robust solution to thebpem formulations for the three different
applications.

A. Preliminaries

Generally we use a two step solution. In the first step, we hissign-definiteness lemma to convert
the semi-infinite problem to a biconvex approximate versibthat problem, and in the second step,
we use an iterative algorithm to deal with the bi-convexifytltat approximate problem. We first
present a handy lemma which is helpful in formulating thefgrenrance measures, and then we give
the solutions.

Lemma 2: For any set of zero-mean, independent and identicallyibliged random vectors with
independent elements and individual covariances matfgegr;x;] = 021 we have

2

=> ofllAll% (23)
2 %

Efa:), ‘

Proof: It is clear that

2
E(z.}, ‘ S Ai| | =)0 Eaw XA ATy
i 2 i g
=D Y Eeia, [tr[A] Ajm;ai]]
(]
= Z Ztr A} AEg, o, [xj2]]]
(]
= oitr[AjA)] (24)
which proves the lemma. ]

B. Robust Solution to Application 1

Using Lemma 2MSE; andTxP; can be written:

I
MSE; = |D;H;iP; — Is,|3 + Y _ | D:H ;i Pjl|3 + o | Dill3, Vi (25b)
=1
i#i
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Note that the MSE terms are norm-squared of matrix exprassibat are bilinear in the design
variables. Hence, the MSE constraints are not only semmi#afiwith orderl, but also non-convex.

This is what makes the aforementioned problems hard to s@&iressing on this observation, we
outline our solution methodology as follows:

1) We first show thatSE; can be represented as the norm-squared of a vector whichine af
the channel uncertainties. Then using Lemma 1, we find arvalguit SDP formulation for the
problem at hand.

2) We then resort to an iterative algorithm based on the Adteeng Convex Search (ACS) algorithm
[52], to overcome the non-convexity of the problem.

In the following we will describe these steps in more detail.

1) Sep 1: Using the identity|| X ||z = ||vec [X] || for any given matrixX, we can rewriteMsE;

as the norm-squared of a vector:

MSE; = [|lmn[3 (26)
where
_VGC [DiHliPI]_
m; 2 : —1i; € Csz‘(Z]I‘:1 Sj+Ri)’ (27)
vec [DthP[]
o2 vec[D;]
and

Osi o1 Sx1
i = vec [Ig,] . (28)

J=it1 Sj+R;)x1
Using the identityvec [ABC] = (C? ® A)vec[B] for matrices of compatible dimensions, it is

possible to rewritemn; as an affine combination of uncertainty terms:
I

m; = m; + Z Mij vec [Aji]a (29)
j=1
where
vec |:D1I“_~[174P1:|
m; = :~ —i; € Csz’(z]]-:1 Sj+R;) (30a)
vec [DiH“Pl}
o2 vec|D;]
and

O(Si SIS XRTy
M;; = P? ® D; . (31)

O(si(S1_, 1 Skt Ra)) X BT
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We next use the Schur Complement Lemma [50] to recast the M8&mint as a matrix inequality,
and then we exploit the structure devised above togethdr héimma 1. We know that the MSE
constraint, i.e.]|m;||3 < 7;, can be represented in terms of the following ‘Ml

M, (32)
By inserting the structure of the MSE into the above equatwenhave
Ti m; ! 0 (M ijvec [Aji])*

= . (33)

m; L st s)) i | Mijvec[Ag] Og,sor_ s 4R,

By appropriately choosing the the parameters of the sidimiteness lemma as follows,

~ %

A= i , (34a)
mi L (riyyi,s))
Qij = [*1 le(Si(Ri—&-Z;:l Sj))} ) (34b)
Pij = [Oprpa M), (34c)
we can recast th#SE; constraint as the following matrix inequality:
-Ai - Zjl'zl EijQ:jQij *51'113?1 *@IPZ}_
—(57;1.Pi1 Ei?I . 0 0. (352)
i —0i1Pir 0 e el

Note that the non-negativity of the slack variables follawnh the preceding LMI. By assembling
all components, the sum-MSE minimization problem can nowvbiden:

1
inimi i 36a
(po A, 2T (%62
subject to TxP; <r;, Vi, (36b)
(35a) holds Vi (36¢)

This problem is not semi-infinite anymore, but it is biconelwe to the underlying structure of;
andP;;). Next we propose an iterative algorithm based on the ACB8rilgn to solve it numerically.

2) Sep 2: In what follows, we minimize the sum-MSE by first fixing a subséthe variables so
that the problem at hand reduces to a convex one in the ramgair@riables (including the slack
variables). We use interior point methods to solve the tegulconvex problem. We then fix the
remaining subset of variables and do the same thing to upHatdirst subset of variables. This
process continues until the desired accuracy is reacheadhtdraucertain number of iterations has
been carried out. The algorithm is summarized as follows:

4The robust version of a SOCP is generally an SDP (which médansdmplexity class of a robust problem is increased relativthe
original non-robust problem), see [60] and the referenbesetn. The LMI-based formulation appears to be the mostogpiate SDP,
because it is convex, and unlike the vector/matrix liftimggess [51] which usually needs the non-convex rank-1 cainstrelaxation, the
LMI-based formulation does not need any further assumgtmmprocessing.
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Algorithm 1 : Solution of (MIN-2)
Require: ¢ (the desired accuracy) and,,... (the maximum number of iterations)

1: Initialization step: setk <+ 0, set the beamformer matrices randomily; < DEO], Vi, and choose arbitrary
Ti,new > Oa Vi.
2: repeat

3 k< k+1and7 oq ¢ Tinew, Vi

A

Solve (36) to findP;, Vi keeping current fixed valued fdD,, Vi.

a

Solve (36) to updatdD; and; ., Vi, for fixed P;, Vi, found in the previous step.

. I
6: until k> Kpyap OF D0 | Tinew — Tijold < €

Clearly, the above algorithm will converge to a sub-optis@ution (provided that enough iterations
are performed) as the objective function is bounded andimeneasing in each step. This is always
the case for the ACS algorittmi52].

The general problem formulation proposed here reducesetcdimventional perfect CSI case if
we set the uncertainties zero. More precisely it is stréggivard to show that the SDP formulation
proposed herein would lead to the following SOCP when thesttaimty size is set to zero, and the
slack variables are chosen to be arbitrary but positive:

I
(Bpimize, 27 (37a)
subject to TxP; <, Vi, (37b)
il <7, Vi (37¢)

We stress that the proposed algorithm is a centralized itigorwhich means that there should
be a dedicated station in the network which acquires all #levant CSI, performs the steps of
the algorithm and finally sends the transmitter and recgbegties back their required precoder or
equalizer matrices. Although this mechanism may reduceveeall spectral efficiency of the system
when taking into account the overhead, it appears to bepgedsable. Since usually the receivers
guantize the CSI before sending it to the central statiom littear equalizers designed in the central
station have more uncertainty relative to the ones thatdcbaldesigned by the receivers themselves
[53].

C. Robust Solution to Application 2

In this section, we deal with the nonconvex problem (AFIRNahd convert it into a biconvex
approximate problem, for which computationally efficienterior point methods exist. A similar

5The upper bound on the number of iteratiali$,q, is included only to ensure that this algorithm always fieshith a fixed amount
of time. In our numerical experiments, the algorithm usig,... = 1000 was never terminated by reaching the maximum number of
iterations. If in some case, the convergence is very slowskhaild changeX,,., accordingly to prevent premature termination of our
algorithm. The optimum value for this parameter may be tuequerimentally for every application.

March 7, 2013 DRAFT



18

procedure can be performed to simplify (AFIRN-2) and (AFHIN details of this are omitted here.
To do so, we employ a two stage process: first, we deal with ¢n@-sfiniteness of the last two
constraints of (AFIRN-1) using the generalized version etdfsen’s lemma for complex valued
matrices, and then we propose an iterative algorithm bagealternating convex search (ACS), to
suboptimally solve the multilinear (nonconvex) probleme \&tart with the last constraint which,
as noted in Remark 2, is multilinear in the design variabled threefold semi-infinite. Th&xP,.

constraint needs a similar procedure which is not repeageel. To deal with the MSE constraints,

first using||A;||r = ||vec[A;] ||2, theMSE;,i = 1,2 is recast as follows:
- 4012
D;[(;H;+ FWE_)P_, — (1 - «;)C;
use, _ | |vec[Di (o Hi+ )P~ (1-a)Cll| | -
o, Vec [DlFIW]
oe,vec [ D]

After inserting (8) into the above equation, and neglectigher order uncertainty terfisit is

possible to recast thesE; asMSE; = ||y, ||* where

pi = A+ ), My vec[Ax], (39)
Xelu,

U, ={E,;_;, F;,G;,H;}, and
vec [Di(é‘i + F,WE,)P; — I}
vec [DZ- [(aifﬂ + FiWE,Z-)P,Z- —(1- ai)Ci”

i e C5, (40a)
ovec [DzFlW}

oe,vec D]

GDiAFiWAEiPi and D;Arp, W AE_, P; have very small norms relative to the other terms and ingeda nonlinearity to the

system which makes the problem mathematically intractable
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and subsequently

—PT ® D ’
MGi _ i 7 c (CmiXRiTi’ (40b)
0
[PT & D,F;W ,
Mg =| " o e CmixrTi, (40c)
0
[0
MHi = alPTl [} Dz S Cm;XRiTii, (4Od)
0
[ 0
My .= |PT, @ D,F;W | € C™¥ T (40e)
0
(WE,;P,))" @ D;
WE_,P_)T ® D, ,
My, = | i) | e cmi (40f)
' cuW7T @ D;
0

wherem, = S;(S; +S_; +r + R;). Using the Schur complement lemma [46], t&E,; constraint
can be recast as the following LMI:

7}' Ky - Z
K I XeUu;
To proceed with this constraint, we will use the sign-dedinéss lemma.

(41)

0 (MXvec [Ax])*
M xvec [Ax] 0

Using Lemma 1, and by appropriately choosing its parametsrollows (we have includedélto
distinguish between two different constraints), we have:

KO
i I
Qi =Qp=Q3=0Qy=Q; = [—1 OT] e clx(ttmy),

Pil = _0 Mél_ € CRiTiX(1+m;),Xi1 = vec [AGI] s

c C+m)x(1+m))

Pi2 — _0 M*E‘Z_ c CTTiX(l“"mg)’XiQ = vecC [AEI] ,

P;; = _0 ME,i] c CrT,ix(leri-)’Xi?) = vec [AE,Z-] ,

P.=lo MFL-_ € CRT-ix(+m) X — vec A,

Pi5 = _0 M}Z] S (CtRiX(ler/i),Xw = VecC [AFz] .
Now, it is possible to rewrite th®SE; constraint as the following finite (single) LMls:
[Ti - Z?:l €ij l]’:
fi; I
Ti bIkdlag [{eijI}?zl]

Ty

=0

, (42a)
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where
Y; = —[0q, P, 6p,PL 6 Pk ou PL op PLT. (42b)

In this formulation, the non-negativity of the slack vatedis automatically guaranteed, because the
LMI in (42a) requires that the diagonal elements of the mabm the left-hand side are positive.
Hencer; also should be greater than or equal to the sum; pfvhich itself is the sum of positive
real numbers.

Using a similar procedure for the other semi-infinite coaist; i.e., theTxP, constraint, it is
possible to show thatxP, = ||=||?, where

2
T=%+Y Pp, vec[Ap], (43a)
=1
_VEC WElpl
T = |vec | WELP5|| € Cm”, (43b)
oyvec [W]
PTow p
Py =1 “ e Xt (43c)
0
0
Pp, = |PTow| eCc™'*T, (43d)
0

wherem” = t(Sy + Se + r). Similarly, it is possible to replace this constraint witetfollowing

single LMI:
PT — € — €7 ’ﬁ'* H*
™ 1 = 0, (44a)
IT blkdiag [es I, e7I]
where
I — 0 —ip, PE1 c CT(T1+T2)><(1+m”). (44b)
0 —Ig, P*E2

Putting all these equivalent constraints together reguttse following LMI which replaces (AFIRN-1):

minimize 1+ T (45)
P; W .,D,,e1.720,7;20

subject to ||Pi||% < P,,, i=1,2
(42a) holds, i =1,2
(44a) holds, i =1,2
This problem is no longer semi-infinite, but it is still nobrwex. Due to the biconvex and multi-

linear structure of the elements Bf andY';, we resort to an iterative algorithm inspired by the ACS
method, see Algorithm 2.

March 7, 2013 DRAFT



21

Algorithm 2 : Solution of (AFIRN-1)
Require: ¢ (the desired accuracy) and,,... (the maximum number of iterations)

(0]

1: Initialization step: setk < 0, set the beamformer matrices random¥y: < W[O],Dl- — D;",i=12,
and choose arbitrary; pe,, > 0,7 =1,2.

2: repeat

3 k< k+1and7 g < Tinew,? =1,2.

4:  Solve (45) to findP;,i = 1,2, andC; if a; = 0 keeping the other parameters fixed.

5. Solve (45) to updatdV for fixed P;,i = 1,2, found in the previous step.

6:  Solve (45) to updatd); andT; ,..,? = 1,2 for fixed P;, F'; and W found in the previous steps.

. 2
7o until k> Kpae OF D7 | Tinew — Tijold < €

The convergence of the above algorithm (to at least a locainom) is clear as the objective
function decreases in each step and is bounded from beloge $ie original problem is non-convex,
we may obtain different solutions depending on how the #lgar is initialized.

It is straightforward to show that #g, = 0y, = g, = 0, = 0 the above problem reduces to the
problem with full (perfect) CSI. In that case, (45) becomesiraple SOCP as follows:

minimize T+ To (46)
P, W,D;,F;,;

subject to || Pi||% < Ps,, i =1,2,
|17* < Pr,

|i)* <7, i=1,2.

D. Robust Solution to Application 3

To solve the problem we need to find expressions forM#e, TxP, and the powelxP,,. Using
Lemma 2, we have:

TxP, = E, [||Ps|*] = | P||%. (47a)
TxP,, = Eq (e}, [[WiGiPs + Wiei||?] = |W,GP|% + o |Wil|7, (47Db)
MSE = Ese, n [[|8 — 5] (47¢)
L 2 L
=D (Z HZW,-GZ) P—1Ig +Zagi\|DH,-W,-\|%+ag||D||%. (47d)
i=1 Fooi=1

To solve the design problem, we first show that it is possibherite the MSE as the norm of a vector
which is an affine combination of the channel uncertaintyngerThen we use the sign-definiteness
lemma to obtain a single matrix inequality instead of thgio@dl semi-infinite MSE constraint. Finally,
we use an iterative algorithm based on the ACS method.
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The MSE can be written:

MSE = HmH2 (48)
L L 2
= Hm + Z M ¢, vec [A;] + Z M . vec|A]|l (49)
1=1 i=1
where
Zz‘L:1 vec [DfLW,éZP} — vec [Ig]
O¢,Vec [Df{lWl]
m = : c CS(S+Zf:1 ri—‘,—R)’ (50a)
O¢, VecC [DﬁLWL]
onvec [ D]
and
L T ~
- P DH,W,
Mg, = [Z” : ] : (50b)
O5(R+s L, ri)xTr:
_25:1(WiéiP)T & D]
Oci1
MHi — SZj;l Tj X Rt; . (SOC)
W; @D
L OS(R+Z§‘J:¢+1 Ti)XRt; |

By inserting these quantities into the LMI version of the M8&nstraint, and choosing the sign-
definiteness matrices as follows,
T m”*
A= [~ ] , (51a)
m It rivm)
|:OT”><1 MZZ:| ’L:l,’L

P, = (51b)
[ORtixl MT*L] i=L+1,---,2L

Qi = {*1 01X5(5+Zf:1m+R)} i=1,--,2L, (51c)

the MSE constraint of (MRN) takes on the following form:

2L ~ %
T — 1€ MM
[ Zh'lil ! ] —Ctlpi s _CEQLP;L
m I
—a1 P4 eI s 0 > 0, (52&)
—aer Paor, 0 e ear

where
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Similarly for the TxP,, constraint we can write
PTz‘ — 1) p~: leriti
p~i I(S—l—ri)ti -\¥;| =0, (53&)
OT'itin _)\Z\I’j niITiti

where
vec WiéiP
p; = { } ; (53b)
o.,vec [W ]
and
PTow,
o= | O (53¢)
OT'itiXTT'i

By putting all these components together the design prollecomes

P W0 | (42
subject to TxP, < Py, (54b)

(52a) holds, (54c¢)

(53a) holds, Vi. (54d)

Again we resort to an iterative ACS approach, summarizekmafs:

Algorithm 3 : Solution of (MRN)
Require: ¢ (the desired accuracy) and, ... (the maximum number of iterations)

1: Initialization step: setk < 0, set the beamformer matrices random¥:; «+ WEO],D +« D =12,
and choose arbitrary,,.,, > 0.

2: repeat

3 k<« k+1and7yg + Thew-

4. Solve (54) to findP, keeping the other parameters fixed.

5. Solve (54) to updatdV ; for fixed P, found in the previous step.

6:  Solve (54) to updatd) andr,.,, for fixed P, W, found in the previous steps.

7 until & > Kpaz OF Thew — Told < €

E. Computational Complexity of the Proposed Algorithms

In this sub-section we give some remarks on the computdtiomaplexity of the algorithms
proposed earlier in this section. The proposed algorithenge hwo or three steps dealing with an
SDP. So we focus on the complexity of each SDP. Consider avaedatd SDP problem in its standard

form, i.e.,
minimize ¢’ x (55a)
xeR”
subject to A+ Y x;A; = 0 (55b)
=1
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where A; are symmetric block-diagonal matrices wih blocks of dimensiom, x a; . The number
of operations required to solve this SDP is upper-boundeftBy

K 1/2 K K
C(1+Zak> n(n2+n2ai+2ai>, (56)
k=1 k=1 k=1
where C' is a constant that does not depend on the problem size. Fanpdan Algorithm 1, to
compute the optimalP; in each iteration a SDP problem should be solved, for whiehrthmber
of diagonal blocksK is equal to2I. For the first/ blocks, the dimension of the block i =
1+ T;S; ¢ = 1,---,1 and for the nextl blocks the dimension of the blocks is equal dp =
1+ Si(R; + E§:1 S;) + R; Eﬁlej; i = 1,--- 1. In this problem we should determine =
I? + 1+ 22{21 S;T; real variables. A similar analysis can be carried out for tlext SDP in
Algorithm 1, and also for the other algorithms.

In order to obtain some insight from (56), let us assume thatrietwork has a large number of
users { > 1), and that the number of transmit and receive antennasgsrlahan the number of
independent streams of each lifk (R; > 5;). Also assume that we have a fully symmetric network,
i.e., all the nodes have an equal number of antennas andnstriga = S, 7; = T, R; = R,Vi). In
this case, the required number of operations to get the gezaoatrix is roughly

K xI°x 8 xT" x R, (57)

where K is a constant. Hence in this example, doubling the numberatdé dtreams and trans-
mit/receive antennas, increases the complexity by a faettie order of2° ~ 500.

V. SIMULATION RESULTS

To illustrate the performance of the algorithm proposed étt®n IV, we present here detailed
numerical results for the interfering relay scenario intiecll-C. The simulation setup is as follows.
The system is used to transfgf = Sy = 2 streams of independent data symbols between the source
and the destination. The numbers of transmit and receivenaas at the source, relay and destination
nodes are equal t6; = R; =t =r = 4,7 = 1,2. Both the source and relay power budgets are set
to P, = P,, = P, = 1. The convergence parameters of the algorithm are sét,tg, = 1000, and
e = 10~%. We will present results for the case wher= 1, i.e., for a Gaussian IRC. The initial value
of the relay precoder and the destination equalizer matrdgze chosen at random. Due to the long
computation time, we obtained the results by fixing the cleargalization (at random) and averaging
over 10000 perturbations. As for the distribution of thetpdrations, we tried both Gaussian random
matrices with a standard deviation proportional to the wag&y size, and matrices on the sphere of
uncertainty around the nominal value of the channel. Thesechoices yielded very similar results.

To demonstrate the convergence of the proposed algorithenginpirical SMSE of the system
as a function of the number of iterations is shown in Fig. 5isTiigure shows the convergence of
the algorithm fordg, = du, = dg, = 0F, = 0.01 and different SNRs of 3 dB, 10 dB, and 20 dB
(02, = o = —3 dB,—10 dB,—20 dB). It is clear that at each iteration, the SMSE of the system
decreases. After a few iterations the rate of change of th&EM small enough to terminate the
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Fig. 6. System-wide Squared Error Norm for a GIFRC

algorithm. It is also clear that the algorithm converges tboaal) minimum. We also observe that
for higher SNRs, the convergence rate decreases and thétlaig® take more time to converge.

In Fig. 6 the worst-case squared error norm of the relay sysdeshown. When the noise power is
small, the error is mostly dominated by the uncertainty terather than the noise terms, and for this
reason the error is almost constant with respect to the mpaiger. In this regime, the error increases
proportionally with the size of the uncertainty size. Thisekpected sincg, is a linear combination
of the uncertainty matrices, and the uncertainty size isithren of these matrices. However, for higher
noise powers, the error is dominated by noise rather thanhlbyreel uncertainty, and therefore the
error becomes a function only of the noise power but not ofuheertainty set size. The perfect

March 7, 2013 DRAFT



26

Perfect CSI Design
—6— Robust Design with 5=0.01
=—&— Robust Design with 5=0.05
1072} | —¥— Robust Design with 3=0.25
= © = Mismatch Design with 3=0.01
= B = Mismatch Design with 3=0.05
= W = Mismatch Design with 5=0.25

Worst-case Sum-MSE/SE
=
o

10’3 L L L L
0 5 10 15 20 25 30
SNR at the Transmitter (dB)

Fig. 7. System-wide Squared Error Norm for a TWRC

10

-1

10

10"

Perfect CSI Design
—6— Robust Design with =0.01
—&— Robust Design with 3=0.05
10 "F | =% Robust Design with =0.25
= © = Mismatch Design with 3=0.01
= B = Mismatch Design with 6=0.05
= ¥ = Mismatch Design with 6=0.25

107 1 1 1 1
0 5 10 15 20 25 30

SNR at the Transmitter (dB)

Worst-case Sum-MSE/SE

Fig. 8. System-wide Squared Error Norm for a Multi-Relay t8ys with Two Relays

(full) CSI case outperforms the cases with CSI uncertassyexpected. Note that the full CSI case
is a special case of the partial CSI case Wigh = 6, = 0g, = 65, = 0 = 0. To better highlight the
effectiveness of the proposed algorithms, we have incldkiexk extra curves (dashed curves) which
show a “mismatched” scenario in which we assumed for theqgolecdesign that the nominal CSI
is the perfect CSI, while the actual CSI used when generdtiaglata in the simulation had errors.
It is clear that when the CSI errors are fairly small, the perfance of the perfect CSI design is
sensitive to errors in the high SNR regime, and in that casestjuared error norm of the system
is larger relative to our robust designs. On the other harenwthe CSI errors are very large, the
performance of the baseline design is somewhat better tietnof the robust design optimized to
cope with the uncertainty, at low SNR. This is so because wheruncertainty is large enough, the
actual CSI appears as completely random. For high SNR, thestalesign generally outperforms
the baseline design faced with mismatched CSI. Since in iseaiched design, the filters obtained
from the nominal design may violate the transmit power aast of the relay, we have normalized
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Fig. 9. Relay transmit power

the relay beamformer coefficients to prevent this violatimmd then re-optimized the equalizer filters
to be in line with this newly scaled beamformer. In Figs. 7 &ntie system-wide MSE/Sum MSE is
plotted for a TWRC and a multi-relay system with two relaysbbth systems there is no direct link
between the source node(s) and the destination(s). The aruofittransmit streams, transmit/receive
antennas at the source/destination/relay are the sameths first example of this section. Similar
trends can be observed here as well.

In Fig. 9 the transmit power of the relay station is shown.eHee source transmit power constraints
are always satisfied with equality. When there is no unagstait is clear that by increasing the
transmit power the MSE of the system decreases. Then the M8Eases with TxP, which means
that the TxP constraint is satisfied with equality. But whieereé is uncertainty in the CSI, there is no
direct relation, because by increasing the TxP, we may @&sereéhe interfering power to other users
as well. Hence, the relay transmit power constraint is naessarily satisfied with equality. This is
so because the optimal solution wants to prevent over-fiogilon of the relay noise. As can be
seen, when the noise power increases, to maintain a minim&, Nhe transmit power of the relay
station increases. It is clear that the transmit power i3 alinction of the channel uncertainty. When
the uncertainty increases, the transmit power decreabésisIso because the MSE increases when
the uncertainty increases, and to maintain the minimumiplesMSE, the transmit power must be
decreased. Intuitively, this can be understood by notirag since the nominal value of the channel
is not a good estimate of the actual (true) CSl, and sincetheabCSI could be very different from
the nominal CSI, the algorithm does not rely on the avail&@f# estimate but instead transmits with
less power over this channel.

VI. CONCLUSIONS

The sign-definiteness lemma is a powerful tool that origiadtom control theory. In this paper we
have presented a generalization of this lemma to compliedavariables and multiple semi-infinite
constraints. This generalization was used to solve thréereint MIMO transceiver optimization
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problems, namely that of interfering adhoc networks, geneslay networks, and relay networks
with multiple relays. We considered a (sum) MSE problem faation in all three applications,
and we have seen that the corresponding optimization prabkre non-convex and semi-infinite.
We used the sign-definiteness lemma to relax the semi-iefiegs of problems and we resorted to
iterative algorithms based on ACS to devise a practicalrédtgn for solving the design problems.
Simulation results show that when increasing the noise p@amed when increasing the size of the
CSI uncertainty set, then the (sum) MSE increases. In the 8MR regime (where the noise power
is low) the SMSE and the optimal transmit power are mainhec#d by the CSI uncertainty set
size. By contrast, at low SNR, the uncertainty size does tet @n important role for the behavior
of these quantities.
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